分式加减法(一)教案
11.4分式的加减法(一)教案

§11.4 分式的加减法(一)●课题§11.4 分式的加减法(一)●教学目标(一)教学知识点1.同分母的分式的加减法的运算法则及其应用.2.简单的异分母的分式相加减的运算.(二)能力训练要求1.经历用字母表示数量关系的过程,发展符号感.2.会进行同分母分式的加减运算和简单的异分母分式的加减运算,并能类比分数的加减运算,得出同分母分式的加减法的运算法则,发展有条理的思考及其语言表达能力.(三)情感与价值观要求1.从现实情境中提出问题,提高“用数学”的意识.2.结合已有的数学经验,解决新问题,获得成就感以及克服困难的方法和勇气.●教学重点1.同分母的分式加减法.2.简单的异分母的分式加减法.●教学难点当分式的分子是多项式时的分式的减法.●教学方法启发与探究相结合●教具准备投影片四张:第一张:提出问题,;第二张:想一想,做一做,;第三张:想一想,;第四张:议一议,; 第五张:例1,; 第六张:补充练习,. ●教学过程Ⅰ.创设现实情境,提出问题[师]上一节我们学习了分式的乘除法运算法则,学会了分式乘除法的运算,这节课我们先来看下面的问题:[生]问题一,根据题意可得下列线段图:(1)当走第二条路时,她从甲地到乙地需要的时间为(v 1+v 32)h .(2)走第一条路,小丽从甲地到乙地需要的时间为v23h .但要求出小丽走哪条路花费的时间少.就需要比较(v 1+v 32)与v 23的大小,少用多少时间,就需要用它们中的较大者减去较小者,便可求出.[生]如果要比较(v 1+v 32)与v 23的大小,就比较难了,因为它们的分母中都含有字母.[生]比较两个数的大小,我们可以用作差法.例如有两个数a ,b . 如果a -b >0,则a >b ; 如果a -b =0,则a =b ; 如果a -b <0,则a <b .[师]这位同学想得方法很好,显然(v 1+v 32)和v 23中含有字母,但它们也是用来表示数的,所以我认为可以用实数比较大小的方法来做.[生]如果用作差的方法,例如(v 1+v 32)-v 23,如何判断它大于零,等于零,小于零呢?[师]我们不妨观察(v 1+v 32)-v 23中的每一项都是分式,这是什么样的运算呢?[生]分式的加减法.[师]很好!这正是我们这节课要学习的内容——分式的加减法(板书课题) 我们再来看一下问题二.[生]问题二中这个人用电脑录入3000字的文稿需a33000小时,利用分式的基本性质化简,即为a1000小时;用手抄3000字文稿则需用a 3000小时,因此这个人录入3000字的文稿比手抄少用(a 3000-a1000)小时.[生]a 3000, a 1000是分式,a 3000-a1000是分式的加减法.[师]但和问题一中加减法比较一下,你会发现什么?[生]问题一中的是异分母的分式相加减,而问题二是同分母的加减法.[师]很好!我们按研究问题的一般思路,从简单的学起即先学习同分母的加减法. Ⅱ.讲授新课 1.同分母的加减法[师]我们接着看下面的问题[生]同分母的分数的加减是分母不变,把分子相加减,例如134+133-1317=131734-+=-1310.我认为分母相同的分式相加减与同分母的分数相加减一样,应该是分母不变,把分子相加减.[师]谁能试着到黑板上板演“做一做”中的三个小题. [生1]解:(1)a 1+a 2=a 21+=a3; [生2]解:(2)22-x x -24-x =242--x x ;[生3]解:12++x x -11+-x x +13+-x x =1312+-+--+x x x x=12+-x x . [师]我们一块来讲评一下上面三位同学的运算过程.[生]第(1)小题是正确的.第(2)小题没有把结果化简.应该为原式=242--x x =2)2)(2(--+x x x =x +2. [师]这位同学很仔细.我们学习分式乘除法时就强调运算结果必须是最简的,如果分子、分母中有公因式,一定要把它约去,使分式最简.[生]第(3)小题,我认为也有错误.同分母的分式相加减,分母不变,把分子相加减,我觉得(x +1)分母不变,做得对,但三个分式的分子x +2、x -1、x -3相加减应为(x +2)-(x -1)+(x -3).[师]的确如此,我们知道列代数式时,(x -1)÷(x +1)要写成分式的形式即11+-x x ,因此分数线既有除号的作用,还有括号的作用,即分子、分母应该是一个整体.[生]老师,是我做错了.第(3)题应为:(3)12++x x -11+-x x +13+-x x =1)3()1()2(+++--+x x x x=1312+-++-+x x x x=1+x x [师]发现问题,及时改正是一种很好的学习习惯,努力发扬,你一定会取得更大进步.通过前面做一做,想一想,我们可以得出同分母的分式相加减的法则: 同分母的分式相加减,分母不变,把分子相加减,用式子表示是:c a ±c b =c b a ±(其中a 、b 既可以是数,也可以是整式,c 是含有字母的非零的整式).前面问题二现在可以完成了吧!大胆地试一试.[生]a 3000-a1000=a 10003000-=a 2000,所以这个人录入3000字文稿比手抄少用a2000个小时. 2.简单的异分母的分式相加减 [生]问题一还没有解决呢?[师]是的,如果分式的分母不同,那么该如何加减呢?同学们不妨凭借自己的数学经验,合作交流,找到一个可行的方法.[生 ]异分母的分数加减时,可利用分数的基本性质通分,把异分母的分数加减法化成同分母的分数加减法[生 ]我认为分式有很多地方和分数相类似,异分母的分式加减是否也可以通过像分数那样通分,将异分母的分式加减法化成同分母的分式加减法.[师 ]同学们的想法很好!我这儿就有两位同学将异分母的分式加减化成同分母的分式加减.[生 ]我觉得这两种做法都有一个共同的目标:把异分母的分式加减法化成同分母的分式加减法.但我觉得小亮的方法更简单.就像分数运算:61+41.如果61+41=464⨯+646⨯=244+246=2410=125,这样计算就比较麻烦;如果找6和4的最小公倍数12,算起来就很方便,即61+41=262⨯+343⨯=122+123=125.[生 ]我认为也是这样,根据分式的基本性质,异分母的分式可以化为同分母的分式,这一过程称为分式的通分.但通分时为了简便,也应该像分数的通分一样,找各个分母的最小公倍数.[师]同学们分析得很有道理,为了计算简便,异分母分式通分时,通常取最简单的公分母(简称最简公分母)作为它们的公分母.例如a 3+a41,a 和4a 的最简公分母是4a .下面我们再来看几个例子.[生]老师,我们组还是联系异分母的分数相加减的方法,利用分数的性质,先通分,转化成同分母的就可以完成.[生]我们组也是用了将异分母的分式相加减转化成同分母相加减的分式运算. [例1]中的第(1)题,一个分母是a ,另一个分母是5a ,利用分式的基本性质,只需将第一个分式a 3化成a 553⨯=a 515即可.解:(1)a 3+a a 515-=a 515+aa 515-=a a 5)15(15-+=a a 5=51;[生]我们组也已完成了第(2)题.两个分式相加,一个分式的分母是x -1,另一个分式的分母是1-x ,我们注意到了1-x =-(x -1),所以要把xx --11化成分母为x -1的分式,利用分式的基本性质,得x x --11=)1()1()1()1(-⨯--⨯-x x =11--x x.所以第(2)题的解法如下:(2)12-x +x x --11=12-x +11--x x =1)1(2--+x x =13--x x[师]同学们能凭借自己的数学经验,将新出现的数学难题处理的有条有理,很了不起.[生]问题一可以出来结果啦.(1)小丽当走第二条路时,她从甲地到乙地需要的时间为v 1+v 32=v 33+v 32=v 323+=v35h. (2)小丽走第一条路所用的时间为v23h. 作差可知v 35-v 23=v 610-v 69=v 61>0.所以小丽走第一条路花费的时间少,少用v61h. Ⅲ.应用、升华 1.随堂练习第1题计算:(1)x b 3-x b ; (2)a 1+a 21;(3)b a a --ab a-解:(1)xb 3-x b =x b b -3=x b2;(2)a 1+a 21=a 22+a 21=a 212+=a 23;(3)b a a --a b a -=b a a --b a a--=b a a a ---)(=b a a -2. 2.补充练习Ⅵ.课时小结[师]这节课我们学习了分式的加减法,同学们课堂上思维非常活跃,想必收获一定很大.[生]我觉得我这节课最大的收获是:“做一做”中犯的错误,在今后做此类题的过程中,一定不会犯同样的错误.[生]我的收获是学会用转化的思想将异分母的分式的加减法转化成同分母分式的加减法.…… Ⅴ.课后作业 Ⅵ.活动与探究已知x +y 1=z +x 1=1,求y +z1的值. [过程]已知条件实际上是一个方程组,我们可以取其中两个方程x +y 1=1,z +x1=1,由这两个方程把y 、z 都用x 表示后,再求代数式的值.[结果]由x +y 1=1,得y =x-11, 由z +x 1=1,得z =x x 1-.所以y +z 1=x -11+1-x x =11--x +1-x x =11--x x =1.●板书设计。
分式的加减法1学案

分式的加减法1主备人:王军 审核人: 姓名 班级学习目标:通过类比分数的加减法运算,猜想、归纳分式的加减法的运算方法,能利用分式的加减法法则熟练的进行运算。
进一步了解通分的意义,培养加强计算能力。
学习重点:分式的加减法的运算。
学习重点:异分母分式的加减法的计算。
预习导学:计算:=+7372;=-6561;=+4131;=-6552。
根据1题的计算过程回忆分数的加减法法则:同分母分数相加减 。
异分母分数相加减 。
模仿分数的加减计算:=+aa32 ;=-bb41 ;=+nm11 ;=-yx11 。
合作探求:1.阅读课本78—79页。
同分母分式加减,分母 ,把分子相 ; 例(1)aa a 5123-+ (同分母分式相加减) (2)yx y yx x +++ (同分母分式相加减)解:原式=a(分母不变,分子______) 解:原式=yx + (分母不变,分子______)= (化最简分式) = (化最简分式)(3)2222223223yx y x yx y x yx y x --+-+--+ (同分母分式相加减)解:异分母分式加减法先 ,化为 的分式,然后再按 分式的加减法法则进行计算. (1)ba 11+ (最简公分母是 ) ( 2)abcacab433265+-(最简公分母是 )解:原式=+ (化成同分母) 解:原式=++ (化成同分母)= (按同分母运算) = (按同分母运算)(3)yx yx --+11 (最简公分母是 )解:原式=+ (化成同分母)= (按同分母运算)当堂检测:(必做题)xxx321)1(++ ba b a ba a +--+2)2(bb 342)3(+ 242)4(2+-+a a axy yyx x-+-22)5( (6)xxx312161++选做题:1.计算:122+----+ab bba ab a2.先化简,再求值: 。
其中3,21)1121(-=+-÷--+-a a a aa a a。
分式加减法教案

分式加减法教案教案标题:分式加减法教案教案目标:1. 学生能够理解分式加减法的概念和基本原则。
2. 学生能够运用分式加减法解决实际问题。
3. 学生能够运用所学知识,灵活地进行分式加减法的计算。
教学重点:1. 分式加减法的基本原则和运算规则。
2. 分式加减法的实际应用。
教学难点:1. 学生理解分式加减法的概念和运算规则。
2. 学生能够将实际问题转化为分式加减法的计算。
教学准备:1. 教师准备教学课件、黑板、彩色粉笔等。
2. 学生准备纸和铅笔。
教学过程:一、导入(5分钟)1. 教师通过提问复习上节课所学的分式的概念和运算规则。
2. 引入今天的主题:分式加减法。
二、讲解与示范(15分钟)1. 教师通过PPT或黑板,详细讲解分式加减法的基本原则和运算规则,包括相同分母的分式加减法和不同分母的分式加减法。
2. 教师通过具体的例子演示如何进行分式加减法运算,并解释每一步的操作原因。
三、练习与巩固(20分钟)1. 学生进行基础练习,计算给定的分式加减法题目。
2. 学生完成一些应用题,将实际问题转化为分式加减法的计算,并给出答案和解答过程。
3. 学生互相交流,讨论解题思路和方法。
四、拓展与应用(15分钟)1. 学生分组进行小组讨论,设计一些实际问题,通过分式加减法进行计算,并给出解答和解题过程。
2. 每个小组派代表上台展示他们的问题和解答过程。
五、总结与反思(5分钟)1. 教师总结今天的教学内容,强调分式加减法的重要性和实际应用。
2. 学生对今天的学习进行反思,提出问题和困惑。
教学延伸:1. 学生可以通过做更多的分式加减法题目来加深对知识点的理解和掌握。
2. 学生可以通过查阅资料,了解更多分式加减法的实际应用。
教学评估:1. 教师观察学生在课堂上的表现,包括参与度、理解程度和解题能力。
2. 教师布置作业,检查学生对分式加减法的掌握情况。
3. 学生之间相互评价和反馈。
教学反馈:1. 教师根据学生的表现和作业情况,及时给予反馈和指导。
分式的加减法(1)PPT教学课件

D.3
7
4
2021/01/21
14
THANKS FOR WATCHING
谢谢大家观看
为了方便教学与学习使用,本文档内容可以在下载后随意修改,调整。欢迎下载!
汇报人:XXX
时间:20XX.XX.XX
2021/01/21
15
先通分,把异分母分式化 为同分母的分式, 然后再按同分母分式的 加减法法则进行计算。
异分母分式加减法法则与异分母分数加减法的法则类似
2021/01/21
6
小明认为,只要把异分母的分 式化成同分母的分式,异分母分式的加 减问题就变成了同分母分式的加减问题。 小亮同意这种看法,具体的做法如下:
3 a
1 4a
a 3 4 4 a a 4 a a a 1 4 a a 22 4 a a 2 1 4 a a 23 1 4 a3
小明
31 3 4 1 1 2 1 13 a4 aa 44 a4 a4 a4 a
小亮
2021/0你1/21认为谁的方法更好?为什么?
7
转化 异分母的分式 通分 同分母的分式
异分母分式通分时,通常取最简单的公分母 (简称最简公分母)作为它们的共同分母。
A、 m n B、 m n C、 3m nD、 3m n
n 2m n 2m
n 2m
n 2m
2021/01/21
9
小结:谈谈本节课的收获?
(1)分式加减运算的方法思路:
异分母相 加减
通分 转化为
同分母 相加减
分母不变 转化为
分子(整式) 相加减
(2)分子相加减时,如果分子是一个多项 式,要将分子看成一个整体,先用括号括 起来,再运算,可减少出现符号错误。
分式的加减法数学教案设计

分式的加减法数学教案设计一、教学目标:1. 让学生理解分式的加减法概念,掌握分式加减法的运算方法。
2. 培养学生运用分式加减法解决实际问题的能力。
3. 提高学生分析问题、解决问题的能力,培养学生的逻辑思维能力。
二、教学内容:1. 分式的加减法概念及运算方法。
2. 分式加减法在实际问题中的应用。
三、教学重点与难点:1. 重点:分式的加减法运算方法。
2. 难点:分式加减法在实际问题中的应用。
四、教学方法:1. 采用讲授法,讲解分式的加减法概念及运算方法。
2. 运用案例分析法,分析分式加减法在实际问题中的应用。
3. 组织学生进行小组讨论,培养学生的合作能力。
五、教学过程:1. 导入新课:通过复习分数的加减法,引导学生思考分式的加减法。
2. 讲解分式的加减法概念及运算方法:(1)分式的加减法概念:同分母分式相加减,分母不变,分子相加减;异分母分式相加减,先通分,再按照同分母分式加减法的法则计算。
(2)分式加减法的运算方法:a. 同分母分式相加减:分子相加减,分母保持不变。
b. 异分母分式相加减:先通分,再按照同分母分式加减法的法则计算。
3. 案例分析:分析分式加减法在实际问题中的应用。
(1)例题讲解:分析实际问题,引导学生运用分式加减法解决问题。
(2)学生练习:布置练习题,让学生独立解决实际问题。
4. 小组讨论:组织学生进行小组讨论,分享分式加减法在实际问题中的应用实例。
5. 总结与评价:总结本节课所学内容,对学生的学习情况进行评价。
6. 布置作业:布置课后作业,巩固所学知识。
六、教学评估:1. 课堂问答:通过提问方式检查学生对分式加减法概念的理解程度。
2. 练习题:布置随堂练习,评估学生对分式加减法运算方法的掌握情况。
3. 小组讨论:观察学生在小组讨论中的表现,评估他们的合作能力和解决问题的能力。
七、教学拓展:1. 引入更复杂的分式加减法问题,提高学生的解题能力。
2. 探讨分式加减法在高级数学中的应用,如在微积分、线性代数等领域。
八年级数学优质课《分式的加减》教案

八年级数学优质课《分式的加减》教案教学任务分析教学目标知识技能一、类比同分母分数的加减,熟练掌握同分母分式的加减运算.二、类比异分母分数的加减及通分过程,熟练掌握异分母分式的加减及通分过程与方法.数学思考在分式的加减运算中,体验知识的化归联系和思维灵活性,培养学生整体思考的分析问题能力.解决问题一、会进行同分母和异分母分式的加减运算.二、会解决与分式的加减有关的简单实际问题.三、能进行分式的加、剪、乘、除、乘方的混合运算.情感态度通过师生活动、学生自我探究,让学生充分参与到数学学习的过程中来,使学生在整体思考中开阔视野,养成良好品德,渗透化归对立统一的辩证观点.重点分式的加减法.难点异分母分式的加减法及简单的分式混合运算.教学流程安排活动流程图活动内容和目的活动1:问题引入活动2:学习同分母分式的加减活动3:探究异分母分式的加减活动4:发现分式加减运算法则活动5:巩固练习、总结、作业向学生提出两个实际问题,使学生体会学习分式加减的必要性及迫切性,创始问题情境,激发学生的学习热情.类比同分母分数的加减,让学生归纳同分母分式的加减的方法并进行简单运算.回忆异分母分数的加减,使学生归纳异分母分式的加减的方法.通过以上探究过程,让学生发现分式加减运算的法则,通过分式在物理学的应用及简单混合运算,使学生深化对分式加减运算法则的理解.通过练习、作业进一步巩固分式的运算.课前准备教具学具补充材料课件教学过程设计问题与情境师生行为设计意图[活动1]1.问题一:比较电脑与手抄的录入时间.2.问题二;帮帮小明算算时间所需时间为,如何求出的值?3.这里用到了分式的加减,提出本节课的主题.教师通过课件展示问题.学生积极动脑解决问题,提出困惑:分式如何进行加减?通过实际问题中要用到分式的加减,从而提出问题,让学生思考,可以激发学生探究的热情.[活动2]1.提出小学数学中一道简单的分数加法题目.2.用课件引导学生用类比法,归纳总结同分母分式加法法则.3.教师使用课件展示[例1]4.教师通过课件出两个小练习.教师提出问题,学生回答,进一步回忆同分母分数加减的运算法则.学生在教师的'引导下,探索同分母分式加减的运算方法.通过例题,让学生和教师一起体会同分母分式加减运算,同时教师指出运算中的.注意事项.由两个学生板书自主完成练习,教师巡视指导学生练习.运用类比的方法,从学生熟知的知识入手,有利于学生接受新知识.师生共同完成例题,使学生感受到自己很棒,自己能够通过思考学会新知识,提高自信心.让学生进一步体会同分母分式的加减运算.[活动3]1.教师以练习的形式通过“自我发展的平台”,向学生展示这样一道题.2.教师提出思考题:异分母的分式加减法要遵守什么法则呢?教师展示一道异分母分式的加减题目,学生自然就想到异分母分数的加减.教师通过课件引导学生思考,学生会想到小学数学中,异分母分数的加减法则,从而联想到异分母分式的加减法则,教师引导学生归纳出异分母分式加减运算的方法思路.由学生主动提出解决问题的方法,从而激发了学生探究问题的兴趣.通过学生的自我探究、归纳总结,让学生充分参与到数学学习的过程中来,体会学习的乐趣.[活动4]1.在语言叙述分式加减法则的基础上,用字母表示分式的加减法法则.2.教师使用课件展示[例2]3.教师通过课件出4个小练习.4.[例3]在图的电路中,已测定CAD支路的电阻是R1欧姆,又知CBD支路的电阻R2比R1大50欧姆,根据电学的有关定律可知总电阻R与R1R2满足关系式;试用含有R1的式子表示总电阻R5.教师使用课件展示[例4]教师提出要求,由学生说出分式加减法则的字母表示形式.通过例题,让学生和教师一起体会异分母分式加减运算,同时教师重点演示通分的过程.教师引导学生找出每道题的方法、如何找最简公分母及时指出学生在通分中出现的问题,由学生自己完成.教师引导学生寻找解决问题的突破口,由师生共同完成,对比物理学中的计算,体会各学科知识之间的联系.分式的混合运算,师生共同完成,教师提醒学生注意运算顺序,通分要仔细.由此练习学生的抽象表达能力,让学生体会数学符号语言的精练.让学生体会运用的公式解决问题的过程.锻炼学生运用法则解决问题的能力,既准确又有速度.提高学生的计算能力.通过分式在物理学中的应用,加强了学科之间的联系,使学生开阔了视野,让学生体会到学习数学的重要性,体会各学科全面发展的重要性,提高学习的兴趣.提高学生综合应用知识的能力.[活动5]1.教师通过课件出2个分式混合运算的小练习.2.总结:a)这节课我们学习了哪些知识?你能说一说吗?b)⑴方法思路;c)⑵计算中的主意事项;d)⑶结果要化简.3.作业:a)教科书习题16.2第4、5、6题.学生练习、巩固.教师巡视指导.学生完成、交流.,师生评价.教师引导学生回忆本节课所学内容,学生回忆交流,师生共同补充完善.教师布置作业.锻炼学生运用法则进行运算的能力,提高准确性及速度.提高学生归纳总结的能力.。
分式的加减法(一)

难点:简单异分母分式的加减运算
一、自主学习
(一)自主探索:认真研读教材78页到81页内容完成下列各题:
1)1.计算 + = - =
2.类比计算 + = =
3.归纳法则:同分母的分式相加减,,。
2)1.计算 =
2.类比计算 =
3.在80页的“议一议”中,小明和小亮的做法有什么异同,你认为的
教学反思(疑惑)
第37页第38页
解法比较简便。
4.由此可归纳:把异分母分式化为同分母分式的过程叫,通分时,通常取作为它们的共同分母,其变形的依据是
。
3)自学例1,分析各题的解题思路及注意事项。仿照例1进行计算:
1、 2、 3、
二、小组学习:
试确定下列各组分式的最简公分母,并归纳如何确定最简公分母。
1) 与 2) 与 3) 与
最简公分母分别是。
初二年级数学科自主探究学案主备:周志琴时间:3月22日
学习内最简公分母是。
三、展示反馈:
1、计算
1) 2) + 3)
2、课本82页“问题解决”
四、拓展检测(先化简,再选一个你喜欢的数代入求值。)
1、 2、 - - 3、 - -
学习目标:会进行简单分式的加减运算
分式的加减法1

付三田第 1 页创建时间:2020/5/21 0:03:00分式的加减法(一)教学目的:会通分,利用法则正确进行分式的加减运算;掌握运算顺序,进行分式的四则混合运算.教学重点:通分,异分母的分式加减法.教学难点:分式的四则混合运算.教学过程:讲解新课.一.基本知识1.分式的加减法法则如下:同分母的分式相加减,把分子相加减,分母不变;异分母的分子相加减,先将异分母的分式通过能份化为同分母的分式。
2.分式的通分(1)把几个异分母的分式分别化为与原来分式相等的同分母的分式叫通分。
(2)通分的依据是分式的基本性质,通分的关键是确定最简公分母。
(3)通分时,最简公分母由下面的方法确定:①最简公分母的系数,取各分母系数的最小公倍数;②最简公分母的字母,取各分母所有字母的最高次幂的积;(4)如果分母是多项式,则首先对多项式进行因式分解。
付三田 第 2 页 创建时间:2020/5/21 0:03:003.分式的混合运算运算顺序,先乘方,再乘除,最后加减,有括号的先算括号,若是同级混合运算,按从左到右的顺序进行。
二.例题精选1.通分例1通分 (1)331xy ,y x 221,y x 391; (2)2)(1b a +,b a +-2,223b a -; (3)412-x ,10352-++x x x ,145722---x x x x . 2.同分母分式的加减例2 计算题222y x y x -+-223y x x y ---2243yx y x --. 例3计算题22y x x --22x y y -.3.异分母分式的加减例4 计算题2441x x +--42-x x +421+x 例5.计算题1123----x x x x .付三田 第 3 页 创建时间:2020/5/21 0:03:00例6 计算题⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛----+b a b a ab a b b b a a 11222 例7 计算题211231143222+⋅⎪⎪⎭⎫ ⎝⎛----÷++-x x x x x x x x 随堂练习(1,3,5,7组同学做每题的奇数号题,2,4,6,8组同学做每题的偶数号题)P79 练习 P80 练习 P83练习.作业:P85 A 组 T1-5。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章分式与分式方程
3.分式的加减法(一)
----同分母分式加减法
一、学生起点分析
学生的知识技能基础:学生在小学时已经学习过同分母分数的加减,异分母分数的加减运算法则,在初一学习了整式的加减,在上一章学习了因式分解,本章又学习了分式及其乘除,都为这一节课的学习做好了铺垫。
由分数加减运算类比分式的加减是这节内容的突破点。
学生活动经验基础:在相关知识的学习过程中,学生经历过许多类比和猜测的活动,如分式的乘除法运算,这些活动经验都为本节学习有很好的启迪。
二、教学任务分析
同分母分式的加减法是最简单的,也是学习异分母的分式加减的基础,所以作为起始节也是工具节内容,它就要求教学时务必使学生理解它并且能够灵活运用,对分母互为相反式的分式加减,能明白改变运算符号的实质。
教学目标:
1、类比同分数加减法的法则归纳出同分母分式的加减法法则,理解其算理。
2、理解同分母的分式加减法的运算法则,能进行同分母的分式加减及分母互为相
反式的分式加减法运算,具有一定的代数化归能力。
3、通过学习认识到数与式的联系,理解事物拓延的内在本质,丰富数学情感与思
想。
4 、通过小组合作,课堂展示,培养学生的语言表达能力和自信心,从而提升学习
兴趣。
学习重点:同分母分式的加减运算;分母互为相反式的分式加减法运算
学习难点:解决一些简单的实际问题,进一步体会分式的模型思想。
三、教学过程
第一环节:提前一天布置,完成导学案中的预习案,对问题进行充分思考
预习案:
1.同分母的分数如何加减?举例说明
2.类似分数运算法则,你认为应等于什么?
3.猜一猜,同分母的分式应该如何加减?
同分母的分式相加减,分母______,分子_ 用式子表示则为a c ±b
c =______. 第二环节 情景引入
小组活动:针对已完成的预习案,小组内部合作交流,并根据得到的结论回答下列问题(时间3分钟) 做一做:=+3231 =-7271 =+8381 =-12
5127 猜一猜
=+a a 21 =-x x 12 =+b
b 2523 =-y y 3437 活动目的:通过做一做的几道同分母分数加减的题,引导学生用类比的思想,猜一猜同分母分式的加减运算,并试图让学生认识其合理性。
从而抛出同分母分式加减法的运算法则,点明本节课的主要内容。
活动的注意事项:通过人人都可以入手的做一做,让学生回答,可以使学生很快进入状态又不觉得困难。
而后两个运算后要约分,学生极有可能报出没有约分的答案。
因此,类比时注意引导学生,正确猜想,约分是分数的必要步骤哦,使法则的提出顺理成章,也为后面的学习做好铺垫。
运算法则:同分母的分式相加减,分母不变,把分子相加减. 用式子表示为:
a
c b a c a b ±=± 第三环节 法则应用,例题展示
1、学习了同分母分式加减法的法则,结合已有知识,动手练习:
例1(1)ab b a ab b a -++; (2)2422---x x x ; (3)n m n m n m n m ++-+-42; (4)1
11213+--++++-x x x x x x .
活动目的:让学生运用法则自主进行运算,教师不要包办,可以适当点拨重点,让学生学会加减法运算并注意运算时可能出现的问题即可。
选择完成速度最快的四个学生上黑板讲题,激发学生的荣誉感,培养表达能力。
教师点拨:在进行运算时若分子是多项式的,分子要先带括号,再去括号后合并同类项;运算结果也类比分数加减法的结果,要化成最简形式,即约去分子与分母的所有公因式——化简。
例2 计算(分母互为相反数的情况)
教师引导学生,观察分母情况,得到结论:分母互为相反数。
结合以往知识通过提负号把看似异分母的分式转化为同分母分式。
讲一道,练一道。
(1)x
y y y x x -+-;(讲解) (2)a a a a ----12112.(练习)
第四环节 练习巩固
1、118页随堂练习1、2题,其中2题选取学生上黑板完成。
2、118页习题5.4 的3题4题
活动目的:1、通过随堂练习的演练巩固,让学生对同分母分式的加减法有更好的认识与掌握。
2、118页习题5.4 的3题4题,难度较大,属于拔高练习,速度快的同学可以试着完成
活动的注意事项:通过学生的解答情况,对法则做进一步的讲解,力图让学生理解并掌握同分母分式的加减法法则。
第五环节 课堂小结
活动内容:
1、同分母分式加减法则是:同分母的分式相加减。
分母不变,把分子相加减。
2、学会用转化的思想将分母互为相反式的分式加减运算转化成同分母分式的加减法。
3、分子是多项式时,一定记得添括号后再进行加减运算。
4、类比方法很多时候是对的哦,学会用这种方法去分析和解决问题。
第六环节 布置作业
1、习题5.4的1、 2题
四、教学反思
1、本节课内容相对简单,与前面知识练习紧密,所以课堂定位是讲练结合。
学生在练的过程中出现的问题,教师及时予以点拨,并顺势强调重点。
2、毕竟课堂时间有限,作为运算,课后还是应该多练,扎实基本功,为之后的异分母分式加减运算做好准备。
3、不足:由于时间原因,最后的课堂反思做的不充分,应该在方法上重点强调一下。