Assignment-I 北京师范大学研究生抽象代数习题一
北师大考研高等代数数学题

北师大考研高等代数数学题(原创版)目录一、北师大考研高等代数数学题概述二、北师大考研高等代数数学题的内容三、北师大考研高等代数数学题的特点四、如何准备北师大考研高等代数数学题正文一、北师大考研高等代数数学题概述北师大考研高等代数数学题是北京师范大学研究生入学考试中的一部分,主要考察考生对高等代数这门学科的掌握程度。
这份试题对考生的数学基础和解题能力有较高的要求,因此对于备考北师大考研的考生来说,高等代数数学题是一项重要的挑战。
二、北师大考研高等代数数学题的内容北师大考研高等代数数学题主要包括以下几个方面的内容:1.矩阵和线性方程组:矩阵的基本概念、矩阵的运算、线性方程组的解法等。
2.线性空间和线性变换:线性空间的概念、性质、基和维数,线性变换的概念、性质、矩阵表示等。
3.特征值和特征向量:特征值和特征向量的概念、求解方法、矩阵的对角化等。
4.多项式和行列式:多项式的概念、性质、分解,行列式的概念、性质、计算方法等。
5.二次型:二次型的概念、标准形式、正定二次型和惯性定理等。
三、北师大考研高等代数数学题的特点北师大考研高等代数数学题具有以下几个特点:1.题目难度较高,需要考生具备扎实的数学基础和较强的解题能力。
2.题目综合性强,往往需要考生运用多个知识点综合分析和解决问题。
3.题目灵活性高,不仅考察考生对基本概念的理解,还考察考生对概念的拓展和应用。
四、如何准备北师大考研高等代数数学题准备北师大考研高等代数数学题,考生需要做好以下几点:1.打好数学基础,加强对基本概念、性质、定理的理解和记忆。
2.多做练习题,提高解题能力和技巧,特别是对综合性强、难度较高的题目进行专项训练。
3.及时总结复习,对学过的知识点进行梳理和归纳,形成自己的知识体系。
4.关注历年真题,了解考试题型和难度,有助于考生对考试有更深入的了解和把握。
抽象代数一习题答案

抽象代数一习题答案在抽象代数中,习题通常涉及群、环、域等代数结构的定义、性质和例子。
以下是一些抽象代数习题的答案示例。
习题1:证明如果一个群G是阿贝尔群,那么它的每个子群也是阿贝尔群。
答案:设H是群G的一个子群。
由于G是阿贝尔群,对于任意的a, b属于G,我们有ab = ba。
现在考虑任意的h1, h2属于H。
由于H是G的子群,h1和h2也属于G。
因此,我们有h1h2 = h2h1(因为h1h2和h2h1都是G中的元素,并且G是阿贝尔的)。
这表明H中的元素满足交换律,所以H也是阿贝尔群。
习题2:证明如果一个环R有单位元,那么它的每个理想都是主理想。
答案:设I是环R的一个理想,我们需要证明I是一个主理想,即存在一个元素r∈R使得I = (r),其中(r)表示由r生成的理想。
由于R有单位元1,考虑元素1 - r。
由于I是理想,1 - r也属于I。
因此,我们有1 - r = a(r) + b,其中a, b属于R。
将等式两边乘以r,我们得到1 = ar + rb。
这意味着r(1 - ar) = rb。
由于1 - ar属于I(因为I是理想),我们有r属于I。
现在,对于I中的任意元素x,我们可以写x = (1 - ar)x + arx。
由于ar属于I,(1 - ar)x也属于I。
因此,x = r(1 - ar)x,表明x可以由r生成。
所以I = (r),证明完成。
习题3:证明如果一个域F的元素a不是单位元,那么a的阶是有限数。
答案:设a是域F中的一个非单位元。
我们需要证明存在一个正整数n使得a^n = 1。
考虑集合{1, a, a^2, a^3, ...}。
由于F是域,它没有零除数,因此a^n ≠ 1对于所有n。
这意味着集合中的元素都是不同的。
然而,域F是有限的,因此不可能有无限多不同的元素。
因此,必须存在最小的正整数n > 1,使得a^n = a^1。
这意味着a^(n-1) = 1,所以a的阶是有限的。
抽象代数推理测验

抽象代数推理测验当然可以。
这里是根据“抽象代数推理测验”标题设计的20道试题,包括选择题和填空题,每道题目都有详细的序号介绍。
1.选择题:在抽象代数中,下列哪个概念描述了集合中元素之间的二元关系?A. 群B. 环C. 映射D. 拓扑空间2.填空题:群的定义包括一个集合和一种操作,满足(填空),该操作是封闭的、可逆的和满足结合律的。
3. 选择题:给定一个环 \( R \),如果对于所有 \( a, b \in R \),都有 \( ab = ba \),则称 \( R \)是什么类型的环?A. 可交换环B. 域C. 除环D. 有限环4.填空题:一个域是一个包含至少两个元素的环,其中每个非零元素都有逆元素,这个逆元素用(填空)表示。
5.选择题:在抽象代数中,线性代数是研究(填空)的一个分支。
A. 群B. 环C. 向量空间D. 模6. 填空题:设 \( G \) 是一个群,\( H \) 是 \( G \) 的一个子群,那么 \( H \) 在 \( G \)中的左陪集表示为(填空)。
7.选择题:在抽象代数中,研究素数分解和多项式因式分解的分支是(填空)。
A. 代数数论B. 环论C. 同调代数D. 伽罗华理论8. 填空题:一个多项式环 \( F[x] \) 是一个(填空)。
9. 选择题:若 \( V \) 是一个向量空间,\( W \) 是 \( V \) 的子空间,那么 \( V/W \) 是一个(填空)。
A. 环B. 向量空间C. 代数D. 模10. 填空题:一个群的阶是指其元素的(填空)。
11. 选择题:下列哪个不是群的必要条件?A. 封闭性B. 结合律C. 逆元素D. 交换性12. 填空题:在抽象代数中,若 \( G \)是一个群,且其元素个数为 \( n \),则 \( G \) 中任意元素的阶都是(填空)。
13. 选择题:对于一个域 \( F \),\( F[x] \) 中的多项式除法(填空)。
抽象代数等价关系习题答案

抽象代数等价关系习题答案抽象代数等价关系习题答案抽象代数是数学中的一个重要分支,研究的是代数结构的一般性质和规律。
在抽象代数中,等价关系是一个基本概念,它描述了两个元素之间的相等性。
在本文中,我将为大家提供一些抽象代数中等价关系习题的答案,希望能对大家的学习有所帮助。
1. 设A是一个非空集合,R是A上的一个等价关系。
证明:对于任意的a ∈ A,[a] = A。
解答:根据等价关系的定义,[a]是由所有与a等价的元素组成的集合。
而等价关系具有自反性,即对于任意的元素a,a与自身等价。
因此,a ∈ [a],即a属于[a]中的元素。
又因为R是等价关系,所以对于任意的b ∈ A,若a与b等价,则b与a也等价。
因此,[a]中的任意元素与a都等价,即[a]包含了A中的所有元素。
综上所述,[a] = A。
2. 设A是一个非空集合,R是A上的一个等价关系。
证明:对于任意的a, b ∈ A,若a与b等价,则[a] = [b]。
解答:假设a与b等价,即(a, b) ∈ R。
根据等价关系的定义,对于任意的c ∈ [a],都有(c, a) ∈ R。
由于(a, b) ∈ R,根据等价关系的传递性,对于任意的c ∈ [a],都有(c, b) ∈ R。
因此,[a]的任意元素与b都等价,即[b] ⊆ [a]。
同理可证,[a] ⊆ [b]。
综上所述,[a] = [b]。
3. 设A是一个非空集合,R是A上的一个等价关系。
证明:对于任意的a, b ∈ A,若[a] ∩ [b] ≠ ∅,则[a] = [b]。
解答:假设[a] ∩ [b] ≠ ∅,即存在一个元素c,使得c ∈ [a] 且c ∈ [b]。
根据等价关系的定义,对于任意的d ∈ [a],都有(d, a) ∈ R。
由于c ∈ [a],根据等价关系的传递性,对于任意的d ∈ [a],都有(d, c) ∈ R。
同理可证,对于任意的d ∈ [b],都有(d, c) ∈ R。
因此,[a]和[b]中的任意元素与c都等价,即[a] ⊆[b] 且 [b] ⊆ [a]。
抽象代数复习题与答案

抽象代数复习题与答案《抽象代数》试题及答案本科⼀、单项选择题(在每⼩题的四个备选答案中,选出⼀个正确答案,并将正确答案的序号填在题⼲的括号内。
每⼩题3分) 1. 设Q 是有理数集,规定f(x)= x +2;g(x)=2x +1,则(fg )(x)等于( B )A. 221x x ++B. 23x + C. 245x x ++ D. 23x x ++2. 设f 是A 到B 的单射,g 是B 到C 的单射,则gf 是A 到C 的( A )A. 单射B. 满射C. 双射D. 可逆映射3. 设 S 3 = {(1),(1 2),(1 3),(2 3),(1 2 3),(1 3 2)},则S 3中与元素(1 32)不能交换的元的个数是( C )。
A. 1B. 2C. 3D. 44. 在整数环Z 中,可逆元的个数是( B )。
A. 1个B. 2个C. 4个D. ⽆限个5. 剩余类环Z 10的⼦环有( B )。
A. 3个B. 4个C. 5个D. 6个 6. 设G 是有限群,a ∈G, 且a 的阶|a|=12, 则G 中元素8a 的阶为( B ) A . 2 B. 3 C. 6 D. 97.设G 是有限群,对任意a,b ∈G ,以下结论正确的是( A )A. 111)(---=a b ab B. b 的阶不⼀定整除G 的阶C. G 的单位元不唯⼀D. G 中消去律不成⽴8. 设G 是循环群,则以下结论不正确...的是( A ) A. G 的商群不是循环群 B. G 的任何⼦群都是正规⼦群 C. G 是交换群 D.G 的任何⼦群都是循环群9. 设集合 A={a,b,c}, 以下A ?A 的⼦集为等价关系的是( C )A. 1R = {(a,a),(a,b),(a,c),(b,b)}B. 2R = {(a,a),(a,b),(b,b),(c,b),(c,c)}C. 3R = {(a,a),(b,b),(c,c),(b,c),(c,b)}D. 4R = {(a,a),(a,b),(b,a),(b,b),(b,c),(c,b)}10. 设f 是A 到B 的满射,g 是B 到C 的满射,则gf 是A 到C 的( B )A. 单射B. 满射C. 双射D. 可逆映射11. 设 S 3 = {(1),(1 2),(1 3),(2 3),(1 2 3),(1 3 2)},则S 3中与元素(1 2)能交换的元的个数是( B )。
抽象代数习题精选精解

抽象代数习题精选精解抽象代数是数学中的一个分支,研究的是抽象的代数结构及其属性。
这里列举一些抽象代数习题,希望对于初学者来说有所帮助。
一、环与域1. 求证:整数环中有无限多个素元。
解答:先定义若 $p$ 是素数,则 $p$ 是一个整数环中的素元。
现在假设整数环中只有有限个素元 $p_1,p_2,\ldots,p_n$。
令$P=p_1p_2\cdots p_n + 1$,则 $P$ 不是素数,且 $P$ 是整数环中的元素。
根据算术基本定理,$P$ 可以表示为若干素元的积,但由于 $P$ 不是素数,所以 $P$ 不能表示为 $p_1,p_2,\ldots,p_n$ 的积。
这就与 $p_1,p_2,\ldots,p_n$ 是整数环中所有的素元矛盾了。
所以整数环中有无限多个素元。
2. 证明:有限域的元素个数必须是素数幂。
解答:设 $F$ 是一个有限域,则 $F$ 必须有一个加法单位元$0$ 和一个乘法单位元 $1$。
$F$ 的乘法群是一个阶数为 $q-1$ 的循环群,其中 $q$ 是 $F$ 中的元素个数。
由于 $q-1$ 是素数幂,所以 $q$ 必须是素数幂。
也就是说,有限域的元素个数必须是素数幂。
二、群1. 证明:任何一个群都存在唯一的单位元。
解答:设 $G$ 是一个群,$g$ 是 $G$ 中的任意元素。
取$e_1=e_2g$,其中 $e_1,e_2$ 是 $G$ 的单位元。
由于 $G$ 是群,我们可以通过左乘和右乘来证明$e_2=e_1$。
假设$e_2\neq e_1$,则 $ge_1=ge_2$,且 $e_1g=e_2g$。
左乘 $g^{-1}$ 可以得到$e_1=e_2$,这与假设不符。
所以,$e_2=e_1$,即 $G$ 中存在唯一的单位元。
2. 设 $G$ 是一个有限群,$H$ 是 $G$ 的一个子群,证明:$|H|$ 整除 $|G|$。
解答:由拉格朗日定理得$|G|=|H|(G:H)$。
抽象代数考试试题及答案

抽象代数考试试题及答案
在这份3000字的抽象代数考试试题及答案内容中,将为您详细解
析各种抽象代数考试题目,并给出相应的答案,帮助您更好地理解和
掌握这一领域的知识。
第一题:给定一个环R,证明R中每个理想都是主理想。
解答:首先,我们知道一个环中的理想是一个包含于该环的子集,
并且满足加法和乘法封闭性,对于任意r∈R和a,b∈I(I为R的一个
理想),有ra, rb∈I。
要证明R中每个理想都是主理想,即对于任意理想I,存在一个元
素r∈R,使得I = rR。
我们可以取r为I的一个生成元素,即r为使得I = rR的最小生成元素。
第二题:证明一个整数环不一定是唯一分解整环。
解答:反例:考虑整数环Z = {..., -2, -1, 0, 1, 2, ...},Z并不是唯一
分解整环,因为在Z中存在不满足唯一分解性质的元素。
例如,2可以被分解为2 = (-1)(-2) = 1 * 2,即存在不同的唯一分解形式。
第三题:给定一个域K,证明K[x](K上的多项式环)是唯一分解
整环。
解答:首先证明K[x]是整环。
然后证明K[x]是主理想整环(PID),意味着K[x]中的每个理想都是主理想。
再进一步证明K[x]是唯一分解
整环(UFD),即K[x]中每个非零元素都可以被分解为不可约元素的
乘积,且这个分解是唯一的。
通过以上试题及解答,我们可以看出在抽象代数领域中,需要深入
理解环、理想、整环、唯一分解整环等概念,并掌握相应的证明方法,才能较好地解决相关问题。
希望以上内容对您有所帮助,祝您学业有成!。
抽象代数复习题

抽象代数复习题一、 判断题(下列命题你认为正确的在题后括号内打“√”,错的打“×”;每小题2分,共20分)1.一个集合上的全体一一变换作成一个变换群。
( )2、有限群G 中每个元素a 的阶都整除群G 的阶。
( )3、如果循环群()a G =中生成元a 的阶是无穷大,则G 与整数加群同构。
( ) 4、循环群的子群也是循环群。
( )5、群G 的子群H 是正规子群的充要条件为1,;g G h H g hg H -∀∈∀∈∈。
( ) 6.若环R 有单位元,则其子环也一定有单位元。
( )7、除环中的每一个元都有乘法逆元。
( )8、)(x F 中满足条件()0f α=的多项式叫做元α在域F 上的极小多项式。
( ) 9、主理想整环一定是唯一分解整环。
( )10.域是交换的除环。
( )二、填空题(本大题共5小题,每小题4分,共20分)1.设8Z 模8的剩余类环,则8Z 中的零因子是______。
2.模p (素数)的剩余类环Z p 的特征为________。
3.高斯整数环[]Z i 的单位是_______。
4.模6的剩余类加群6Z 有________个生成元。
5.剩余类环Z 6的子环S={[0],[3]},则S 的单位元是____________。
三.计算与证明题(共60分)1(10分).在5次对称群5S 中,令⎪⎪⎭⎫ ⎝⎛=3451254321f ,⎪⎪⎭⎫⎝⎛=2541354321g ,计算1fgf 。
2(10分).求出9Z 中所有可逆元并求其逆元3(20分).设f是群G到'G的同态,H是G的子群,证明()f H是'G的子群。
4(20分). 设f是环R到'R的满同态,I是R的理想,证明(I)f是'R的理想。