12-矿井联系测量
竖井联系测量

竖井联系测量人民交通一、竖井联系测量的任务在隧道施工中,常用竖井在隧道中间增加掘进工作面,从多面同时掘进,可以缩短贯通段的长度,提高施工进度。
这时,为了保证相向开挖面能正确贯通,就必须将地面控制网中的坐标、方向及高程,经由竖井传递到地下去,这些传递工作称为竖井联系测量。
其中坐标和方向的传递,称为竖井定向测量。
通过定向测量,使地下平面控制网与地面上有统一的坐标系统。
而通过高程传递则使地下高程系统获得与地面统一的起算数据。
按照地下控制网与地面上联系的形式不同,定向的测量方法可分为下列四种:1.经过一个竖井定向(简称一井定向);2.经过两个竖井定向(简称两井定向);3.经过横洞(平坑)与斜井的定向;4.应用陀螺经纬仪定向。
竖井的联系测量可通过一个井筒、也可同时通过两个井筒进行。
这种联系测量是利用地上、地下控制点之间的几何关系将坐标、方向和高程引入地下,故称几何定向。
平峒的联系测量可通过一个井筒、也可同时通过两个井筒进行。
这种联系测量是利用地上、地下控制点之间的几何关系将坐标、方向和高程引入地下。
由于平峒隧道有进口和出口,导线和水准线路可从隧道两端引进,大大缩短贯通长度。
其作业方法与地面控制测量相同。
斜井的联系测量方法与平峒基本相同。
不同处是隧道坡度较大,导线测量要注意坡度的影响。
另外,斜井大部分为单头掘进,从洞口引进的导线均为支导线,要加强检核,以防止联系测量出现错误。
由于陀螺仪技术的飞速发展,在导航和测量工作中已被广泛应用。
陀螺仪重量轻、体积小、精度高、使用方便,在隧道联系测量工作中,不失为一种经济、快速、影响小的现代化定向仪器。
高程联系测量是将地面高程引入地下,又称导入高程。
显而易见,为使地下隧道(巷道)贯通,地上、地下的控制点必须在同一个坐标系统和高程系统。
地下工程与地面工程的相对位置也必须正确无误;地下建(构)筑物的相对关系,也必须精确。
如此种种,说明联系测量是非常重要的。
几何定向几何定向分一井定向和两井定向。
矿山测量课程设计 (1)

矿井联系测量一、目的和任务矿井联系测量就是将地面上的平面坐标系统和高程坐标系统传递到井下的测量。
目的就是使地面和井下测量控制网采用同一坐标系统。
联系测量的主要任务是:(1) 确定井下经纬仪导线起算边的坐标方位角; (2) 确定井下经纬仪导线起算点的平面坐标x 和y ; (3) 确定井下水准基点的高程H 。
二、地面近井点的测设(1)地面近井点的精度要求 ⒈近井点测量精度的要求近井点可在矿区三、四等三角网、测边网的基础上,用插网、插点和敷设经纬仪导线,及GPS 等方法测设。
对于一般网型,近井点的精度,对于测设它的起算点来说,其点位中误差不得超过±7cm ,后视边方位角中误差不得超过±10″。
GPS 测量必须按照1992年我国测绘局发布的《全球定位系统(GPS )测量规范》进行,近井点可以采用D 级和E 级测设。
⒉井口高程基准的精度要求井口水准基点的高度精度应该满足相邻井口间进行主要巷道贯通的要求,由于两井间进行主要的巷道贯通时,高程上允许的误差是=0.2m z m ±允,则其中误差为=0.1m z m ±,一般要求两井口水准基点相对的高程中误差引起的贯通点K 在z 轴方向上的偏差中误差不超过m3z±=±0.03m。
所以近井点高程测量,可以应该采用四等水准测量的精度要求测设。
(2)近井点布设方案本次近井点(水准基点)通过GPS进行布设,使用Trimble5800、5700GPS接收机,利用国家四等控制点为起算点,采取插网方式建立矿井E级GPS近井网,布网形式为同步图形扩展式。
测设了主井近井点坐标和高程。
三、立井定向《煤矿测量规程》规定的联系测量的主要精度要求实际定向精度与规程限差要求3.1两井定向方案本次设计方案的矿山有主井和副井各一个,因此投点时在两个井筒内各挂一根垂球线,采用单重稳定投点。
投点时必须采用有效的措施减小投点误差,这些主要措施包括:<1>定向时最好停止风机运转或增设风门,以减少风速;<2>采用小直径、高强度的钢丝,建议采用80kg重的垂球,并将垂球浸入稳定液中,并在大水桶上加挡水盖以减少滴水对垂球的影响。
《矿山工程测量》(矿井联系测量)

《矿⼭⼯程测量》(矿井联系测量)第六章矿井联系测量§6-1 矿井联系测量的⽬的与任务将矿区地⾯平⾯坐标系统和⾼程系统传递到井下的测量⼯作,称为联系测量。
将地⾯平⾯坐标系统传递到井下的测量⼯作称平⾯联系测量,简称定向。
将地⾯⾼程系统传递到井下的测量⼯作称为⾼程联系测量,简称导⼈⾼程。
矿井联系测量的⽬的就是使地⾯和井下测量控制⽹采⽤同⼀坐标系统和同⼀⾼程系统。
其必要性在于:(1)需要确定地⾯建筑物、铁路和河湖等与井下采矿巷道之间的相对位置关系。
这种关系⼀般是⽤井上下对照图来反映的。
众所周知,由于地下开采⽽引起的岩层移动,往往波及地⾯⽽使建筑物遭受破坏,甚⾄造成重⼤事故。
如果采矿⼯作是在河湖等⽔体下进⾏,当地⾯出现的裂缝与井下的裂隙相通时,河⽔就有可能经裂缝流⼈井下⽽使整个矿井淹没。
因此,我们必须时刻掌握采矿⼯作是在什么地区的下⽅进⾏着,以便采取预防措施。
(2)需要确定相邻矿井的各巷道间及巷道与⽼塘(采空区)间的相互关系,正确地划定两相邻矿井间的隔离矿柱。
不然,就有可能发⽣⼤量涌⽔及⽡斯涌出,迫使采矿⼯作停顿,甚⾄造成重⼤安全事故。
(3)为解决很多重⼤⼯程问题,例如井筒的贯通或相邻矿井间各种巷道的贯通,以及由地⾯向井下指定的地点开凿⼩井或打钻孔等等都需要井上下采⽤同⼀坐标系统和同⼀⾼程系统。
矿井联系测量的仟务在于:(1) 确定井下经纬仪导线起算边的坐标⽅位⾓; (2) 确定井下经纬仪导线起算点的平⾯坐标x 和y ; (3) 确定井下⽔准基点的⾼程H 。
前⾯两项任务是通过矿井定向来完成的;第三个任务是通过导⼊⾼程来完成的。
这样就获得了井下平⾯与⾼程测量的起算数据。
§6-2 矿井定向的种类与要求矿井定向概括说来可分为两⼤类:⼀类是从⼏何原理出发的⼏何定向;另⼀类则是物理特性为基础的物理定向。
1、⼏何定向分为:(1) 通过平硐或斜井的⼏何定向;(2) 通过⼀个⽴井的⼏何定向(⼀井定向) (3) 通过两个⽴井的⼏何定向(两井定向) 2、物理定向可分为:(1) ⽤精密磁性仪器定向; (2)⽤投向仪定向; (3) ⽤陀螺经纬仪定向。
竖井联系测量

竖井联系测量人民交通一、竖井联系测量的任务在隧道施工中,常用竖井在隧道中间增加掘进工作面,从多面同时掘进,可以缩短贯通段的长度,提高施工进度。
这时,为了保证相向开挖面能正确贯通,就必须将地面控制网中的坐标、方向及高程,经由竖井传递到地下去,这些传递工作称为竖井联系测量。
其中坐标和方向的传递,称为竖井定向测量。
通过定向测量,使地下平面控制网与地面上有统一的坐标系统。
而通过高程传递则使地下高程系统获得与地面统一的起算数据。
按照地下控制网与地面上联系的形式不同,定向的测量方法可分为下列四种:1.经过一个竖井定向(简称一井定向);2.经过两个竖井定向(简称两井定向);3.经过横洞(平坑)与斜井的定向;4.应用陀螺经纬仪定向。
竖井的联系测量可通过一个井筒、也可同时通过两个井筒进行。
这种联系测量是利用地上、地下控制点之间的几何关系将坐标、方向和高程引入地下,故称几何定向。
平峒的联系测量可通过一个井筒、也可同时通过两个井筒进行。
这种联系测量是利用地上、地下控制点之间的几何关系将坐标、方向和高程引入地下。
由于平峒隧道有进口和出口,导线和水准线路可从隧道两端引进,大大缩短贯通长度。
其作业方法与地面控制测量相同。
斜井的联系测量方法与平峒基本相同。
不同处是隧道坡度较大,导线测量要注意坡度的影响。
另外,斜井大部分为单头掘进,从洞口引进的导线均为支导线,要加强检核,以防止联系测量出现错误。
由于陀螺仪技术的飞速发展,在导航和测量工作中已被广泛应用。
陀螺仪重量轻、体积小、精度高、使用方便,在隧道联系测量工作中,不失为一种经济、快速、影响小的现代化定向仪器。
高程联系测量是将地面高程引入地下,又称导入高程。
显而易见,为使地下隧道(巷道)贯通,地上、地下的控制点必须在同一个坐标系统和高程系统。
地下工程与地面工程的相对位置也必须正确无误;地下建(构)筑物的相对关系,也必须精确。
如此种种,说明联系测量是非常重要的。
几何定向几何定向分一井定向和两井定向。
甘肃煤炭工业学校矿山测量学教案:第三章 矿井联系测量02

第二节一井定向在立井中悬挂钢丝垂线由地面向井下传递平面坐标和方向的测量工作称为立井几何定向。
几何定向分一井定向和两井定向。
立井几何定向方法:可把立井几何定向工作分为两部分:由地面向定向水平投点(简称投点);在地面和定向水平上与垂球线连接(简称连接)一、一井定向方法在一个井筒中挂两根钢丝,将井上高程点传到井下方法:连接三角形法,四边形法,瞄直法(一) 投点稳定:水桶内,静止不变,井深小,摆幅小单重摆动:井深,风大,摆幅大,自由摆动投点多重投点误差:风流、滴水等影响,钢丝地面井下投影不重合,线量偏差 投向误差:由投点误差所引起的垂球线连线的方向误差与 e 成正比e c θρ''''= 与 c 成反比e=1mm, c =3m 时, e c θρ''''==±68.8″规程规定,两井两次独立定向之差小于2′,则一次定向中误差不大小±42″,投向误差小于±30″.当 c =2,3,4m 时,c e θρ''=''=0.3,0.45,0.6mm 减小投点误差措施:1)增大c2)减少马头门处风流3)小直径,高强度纲丝,加大锤重,浸入液体中4)减小滴水影响,挡水,桶盖1.单重稳定投点单重稳定投点是假定垂球线在井筒内处于铅垂位置而静止不动。
当井筒不深、滴水不大、井筒内气流缓慢、垂球线摆动很小、其摆幅一般不超过0.4mm时被采用。
投点所需主要设备的要求如下:(1) 垂球:以对称砝码式的垂球为好,每个圆盘重量最好为10kg或20kg。
当井深小于100m时,采用30~50 kg的垂球,当超过100m时,则宜采用50~100kg的垂球;(2) 钢丝:应采用直径为0.5~2mm的高强度的优质碳素弹簧钢丝。
钢丝上悬挂的重锤重量应为钢丝极限强度的60%~70%;(3) 手摇绞车:绞车各部件的强度应能承受三倍投点时的荷重,绞车应设有双闸;4) 导向滑轮:直径不得小于150mm,轮缘做成锐角形的绳槽以防止钢丝脱落,最好采用滚珠轴承;(5) 定点板:用铁片制成,定向时也可不用定点板;(6) 小垂球:在提放钢丝时用,其形状成圆柱形或普通垂球之形状均可;(7) 大水桶:用以稳定垂球线,一般可采用废汽油桶,水桶上应加盖。
测量学12巷道施工测量

巷道施工测量的任务是按照矿井设计的规定和要求,在现场实地标定掘进巷道的几何要素(位置、方向和坡度等),并在巷道掘进过程中及时进行检查和校正。通常我们将这项工作称为给向。
12-1 井下巷道中线的标定 一、 概述 为了指示巷道在水平面内的方向,需要标定巷道的几何中心线在水平面上投影的方向即中线方向。 中线点应成组设置,每组不得少于3个点。 标定巷道中线的步骤大致如下: (1) 检查设计图纸。主要检查的内容包括:巷道间的几何关系是否符合实际情况;标注的角度和距离是否与设计图一致等; (2) 确定标定中线时所必需的几何要素; (3) 标定巷道的开切点和方向; (4) 随着巷道的掘进及时延伸中线; (5) 在巷道掘进过程中,随时检查和校正中线的方向
为了指示巷道掘进的坡度而在巷道两帮上给出的方向线,称为腰线。腰线点可成组设置,也可每隔3040 m设置一个,但须在巷道两帮上画出腰线,且对于一个矿井,腰线距底板或轨面的高度应为定值。
主要运输巷道的腰线应用水准仪、经纬仪或连通管水准器来标定,次要巷道的腰线可用悬挂半圆仪等标定。急倾斜巷道的腰线应尽量用经纬仪来标定,短距离时,也可用悬挂半圆仪等来标定。
倾斜巷道的贯通 如图,上、下平巷和一号下山已掘好,二号下山正由下向上开掘至B点,现为加快掘进速度,欲上下同时开掘。这种贯通的特殊性在于上部开切点P的位置是未知的。为此,首先应确定P点的位置。
确定P点位置的方法主要有两种:第一种是根据A和C、B和D的坐标,列出直线方程,求解出交点P的位置。第二种方法是根据三角学的基本知识,解算△APB。由于在△APB中,A、B的坐标已知,从而可求出它们间的水平距离lBA和方位角αAB,而且αBP=αDB、αAP=αAC也是已知的。这样我们就可根据正弦定理求得AP,确定出P点的位置。
矿井测量规程

煤矿测量规程第一篇总则第1条煤矿测量工作是矿山生产建设的重要要环节,也是矿山建设、生产、改造和编制长远发展规划等各项工作的基础。
为了实现煤矿测量工作标准化,进一步提高工作质量,使煤矿测量更好地为煤矿安全生产和合理开采煤炭资源服务,不断提高煤矿公司的经济效益和社会效益,特制定本规程。
第2条煤矿测量工作的只要任务是:1.建立矿区地面和井下(露天坑)测量控制系统,为煤矿各项测量工作提供起算数据:2.依据设计文献,进行采掘(剥)、土建、管线和机电安装等工程测量工作,并在煤矿基本建设和生产各个阶段,对采掘(剥)工程是否按设计施工进行检查和监督;3.运用测绘资料,解决煤矿生产、建设和改造中提出的各种测绘问题,并为煤矿灾害的防止、救护提供有关的测绘资料;4.测绘各种煤矿测量图,满足煤矿生产、建设和规划各阶段的需要;5.定期进行矿井“三量”(开拓煤量、准备煤量和回采煤量)、露天矿“二量”(开拓煤量、回采煤量)和露天矿采剥量的记录分析;对的反映煤矿采掘(剥)关系现状。
按《产矿井储量管理规定》的规定;对煤矿各级储量动态及损失量进行记录个管理工作,对煤炭资源的合理开采进行业务监督。
6.建立地表、岩层和建(构)筑物变形观测站,开展矿区地表与岩层移动规律、采矿或非采矿沉陷综合治理以及环境保护工作的研究;7.根据矿区地表和岩层移动变形参数,设计和修改各类煤柱。
参与“三下”(铁路下、水柱下和建筑物下)采煤和塌陷区综合治理以及土地征用和村庄搬迁的方案设计和实行。
8.进行矿区范围内的地籍测量;9.参与本矿区(矿)月度、季度、年度生产计划和长远发展规划的编制工作。
第3条测量工作开始前,应根据任务规定,收集和分析有关测量资料,进行必要的现场勘踏,制定经济合理的技术方案,编写技术设计书,在施册过程中,外业观测工作自身须有校核。
对起算数据、外业记录和计算成果均需通过严格的检查或对算。
对磁性介质存储的软件和数据,在使用前必须进行考机。
重要测量工作必须独立地进行两次或两次以上的观测和计算,工程结束后要编写技术总结(或说明)并做好资料整理归档工作。
矿井控制测量基本内容和方法

书山有路勤为径,学海无涯苦作舟
矿井控制测量基本内容和方法
(一)矿井联系测量的基本方法
1、联系测量工作的基本内容
将矿区地面平面坐标系统和高程系统传递到井下的测量,称为联系测量。
平面联系测量简称定向,高程联系测量简称为导入高程。
矿井定向分为两大类,一类是几何定向,另一类是物理定向。
几何定向有平硐或斜井的几何定向,通过一个立井(一井定向)或通过两个立井(两井定向)定向。
物理定向有精密磁性仪器定向和陀螺经纬仪定向。
导入高程的方法随开拓方法的不同而分为平硐导入高程、斜井导入高程和立井导入高程。
2、联系测量工作的基本要求(重点)
(1)联系测量应至少独立进行两次,在互差不超过限差时,采用加权平均或算术平均值作为测量成果。
(2)在进行联系测量工作前,必须在井口附近建立近井点、高程基点和连测导线点,同时在井底车场稳固的岩石中或碹体上埋设不少于四个永久导线点和三个高程基点(也可用永久导线点作为高程基点)。
(3)通过斜井或平硐的联系测量,可从地面近井点开始,采用经纬仪导线(包括用光电测量距和钢尺量距)、三角高程或水准测量的方法。
(4)尽量采用陀螺经纬仪定向,不具备条件时,才允许采用几何定向。
(5)两次独立导入高程的互差不得超过井深的1/8000。
(6)对各种通往地面的井巷,原则上都应进行联系测量。
(7)在进行联系测量工作前,应编制施测方案和技术措施,报矿务局地质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
其他边的方位角为αi=Δα+αi′
式中αi′—该边在假定坐标系中的假定方位角
根据A点的坐标(xA,yA)和计算出的A1边的方位角αA1,计 算出井下导线各点在地面坐标系统中的坐标和方位角;最后算得 垂球B的坐标。 5、测量和计算的第二个正确性的检验 将井下连接导线按地面坐标系统,由A算出B点的坐标与按 地面连接算得的B点坐标的相对的闭合差符合井下所采用的连 接导线的精度时,则井下连接导线的测量和计算正确,闭合差 按与边长成比例分配(只对井下导线的坐标加以改正) 。
连接三角形示意图
D B
A C
A B
C′
D′
1)连接三角形应满足的条件
图中三角形ABC和ABC′称为连接三角形。为了提高定向的 精度,在选择井上、井下连接点C、C′时,应使连接三角形 △ABC和△ABC′满足以下三个条件:
(1)点C与D及点C′与D′要彼此通视,且CD与C′D′ 的边长要大于20m;
导线可以采用7″或15″基本控制导线。
(二) 两井定向的内业计算
两井定向的井上下连接 1 、根据地面连接测量的成果,计算两垂球连线的方位角及长度
按照导线的计算方法,计算出地面两钢丝点A、B的坐标(xA,yA)、 (xB,yB); c2=(xB—xA)2+(y B—y A)2 2 、根据假定坐标系统计算井下连接导线 以井下导线起始边A′1为x′轴,A ′点为坐标原点建立假定 坐标系,设B点的假定坐标为(xB′,yB′);计算井下导线各连接 点在此假定坐标系中的平面坐标及A ′B ′之间的距离。
6.一井定向的工作组织
工作环节多,测量精度要求高,缩短占用井筒的时间,需很好的 工作组织。 (1) 准备工作 ① 选择连接方案,作出技术设计; ② 定向设备及用具的准备; ③ 检查定向设备及检验仪器; ④ 预先安装某些投点设备和将所需用具设备等送至定向井口和井 下; ⑤ 确定井上下的负责人,统一负责指挥和联络工作。 (2) 制定地面的工作内容及顺序。 (3) 制定定向水平上的工作内容及顺序。
c′ 2= xB ′2+ y B ′2
3、测量的计算和检验 用比较井上与井下算得的两垂球线间距离c和c′进行检查,由 于两垂球的向地心性,差值 Δc=c-( c′+H *c/R) 4 、按地面坐标系统计算井下导线各边的方位角及各点的坐标 αA1=αAB-α′AB= Δ α 若Δ α为负数则应加360°
井下丈量所得的两钢丝间的距离c丈与计算出的距离c计 相差
应不大于4 mm。(距离检核)
若符合上述要求可在丈量的a、b、c以及a′、b′、c′中 加入改正数Va、Vb、Vc及Va′,Vb′Vc′
③ 将 井 上 、 井 下 连 接 图 形 视 为 一 条 导 线 , 如 D—C—A— B—C′—D′,按照导线的计算方法求出井下起始点C′的 坐标及井下起始边C′D′的方位角
二、陀螺经纬仪的基本原理
陀螺经纬仪是根据自由陀螺仪 ( 在不受外力作用时,具有 三个自由度的陀螺仪 ) 的原理而制成的。自由陀螺仪具有以下 两个基本特性:
1、定轴性 陀螺轴在不受外力作用时,它的方向始终指向初始恒定方向; 2、 进动性 陀螺轴在受到外力作用时,将产生非常重要的效应——“进 动”。 自由陀螺仪的上述两个特性,可通过以下实验予以证明。
100m时,则宜采用50~100kg的垂球; (2) 钢丝:应采用直径为0.5~2mm的高强度的优质碳素弹簧钢丝。 钢丝上悬挂的重锤 重量应为钢丝极限强度的60%~70%; (3) 手摇绞车:绞车各部件的强度应能承受三倍投点时的荷重,
绞车应设有双闸;
(4) 导向滑轮:直径不得小于 150mm,轮缘做成锐角形的绳槽 以防止钢丝脱落,最好采用滚珠轴承; (5) 定点板:用铁片制成,定向时也可不用定点板; (6) 小垂球:在提放钢丝时用,其形状成圆柱形或普通垂球之形 状均可; (7) 大水桶:用以稳定垂球线,一般可采用废汽油桶,水桶上应 加盖。
3、单重稳定投点
单重稳定投点是假定垂球线在井筒内处于铅垂位臵而静止
不动,所进行的投点。
单重稳定投点设备和安装系统如下图所示:
稳定投点的设备和安装
投点所需主要设备的要求如下:
(1) 垂球:以对称砝码式的垂球为好,每个圆盘重量最好为 10kg
或20kg。当井深小于100m时,采用30~50 kg的垂球,当超过
地面连测
第四节 立井几何定向
概述 在立井中悬挂钢丝垂线由地面向井下传递平面坐 标和方向的测量工作称为立井几何定向 。 立井几何定向工作分为两部分:由地面向定向水 平投点 ( 简称投点 ) ;在地面和定向水平上与垂球线连 接(简称连接)。
x x A Ⅰ Ⅱ B
x
1 A
2 B 3 4
两井定向示意图
第一节 联系测量的作用和任务
一、概念
联系测量:将矿区坐标系统所进行的测量工作。 联系测量包括平面联系测量和高程联系测量,即定向和导入高程
二、联系测量的目的和任务
2、联系测量的任务: (1)井下导线起算边的坐标方位角; (2)确定井下导线起算点的平面坐标x和y;
6、两井定向应独立进行两次,其互差不得超过1′ 按《规程》规定,两井定向必须独立进行两次,两次求得 的起始边方位角互差不得超过1′,取两次独立定向计算结果的 平均值作为两井定向井下连接导线的最终值。
第五节 陀螺经纬仪定向
一、概述
陀螺定向是运用陀螺经纬仪直接测定井下未知边的方位角。 它克服了运用几何定向方法进行联系测量时占用井筒时间长、 工作组织复杂等缺点,目前,已广泛应用于矿井联系测量和 控制井下导线方向误差的积累。
一井定向方法
在一个井筒内悬挂两根垂球线由地面向井下传递平面坐 标和方向的测量工作称为一井定向 。
一井定向方法有连接三角形法、四边形法和适用于小型矿 井的瞄直法等。本节只介绍常用的连接三角形法。
(一)投点
1、投点的方法 由地面向定向水平投点,简称投点 单重稳定投点〈0.4mm 采用垂球线单重投点法 (水桶内,静止不变,井深小,摆 幅小) 单重摆动投点
由于稳定液的阻尼作用,实测的半周期应大于计算值。若小 于计算值,可将实测的半周期代入上式,计算出钢丝自由悬挂的 长度,以便估计接触点的位臵; (4)井筒条件允许时,可以乘罐笼或吊桶直接检查钢丝的悬挂。
5 、单重摆动投点
单重摆动投点是通过观测垂球线的摆动,找出其静止位臵并固定 起来,然后进行连接测量。常采用标尺法和定中盘法 。
左端为一可转动的陀螺,右端为一可移动的悬重,当调节 悬重的位臵使杠杆水平时,可以看到陀螺转动后,其轴线的方 向始终保持不变,即可验证定轴性。当将悬重向左移动一小段 距离,即相当于陀螺轴受到一个向下的作用力时,陀螺转动后, 杠杆将保持水平,但将在水平面上作逆时针方向的转动;同理, 将悬重右移一小段距离,即陀螺轴受到一个向上的作用力时, 陀螺转动后,杠杆仍保持水平,但将在水平面上作顺时针方向 的转动,这样即可验证自由陀螺仪的进动性。
惕。在地面工作的人员不得将任何东西掉入井内,在井盖工作
的人员均应配带安全带;
⑧ 定向时,地面井口自始至终不能离人,应有专人负责井上下
联系。
(二)连接 1、概念
把地面上的已知点和定向水平上的永久点与垂球线连接,简 称为连接。
2、连接测量
连接测量分为地面连接测量和井下连接测量两部分。 地面连接测量是在地面测定两钢丝的坐标及其连线的方位角; 井下连接测量是在定向水平根据两钢丝的坐标及其连线的方 位角确定井下导线起始点的坐标与起始边的方位角。 连接测量的方法很多,这里仅以连接三角形法为例予以介绍。
目前,常用的陀螺仪是采用两个完全自由度和一个不完全 自由度的钟摆式陀螺仪。它是根据上述的陀螺仪的定轴性和进 动性两个基本特性,并考虑到陀螺仪对地球自转的相对运动, 使陀螺轴在测站子午线附近作简谐摆动的原理而制成的。
3)连接三角形的解算
① 运用正弦定理,解算出α,β,α′,β′
②检查测量和计算成果 首先,连接三角形的三个内角α、β、γ以及α′、β′、γ′的和均应 为180°。若有少量残差可平均分配到α、β或α′β′上。(角的检验)
其次,井上丈量所得的两钢丝间的距离c丈与按余弦定理计算
出的距离c计相差应不大于2mm; (距离检核)
(2) 三角形的锐角γ和γ′要小于2°;构成最有利的 延伸三角形 (3) a/c与b′/c′的值要尽量小一些,一般应小于1.5 m。
2)连接三角形法的外业
′
δ′ δ γ β
a′
α
b′
φ′
′ ′
′
γ
地面连接测量是在C点安臵经纬仪测量出φ和γ两个角度,并 丈量a、b、c三条边的边长。 同样,井下连接测量是在C′点安臵仪器测量出φ′和γ′ 三个角度,并丈量c,b′和a′三条边的边长。
1、尽可能埋设在便于观测、保存和不受开采影响的地点; 2、每个井口附近应设臵一个近井点和两个水准基点; 3、近井点至井口的连测导线边数应不超过三个;
地面连测导线的测量
地面有近井点至井口(定向连接点)的连测导线,边数应不超 过3个。 地面连测时,应敷设测角中误差不超过5″或10″的闭合导线或复 测支导线,10″(二级)小三角网作为首级控制的小矿区。 地面连测导线应尽量采用光电测距导线。
1、联系测量的目的:使地面和井下测量控制网采用同一坐标系统。
(3)确定井下水准基点的高程H。
第二节 矿井定向的种类与要求
矿井定向概括来说分为两类:
通过斜井或平峒 几何定向 定向 一井定向 两井定向
物理定向
磁性定向 投向仪定向 陀螺定向
第三节 地面近井点、井口水准基点及 井下定向基点的测设
近井点和井口水准基点的设臵要求
4 、钢丝的下放和自由悬挂的检查
通常采用以下方法 : (1) 信号圈法 (2) 比距法
比距法是采用比较井上、井下两钢丝间的距离的方法进行检查。 若量得的井上、井下两钢丝间的距离互差不大于2mm,便认为 钢丝是自由悬挂的。 (3) 振幅法