哈尔滨师大附中2020~2021学年高一上学期期中考试数学试卷及答案

合集下载

黑龙江省哈尔滨市师范大学附中2019-2020学年高一上学期期中数学试题

黑龙江省哈尔滨市师范大学附中2019-2020学年高一上学期期中数学试题

绝密★启用前黑龙江省哈尔滨市师范大学附中2019-2020学年高一上学期期中数学试题试卷副标题注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)请点击修改第I 卷的文字说明 一、单选题1.集合{}0M x x =≥,{}24xN x =<,则M N ⋂( ) A.[]0,2B.()0,2C.[)02,D.(]0,2 2.对于0,1a a >≠,下列说法中,正确的是( ) A.若M N =,则log log a a M N =B.若22M N =,则M N =C.若22log log a a M N =,则M N =D.若M N =,则1122MN--=3.下列函数中,在区间()2,+∞上为增函数的是 ( ) A.3x y =-B.12log y x =C.()22y x =--D.12y x=- 4.若函数()log (1)(0,1)a f x x a a =->≠ 的图象恒过定点,则定点的坐标为 ( ) A.()1,0B.()2,0C.()1,1D.()2,15.已知13241log 3log 72a b c ⎛⎫=== ⎪⎝⎭,,,则,,a b c 的大小关系为( )A.a c b <<B.b a c <<C.c a b <<D.a b c <<6.函数()2lg 2y x x =+-的单调递增区间是( )A .1,⎛⎫-∞-B .1,⎛⎫-+∞C .(,2)-∞-D .(1,)+∞………装…………请※※不※※要※※在※※装※………装…………7.已知函数g(x)=1-2x,f[g(x)]=221xx-(x≠0),则f(12)等于( )A.1 B.3 C.15 D.308.已知函数()f x、()g x分别是定义在R上的奇函数、偶函数,且满足()()3xf xg x+=,则()A.()33x xf x-=- B.33()2x xf x--= C.()33x xf x-=- D.33()2x xf x--=9.若函数()f x是定义在R上的偶函数,在(],0-∞上是减函数,且(2)0f=,则()()f x f xx+-<的解集为()A.()2,2- B.()(),22,-∞-+∞C.()()2,02,-+∞ D.()(),20,2-∞-10.函数()1lnf x xx⎛⎫=-⎪⎝⎭的图象是( )A. B.C. D.11.函数y=的定义域为R,则实数k的取值范围是()A.02k<< B.04k≤≤ C.04k≤< D.04k<<12.已知函数21,0()ln,0x xf xx x+≤⎧=⎨>⎩,则方程[]()3f f x=的实数根的个数是()A.2B.3C.4D.5第II卷(非选择题)请点击修改第II卷的文字说明二、填空题13.若不等式23x<-的解集为,A则A=Rð___________.14.若4log3a=,则22a a-+=.15.幂函数()2531my m m x-=-+在()0+∞,上为减函数,则m的值为_______.16.已知函数()223f x x x a=-+,()21g xx=-.若对任意[]10,3x∈,总存在[]22,3x∈,使得()()12f xg x≤成立,则实数a的值为____.三、解答题17.已知集合{}{}{}22,1,3,3,21,1,3A a aB a a a A B=+-=--+=-.(Ⅰ)求实数a的值;(Ⅱ)求满足()()A B M A B⊆⊆的集合M的个数.18.计算:(Ⅰ)ln43lg4lg25log3e++-;(Ⅱ))14230.2501648201949-⎛⎫-⨯-⎪⎝⎭.19.已知函数11()142x xf x⎛⎫⎛⎫=-+⎪ ⎪⎝⎭⎝⎭.(Ⅰ)求满足()3f x=的实数x的值;(Ⅱ)求[]2,3x∈-时函数()f x的值域.20.已知1a>,函数()131log1log222a af x x x⎛⎫⎛⎫=++-⎪ ⎪⎝⎭⎝⎭.(1)求()f x的定义域;(2)若()f x在51,2⎡⎤-⎢⎥⎣⎦上的最小值为2-,求a的值.21.定义域为R 的函数()f x 满足:对于任意的实数,x y 都有()()()f x y f x f y +=+ 成立,且当0x >时,()0f x <.(Ⅰ)判断函数()f x 的奇偶性,并证明你的结论; (Ⅱ)证明()f x 在R 上为减函数;(Ⅲ)若(1)(13)0f a f a -+-<,求实数a 的取值范围.22.已知定义在R 上的奇函数13()3x x af x b+-+=+.(Ⅰ) 求,a b 的值;(Ⅱ) 若存在t R ∈,使不等式22(2)(2)f t t f t k -<-有解,求实数k 的取值范围;(Ⅲ)已知函数()g x 满足[]1()()2(33)(0)3x xf xg x x -+=-≠,且规定(0)2g =,若对任意x ∈R ,不等式(2)()11g x m g x ≥⋅-恒成立,求实数m 的最大值.参考答案1.C 【解析】 【分析】根据题意先求出集合N ,然后根据交集的定义求解即可. 【详解】解:{}{}24|2xN x x x =<=<,又{}0M x x =≥,所以{}|02M N x x ⋂=≤<.故选:C. 【点睛】本题考查集合交集的运算,指数不等式求解,属于基础题. 2.B 【解析】 【分析】对数函数真数大于0,所以A 不成立;平方相等,M 、N 不一定相等,所以C 不成立;当M N=0≤时,12x -没有意义,所以D 不对;指数函数单调且定义域为R ,则B 成立,从而得出结果. 【详解】解:A :当0M N =≤时,对数无意义,故A 不正确;B :因为指数函数单调且定义域为R ,所以若22M N =,则M N =成立,故B 正确;C :比如当 ()22222=-2M N =,,时,有22log log a a M N =,但M N ¹;故C 不正确;D :当M N =0≤时,12x -没有意义,故D 不正确.故选:B. 【点睛】本题考查指对函数的定义域和运算性质,解题的关键是熟练掌握指对函数的基础知识,属于基础题. 3.D 【解析】 【分析】根据指对函数的性质可排除A 、B ,根据二次函数的性质可排除C ,从而得出结果.【详解】解:A :3x y =-在R 上单调递减,故A 不正确;B :12log y x =定义域为()0,∞+且单调递减,故B 不正确;C :()22y x =--对称轴为2x =,且开口向下,在()2,+∞上单调递减,故C 不正确;D :12y x=-在()2,+∞上单调递增,故D 正确. 故选:D. 【点睛】本题考查函数单调性的判断,解题的关键是牢记基本初等函数的单调性,属于基础题. 4.B 【解析】 【分析】因为对数函数恒过定点()1,0,所以函数()log (1)(0,1)a f x x a a =->≠可以看成由函数()log a f x x =向右平移一个单位得到,故而得到答案.【详解】解:因为函数log ay x =的图像恒过定点()1,0,所以函数()log (1)(0,1)a f x x a a =->≠可以看成由函数()log a f x x =向右平移一个单位得到,所以函数()log (1)(0,1)a f x x a a =->≠的图像恒过定点()2,0. 故选:B. 【点睛】本题考查了对数函数的图像与性质,以及函数图像间的平移变换,属于基础题. 5.A 【解析】 【分析】容易得出01,a <<12,12b c <<<<,再根据对数函数的性质将b 化为与c 同底的对数,即可比较出大小. 【详解】解:1312a ⎛⎫= ⎪⎝⎭,01a ∴<<,244log 3log 9log 71b c ==>=>,所以b c a >>.故选:A. 【点睛】本题考查指数与对数大小的比较,考查对数换底公式以及对数函数的单调性,属于基础题. 6.D 【解析】 【分析】首先考虑对数的真数取值大于0;其次将函数22lg xx y +-=拆成外层函数lg uy =和内层函数22u x x =+-,根据求复合函数单调性的法则:同増异减,判断出单调增区间;最后即可求得()2lg 2y x x =+-的单调增区间. 【详解】由220x x +->可得2x <-或1x >∵22u x x =+-在(1,)+∞单调递增,而lg y u =是增函数,由复合函数的同增异减的法则可得,函数()2lg 2y x x =+-的单调递增区间是(1,)+∞, 故选D. 【点睛】复合函数单调性的判断方法:同増异减.(同:内外层函数单调性相同时,整个函数为增函数;异:内外层函数单调性不同时,整个函数为减函数). 7.C【解析】令1-2x =12,得x =14,∴f(12)=1116116-=15,故选C. 8.D 【解析】 【分析】函数()f x 、()g x 分别是定义在R 上的奇函数、偶函数,且满足()()3xf xg x +=,可得()()3x f x g x --+-=,即()()3xf xg x --+=,与()()3x f x g x +=联立求解即可解出()f x .【详解】解:因为函数()f x 、()g x 分别是定义在R 上的奇函数、偶函数,所以()()()()3xf xg x f x g x --+-=-+=,即:()()3()()3xxf xg x f x g x -⎧-+=⎨+=⎩ , 解得:()33()2332x x x xf xg x --⎧-=⎪⎪⎨+⎪=⎪⎩. 故选:D. 【点睛】本题考查了函数的奇偶性,考查了学生的推理能力与计算能力,属于中档题. 9.D 【解析】 【分析】根据题意,由函数()f x 是定义在R 上的偶函数,又()f x 在(],0-∞上是减函数可得()f x 在()0,∞+上是增函数,因为(2)0f =,所以(2)0f -=,结合函数的单调性可知()0f x <的解为()2,2-;()0f x >的解为()(),22,-∞-+∞,()()0f x f x x +-<等价于()00x f x <⎧⎨>⎩或()00x f x >⎧⎨<⎩,结合分析可得出结果.【详解】解:函数()f x 是定义在R 上的偶函数,又()f x 在(],0-∞上是减函数,则()f x 在()0,∞+上是增函数,且(2)0f =,所以有(2)0f -=,所以()0f x <的解为()2,2-;()0f x >的解为()(),22,-∞-+∞.()()0f x f x x +-<等价于2()0f x x <,等价于()00x f x <⎧⎨>⎩或()00x f x >⎧⎨<⎩所以不等式的解集为:()(),20,2-∞-.故选:D. 【点睛】本题考查函数的单调性和奇偶性的综合应用,解题的关键是利用函数的单调性和奇偶性分析出函数的符号,属于中档题. 10.B 【解析】 【分析】首先根据对数函数的性质,求出函数的定义域,再很据复合函数的单调性求出f (x )的单调性,问题得以解决. 【详解】因为x ﹣1x>0,解得x >1或﹣1<x <0, 所以函数f (x )=ln (x ﹣1x)的定义域为:(﹣1,0)∪(1,+∞).所以选项A 、D 不正确.当x ∈(﹣1,0)时,g (x )=x ﹣1x是增函数, 因为y=lnx 是增函数,所以函数f (x )=ln (x+1x)是增函数.故选:B . 【点睛】函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置;(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的特征点,排除不合要求的图象. 11.D 【解析】 【分析】 函数y =的定义域为R ,等价于210kx kx ++>恒成立.该函数为二次型的函数,考虑0k =和0k ≠两种情况,∆<0,分情况求解即可求出结果. 【详解】解:因为函数y =的定义域为R ,所以210kx kx ++>恒成立.令()21g x kx kx =++,当0k =时,()10g x =>恒成立,符合题意.当0k ≠时,00k >⎧⎨∆<⎩,即2040k k k >⎧⎨-<⎩解得:04k <<.故选:D. 【点睛】本题考查函数定义域为R 的问题,考查分类讨论的思想和二次函数的性质,属于基础题. 12.D 【解析】 【分析】函数21,0()ln ,0x x f x x x +≤⎧=⎨>⎩,则方程[]()3f f x =等价于()213f x +=,()3f x e =或()3f x e -=.再根据21,0()ln ,0x x f x x x +≤⎧=⎨>⎩分析函数的单调性和值域,分析每一段上的解的个数,进而得出结果. 【详解】解:因为函数21,0()ln ,0x x f x x x +≤⎧=⎨>⎩, 当()0f x ≤时,[]()()213f f x f x =+=,即()1f x =不符合()0f x ≤,舍去; 当()0f x >时,方程[]()3f f x =等价于()|ln |3f x =,解得:()3f x e =或()3f x e -=,0x ≤,211x ∴+≤,又()ln f x x =在()0,1上单调递减,且()[)0,f x ∈+∞;在()1,+∞上单调递增,且()[)0,f x ∈+∞.若()3f x e =1>,则321x e +=无解,3ln x e =有两个解;若()3f x e -=,则321x e -+=有一解,3ln x e -=有两解,所以共有5解.故选:D. 【点睛】本题考查函数与方程的应用,考查学生的分析与计算求解能力,解题的关键是对函数分段讨论求解,属于中档题. 13.5,34⎡⎤⎢⎥⎣⎦【解析】 【分析】对不等式移项、通分、化简、得到4503x x-<-,求解不等式然后对解集求补集即可得到答案. 【详解】 解:2123x x +<-等价于2121624520333x x x x x x x++-+--==<---, 即()()4530x x -->,解得:3x >或54x <,则A =R ð5,34⎡⎤⎢⎥⎣⎦. 故答案为:5,34⎡⎤⎢⎥⎣⎦.【点睛】本题考查分式不等式求解集,以及补集的运算,解题的关键是对不等式进行正确的变形,属于基础题.14 【解析】 【详解】∵4log 3a =,∴432a a =⇒=∴222a-+==考点:对数的计算 15.0 【解析】 【分析】根据幂函数的定义可知211m m -+=,又函数在()0+∞,上为减函数,可知530m -<,对m 求解即可.【详解】解:因为函数()2531m y m m x-=-+为幂函数,所以211m m -+=,解得:0m =或1m =.又53m y x -=在()0+∞,上为减函数,所以530m -<,即35m <,所以0m =. 故答案为:0. 【点睛】本题考查根据幂函数的定义和单调性求参数,解题的关键是熟记幂函数的定义和单调性,属于基础题. 16.13- 【解析】 【分析】将问题转化为()()max max f x g x ≤,根据二次函数和分式的单调性可求得()f x 在[]0,3上的最小值和最大值及()g x 在[]2,3上的最大值;分别讨论()f x 最大值小于零、最小值小于零且最大值大于零、最小值大于零三种情况,得到()f x 每种情况下的最大值,从而得到不等式,解不等式求得结果. 【详解】不等式()()12f x g x ≤恒成立可转化为:()()max max f x g x ≤ 当[]0,3x ∈时,()()min 113f x f a ==-+,()()max 333f x f a ==+ 当[]2,3x ∈时,()()max 22g x g ==①若330a +≤,即1a ≤-时,()max 1313f x a a =-+=-132a ∴-≤,解得:13a ≥-(舍)②若13033a a -+≤<+,即113a -<≤时,()()(){}max max 1,3f x f f =- 又()113f a -=-,()333f a =+ 当1333a a ->+,即113a -<<-时,()max 13f x a =- 132a ∴-≤,解得:13a ≥-(舍)当1333a a -≤+,即1133a -≤≤时,()max 33f x a =+ 332a ∴+≤,解得:13a ≤- 13a ∴=-③若130a -+>,即13a >时,()max 3333f x a a =+=+332a ∴+≤,解得:13a ≤-(舍)综上所述:13a =-本题正确结果:13-【点睛】本题考查恒成立和能成立综合应用的问题,关键是能够将不等式转化为两个函数最值之间的大小关系,从而根据函数的单调性求得函数的最值,通过最值的比较构造不等式求得结果. 17.(Ⅰ)1-;(Ⅱ)16个. 【解析】 【分析】 (Ⅰ){}3,3AB B =-∴-∈,逐个分析集合B 中的元素求解a ,然后代入检验即可. (Ⅱ)因为{}3A B =-I ,{}4,3,0,1,2A B =--,()()A B M A B ⊆⊆,所以集合M 中必有-3,只需考虑剩余4个元素即可得到答案. 【详解】 (Ⅰ){}3,3A B B =-∴-∈显然213a +≠-,若33,a -=-则0a =,{}3,1A B ∴=-,不符合题意,若213,a -=-则1a =-,{}3A B ∴=-,满足题意,所以1a =- .(Ⅱ){}3A B =-I ,{}4,3,0,1,2AB =--,因为()()A B M A B ⊆⊆,所以集合M 中必有-3,剩余4个元素:-4,0,1,2都有在与不在两种情况,所以个数为42=16个. 【点睛】本题考查了交集、并集的定义和运算,元素与集合的关系,考查了子集的定义,子集个数的求法,属于基础题.18.(Ⅰ)32-;(Ⅱ)8- . 【解析】 【分析】(Ⅰ)根据对数和指数的运算性质和运算律化简计算即可. (Ⅱ)根据指数的运算性质和运算律化简即可得出结果. 【详解】 解:(Ⅰ)ln 43lg 4lg 25log 3e ++- =323lg100log 314+--=3252+- =32-. (Ⅱ))14230.2501648201949-⎛⎫-⨯- ⎪⎝⎭.=34237414⋅-⨯=271-=2721--- =8- 【点睛】本题考查指数、对数的运算性质和运算律,考查学生的计算能力,属于基础题. 19.(Ⅰ)1-;(Ⅱ)3,134⎡⎤⎢⎥⎣⎦.【解析】 【分析】(Ⅰ)将12x ⎛⎫ ⎪⎝⎭看成一个整体,对()3f x =进行化简得到1121022x x ⎡⎤⎡⎤⎛⎫⎛⎫-⋅+=⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦先求解12x⎛⎫ ⎪⎝⎭的值,再根据对数的运算解x 即可. (Ⅱ)12xt ⎛⎫= ⎪⎝⎭,可知1,48t ⎡⎤∈⎢⎥⎣⎦,化简()f x 可得21y t t =-+,然后配方即可求出21y t t =-+在1,48t ⎡⎤∈⎢⎥⎣⎦的最大最小值,进而求得值域.【详解】 (Ⅰ)11()1342x xf x ⎛⎫⎛⎫=-+= ⎪ ⎪⎝⎭⎝⎭,112042x x ⎛⎫⎛⎫∴--= ⎪ ⎪⎝⎭⎝⎭,1121022x x ⎡⎤⎡⎤⎛⎫⎛⎫∴-⋅+=⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦,122x ⎛⎫∴= ⎪⎝⎭或112x ⎛⎫=- ⎪⎝⎭(舍)122x⎛⎫∴= ⎪⎝⎭, 1x ∴=- .(Ⅱ)12x t ⎛⎫= ⎪⎝⎭令12xt ⎛⎫= ⎪⎝⎭,[]12,3,,48x t ⎡⎤∈-∴∈⎢⎥⎣⎦. 则2213124y t t t ⎛⎫=-+=-+ ⎪⎝⎭当12t =时,min 34y =;当4t =时,max 13y =, 所以()f x 的值域为3,134⎡⎤⎢⎥⎣⎦.【点睛】本题考查二次型函数已知值求自变量,以及二次函数已知自变量的范围求值域,考查了换元法的应用以及二次函数配方法求值域,考查了学生的计算能力,属于基础题. 20.(1)()2,3- ; (2)43. 【解析】 【分析】(1)由题意,函数()f x 的解析式有意义,列出不等式组,即可求解函数的定义域;(2)由题意,化简得()()21log 64af x x x =-++,设()2164u x x =-++,根据复合函数的性质,分类讨论得到函数()f x 的单调性,得出函数最值的表达式,即可求解。

2022-2023学年黑龙江省哈尔滨师大附中数学高一上期末教学质量检测试题含解析

2022-2023学年黑龙江省哈尔滨师大附中数学高一上期末教学质量检测试题含解析

A. b c a
B. c b a
C. c a b
D. b a c
3.已知全集U {1, 2,3, 4,5},集合 A {2, 4} , B {3, 4} ,则 A U B ( )
A.{2,3,4}
B.{1,2,4,5}
C.{2,5}
D.{2}
4.要证明命题“所有实数的平方都是正数”是假命题,只需()
(1)写一个满足条件的 f (x) ;
(2)证明 f (x) 是奇函数;
(3)解不等式 1 f x2 f (x) 1 f (3x)
2
2
参考答案
一、选择题:本大题共 10 小题,每小题 5 分,共 50 分。在每个小题给出的四个选项中,恰有一项是符合题目要求的 1、B
【解析】根据对数函数的性质即可确定 a 的范围.
5 6
,0
a
1
a
,因此选 A
u(3) 0 9a 9 9 7 0
点睛:1.复合函数单调性的规则
若两个简单函数的单调性相同,则它们的复合函数为增函数;若两个简单函数的单调性相反,则它们的复合函数为减
函数.即“同增异减”
函数单调性的性质
(1)若 f(x),g(x)均为区间 A 上的增(减)函数,则 f(x)+g(x)也是区间 A 上的增(减)函数,更进一步,即增+增=增,
[( x
1) 1]2 ( x 1)2
sin( x 1
1)

f
(x
2)
f
(x)
[( x
2
1) 1]2 sin( x (x 2 1)2 1
2 1)
[( x
1) 1]2 sin( x ( x 1)2 1
1)

数学丨黑龙江省哈尔滨市师范大学附属中学2025届高三上学期11月期中考试数学试卷及答案

数学丨黑龙江省哈尔滨市师范大学附属中学2025届高三上学期11月期中考试数学试卷及答案

哈师大附中2024—2025学年度高三上学期期中考试数学试题考试说明:本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,满分150分.考试时间为120分钟.1.答题前,考生先将自己的姓名、准考证号码填写清楚.2.选择题必须使用2B 铅笔填涂,非选择题必须使用0.5毫米黑色字迹签字笔书写,字体工整,字迹清楚.3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效,在草稿纸、试题卷上答题无效.4.保持卡面清洁,不得折叠、不要弄破、弄皱,不准使用涂改液、刮纸刀.第I 卷(选择题,共58分)一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2|230A x x x =-+≤,(){}2ln 2B x y x==-,则A B = ()A .()13,B.3⎡-⎣C.⎡⎤⎣⎦D.(⎤⎦2.复数2025z=2025i -在复平面内对应的点所在的象限为()A .第一象限B .第二象限C .第三象限D .第四象限3.函数()2cos f x x x =+在区间0,2π⎡⎤⎢⎥⎣⎦上的最小值为()A.2πB .2C.6π+ D.13π+4.已知a 是单位向量,则“||||1a b b +-= 是“a b∥”的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件5.已知函数()()e 1x a xf x -⎛⎫= ⎪⎝⎭在区间()1,0-上单调递增,则a 的取值范围是()A .[)0,+∞B .[)2,-+∞C .(],0-∞D .(],2-∞-6.已知等比数列{}n a 的前n 项和为n S ,若3614S S =,则1236SS S =+()A.43B.8C.9D.167.菱形ABCD 边长为2,P 为平面ABCD 内一动点,则()()PA PB PC PD +⋅+的最小值为()A.0B.2- C.2D.4-8.已知函数()f x 为偶函数,且满足(13)(13)f x f x -=+,当(0,1)x ∈,()31xf x =-,则323(log )f 的值为()A.31B.5932C.4932D.21132二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9.函数()2sin(1)3f x x πωω=+≤的图象如图所示,则下列说法中正确的是()A .1ω=B .函数的图象关于点,03π⎛⎫⎪⎝⎭对称C .将()y f x =向左平移3π个单位长度,得到函数()2cos(6g x x π=+D .若方程(2)f x m =在0,2π⎡⎤⎢⎥⎣⎦上有2个不相等的实数根,则m的取值范围是2⎤⎦10.设正实数,m n 满足1m n +=,则()A .1m nm+的最小值为3B+C的最小值为12D .33m n +的最小值为1411.已知函数1()(0)xf x x x =>,则下列说法中正确的是()A.方程1()(f x f x=有一个解B.若()()g x f x m =-有两个零点,则10em e<<C.若21()(log ())2a h x x f x =-存在极小值和极大值,则(1,e)a ∈D.若()0f xb -=有两个不同零点,2(())()0f x b x cx d --+≤恒成立,则2ln b c <<第Ⅱ卷(非选择题,共92分)三、填空题:本大题共3小题,每小题5分,共15分.将答案填在答题卡相应的位置上.12.中国冶炼块铁的起始年代虽然迟至公元前6世纪,约比西方晚900年,但是冶炼铸铁的技术却比欧洲早2000年.现将一个轴截面为正方形且侧面积为π36的实心圆柱铁锭冶炼熔化后,浇铸成一个底面积为π81的圆锥,则该圆锥的高度为.13.已知某种科技产品的利润率为P ,预计5年内与时间(t 月)满足函数关系式(t P ab =其中a b 、为非零常数).若经过12个月,利润率为10%,经过24个月,利润率为20%,那么当利润率达到50%以上,至少需要经过________________个月(用整数作答,参考数据:lg 20.3010)≈14.已知b 为单位向量,,a c 满足42a b c b ⋅=-= ,则12a c -的最小值为四、解答题:本题共5小题,共77分.解答应写出必要的文字说明、证明过程或演算步骤.15.(本小题13分)在△ABC 中,a b c 、、分别为角A B C 、、所对的边,且22()b a a c c -=-(1)求角B .(2)若b =△ABC 周长的最大值.16.(本小题15分)已知数列{}n a 满足*3212122,N 22n n a a a n a n -++++=∈ (1)求{}n a 的通项公式;(2)在n a 和1n a +之间插入n 个数,使得这2n +个数依次构成公差为n d 的等差数列,求数列1n d ⎧⎫⎨⎬⎩⎭的前n 项和n T .17.(本小题15分)行列式在数学中是一个函数,无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用.将形如11122122a a a a 的符号称二阶行列式,并规定二阶的行列式计算如下:1112112212212122a a a a a a a a =-,设函数22sin sin ()()π26cos()x xf x x x =∈+R .(1)求()f x 的对称轴方程及在[0,]π上的单调递增区间;(2)在锐角ABC ∆中,已知()32f A =-,2133AD AB AC =+,cos B =,求tan BAD ∠18.(本小题17分)已知数列}{n a 满足111,,333,n n na n n a a a n n +⎧+⎪==⎨⎪-⎩为奇数为偶数(*∈N n ).(1)记232-=n n a b (*∈N n ),证明:数列}{n b 为等比数列,并求}{n b 的通项公式;(2)求数列}{n a 的前n 2项和n S 2;(3)设12121--=+n n n b b c (*∈N n ),且数列}{n c 的前n 项和为n T ,求证:1133ln --<-n n n n T (*∈N n ).19.(本小题17分)已知函数ln ()sin ,(0,)x a f x e x x -=-∈+∞.(1)当a e =时,求()y f x =在(0,(0))f 处的切线方程;(2)若32(())(())ln(1())0f x f x f x -++≥恒成立,求a 的范围;(3)若()f x 在(0,)π内有两个不同零点12,x x ,求证:122x x ππ<+<2024—2025学年度上学期高三学年期中考试数学答案一、单选题1.D 2.D 3.A 4.A 5.D 6.B7.D8.C二、多选题9.AC 10.ABD 11.ACD 三、填空题12.213.4014.1四、解答题15.(1)22()b a a c c -=-即222b a c ac =+-∵2222cos b a c ac B =+-∴1cos 2B =,又(0,)B π∈∴3B π=(2)由sin sin a c AC =可得,2sin a A =,2sin c C=2sin 2sin l a b c A C =++=+∵2+3A C π=∴23C Ap =-∴22sin 2sin()3l a b c A A π=++=+-3sin A A =)6A π=+∵203A π<<∴l的最大值为16.(1)321212222nn na a a a -++++= 当2n ≥时,312122)2222(1n n a a a n a --++++=- 两式相减,得122nn a -=,即2n n a =.又当1n =时,12a =符合题意,所以2n n a =.(2)由(1)得2n n a =,所以11222111n n nn n n b b d n n n ++--===+++,则112nn n d +=,所以()123111123412222nn T n ⎛⎫⎛⎫⎛⎫⎛⎫=⋅+⋅+⋅+⋅⋅⋅++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()12341111112341222222nn n T n n +⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⋅+⋅+⋅+⋅⋅⋅+++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭两式相减得:()()112111111111113342211112222222212n n n nn n n T n n ++++⎛⎫- ⎪+⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎝⎭=⋅++⋅⋅⋅+-+=+-+=- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭-,所以332n nn T +=-.17.(1)221()2sin cos()2sin 2sin (cos sin )2sin 226f x x x x x x x xπ=+-=--23323sin sin 2(1cos 2)sin(2)22232x x x x x π=---+-,由22,32x k k πππ+=+∈Z ,得,12x k k ππ=+∈Z ,所以()f x 的对称轴为ππ()122kx k =+∈Z .由222,232k x k k πππππ-+<+<+∈Z ,[]0,x π∈,所以单调递增区间为701212πππ⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦,,,(2)由(1)知,33())322f A A π=+-=-,则πsin(2)03A +=,由02A π<<,得ππ4π2333A <+<,则π23A π+=,解得π3A =,因为ABC V中,cos B =,则B 为锐角,所以sin 3B ===,因为π3A =,πA B C ++=,所以2π3C B =-,所以2π2π2π11sin sin sin cos cos sin 333232326C B B B ⎛⎫=-=-=⨯+⨯=+⎪⎝⎭,设BADθ∠=,则π3 CADθ∠=-,在ABD△和ACD中,由正弦定理得sin sinBD ADBθ==πsinsin3CD ADCθ=⎛⎫-⎪⎝⎭因为2CD BD=(π3sin3θθ⎛⎫-=+⎪⎝⎭,(1cos sin3sin22θθθ⎫-=+⎪⎪⎭(2sinθθ=+,所以tan tanBADθ∠==18.(1)证明:2123123)1231(231212221-+=-++=-=++++nanaabnnnnnnnnbaanna31)23(312131212)6(31222=-=-=-+-=,又212313123121=-+=-=aab,所以,数列}{nb为以21为首项,31为公比的等比数列.(2)由(1)可知13121-⎪⎭⎫⎝⎛=nnb,又232-=nnab,23312112+⎪⎭⎫⎝⎛=∴-nna.设nnaaaP242++=,则nnPnnn233143432331131121+⎪⎭⎫⎝⎛-=+-⎪⎭⎫⎝⎛-⋅=,设1231-++=nnaaaQ ,1231122-+=-naann,2312)121(31nQnnQPnnn+=-+⋅+=∴,233nPQnn-=∴,故21223631334nnnPQPSnnnnn-+⎪⎭⎫⎝⎛-=-=+=-.(3)nnnnnnnc321132113331311311-<--=--=-⎪⎭⎫⎝⎛-⎪⎭⎫⎝⎛=-,n n n n n n n T 311311()313131(22+-=--=+++-<∴ ,所以欲证1133ln --<-n n n n T ,只需证)311ln(313ln 133ln 31n n n n n n --=--=-<,即证n n 31311ln(-<-.设)0,1(),1ln()(-∈+-=x x x x f ,01)(<+='∴x xx f ,故)(x f 在)0,1(-上单调递减,0)0()(=>f x f ,)0,1(-∈∴x 时,)1ln(x x +>.)0,31[31-∈-n ,n n 31311ln(-<-∴得证.19.1) =s =K1−sins 0=−1,n =K1−coss n 0=−1−1∴−−1=−1−12)3−2+ln 1+≥0.令=s 3−2+ln 1+≥0(1)t >-令=3−2+ln 1+,n =32−2+1r1=33+2−2r1r1,当≥0,'≥0∴在0,+∞单调递增,当()32322(0,1),ln 1(1)0t t t t t t t t t t ∈+++<++=++<∴≥0解集为≥0∴≥0>0,sins1≥sin=ℎ. ℎ' = cosKsin =, ∴ 在 单调递增, (4,54)单调递减,当>54时,ℎ<154∴ℎ=224∴1≥224,0<≤243)ℎ=sin ∴sin=1有两个根1,2。

黑龙江省哈尔滨师范大学附中2020-2021学年高一入学考试数学试题 答案和解析

黑龙江省哈尔滨师范大学附中2020-2021学年高一入学考试数学试题 答案和解析

黑龙江省哈尔滨师范大学附中【最新】高一入学考试数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.cos30的相反数是( )A .12BC .12-D . 2.下列各式运算正确的是( )A .33mn n m =-B .33y y y ÷=C .()236x x =D .236a a a ⋅= 3.如图,所给图形中是中心对称图形但不是轴对称图形的是( )A .B .C .D . 4.下面几何体的左视图是( )A .B .C .D . 5.设集合A ={x|1<x <4},B ={x|x 2-2x -3≤0},则A∩(C R B)=A .(1,4)B .(3,4)C .(1,3)D .(1,2) 6.反比例函数3m y x -=,当0x >时,y 随x 的增大而增大,那么m 取值范围是( ) A .3m < B .3m >C .3m <-D .3m >- 7.二次函数()212y x =--+,下列说法正确的是( )A .图象的开口向上B .图象的顶点坐标是1,2C .当1x >时,y 随x 的增大而减小D .图象与y 轴的交点坐标为()0,2 8.数列{}n a 为等差数列,若34567540a a a a a ++++=,则28a a +=( )9.设()2|1|2,||11,||11x x f x x x --≤⎧⎪=⎨>⎪+⎩,则12f f ⎡⎤⎛⎫= ⎪⎢⎥⎝⎭⎣⎦( ) A .12 B .413 C .95- D .254110.“龟兔首次赛跑”之后,输了比赛的兔子总结惨痛教训后,决定和乌龟再赛一场.图中的函数图象刻画了“龟兔再次赛跑”的故事(x 表示乌龟从起点出发所行的时间,1y 表示乌龟所行的路程,2y 表示兔子所行的路程)下列说法中正确的有( )个①“龟兔再次赛跑”的路程为1000米;②兔子和乌龟同时从起点出发;③乌龟在途中休息了10分钟;④兔子在途中750米处追上乌龟.A .1B .2C .3D .4二、填空题11.在函数y =中,自变量x 的取值范围是__________. 12.不等式组1221(1)0x x -⎧<⎪⎨⎪--<⎩的解是___________.13.把多项式22412x ax a --分解因式的结果是___________.14.在一个不透明的口袋中装有3个红球、1个黑球,这些球除颜色外其他都相同,在看不到球的条件下,随机地从这个袋子中摸出两个球,摸到的两个球都是红球的概率是___________.15.定义域为R 的奇函数()f x 为增函数,偶函数()g x 在区间[]0,∞上的图象与()f x 的图象重合,设0a b >>,给出下列不等式:(1)()()()()f b f a g a g b -->--(2)()()()()f b f a g a g b --<--(3)()()()()f a f b g b g a -->--(4)()()()()f a f b g b g a --<--其中成立的序号是___________.三、双空题16.在等比数列{}n a 中,若45a =,86a =,则210a a ⋅=______,6a =______;四、解答题17.先化简,再求值.221111121x x x x x +⎛⎫-÷ ⎪+-++⎝⎭,其中3tan 3045x =︒︒ 18.已知一次函数1y x b =+(b 为常数)的图像与反比例函数2k y x=(k 为常数,且0k ≠)的图像相交于点()3,1P .(1)求这两个函数的解析式;(2)当3x >时,试判断1y 与2y 的大小,并说明理由.19.已知集合{}34A x x =-≤≤,{}211B x m x m =-<<+,且B A ⊆,求实数m 的取值范围.20.已知二次函数2y ax bx =+,当2x =时0y =,并且方程2ax bx x +=有两个相等实数根.(1)求二次函数2y ax bx =+的表达式;(2)是否存在实数(),m n m n <使得当m x n ≤≤时,y 有最小值2m ,最大值2n .如果存在,求出m ,n ;如不存在说明理由.21.已知抛物线2111:12C y x x =-+,点()1,1F . (1)求抛物线1C 的顶点坐标;(2)若抛物线1C 与y 轴的交点为A ,连接AF ,并延长交抛物线1C 于点B ,求证:112AF BF+=; (3)将抛物线1C 作适当的平移,得抛物线()2221:2C y x h =-,若2x m <≤时,2y x ≤恒成立,求m 得最大值.参考答案1.D【解析】【分析】求出cos30︒,由相反数定义得结论.【详解】cos30=°,其相反数是.故选:D.【点睛】本题考查锐角的三角函数值,考查相反数概念,属于基础题.2.C【分析】根据幂的运算法则判断.【详解】A中是相减不是相除,错;B中指数相减为0,即为0y,错;由幂和乘方知C正确;由同底数相乘法则知D错误.故选:C.【点睛】本题考查幂的运算法则,属于基础题.3.C【分析】由中心对称图形和轴对称图形的定义判断.【详解】A,D都不是中心对称图形,B,C都是中心对称图形,B还是轴对称图形,C不是轴对称图形.故选:C.【点睛】本题考查中心对称图形和轴对称图形,掌握中心对称图形和轴对称图形的定义是解题关键.4.A【分析】根据三视图的概念判断.【详解】从左边投影,只看到三个小正方形,左侧是上下各一个,下方是左右各一个,只有A 符合. 故选:A.【点睛】本题考查三视图,掌握三视图的概念是解题基础.5.B【解析】由题意B={x|x 2-2x-3≤0}={x|-1≤x≤3},故∁R B={x|x <-1或x >3},又集合A={x|1<x <4},∴A∩(∁R B )=(3,4)故选B6.A【分析】由反比例函数性质求解.【详解】 反比例函数中k y x=中,0k >,在0x >时,y 随x 的增大而减少,k 0<时,在0x >时,y 随x 的增大而增大,所以由题意30m -<,3m <.故选:A.【点睛】本题考查反比例函数的性质,属于基础题.7.C【分析】由二次函数性质判断.【详解】二次函数()212y x =--+中,二次项系数为1-,开口方向向下,顶点坐标是(1,2),0x =时,1y =,即与y 交点为(0,1),A ,B ,D 均错.对称轴是1x =,因此在1x >时,y 随x 的增大而减小,C 正确.故选:C.【点睛】本题考查二次函数的图象与性质,属于基础题.8.D【分析】由等差数列的性质计算.【详解】∵数列{}n a 为等差数列,∴34567374655()()5540a a a a a a a a a a a ++++=++++==,5108a =,∴2852216a a a +==.故选:D.【点睛】本题考查等差数列的性质,即等差数列{}n a 中,正整数,,,m n k l ,则m n k l m n k l a a a a +=+⇔+=+.9.B【分析】 先计算1()2f ,再计算1[()]2f f .【详解】 由题意113()12222f =--=-,2314()32131()2f -==+-. 故选:B.【点睛】本题考查分段函数,求值时要注意自变量的范围不同,选取的表达式可能就不相同. 10.C【分析】观察图象,由路程与时间的关系作答.【详解】从图象看两个的路程都是1000米,但不是同时从起点出发的,乌龟在走了30分钟的时候开始休息了10分钟然后再行走的,相遇点路程是750米,因此①③④正确,故选:C.【点睛】本题考查函数的图象的识别,理解函数的意义是解题关键.11.5x <;【分析】由分母不为0,二次根式下被开方数不小于0.求解【详解】由题意50x ->,5x <.故答案为:5x <.【点睛】本题考查函数定义域,属于基础题.12.25x <<;【分析】分别解不等式,然后求两个不等式解集的公共部分.【详解】 由122x -<得5x <,由1(1)0x --<得2x >, 所以原不等式组的解集是25x <<.故答案为:25x <<.【点睛】本题考查解不等式组,可分别解组成不等式组的不等式,然后求解集的公共部分即得. 13.()()62x a x a -+;【分析】利用十字相乘法分解.【详解】22412x ax a --(2)(6)x a x a =+-.故答案为:()()62x a x a -+【点睛】本题考查因式分解,掌握因式分解的方法是解题基础.14.12; 【分析】可编号后用列举法列出各种可能,求出任意摸两个球的方法数,再求出两球都是红球的方法数,然后可计算概率.【详解】3个红球编号为,,a b c ,1 个黑球编号为B ,任取两球有如下可能:,,,,,ab ac aB bc bB cB 共6种,其中两个都是红球的有,,ab ac bc 三个,所以概率为3162=. 故答案为:12. 【点睛】本题考查古典概型,用列举法可列出所有基本事件,从而计算出概率.15.(1)与(3);【分析】由奇偶性化简变形,再由单调性确定不等式是否正确.【详解】由题意 ()()()()f b f a g a g b -->--化为()()()()()()f b f a g a g b f a f b +>-=-,即()()f b f b >-()f b =-,由()f x 是增函数,()()f b f b >-正确,∴(1)正确,(2)错误;()()()()f a f b g b g a -->--化为()()()()()()f a f b g b g a f b f a +>-=-,()()()f a f a f a >-=-,由()f x 是增函数,()()f a f a >-正确,∴(3)正确,(4)错误.故答案为:(1)(3).【点睛】本题考查函数的奇偶性与单调性,掌握奇偶性与单调性的定义是解题基础.16.30【分析】由等比数列的性质求解.【详解】由题意210485630a a a a ==⨯=,2210630a a a ==,∵等比数列中偶数项同号,∴6a =故答案为:30【点睛】本题考查等比数列的性质.掌握等比数列的性质是解题关键.等比数列{}n a 中,正整数,,,m n k l ,则m n k l m n k l a a a a +=+⇔⋅=⋅.17.21x x --【分析】按分式运算的法则化简,同时化简x 并代入计算.【详解】 原式22211(1)(2)(1)2(1)(1)1(1)(1)1x x x x x x x x x x x --+-+-=⨯==+-+-+-3132x =⨯+=33==. 【点睛】本题考查代数式的化简求值.因此需先化简再代入求值,可减少计算量,易于正确. 18.(1)12y x =-,23y x =;(2)12y y >. 【分析】(1)把P 点坐标代入可求得解析式;(2)作差后与0比较可得.【详解】(1)∵次函数1y x b =+(b 为常数)的图像与反比例函数2k y x=(k 为常数,且0k ≠)的图像相交于点()3,1P . ∴13b =+⇒2b =-,13k =⇒3k =, ∴解析式为12y x =-,23y x =; (2)3x >时,212323(1)(3)20x x x x y y x x x x--+--=--==>,∴12y y >. 【点睛】本题考查求函数解析式,考查实数的比较大小.比较大小通常用作差法,即两数的差与0比较后可得它们的大小关系.19.{|1}m m ≥-【分析】B A ⊆时,要分类讨论,分B =∅和B ≠∅讨论.【详解】∵B A ⊆,∴当B =∅时,211m m -≥+,即2m ≥,当B ≠∅时,213142m m m -≥-⎧⎪+≤⎨⎪<⎩,解得12m -≤<,综上所述,m 的取值范围是{|1}m m ≥-.【点睛】本题考查集合的包含关系,解题时要注意空集是任何集合的子集.因此需分类讨论. 20.(1)21()2f x x x =-+;(2)存在满足题意的,m n ,2,0m n =-=. 【分析】(1)根据已知条件列出关于,a b 的两个方程联立可解,a b ,即得函数解析式.(2)由函数式,求出对称轴,根据对称轴分类讨论求函数值域.【详解】(1)由题意2420(1)0a b b +=⎧⎨-=⎩,解得121a b ⎧=-⎪⎨⎪=⎩. ∴21()2f x x x =-+; (2)假设存在满足题意的,m n .由(1)22111()(1)222f x x x x =-+=--+,对称轴是1x =, ①1n ≤时,()f x 在[,]m n 是单调递增,∴()2()2f m m f n n=⎧⎨=⎩, ∴,m n 是方程()2f x x =的两个不等实根.()2f x x =为2122x x x -+=,解得120,2x x ==-,∴2,0m n =-⎧⎨=⎩. ②当1m n ≤≤时,max 1()(1)2f x f ==,则122n =,14n =,不合题意; ③当1m ≤时,()f x 在[,]m n 是单调递减,则221()221()22f m m m n f n n n m ⎧=-+=⎪⎪⎨⎪=-+=⎪⎩,无实解. 综上,存在满足题意的,m n ,2,0m n =-=.【点睛】本题考查二次函数的解析式,考查二次函数的值域问题,解题关键是求出对称轴,由对称轴与已知区间的关系,分类讨论函数的最大值和最小值.21.(1)1(1,)2;(2)见解析;(3)8.【分析】(1)配方后可得顶点坐标;(2)求出A 点坐标,得到直线AF 的方程,与抛物线方程联立可解得B 点坐标,求出,AF BF 后可证结论成立;(3)令3y x =,求得其与2C 的一个交点的坐标,进而求得2C 解析式,再求得另一交点坐标即可得.【详解】(1)2211111(1)222y x x x =-+=-+,∴其顶点坐标为1(1,)2; (2)在21112y x x =-+中令0x =得1y =,所以(0,1)A ,此时直线AF 方程为1y =, 由21112y y x x =⎧⎪⎨=-+⎪⎩,解得01x y =⎧⎨=⎩或21x y =⎧⎨=⎩,所以(2,1)B , ∴1,1AF BF ==, 所以112AF BF+=; (3)如图所示,设3y x =,设其与抛物线2C 交点的横坐标为01,x x ,且01x x <,根据题意要使m 最大,0x 也尽可能的大,因此02x =,则32y =,将(2,2)代入抛物线2C 方程得212(2)2h =-,解得14h =,20h =(舍去),∴221(4)2y x =-,令21(4)2x x =-,解得02x =,18x =,故m 的最大值是8.【点睛】本题考查二次函数的图象与性质,掌握二次函数的图象与性质是解题关键.解题关键是作出函数图象,利用数形结合思想求解.。

2020-2021学年黑龙江省哈师大附中高二下学期期中数学复习卷(2)(含解析)

2020-2021学年黑龙江省哈师大附中高二下学期期中数学复习卷(2)(含解析)

2020-2021学年黑龙江省哈师大附中高二下学期期中数学复习卷(2)一、单选题(本大题共12小题,共60.0分)1.若复数(a∈R,i是虚数单位)是纯虚数,则a的值为()A. −2B. 2C. 1D. −12.设0<a<b,则下列不等式中正确的是()A. a<b<<B. a<<<bC. a<<b<D. <a<<b3.设α,β是两个不同的平面,直线m⊂α,则“m⊥β”是“α⊥β”的()条件A. 充分而不必要B. 必要而不充分C. 充分必要D. 既不充分也不必要4.当时,复数在复平面内对应的点位于:A. 第一象限B. 第二象限C. 第三象限D. 第四象限5.下列结论正确的是()A. 当且时,B. 当时,C. 当时,的最小值为2D. 当时,无最大值6.已知函数,则的值为()A. B. C. D.7.设函数f(x)是定义在R上周期为2的可导函数,若f(2)=2,且f′(2)=−4,则曲线y=f(x)在点(0,f(0))处切线方程是()x+2A. y=−2x+2B. y=−4x+2C. y=4x+2D. y=−128.秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图是实现该算法的程序框图,执行程序框图,若输入的a为2,2,5,x与n均为2,则输出的s等于()A. 34B. 17C. 12D. 79.执行如图所示的程序框图,输出的a值为()A. 3B. 5C. 7D. 910.过椭圆中心的直线与椭圆交于A、B两点,右焦点为(c,0),则的最大面积是()A. AbB. bcC. AcD.11.下列有关命题的说法正确的是()A. 命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1”B. 命题“∃x∈R使得x2+x+1<0”的否定是:“γx∈R,均有x2+x+1<0”C. 在△ABC中,“A>B”是“cos2A<cos2B”的充要条件D. “x≠2或y≠1”是“x+y≠3”的非充分非必要条件12.已知双曲线的离心率为,若抛物线的焦点到双曲线的渐近线的距离为,则抛物线的方程为().A. B. C. D.二、单空题(本大题共4小题,共20.0分)13.函数f(x)=x−√x,则f′(1)=______ .14.华罗庚数学小组的同学们在图书馆发现一块古代楔形文字泥板的图片,同学们猜测它是一种乘法表的记录,请你根据这个猜测,判定表示______?(如图)15.计算机中常用的十六进制是逢16进1的记数制,采用数字0~9和字母A~F共16个记数符号,这些符号与十进制的数对应关系如下表:十六进制0123456789A B C D E F十进制0123456789101112131415例如,用十六进制表示:E+D=1B,则用十六进制表示:B×C=______ .16.在下图所示的三角形数阵中,用a i,j(i≥j)表示第i行第j个数(i,j∈N∗),已知a i,1=a i,i=1−1(i∈N∗),且当i≥3时,每行中的其他各数均等于其“肩膀”上的两个数之和,即a i,j= 2i−1a i−1,j−1+a i−1,j(2≤j≤i−1),若a m,2>100,则正整数m的最小值为______________.三、解答题(本大题共6小题,共70.0分)17.选做题22.(本小题满分10分)如图设为圆的内接三角形,为圆的弦,且,过点作圆的切线与DB的延长线交于点E,AD与BC交于点F。

黑龙江省哈尔滨市哈师大附中2024届高三上学期期中数学试题(解析版)

黑龙江省哈尔滨市哈师大附中2024届高三上学期期中数学试题(解析版)

哈师大附中2021级高三第三次调研考试数学试题(满分150分,考试时间120分钟)一、选择题(共8个小题,每题只有一个选项,每题5分,满分40分)1.已知复数2i z =-,则()iz z -的虚部为()A.2- B.1- C.6D.2【答案】A 【解析】【分析】根据共轭复数的概念可得z ,根据复数的乘法运算求出()i z z -,即可得答案.【详解】复数2i z =-,则2i z =+则()(2i)(2i i)=42i i z z =---+-,则()i z z -的虚部为-2,故选:A2.下列函数中,在定义域上既是奇函数又是减函数的为()A.sin 1y x =+B.1y x=C.[]()31,2y x x =-∈- D.y x x=-【答案】D 【解析】【分析】利用定义域关于原点对称,()f x -与()f x -关系,判断函数的奇偶性.【详解】A 选项:令()()sin 1R f x x x =+∈,则()()sin 1sin 1f x x x -=-+=-+,()f x 不具有奇偶性,所以不符合题意;B 选项:令()()10f x x x =≠,则()1f x x-=-,()()f x f x -=-,所以函数()f x 为奇函数,但在定义域内不具有单调性,所以不符合题意;C 选项:令()[]()31,2f x x x =-∈-,因为[]1,2x ∈-定义域不关于坐标原点对称,所以()f x 不具有奇偶性,所以不符合题意;D 选项:令()()R f x x x x =-∈,()()f x x x x x -=---=,即()()f x f x -=-,所以函数()f x 为奇函数,又()22,0,0x x f x x x ⎧-≥=⎨<⎩,所以0x ≥时,()f x 单调递减,0x <时,()f x 单调递减,满足题意.故选:D3.设a ,b 是两条不同的直线,α,β是两个不同的平面,则下列命题正确的是()A.若//αβ,a α⊂,b β⊂,则//a bB.//a b ,a c ⊥则b c⊥C.若αβ⊥,a α⊂,b β⊂,则a b⊥r rD.若a αβ⋂=,//b a ,则//b α【答案】B 【解析】【分析】利用长方体模型,举例说明排除ACD ,B 结合异面直线所成角即可判断..【详解】在长方体1111ABCD A B C D -,令平面ABCD 是平面α,对于A ,若平面1111D C B A 为平面β,直线BC 为直线a ,直线11A B 为直线b ,显然//αβ,a α⊂,b β⊂,此时直线,a b 是异面直线,,a b 不平行,故A 错误;对B ,//a b ,a c ⊥,则直线a 与直线c 的夹角为π2,由异面直线所成角的定义知直线b 与直线c 的夹角也为π2,故b c ⊥,B 正确;对于C ,若平面11CDD C 为平面β,直线AB 为直线a ,直线DC 为直线b ,显然αβ⊥,a α⊂,b β⊂,此时直线,a b 平行,,a b 不垂直,故C 错误;对于D ,若平面11CDD C 为平面β,则DC αβ⋂=,直线DC 为直线a ,直线AB 为直线b ,显然//a b ,但b α⊂,此时直线b 不与平面α平行,故D 错误;故选:B.4.在数列{}n a 中,若11a =,22a =,21n n n a a a ++=-,则2024a =()A.1-B.2- C.2D.1【答案】C 【解析】【分析】根据数列递推式求出数列的前面一些项,推出数列的周期,由此即可求得答案.【详解】由题意知数列{}n a 中,若11a =,22a =,21n n n a a a ++=-,故3211a a a =-=,4321a a a =-=-,5432a a a =-=-,6541a a a =-=-,7658761,2a a a a a a =-==-=,则{}n a 为周期为6的周期数列,故20243376222a a a ⨯+===,5.已知向量a ,b 的夹角为π3,且1a = ,2b = ,则向量a 在向量b 上的投影向量为()A.bB.12bC.13b r D.14b【答案】D 【解析】【分析】根据投影向量的定义即可求得向量a 在向量b 上的投影向量为14b.【详解】易知πcos 13a b a b ⋅== ,由投影向量的定义可得向量a 在向量b上的投影向量为12241a b bb b b b =⋅⋅⋅=.故选:D.6.已知两个非零向量a 与b ,定义sin a b a b θ⋅⨯=⋅ ,其中θ为a 与b的夹角,若(2,3)a =- ,(1,1)b = ,则a b ⨯的值为()A.5B.7C.2D.【答案】A 【解析】【分析】先利用平面向量夹角余弦的坐标表示求得cos θ,从而求得sin θ,进而利用定义即可得解.【详解】因为(2,3)a =- ,(1,1)b =,则|||a b ==21311a b ⋅=-⨯+⨯=,则,c s ||o ||a b a b a b ===⋅⋅,又[0,π]θ∈,则sin θ===5,则||a b ⨯==55.故选:A7.已知正项等比数列{}n a 中,320224a a =,则212222024log log log a a a ++⋅⋅⋅+=()A.1012B.2024C.10122 D.20242【解析】【分析】根据等比数列的性质,结合对数的运算,即可求得答案.【详解】由题意知正项等比数列{}n a 中,320224a a =,则1120131202420230124a a a a a a =⋅⋅===⋅,故()()10122122220242122024232022log log log log log a a a a a a a a ++⋅⋅⋅+=⋅⋅⋅⋅⋅=1012202422log lo 4g 4202===,故选:B8.如图正方体的棱长为1,A ,B 分别为所在棱的中点,则四棱锥S ABCD -的外接球的表面积为()A.16πB.32πC.41π16D.414π【答案】C 【解析】【分析】建立空间直角坐标系,求出相关点坐标,设外接球球心为(,,)x y z ,列方程组求解球心,验证后可得外接球半径,即可求得答案.【详解】以C 为坐标原点,以,CD CS 所在直线为,x z 轴,以与,CD CS 垂直的棱为y 轴,建立如图所示空间直角坐标系,则11(0,0,0),(1,1,)(01,)(001)(00),,,,,,1,2,2C A B SD ,设四棱锥S ABCD -的外接球球心为(,,)x y z ,半径为R ,则()()()()()22222222222222222211111221112x y z x y z x y z x y z x y z x y z ⎧⎛⎫⎛⎫-+-+-=+-+-⎪ ⎪ ⎝⎭⎝⎭⎪⎪++-=++⎨⎪⎛⎫⎪+-+-=++ ⎪⎪⎝⎭⎩,解得123812x y z ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩,即外接球球心为131(,,282,8R ==,验证8OD ==,符合题意,即四棱锥S ABCD -的外接球8R =,其表面积为24141π4π4π6416R =⨯=,故选:C二、多选题(共4个小题,每题不只有一个选项,每题5分,满分20分)9.已知向量()1,1a =-,()2,b n =- ,则下列说法正确的是()A.若1n =,则a b -=B.若//a b,则2n =C.“2n >-”是“a 与b的夹角为钝角”的充要条件D.若()a b a +⊥,则0n =【答案】ABD 【解析】【分析】由向量的坐标表示可求得a b -=,A 正确;由向量平行的坐标表示可得B 正确;利用向量数量积的坐标运算可知“2n >-”是“a 与b的夹角为钝角”的必要不充分条件,C 错误;由向量垂直的坐标表示可求得0n =,D 正确.【详解】对于A ,由1n =可得()3,2a b -=- ,所以可得a b -== ,即A 正确;对于B ,由向量平行的坐标表示可得120n ⨯-=,解得2n =,可知B 正确;对于C ,若2n >-可得20a b n ⋅=--<r r,即a 与b的夹角为90180θ<≤ ,当2n =时,2b a =- 可得a 与b反向,充分性不成立;若a 与b的夹角为钝角可得20a b n ⋅=--<r r且2n ≠,解得2n >-且2n ≠,即必要性成立,所以“2n >-”是“a 与b的夹角为钝角”的必要不充分条件,C 不正确;对于D ,由()a b a +⊥ 可得()0a b a +⋅=,即()1110n -⨯--=,解得0n =,故D 正确;故选:ABD10.已知n S 是等差数列{}n a 的前n 项和,且70a >,5100a a +<,则下列选项正确的是()A.数列{}n a 为递减数列B.80a <C.n S 的最大值为7SD.140S >【答案】ABC 【解析】【分析】由已知条件结合等差数列性质可判断B ;判断出数列的公差小于0,可判断A ;根据数列各项的正负情况以及单调性可判断C ;利用前n 项和公式结合等差数列性质判断D.【详解】设等差数列{}n a 的公差为d ,由于70a >,5100a a +<,故571080a a a a +=+<,则80a <,B 正确;870d a a =-<,则数列{}n a 为递减数列,A 正确,由以上分析可知127,,,0a a a > ,8n ≥时,0n a <,故n S 的最大值为7S ,C 正确;5101141414()14()202S a a a a ++==<,D 错误,故选:ABC11.南宋数学家秦九韶在《数书九章》中提出“三斜求积术”,即以小斜幂,并大斜幕,减中斜幂,余半之,自乘于上:以小斜幂乘大斜幂,减上,余四约之,为实:一为从隅,开平方得积可用公式S =(其中a 、b 、c 、S 为三角形的三边和面积)表示.在ABC 中,a 、b 、c 分别为角A 、B 、C 所对的边,若3b =cossin CC =,则下列命题正确的是()A.ABCB.c =C.b =D.ABC【答案】AB 【解析】【分析】cossin CC=,利用两角和的正弦公式可得sin C A =,结合正弦定理角化边可判断B ;利用S =B 的结论化简并结合二次函数性质可得ABC 面积的最大值,判断A ,D ;假设b =正确,结合面积公式推出矛盾,判断C.cossin CC=,得sin sin cos C B C B C =,即sin cos cos sin ))C B C B C B C =+=+,即sin C A =,结合正弦定理得c =,B 正确;由S =S ==,当29a =,即3a =时,ABC 面积取到最大值是4=,A 正确,D 错误,对于C ,假设b =,由于3b =,c =,故1c a ==,则22222223191331()2024c a b c a =⎛⨯⎫+-⎭+--=--⎪⎝< ,这与三角形面积S =有意义不相符,C 错误,故选:AB12.在棱长为2的正方体1111ABCD A B C D -中,M 为BC 边的中点,下列结论正确的有()A.AM 与11D B所成角的余弦值为10B.过三点A 、M 、1D 的截面面积为112C.四面体11A C BD 的内切球的表面积为π3D.E 是1CC 边的中点,F 是AB 边的中点,过E 、M 、F 三点的截面是六边形.【答案】AD 【解析】【分析】对于A ,建立空间直角坐标系,利用空间向量的夹角公式求解;对于B ,作出过三点A 、M 、1D 的截面,即可求其面积;对于C ,利用等体积法求出内切球的半径,即可求解;对于D ,利用几何作图,作出过E 、M 、F 三点的截面,即可判断.【详解】对于A ,以1A 为坐标原点,以11111,,A D A B A A 所在直线为,,x y z轴,建立空间直角坐标系,11(0,0,2),(1,2,2),(0,2,0),(2,0,0)A M B D ,则()()11120220,,,,,B A D M ==-,则111111cos ,10||||D B D B AM D B AM AM ⋅〈〉==,AM 与11D B 所成角的范围为π(0,]2,故AM 与11D B 所成角的余弦值为1010,A 正确;对于B ,设N 为1CC 的中点,连接MN ,则11MN BC AD ∥∥,且111122MN BC AD ==,则梯形1AMND 即为过三点A 、M 、1D 的截面,11MN AD AM D N ====322=,故梯形面积为为19222S =⨯=,B 错误;对于C ,如图,四面体11A C BD 的体积等于正方体体积减去四个角上的直三棱锥的体积,即33118242323V =-⨯⨯⨯=,该四面体的棱长为,其表面积为1π4sin 23S =⨯⨯=设四面体内球球半径为r ,则18,333r r ⨯=∴=,故四面体11A C BD 的内切球的表面积为24π4π3r =,C 错误;对于D ,如图,延长ME 和11B C 的延长线交于J ,则MCE △≌1JC E ,则1JC MC =,设H 为11A D 的中点,则11JC D H =,连接HJ ,则1JC G ≌1HD G ,则11C G D G =,故G 为11D C 的中点,故11HG A C AC FM ∥∥∥,同理延长,MF DA 交于L ,连接LH ,交1AA 于K ,K 即为1AA 的中点,则K ,E 在,FM HG 确定的平面内,则六边形FMEGHK 即过E 、M 、F 三点的截面,是六边形,D 正确,故选:AD【点睛】难点点睛:本题综合考查了空间几何中的线线角、截面、以及内切球问题,难度较大,解答时要发挥空间想象能力,明确空间的位置关系,结合空间向量以及等体积法和几何作图解决问题.三、填空题(共4个小题,每题5分,满分20分)13.函数()tan(6f x x π=-的定义域为___________.【答案】}2{|+3x x k k Z ππ≠∈,【解析】【分析】根据函数有意义列不等式,求函数()tan(6f x x π=-的定义域.【详解】∵()tan()6f x x π=-有意义,∴62x k πππ-≠+,Z k ∈,∴23x k ππ≠+,Z k ∈,∴函数()tan()6f x x π=-的定义域为}2{|+3x x k k Z ππ≠∈,,故答案为:}2{|+3x x k k Z ππ≠∈,,14.(2,1)a =- ,b = ,且()10a b a +⋅= ,则a ,b 的夹角为______.【答案】0##0︒【解析】【分析】求出向量(2,1)a =- 的模长,根据()10a b a +⋅= 求出a b ⋅ 的值,根据向量的夹角公式即可求得答案.【详解】由题意知(2,1)a =- ,b = ,且()10a b a +⋅= ,故a == ,则()210a b a a a b +⋅=+⋅= ,则5a b ⋅=,故cos ,1||||a b a b a b ⋅〈〉== ,由于,[0,π]a b 〈〉∈ ,故,0a b 〈〉= ,故答案为:015.在三棱锥O ABC -中,60AOB BOC AOC ︒∠=∠=∠=,则直线OA 与平面BOC 所成角的正弦值为_______.【答案】63【解析】【分析】构建正四面体模型,从而可求直线OA 与平面BOC 所成角的正弦值.【详解】如图,在射线OB 上截取OB OA '=,在射线OC 截取OC OA '=,得到如下图所示的几何体.因为OA OB '=,π3B OA '∠=,故B OA ' 为等比三角形,故OA OB AB ''==,同理OA OC AC ''==,而π3B OC '∠=,故OB C ''△为等比三角形,故OB OC B C ''''==,故几何体A B OC ''-为正四面体.过A 作平面B OC ''的垂线,垂足为S ,则S 为OB C ''△的中心,连接OS ,则AOS ∠为OA 与平面B OC ''(即平面BOC )所成的角,设2OA a =,则23232323OS a =⨯⨯=,故3AS ==,故6sin 3AOS ∠=.所以线OA 与平面BOC 所成角的正弦值为63.故答案为:3.16.若{}n a 是公差不为0的等差数列,2a ,4a ,8a 成等比数列,11a =,n S 为{}n a 的前n (N n *∈)项和,则12101113412S S S ++⋅⋅⋅+的值为______.【答案】65132【解析】【分析】设数列{}n a 的公差为()d d ≠0,根据题意,求得1d =,得到(1)2n n n S +=,进而化简得到1211(2)(1)(2)(1)(1)(2)n n S n n n n n n n ==-++++++,结合裂项法求和,即可求解.【详解】设数列{}n a 的公差为()d d ≠0,因为248,,a a a 成等比数列,11a =,可得2111(3)()(7)a d a d a d +=++,即2(13)(1)(17)d d d +=++,解得1d =,所以1(1)1n a n n =+-⨯=,则(1)2n n n S +=,所以12(1)n S n n =+,则1211(2)(1)(2)(1)(1)(2)n n S n n n n n n n ==-++++++,所以1210111()111111122323341011111((2)3412S S S ---⨯⨯⨯⨯++⋅⨯⋅⋅=++⨯++ 1165121112132-=⨯⨯=.故答案为:65132.四、解答题(共6题,第17题10分,第18至第22题每题12分,共70分)17.在ABC 中a ,b ,c 分别为内角A ,B ,C 的对边,()()2sin 2sin 2sin a A b c B c b C =-+-.(1)求A 的大小;(2)若ABC 是锐角三角形,求cos cos B C +的取值范围.【答案】(1)π3A =(2)(2【解析】【分析】(1)应用正弦定理的边角互化结合余弦定理即可求解;(2)设ππ,B C αα=+=-33,ππ(,)α∈-66,代入结合两角和与差的余弦即可求解.【小问1详解】由()()2sin 2sin 2sin a A b c B c b C =-+-,由正弦定理得()()2222a b c b c b c =-+-,即222bc b c a =+-,则2221cos 22b c a A bc +-==,因为(0,π)A ∈,则π3A =【小问2详解】由(1)得2π3B C +=,设ππ,B C αα=+=-33,因为π,(0,)2B C ∈,则ππ(,)α∈-66,则ππcos cos cos()cos()33B C αα+=++-πcos cos cos (]αα==∈2132,则cos cos B C +的取值范围是(,1]2.18.已知数列{}n a 中,13a =,()12N 12,n n a n n a *-≥∈=-(1)求证:数列11n a ⎧⎫⎨⎬-⎩⎭是等差数列,并求出{}n a 的通项公式;(2)设()213n n n b n a =-⋅,求数列{}n b 的前n 项和nT【答案】(1)证明见解析;*21,N 21n n a n n +=∈-(2)13n n T n +=⋅【解析】【分析】(1)由递推公式112n n a a -=-可得111111n n a a --=--,即可证明数列11n a ⎧⎫⎨⎬-⎩⎭是等差数列,由等差数列定义即可求得*21,N 21n n a n n +=∈-;(2)由(1)可得()213n n b n =+⋅,利用错位相减法即可求得数列{}n b 的前n 项和13n n T n +=⋅.【小问1详解】当2n ≥时,由112n n a a -=-可得1111111n n n n a a a a -----=-=,易知10n a -≠;两边同时取倒数可得11111111111111n n n n n n a a a a a a ------==-+-=-+-,即111111n n a a --=--,由等差数列定义可得11n a ⎧⎫⎨⎬-⎩⎭是以11112a =-为首项,公差1d =的等差数列,所以()211111212n n n a -=+⨯=--,即2121n a n -=-,可得2121n n a n +=-,显然1n =时,13a =符合上式,即{}n a 的通项公式为*21,N 21n n a n n +=∈-;【小问2详解】由(1)可得()()213213n n n n b n a n =-⋅=+⋅,所以()()1213353213213n n n T n n -⋅+⋅+⋅⋅⋅+-⋅=++⋅,()()23133353213213n n n n T n +⋅+⋅+⋅⋅⋅++⋅=⋅+-,两式相减可得()1231332323232132n n n n T +-⋅+⋅+⋅⋅⋅⋅+⋅-+⋅=()()11313322132313n n n n n ++-=+⨯-+⋅=-⋅-,所以13n n T n +=⋅19.{}n a ,{}n b 是正项等比数列.且3n n n b a =-,且221210a a +=,(1)求{}n a 的通项公式;(2)设100n n c a =-,求数列{}n c 的前n 项和nT 【答案】(1)13n n a -=;(2)31100,6231100758,62n n n n n T n n ⎧--+<⎪⎪=⎨-⎪-+≥⎪⎩.【解析】【分析】(1)利用3212b b b b =,和221210a a +=建立方程组,求出113a q =⎧⎨=⎩,写出通项公式即可;(2)表示出数列100n n c a =-,在求数列{}n c 的前n 项和n T 时,进行分类讨论即可.【小问1详解】因为{}n a ,{}n b 是正项等比数列.且3nn n b a =-,所以3212b b b b =,即32322123333a a a a --=--,所以2111192739a q a q a a q--=--,又因为221210a a +=,所以21111222119273910a q a q a a q a a q ⎧--=⎪--⎨⎪+=⎩,解得113a q =⎧⎨=⎩,所以{}n a 的通项公式为:1113n n n a a q--==.【小问2详解】结合题意:13100n n a -=<,得到6n <,所以100,6100100,6n n n n a n c a a n -<⎧=-=⎨-≥⎩,当6n <时,()()()12312100100100n n n T c c c c a a a =++++=-+-++- ,()()()121331100100100100100132n n n n T a a a n n --=-+-++-=-=-+- ;当6n ≥时,()()()()()()12312567100100100100100100n n n T c c c c a a a a a a =++++=-+-++-+-+-++- ,()()()()()()121251001001002100100100n n T a a a a a a ⎡⎤=-+-++-+-+-++-⎣⎦ ,13311002379100758132n n n T n n --=-+⨯=-+-,综上所述:31100,6231100758,62n n n n n T n n ⎧--+<⎪⎪=⎨-⎪-+≥⎪⎩.20.如图,四棱锥P ABCD -的底面是矩形,AM PB ⊥,PD BD ⊥,M 为BC的中点,AD =,1DC =.(1)证明:PD ⊥底面ABCD(2)若1PD =,求二面角A MP B --的正弦值.【答案】(1)证明见解析(2)7014【解析】【分析】(1)先证明AM BD ⊥,即可证明AM ⊥平面PBD ,从而证明AM PD ⊥,根据线面垂直的判定定理即可证明结论;(2)建立空间直角坐标系,求得相关点坐标,求出平面AMP 和平面PBM 的法向量,根据空间角的向量求法,结合同角的三角函数关系,即可求得答案.【小问1详解】设,AM BD 交于E ,四棱锥P ABCD -的底面是矩形,AD =,1DC =,M 为BC的中点,则AD AB AB BM==故Rt DAB ∽Rt ABM ,则ADB BAM ∠=∠,而π2ADB ABD ∠+∠=,则π2BAM ABD ∠+∠=,故π2AEB ∠=,故AM BD ⊥,又AM PB ⊥,且,,BD PB B BD PB ⋂=⊂平面PBD ,故AM ⊥平面PBD ,PD ⊂平面PBD ,故AM PD ⊥,又PD BD ⊥,,,AM BD E AM BD =⊂ 平面ABCD ,所以PD ⊥底面ABCD ;【小问2详解】以点D 为坐标原点,以,,DA DC DP 所在直线为,,x y z轴,建立空间直角坐标系,则((0,0,1)2A B M P ,则(,1,0),(1),(222AM PM BM =-=-=- ,设平面PAM 的一个法向量为(,,)n x y z = ,则00n AM n PM ⎧⋅=⎪⎨⋅=⎪⎩ ,即0202x y x y z ⎧-+=⎪⎪+-=⎩,令1y =,则2)n = ,设平面PBM 的一个法向量为(,,)m a b c = ,则00m BM m PM ⎧⋅=⎪⎨⋅=⎪⎩ ,即0202a abc ⎧-=⎪⎪+-=⎩,令1b =,则(0,1,1)m = ,则314cos ,14||||n m n m n m ⋅〈〉=== ,由于二面角A MP B --的取值范围为[0,π]14=.21.已知双曲线C :22221x y a b -=(),0a b >过点(),右焦点F为(),左顶点为A (1)求双曲线C 的方程(2)动直线12y x t =+交双曲线C 于M ,N 两点,求证:AMN 的垂心在双曲线C 上.【答案】(1)22144x y -=(2)联立直线(2)证明见解析【解析】【分析】(1)根据双曲线过的点以及双曲线的焦点坐标,列方程求出a 2,即可求得答案;12y x t =+与双曲线C 的方程,可得根与系数关系式,过点A 作MN 的垂线,设该垂线与双曲线的另一个交点为H ,结合根与系数的关系式化简AN MH k k ,从而证明H 为AMN 的高线,AH MH 的交点,即可证明结论.【小问1详解】由题意知双曲线C :22221x y a b -=(),0a b >过点(),右焦点F为(),故228c a b =∴+=,即228b a =-,则222148a a -=-,解得24a =,故双曲线C 的方程为22144x y -=;【小问2详解】联立2212144y x t x y ⎧=+⎪⎪⎨⎪-=⎪⎩,得22344(4)0x tx t --+=,满足264(3)0t ∆=+>,设()()1122,,,M x y N x y ,则2121244(4)3,3t x x t x x ++==-,又(2,0)A -,过点A 作MN 的垂线,设该垂线与双曲线的另一个交点为H,则直线AH 的方程为y x =--24,由22424x y y x ⎧-=⎨=--⎩,可得2316200x x ++=,解得2x =-(舍)或103x =-,则108(,)33H -,则()11222122121811813223210201022333AN MHy y x t x t x t k k x x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫++-+ ⎪ ⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭==⎛⎫+ ⎪⎝⎭-++++()2121221122233344084236()2x x t x x t x t x x x x x ++--+++++=2222222222(4)2348448414(4)84204844t t t x t t x t t t x t t x -+++-----===--++++-+++,故MH AN ⊥,即H 为AMN 的高线,AH MH 的交点,即H 为AMN 的垂心,故AMN 的垂心在双曲线C 上.【点睛】难点点睛:本题考查双曲线方程的求解以及直线和双曲线位置关系中的证明问题,综合性强,难点在于证明AMN 的垂心在双曲线C 上,解答时要通过证明H 为AMN 的高线,AH MH 的交点来证明,计算过程较为复杂,需要计算十分细心.22.已知0a >,函数()2ln 12f x x x x ax =+-.(1)当0a =时,求曲线()y f x =在点()()1,1f 处的切线方程:(2)证明()f x 存在唯一的极值点(3)若存在a ,使得()f x a b ≥-+对任意,()0x ∈+∞成立,求实数b 的取值范围.【答案】(1)4230--=x y (2)证明见解析;(3)1,2⎛⎤-∞ ⎥⎝⎦【解析】【分析】(1)利用导数的几何意义求出其在()()1,1f 处的斜率,利用直线的点斜式方程即可求出结果;(2)令导函数()0ln 1f x x x a '=++-=,构造函数()1ln g x x x =++,求得其单调性可知当0a >时,导函数()f x '有唯一变号零点,即可得出证明;(3)将不等式恒成立问题转化成求()f x a +的最小值问题,构造函数()()21ln 1,0,2h x x x x -+∈=++∞,依题意可得()max 12b h x =≤,即可得出实数b 的取值范围.【小问1详解】当0a =时,可得()2ln 12f x x x x =+,即()1ln f x x x '=++,所以切线斜率为()12k f '==,又()112f =,所以切线方程为()1212y x -=-,即4230--=x y ;【小问2详解】易知()l 1n f x x x a '=++-,令()0f x '=可得1ln a x x =++,令()()1,0,ln g x x x x =++∈+∞,则()1110x g x x x+'=+=>在()0,∞+上恒成立,即可得()g x 在()0,∞+单调递增,当x 趋近于0时,()g x 趋近于-∞,当x 趋近于+∞时,()g x 趋近于+∞;其图象如下图所示:所以当0a >时,y a =与()g x 的图像仅有一个交点,令()0g x a =,则当()00,x x ∈时,()a g x >,即()0ln 1f x x x a '=++-<,()f x 在()00,x 单调递减,当()0,x x ∈+∞时,()a g x <,即()0ln 1f x x x a '=++->,()f x 在()0,x +∞单调递增,所以可知0x x =为()f x 的极小值点,即()f x 存在唯一的极值点;【小问3详解】由(2)可知()()0min f x f x =,此时001ln a x x =++,所以()f x a +的最小值为()()22000000000001111ln 1n 2ln l 2ln f x x x x x x x x x x x a =+-++++++=-++,令()()21ln 1,0,2h x x x x -+∈=++∞,则()211x h x x x x--+==',当()0,1x ∈时,()0h x '>,即()h x 在()0,1上单调递增,()1,x ∈+∞时,()0h x '<,即()h x 在()0,1上单调递减;所以()h x 在1x =处取得极大值,也是最大值()()max 121h x h ==若存在a ,使得()f x a b ≥-+对任意,()0x ∈+∞成立,即存在a 使得()f x b a +≥在(0,)+∞成立,即()max 12b h x =≤,所以实数b 的取值范围为1,2⎛⎤-∞ ⎥⎝⎦.【点睛】方法点睛:在求解函数不等式恒(能)成立问题时,往往根据题意通过构造函数并利用导数求出函数单调性得出函数的最值,即可得出结论.。

2019-2020学年黑龙江省哈师大附中高一(上)期中数学试卷 (含答案解析)

2019-2020学年黑龙江省哈师大附中高一(上)期中数学试卷 (含答案解析)

2019-2020学年黑龙江省哈师大附中高一(上)期中数学试卷一、选择题(本大题共12小题,共60.0分)1.已知集合M={y|y≥0},N={y|y=−x2+1},即M∩N=()A. (0,1)B. [0,1]C. [0,+∞)D. [1,+∞)2.下列式子正确的是()A. 3a√a=√a(a>0)B. lg6lg2=lg6−lg2C. a−2=√a(a>0) D. lg[(−3)⋅(−5)]=lg(−3)+lg(−5)3.下列函数中,在区间(0,+∞)上为增函数的是()A. y=√x+1B. y=(x−1)2C. y=2−xD. y=log0.5(x+1)4.函数的图象恒过的定点是()A. (0,−3)B. (0,−2)C. (1,0)D. (0,0)5.已知a=log32,b=(log32)2,c=log423,则()A. a<c<bB. c<b<aC. a<b<cD. b<a<c6.函数f(x)=ln(x2−2x−8)的单调递增区间是()A. (−∞,−2)B. (−∞,−1)C. (1,+∞)D. (4,+∞)7.若函数f(x)=1−2x,g[f(x)]=x2−1x2(x≠0),则g(3)=()A. 1B. 0C. 89D. 24258.若函数f(x)是奇函数,当x<0时,f(x)的解析式是f(x)=x(1−x),则当x>0时,f(x)的解析式是f(x)=()A. −x(1−x)B. x(1−x)C. x(1+x)D. −x(1+x)9.设f(x)是定义在R上的偶函数,且在(−∞,0)上是增函数,则f(−2)与f(a2−2a+3)(a∈R)的大小关系为()A. f(−2)<f(a2−2a+3)B. f(−2)≥f(a2−2a+3)C. f(−2)>f(a2−2a+3)D. f(−2)=f(a2−2a+3)10.函数y=log3|x−1|的图象是()A. B. C. D.11. 已知函数y =√ax 2−ax +1的定义域R ,则实数a 的取值范围为( )A. a ≤0或a ≥4B. 0<a <4C. 0≤a ≤4D. a ≥412. 设函数f(x)={x 2+bx +2,x ≤0|2−x|,x >0,若f(−4)=f(0),则函数y =f(x)−ln(x +2)的零点个数有( )A. 6B. 4C. 5D. 7 二、填空题(本大题共4小题,共20.0分) 13. 不等式3x−42x+5>0的解集为______ .14. 若3a =2,b =log 23,则ab =________,2b +2−b =________.15. 若幂函数y =(m 2−2m −2)x −4m−2在x ∈(0,+∞)上为减函数,则实数m 的值是______.16. 已知函数f(x)=ax 2−12x −34(a >0),若在任意长度为2的闭区间上总存在两点x 1、x 2,使得|f(x 1)−f(x 2)|≥14成立,则a 的最小值为______ . 三、解答题(本大题共6小题,共70.0分)17. 设集合A ={x|x 2−3x +2=0},B ={x|ax +1=0}.(1)若A ∩B ={2},求实数a 的值;(2)若B ⊆A ,求实数a 的值.18. 求值:(1)(√23×√3)6−4×(1649)−12−(−2008)0(2)2log32−log3329+log38−52log5319.已知函数f(x)=√2−x+lg(3x−13)的定义域为M.(Ⅰ)求M;(Ⅱ)当x∈M时,求g(x)=4x−2x+1+2的值域.20.已知a∈R,函数f(x)=log2(1x+a).(1)当a=4时,求f(x)的定义域;(2)若关于x的方程f(x)−log2[(a−3)x+2a−4]=0的解集中恰有一个元素,求a的取值集合;(3)设a>0,若对任意t∈[1,2],函数f(x)在区间[t,3t−1]上的最大值和最小值的差不超过1,求a的取值范围.21.设定义在(0,+∞)上的函数f(x),对于任意正实数a、b,都有f(a⋅b)=f(a)+f(b)−1,f(2)=0,且当x>1时,f(x)<1.)的值;(1)求f(1)及f(12(2)求证:f(x)在(0,+∞)上是减函数.22.已知函数f(x)=−2x+b(x∈R)是奇函数.2x+1+a(1)求实数a,b的值;(2)若对任意的t∈R,不等式f(t2−2t)+f(2t2−k)<0恒成立,求实数k的取值范围.-------- 答案与解析 --------1.答案:B解析:【分析】本题考查交集运算,考查计算能力,属于基础题.可求出集合N ={y|y ≤1},然后进行交集的运算即可.【解答】解:N ={y|y ≤1},且M ={y|y ≥0};∴M ∩N =[0,1].故选B .2.答案:A解析:解:∵a >0,∴3a √a =(a ⋅a 12)13=(a 32)13=a (32×13)=a 12=√a ,故A 正确;对于B ,lg6lg2≠lg6−lg2,故B 错误;对于C ,a −2=1a 2≠√a ,故C 错误;而D ,lg(−3)与lg(−5)无意义,故D 错误;故选A .利用指数幂的运算性质与对数的性质即可得到答案.本题考查不等关系与不等式,考查有理数指数幂的化简求值与对数的运算性质,属于基础题. 3.答案:A解析:利用函数的单调性或函数的图像逐项验证.A.函数y =√x +1在[−1,+∞)上为增函数,所以函数在(0,+∞)上为增函数,故正确;B.函数y =(x −1)2在(−∞,1)上为减函数,在[1,+∞)上为增函数,故错误;C.函数y =2−x =(12)x 在R 上为减函数,故错误;D.函数y =log 0.5(x +1)在(−1,+∞)上为减函数,故错误. 4.答案:A解析:【分析】本题主要考查了对数函数及其性质,属于基础题.根据对数函数图象恒过定点(1,0)求出对应x ,y 的值,点(x,y)即为函数所过定点.解析:解:令x+1=1,得x=0,此时,故函数的图象恒过定点(0,−3),故选A.5.答案:B解析:解:∵0=log31<a=log32<log33=1,∴0<b=(log32)2<a=log32,<log41=0,∵c=log423∴c<b<a.故选:B.本题考查对数函数比较大小,利用对数函数性质求解即可,属于中档题.6.答案:D解析:【分析】本题考查复合函数的单调区间以及对数函数的性质,属于基础题.令t=x2−2x−8>0,则y=lnt,在定义域内单调递增,根据复合函数的单调性,就是求t=x2−2x−8>0的单调增区间,由此即可得到答案.【解答】解:由x2−2x−8>0得:x∈(−∞,−2)∪(4,+∞),令t=x2−2x−8,则y=lnt,在定义域内单调递增,而x∈(−∞,−2)时,t=x2−2x−8为减函数;x∈(4,+∞)时,t=x2−2x−8为增函数;故函数f(x)=ln(x2−2x−8)的单调递增区间是(4,+∞),故选D.7.答案:B解析:本题考查函数的表示法,利用函数的解析式求值.要求g(3),只要令f(x)=1−2x=3,求出x,再代入g[f(x)]的解析式即可.【解答】解:令f(x)=1−2x=3,得:x=−1,∴g(3)=g[f(−1)]=(−1)2−1=0.(−1)2故选B.8.答案:C解析:【分析】本题考查利用奇函数的性质求解析式,属于基础题.利用奇函数的性质即可求出f(x)的解析式是解题的关键.【解答】解:当x>0时,−x<0,则f(−x)=−x[1−(−x)]=−x(1+x),由函数f(x)为奇函数可得f(x)=−f(−x)=x(1+x),故选C.9.答案:B解析:【分析】本题考查函数的奇偶性与单调性的综合应用,涉及不等式的大小比较,属于基础题.根据题意,由函数的奇偶性与单调性分析可得f(x)在(0,+∞)上为减函数,进而分析可得f(2)≥f(a2−2a+3),可得f(−2)=f(2)≥f(a2−2a+3),即可得出答案.【解答】解:根据题意,f(x)是定义在R上的偶函数,且在(−∞,0)上是增函数,则f(x)在(0,+∞)上为减函数,因为a2−2a+3=(a−1)2+2≥2,所以f(2)≥f(a2−2a+3),又由f(x)是定义在R上的偶函数,则f(−2)=f(2)≥f(a2−2a+3),故选:B.10.答案:B解析:解:当x−1≥0时,即x≥1时,函数y=log3(x−1),此时为增函数,当x−1<0时,即x>1时,函数y=log3(1−x),此时为减函数,故选:B.根据函数的单调性即可判断.本题考查了复合函数的单调性和函数图象的识别,属于基础题.11.答案:C解析:【分析】根据根式函数的性质将定义域转化为ax 2−ax +1≥0恒成立即可.本题主要考查不等式恒成立问题,注意要对a 进行讨论.【解答】解:要使函数y =√ax 2−ax +1的定义域R ,则ax 2−ax +1≥0恒成立,若a =0,则不等式ax 2−ax +1≥0等价为1≥0恒成立,此时满足条件.若a ≠0,要使ax 2−ax +1≥0恒成立,则{a >0△=a 2−4a ≤0, 即{a >00≤a ≤4,解得0<a ≤4, 综上0≤a ≤4.故选C .12.答案:B解析:【分析】本题考查函数零点的个数判断,函数图象的应用,考查学生分析解决问题的能力,比较基础. 先求出b ,再画出f(x)与y =ln(x +2)的图象,即可得出结论.【解答】解:∵函数f(x)={x 2+bx +2,x ≤0|2−x|,x >0,f(−4)=f(0), ∴b =4,∴f(x)={x 2+4x +2,x ≤0|2−x|,x >0, f(x)={x 2+4x +2,x ≤0|2−x|,x >0与y =ln(x +2)的图象如图所示,∴函数y =f(x)−ln(x +2)的零点个数有4个,故选:B .13.答案:{x|x >43或x <−52}解析:解:不等式3x−42x+5>0化为(3x −4)(2x +5)>0,所以不等式的解集为{x|x >43或x <−52};故答案为:{x|x >43或x <−52}.将分式不等式化为整式不等式,解一元二次不等式即可.本题考查了分式不等式的解法,关键是转为整式不等式,然后解之. 14.答案:1;103解析:【分析】本题考查了对数的运算和指数幂的运算,属于基础题.根据对数的运算和指数幂的运算法则表示出a ,b ,即可求出ab 的值和2b +2−b 的值.【解答】解:3a =2,则a =log 32∵b =log 23,∴ab =log 32·log 23=1,,故答案为1;103. 15.答案:m =3解析:解:因为函数y =(m 2−2m −2)x −4m−2既是幂函数又是(0,+∞)的减函数,所以{m 2−2m −2=1−4m −2<0,⇒{m =3或m =−1m >−12,解得:m =3. 故答案为:m =3.根据给出的函数为幂函数,由幂函数概念知m 2−m −1=1,再根据函数在(0,+∞)上为减函数,得到幂指数应该小于0,求得的m 值应满足以上两条.本题考查了幂函数的概念及性质,解答此题的关键是掌握幂函数的定义,此题极易把系数理解为不等于0而出错,属基础题.16.答案:14解析:【分析】要使函数f(x)在任意长度为2的闭区间上总存在两点x 1,x 2,使|f(x 1)−f(x 2)|≥14成立,只需要|f(14a −1)−f(14a )|≥14恒成立,从而可求实数a 的最小值.本题以新定义为素材,考查对新定义的理解,考查学生分析解决问题的能力,解题的关键是将问题转化为恒成立.【解答】解:要使函数f(x)=ax 2−12x −34(a >0)在任意长度为2的闭区间上总存在两点x 1,x 2,使|f(x 1)−f(x 2)|≥14成立,只需要|f(14a −1)−f(14a )|≥14恒成立,∵f(x)=ax 2−12x −34=a(x −14a )2−116a −34,∴|f(14a −1)−f(14a )|=|a|≥14,∵a >0,∴a ≥14,∴实数a 的最小值为14,故答案为:14. 17.答案:解:(1)因为A ∩B ={2},所以2∈B ,则2a +1=0,解得a =−12,(2)由x 2−3x +2=0得,x =1或x =2,则A ={1,2},因为B ⊆A ,所以B =⌀或{1}或{2},当B =⌀时,则a =0,当B ={1}时,则a +1=0,得a =−1,当B ={2}时,则2a +1=0,得a =−12,综上得,实数a 的值是0或−1或−12.解析:(1)由A ∩B ={2}得2∈B ,把2代入ax +1=0代入求出a 的值;(2)由x 2−3x +2=0求出集合A ,由子集的定义和B ⊆A 求出B 所有的情况,再依次代入求出a 的值.本题考查交集及其运算,子集的定义,以及一元二次方程的解法,属于基础题.18.答案:解:(1)(213×312)6−4×[(47)2]−12−1=22×33−4×74−1=100 (2)2log 32−log 3329+log 38−52log 53=log 34−log 3329+log 38−5log 59=log 3(4×932×8)−9=log 39−9=−7解析:本题考查了对数与指数幂的运算性质,考查了推理能力与计算能力,属于基础题.(1)利用指数的运算性质即可得出;(2)利用对数的运算性质即可得出.19.答案:解:(Ⅰ)要使f(x)有意义,则{2−x ≥03x −13>0,∴−1<x ≤2,∴M =(−1,2],(Ⅱ)g(x)=4x −2x+1+2=(2x )2−2⋅2x +2=(2x −1)2+1;∵x ∈(−1,2];∴2x ∈(12,4]; ∴2x =1,即x =0时,g(x)min =1;2x =4,即x =2时,g(x)max =10;∴g(x)的值域为[1,10].解析:本题考查函数的定义域、值域的概念及求法,指数函数的单调性,是基础题.(Ⅰ)要使得函数f(x)有意义,则需满足{2−x ≥03x −13>0,从而得出定义域M =(−1,2];(Ⅱ)变形g(x)=(2x −1)2+1,根据x ∈M 即可得出2x ∈(12,4],从而可求g(x)的最大和最小值,从而得出g(x)的值域.20.答案:解:(1)函数f(x)=log 2(1x +4),由4+1x >0,即x(1+4x)>0,解得x >0或x <−14,可得f(x)的定义域为{x|x >0或x <−14};(2)由f(x)−log 2[(a −3)x +2a −4]=0得log 2(1x +a)−log 2[(a −3)x +2a −4]=0.即log 2(1x +a)=log 2[(a −3)x +2a −4],即1x +a =(a −3)x +2a −4>0,①则(a −3)x 2+(a −4)x −1=0,即(x +1)[(a −3)x −1]=0,②,当a =3时,方程②的解为x =−1,代入①,成立;当a =2时,方程②的解为x =−1,代入①,成立当a ≠3且a ≠2时,方程②的解为x =−1或x =1a−3,若x =−1是方程①的解,则1x +a =a −1>0,即a >1,若x =1a−3是方程①的解,则1x +a =2a −3>0,即a >32,则要使方程①有且仅有一个解,则1<a ≤32.综上,若方程f(x)−log 2[(a −3)x +2a −4]=0的解集中恰好有一个元素,则a 的取值范围是(1,32]∪{2,3};(3)函数f(x)在区间[t,3t −1]上单调递减,由题意得f(t)−f(3t −1)≤1,即log 2(1t +a)−log 2(13t−1+a)≤1,即1t +a ≤2(13t−1+a),即a ≥1t −23t−1=t−1t(3t−1),设r =t −1,则0≤r ≤1,可得t−1t(3t−1)=r (r+1)(3r+2)=r 3r 2+5r+2,当r =0时,r 3r 2+5r+2=0;当0<r ≤1时,r 3r +5r+2=13r+2r +5在(0,√63)递增,在(√63,1)递减, 可得r =√63处r3r 2+5r+2取得最大值5−2√6, 可得a 的取值范围是a ≥5−2√6.解析:本题主要考查函数最值的求解,以及对数不等式的应用,利用换元法结合对勾函数的单调性是解决本题的关键.综合性较强,难度较大(1)由对数的真数大于0,结合分式不等式的解法,可得所求定义域;(2)根据对数的运算法则进行化简,转化为一元二次方程,讨论a 的取值范围进行求解即可;(3)根据f(x)的单调性得到f(t)−f(3t −1)≤1恒成立,利用换元法进行转化,结合对勾函数的单调性进行求解即可.21.答案:解:(1)令a =b =1得f(1)=f(1)+f(1)−1,得f(1)=1,∵f(2)=0,∴f(2×12)=f(2)+f(12)−1=f(1),则0+f(12)−1=1,得f(12)=2(2)证明:设0<x 1<x 2,可得x 2x 1>1, 可得f(x2x 1)<1, 由f(x 2)=f(x 1⋅x 2x 1)=f(x 1)+f(x 2x 1)−1<f(x 1),可得函数f(x)在(0,+∞)上是减函数.解析:(1)令a =b =1,a =2,b =12,即可求得f(1)及f(12)的值;(2)当x >1时,f(x)<1,根据函数单调性的定义讨论函数的单调性;本题主要考查抽象函数的应用,利用赋值法以及结合函数单调性的定义进行转化是解决本题的关键. 22.答案:解:(1)因为函数f(x)=−2x +b 2x+1+a (x ∈R)是奇函数,所以f(0)=0,得b =1,所以f(x)=−2x +12x+1+a ,又函数的定义域为R ,所以f(−1)=−f(1),可得:−12+11+a =−−2+14+a ,解得a =2,所以a =2,b =1;(2)由(1)可得f(x)=−2x +12x+1+2=−12+12x +1,易得f(x)在(−∞,+∞)是减函数,又f(x)是奇函数,所以f(t 2−2t)+f(2t 2−k)<0可化为f(t 2−2t)<−f(2t 2−k)=f(k −2t 2),所以t 2−2t >k −2t 2,即3t 2−2t −k >0恒成立,所以Δ=4+12k <0,解得k <−13.解析:本题考查函数的奇偶性和函数的单调性,属于中档题.(1)根据函数是奇函数,可得f(0)=0,f(−1)=−f(1),即可解得;(2)先判断函数的单调性,结合函数的奇偶性,转换为3t 2−2t −k >0恒成立,从而解答即可.。

黑龙江省哈师大附中2020-2021学年高一英语上学期期中试题

黑龙江省哈师大附中2020-2021学年高一英语上学期期中试题

黑龙江省哈师大附中2020-2021学年高一英语上学期期中试题本试卷分为第I卷(选择题)和第II卷(非选择题)两部分。

满分150分。

考试时间为120分钟。

第I卷第一部分听力(共两节,满分20分)第一节(共5小题;每小题1分,满分5分)听下面5段对话。

每段对话后有一个小题, 从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。

听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。

每段对话仅读一遍。

1.Wh en is the girl’s birthday?A.May 5th.B. May 15th.C. May 16th.2.W hat is the man’s hobby?A.Taking photos.B. Listening to music.C. Collecting stamps.3.What did the man buy yesterday?A. A shirt.B. A jacket.C. A sweater.4.Where does the conversation most probably take place?A.At school.B. At a hospital.C. At a stadium.5.What does the man mean?A.They should ask about the fee first.B.Their neighbor will help them paint the house.C.They haven’t got enough money to paint the house.第二节(共15小题;每小题1分,满分15分)听下面5段对话或独白。

每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。

听每段对话或独白前,你将有时间阅读各个小题, 每小题5秒钟;听完后,各小题将给出5秒钟的作答时间。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档