湖北教师招聘考试小学数学教师学科知识测试题
湖北省招新机制教师小学数学考试题目一

2015年教师招聘考试《小学数学》全真模拟试卷(1)一、单项选择题(本大题共15小题,每小题4分,共60分)1、小红有4件上衣,2条裙子,她搭配衣服的方式共有()。
A.8种B.5种C.7种D.1种2、3、在半径为18的圆中,120°的圆心角所对的弧长是()。
A.12πB.10πC.6πD.3π4、已知集合A={5},B={1,2},C={1,3,4},从这三个集合中各取一个元素构成空间直角坐标系中点的坐标,则确定的不同点的个数为()。
A.33B.34C.35D.365、6、学校外有一条长90米的大道,在大道的两旁栽树,每隔5米栽一棵,两头都要栽,共需要()棵树苗。
A.18B.19C.36D.387、如果在一周内(周一至周日)安排三所学校的学生参观某展览馆,每天最多只安排一所学校,要求甲学校连续参观两天,其余学校均只参观一天,那么不同的安排方法有()。
A.50种B.60种C.120种D.210种8、下列4个车标中,轴对称图形的个数为()。
A.1个B.2个C.3个D.4个9、10、A.-a-1B.-a+1C.-ab+1D.-ab+b11、某村有甲乙两个生产小组,总共50人,其中青年人共13人。
甲组中青年人与老年人的比例是2:3,乙组中青年人与老年人的比例是1:5,甲组中青年人的人数是()。
A.5人B.6人C.8人D.12人12、13、A.间断点B.连续而不可导的点C.D.14、很多学生在学习了乘法口诀后,习惯于“三七二十一”这一记忆顺序,如果问他们“几乘以三等于二十一”很多人都反应不出来,这是一种()现象消极作用的表现。
A.发散思维B.定势C.逻辑思维D.启发15、为了了解某地区高三学生的身体发育情况,抽查了该地区100名年龄为17.5岁~18岁的男生体重(kg),得到频率分布直方图如下:根据上图可得这100名学生中体重在(56.5,64.5)的学生人数是()。
A.20B.30C.40D.50二、填空题(本大题共5小题,每小题4分。
湖北省小学数学教师招聘考试真题

湖北省小学数学教师招聘考试真题
选择题
下列哪个选项不是小学数学课程标准中规定的课程目标?
A. 掌握数学基础知识与基本技能
B. 培养学生的数学思维能力
C. 提高学生的语文表达能力
D. 培养学生的数学应用意识
在小学数学教学中,以下哪种教学方法更有助于培养学生的自主学习能力?
A. 教师满堂灌,学生被动听
B. 小组合作,共同探究
C. 大量做题,熟能生巧
D. 只注重考试技巧的训练
下列哪个选项不是小学数学教学中常用的教学辅助工具?
A. 实物模型
B. 多媒体课件
C. 化学实验器材
D. 黑板和粉笔
填空题
在小学数学教学中,培养学生的_____和_____是提高学生数学素养的重要途径。
小学数学课程标准要求,学生应掌握基本的_____和_____,并能运用它们解决简单的实际问题。
小学数学教学中,应注重培养学生的_____能力和_____能力,以提高学生的综合素质。
在进行小学数学教学时,教师应根据学生的_____和_____来设计教学方案。
解答题
请描述在小学数学教学中,如何有效运用实物模型辅助教学,并举例说明其优势。
谈谈在小学数学教学中,如何培养学生的数学思维能力,并给出具体的实施策略。
描述一次你设计的小学数学教学活动,并说明该活动如何体现新课程标准的理念。
小学数学教师招聘考试试题及答案

小学数学教师招聘考试试题及答案一、选择题(每题2分,共50分)1. 下列选项中,哪一个是10的倍数?A. 15B. 25C. 30D. 352. 以下哪个数字是一个偶数?A. 9B. 11C. 14D. 173. 27 + 15 = ?A. 32B. 41C. 42D. 444. 下列哪一个分数是一个真分数?A. 1/2B. 2/2C. 3/2D. 4/25. 如果一个长方形的长为5厘米,宽为3厘米,那么它的周长是多少?A. 8厘米B. 10厘米C. 12厘米D. 16厘米6. 以下哪个图形是正方形?A. 三角形B. 四边形C. 圆形D. 方形7. 5 x 6 = ?A. 25B. 30C. 35D. 408. 24 ÷ 4 = ?A. 4B. 6C. 8D. 109. 如果一个角是90度,那它是什么角?A. 锐角B. 直角C. 钝角D. 对角10. 如果一个数字的个位数字是7,十位数字是2,它是多少?A. 27B. 72C. 37D. 73二、填空题(每题3分,共30分)11. 60 ÷ 5 = ______。
12. 阳台上有10盆花,小明给每盆花浇了4毫升水,一共用了______毫升水。
13. 如果一个圆的直径是10厘米,那么它的半径是______厘米。
14. 数轴上若A点的坐标是-5,B点的坐标是3,那么AB的长度是______。
15. 如果一个矩形的周长是16厘米,长是6厘米,那么它的宽是______。
16. 7 x 8 = ______。
17. 42 ÷ 6 = ______。
18. 90度角是_________。
19. 52还可以写成______。
20. 37 + 15 = ______。
三、解答题(每题10分,共20分)21. 请计算:28 ÷ 4 x 2 = ?【解答】首先计算除法,28 ÷ 4 = 7,然后乘以2,7 x 2 = 14,所以答案是14。
2020年湖北农村义务教师招聘考试模拟卷四及答案(小学数学)

2020年湖北农村义务教师招聘考试模拟卷四小学数学专业知识一、选择题(本大题共15 题,每题2 分,共30 分)1.a ÷ b = 7 (a、b 均为自然数),那么().A.a 是b 的倍数B.b 是a 的倍数C.a 是7 的倍数D.b 是7 的倍数1.【答案】A.解析:a ÷ b = 7 (a、b均为自然数),那么a是b的倍数,b是a的因数.2.做加法时,误将加数96 看成69,所得和是119.正确的和比现在的和多().A.23B.27C.50D.无法确定2.【答案】B.解析:误将加数96看成69,另一个加数是不变的,96-69=27,即正确的和比现在的和多27.3.等底等高的平行四边形与三角形面积之比是().A.1:2B.1:1C.2:1D.3:13.【答案】C.解析:平行四边形的面积=底×高,所以等高等底的平行四边形的面积是三角形面积的2倍,面积比是2:1;故答案为:C.4.若a、b、c 是三个非零有理数,则| || || |的值是().A.3B.±3C.3 或1D.±1 或±34.【答案】D.解析:∵a、b、c是三个非零有理数,∴||1或1,||1或1,||1或1,当a、b、c都是正数,||||||=1+1+1=3;当a、b、c只有两个正数,||||||=1+1−1=1;当a、b、c只有一个正数,||||||=1−1−1=−1;当a、b、c都是负数,||||||=−1−1−1=−3.故选:D.5.某商场3 月份的销售额为160 万元,5 月份为250 万元,则该商场这两个月销售额的平均增长率为().A.20%B.25%C.30%D.35%5.【答案】B.解析:设该商场这两个月销售额的平均增长率为x,根据题意得:160(1+x)2=250,解得:x1=0.25=25%,x2=-2.25(舍).去).答:该商场这两个月销售额的平均增长率为25%.故选B.6.反比例函数y(k0)的图象经过点(-2,3),则该反比例函数图象在(1A.第一、三象限B.第二、四象限C.第二、三象限D.第一、二象限6.【答案】B.解析:∵反比例函数y=(k≠0)的图象经过点(−2,3),∴k=−2×3=−6,∴k<0,∴反比例函数y=(k≠0)的图象在第二、四象限.故选:B.7.如图,在ABC 中,∠ACB=90°,过B,C 两点的⊙O 交AC 于点D,交AB 于点E,连接EO 并延长交⊙O 于点F.连接BF,CF.若∠EDC=135°,CF=2√2,则AE2+BE2 的值为().A.8B.12C.16D.207.【答案】C.解析:∵∠EDC=135°,∴∠ADE=45°,∠ABC=180°-∠EDC=180°-135°=45°;∵∠ACB=90°,∴∠A=45°,∴∠ADE=∠A=45°,∴AE=AD,∠AED=90°;∵EF为⊙O的直径,∴∠FCE=90°,∵∠ABC=∠EFC=45°,CF=2√2,∴EF=4;连接BD,∵∠AED=90°,∴∠BED=90°,∴BD为⊙O的直径,∴BD=4;在Rt△BDE中,416,∴AE2+BE2=16.故选C.).8.已知点 A(a,1)与点 B(-4,b)关于原点对称,则 a+b 的值为(A.5B.-5C.3D.-38.【答案】C.解析:由A(a,1)关于原点的对称点为B(﹣4,b),得a=4,b=﹣1,a+b=3,故选:C.9.在等比数列中,2,则“,是方程310的两根”是“1”的().A.充分而不必要条件B.必要而充分不条件C.充要条件D.既不充分也不必要条件9.【答案】A.解析:因为,是方程310的两根,所以1,因此1,因为2<0,所以0,1,2从而“,是方程310的两根”是“1”充分而不必要条件,选A.10.(sinx|sinx|)dx().A.0B.1C.2D.310.【答案】C.解析:(sinx|sinx|)dx sinxdx|sinx|dx|sinx|dx2sinxdx2cosx|2,故选C.11.已知函数f(x)= 3 x +1,则lim ∆x→0 f(1-∆x)∆x-f(1)的值为().A.-131B.32C.3D.0 11.【答案】A.解析:因为函数f(x)=3 x +1,则lim ∆x→0 f (1-∆x)∆x-f(1)的值为-f’(1)=1-,选3 A.12.设变量,满足约束条件20 20280则目标函数3的最大值为().A.7B.8C.9D.1412.【答案】C.解析:作可行域,直线3过点A(2,3)时取最大值9.故选C.13.所谓新课程小学数学教学设计就是在《数学课程标准》的指导下,依据现代教育理论和教师的经验,基于对学生需求的理解、对()的分析,而对教学内容、教学手段、教学方式、教学活动等进行规划和安排的一种可操作的过程.A.课程标准B.课程内容C.课程性质D.课程目标13.【答案】C.解析:所谓新课程小学数学教学设计就是在《数学课程标准》的指导下,依据现代教育理论和教师的经验,基于对学生需求的理解、对课程性质的分析,而对教学内容、教学手段、教学方式、教学活动等进行规划和安排的一种可操作的过程.14.在课堂合作学习过程中,下列做法值得提倡的是().3A.一名学生指责小组其他成员发言时间过长,不听自己的想法B.两名学生不服从组长安排私自参与其他小组讨论C.小组成员鼓励不擅发言的小组成员表达自己看法D.小组成员自己思考不进行交流学习14.【答案】C.解析:合作学习的实质是学生间建立起积极的相互依存关系,每个组员不仅要自己主动学习,还有责任帮助其他同学学习,以全组每个同学都学好为目标,教师根据小组的总体表现进行小组奖励.15.教学模式指的是广大教学工作者经过长期教学实践逐渐认识并总结出来的规范的().A.合理策划B.设计方案C.理论概念D.实践方式15.【答案】D.解析:教学模式指的是广大教学工作者经过长期教学实践逐渐认识并总结出来的规范的实践方式.二、填空题(本大题共5 题,每题3 分,共15 分)16.小明参加普法知识竞赛,共有10 个不同的题目,其中选择题6 个,判断题4 个,他从中任选一个,选中________的可能性大.16.【答案】选择题.解析:10个不同的题目中选择题6个,判断题4个,6>4,他从中任选一个,选中的选择题可能性大.故答案为:选择题.17.函数 y=√2中,自变量 x 的取值范围是________.17.【答案】x≥2.解析:依题意,得x−2≥0,解得:x≥2,故答案为:x≥2.18.已知一次函数y=kx+2k+3(k≠0),不论k 为何值,该函数的图象都经过点A,则点A 的坐标为________.18.【答案】(﹣2,3).解析:原函数可变形为:y=k(x+2)+3,则当x=﹣2时,y=3,故不论k为何值,该函数的图象都经过点A(﹣2,3).故答案为(﹣2,3).1 0 119.以下向量中,能成为以行列式形式表示的直线方程x y21= 01 1的一个法向量的是________.1 0 119.【答案】(1,-2).解析:因为xy 2 1 = 01 1,得到方程:2+x-2y-1=0,化简得:x-2y+1=0,其一个方向向量为(2,1).故它的法向量为:(1,-2).20.________是指教学的途径和手段,是教学过程中教师教的方法和学生学的方法的结合,是完成教学任务的方法的总称.20.【答案】教学动机.解析:教学方法是指教学的途径和手段,是教学过程中教师教的方法和学生学的方法的结合,是完成教学任务的方法的总称.三、解答题(本大题共4 题,第21、22、23 题各6 分,第24 题7 分,共25 分)21.按下图摆桌子,并回答问题.4(1)填表.(2)每增加一张桌子,可以多坐多少人?(3)摆n 张桌子时,可以坐多少人?(4)一家大餐厅有这样的长方形桌子24 张,按每4 张摆成一大张,一共可以坐多少人?如果客人106 人,如何摆能使座位数和人数刚好相等?21.【答案】(1)见解析;(2)2;(3)2n+4;(4)72.解析:(1)一张桌子可做6人,两张桌子可坐8人,三张桌子可做10人,四张桌子可坐12人,五张桌子可坐14人,六张桌子可坐16人,由此填表:(2)由(1)得出每增加一张桌子,可以多坐2人;(3)由(1)的规律可知摆n张桌子时,可坐(2n+4)人.(4)四张桌子可坐12人,24 ÷ 4⨯12 = 72 (人),如果客人106人,长着摆3张成一大张,可以坐14人,摆成7大张,可以坐14⨯ 7 = 98 人,还剩下8人和3张桌子,摆成一张大桌子,一面坐两个人即可.22.某商城销售A,B 两种自行车.A 型自行车售价为2100 元/辆,B 型自行车售价为1750 元/辆,每辆A 型自行车的进价比每辆B 型自行车的进价多400 元,商城用80000 元购进A 型自行车的数量与用64000 元购进B 型自行车的数量相等.(1)求每辆A,B 两种自行车的进价分别是多少?(2)现在商城准备一次购进这两种自行车共100 辆,设购进A 型自行车m 辆,这100 辆自行车的销售总利润为y 元,要求购进B 型自行车数量不超过A 型自行车数量的2 倍,总利润不低于13000 元,求获利最大的方案以及最大利润.22.【答案】(1)每辆A型自行车的进价为2000元,每辆B型自行车的进价为1600元;(2)当购进A型自行车34辆,B型自行车66辆时获利最大,最大利润为13300元.解析:(1)设每辆B型自行车的进价为x元,则每辆A型自行车的进价为(x+400)元,根据题意,得80000 = 64000,解得x=1600,x + 400x经检验,x=1600是原方程的解,x+400=1600+400=2000,答:每辆A型自行车的进价为2000元,每辆B型自行车的进价为1600元;(2)由题意,得y=(2100﹣2000)m+(1750﹣1600)(100﹣m)=﹣50m+15000,5根据题意,得⎧100 - m ≤ 2m ⎨-⎩ 50m +15000 ≥ 13000⇒3313≤m≤4,∵m为正整数,∴m=34,35,36,37,38,39,40.∵y=﹣50m+15000,k=﹣50<0,∴y随m的增大而减小,∴当m=34时,y有最大值,最大值为:﹣50×34+15000=13300(元).答:当购进A型自行车34辆,B型自行车66辆时获利最大,最大利润为13300元.23.如图,海中一渔船在 A 处且与小岛 C 相距 70nmile,若该渔船由西向东航行 30nmile 到达 B 处,此时测得小岛 C 位于 B 的北偏东30°方向上;求该渔船此时与小岛 C 之间的距离.23.【答案】渔船此时与C岛之间的距离为50海里.解析:过点C作CD⊥AB于点D,由题意得:∠BCD=30°,设BC=x,则:在Rt BCD中,BD=BC•sin30°=x,CD=BC•cos30°=√x;∴AD=30+x,∵AD2+CD2=AC2,即:(30+x)2+(√x)2=702,解得:x=50(负值舍去).24.一个口袋中放着若干只红球和白球,这两种球除了颜色以外没有任何其他区别,袋中的球已经搅匀,蒙上眼睛从口袋中取出一只球,取出红球的概率是.(1)取出白球的概率是多少?(2)如果袋中的白球有18 只,那么袋中的红球有多少只?24.【答案】(1);(2)6只.解析:(1)取出白球与取出红球为对立事件,概率之和为1.故P(取出白球)=1﹣P(取出红球)=1;答:取出白球的概率是.6(2)设袋中的红球有x只,则有(或),解得x=6.经检验x=6是分式方程的解.故口袋中的红球有6只.四、综合题(本大题共4 题,第25、26 题各6 分,27 题7 分,第28 题11 分,共30 分)25.举例说明在教学中如何处理“预设”与“形成”的关系?25.【参考答案】“预设”是预测和设计,是教师在课前对教学进行的有目的、有计划的设想和安排.“生成”是生长和构建,是师生在与教学情境的交互作用以及师生对话互动中超出教师预设方案的新问题、新情况.因此,在新课程理念下的教学设计,应充分考虑学生的知识背景、生活经历与情感体验,在知识学习的过程中,吸引学生的主动参与,处理好预设与生成的关系,是激发学生学习兴趣,引导学生主动探究的关键.在“勾股定理的应用”教学中这样设计了一堂课:准备了皮尺,把学生带到操场上,让学生分别在体育老师、校长那里获取篮板和教学楼的高度后,提出问题:在篮板的右上角有一只小鸟要飞到教学楼的左上角,请你利用皮尺和所学知识求出小鸟飞行的最短路径(篮板和教学楼的顶端不能到达).学生开始活动.有的测量篮板顶端与教学楼顶端的水平距离,有的在绘制几何图形,每一个同学都很认真,大家也很开心,乐在其中,课堂上洋溢着和谐、愉悦、轻松的气息.这堂课既训练了学生的数学“建模”思想,又让学生亲历了数学与生活、生产的关系.教学应当在预设与生成的和谐中发展,只有架起教学预设与动态生成和谐的桥梁,才能让智慧之火“激情”燃烧在课堂教学之中.26.练习设计应遵循哪些原则?26.【参考答案】(1)目的性,要围绕教学重难点设计练习,要针对学生存在的问题展开练习.(2)层次性,练习的设计要由易到难,由浅入深,有单一到综合,要有一定的坡度.多层训练有利于暴露差异,发展学生的思维能力.(3)多样性,练习的形式多样,有利于学生学习兴趣的激发和思维的发展,要加强知识的应用性和开放性,培养灵活应用知识和解决问题的能力.(4)反馈调节性,及时反馈了解学生练习的情况,适当调整练习.(5)要有弹性,分量要适中,做到质、量兼顾;能促进各个层次的学生的发展,让每个学生都得到不同的收获;无论做什么练习都要面向全体学生,让全体学生都有练习的机会,都能得到提高.27.案例分析阅读下面的教学片断,请说一说这位教师的问题出现在哪里?《认识乘法》教学片断:教师课件出示一幅美丽的森林图——“森林的一角”教师:你们发现了什么?(学生们兴奋地抢着举手发言)学生1:我发现这里真好玩,有小动物、有房子、有大树、白云……;学生2:我发现小河里的水还在不停地流呢;学生3:我发现小河里还有鱼,鱼还在游.学生4:我发现小兔子们在开心地跳动.7学生5:远处的白云在飘动着,好像在欢迎我们呢.……十分钟过去了,学生们依旧兴趣盎然地观察着,发现着,教师在肯定的同时孩子不断的提问:“你还发现了什么”.至此,一节数学课被“成功”转型为看图说话课.27.【参考答案】(1)教师注意创设情境来激发学生的兴趣,但只是尊重了学生的兴趣,而没有引导学生的兴趣,致使数学课“变成”看图说话课.(2)教师没有把握好创设情境与数学课堂教学的关系.创设情境的运用是沟通数学与儿童生活经验的联系,有效地降低了数学的门槛,激发学生学习数学的兴趣的手段.而数学课堂教学本质上是让学生学会必需的数学知识.教师要始终关注数学教学的本质.(3)教师在提出问题时,没有做到全面思考,指向性不明确,误导了学生没能从数学的角度去观察、去思考,使学生丧失了发现数学的眼睛.(4)课堂教学应有效地“利用兴趣去激发兴趣”,使学生对学习保持热情成为学生一种稳定的心理品质.放任兴趣就不能从表面深入下去,教师要大胆地、及时地引导学生的兴趣和观察方向,既发挥情境创设的作用,也能顺利地完成教学目标.28.请以“因数和倍数”为例,运用启发式的教学方法,引导学生通过自主探究掌握因数和倍数的概念,设计一个教学片断.要求:(1)教学片断要有层次有条理;(2)在每个环节中落实教学目标.828.【参考答案】环节一:导入新课首先利用学生熟悉并且感兴趣的事物,找《西游记》当中的人物关系,引起学生的兴趣,然后引入数学中自然数和自然数之间也有各种关系,初步体会数和数的对应关系,既拉近了数学和生活的联系,又激发了学生的学习兴趣.环节二:情境教学(1)情境体验,初步感知因数和倍数的意义我会采用启发式的教学方法.我会在多媒体上呈现出一些等式,并让学生将看到的等式进行分类.通过学生的已有经验,能够将上面的等式分为两类,一种是能够整除的,一种是不能够整除的.(2)在具体的乘法算式和除法算式中,理解因数和倍数的意义根据两类算式,让学生发现两类算式的特点,让学生讨论研究在能够整除的等式中除数和被除数存在什么样的关系,从而介绍因数和倍数的概念.概念:在整数除法中,如果商是整数而没有余数,我们就说被除数是除数的倍数,除数是被除数的因数.为了加强学生的理解,所以马上出示几道例题,让学生判断谁是谁的因数,谁是谁的倍数.例如:12÷6=2,12是2的倍数,2是12的因数.环节三:深化概念因数与倍数是相互依存的关系,对于这一部分的内容学生不是很好理解,也容易出错,所以在做了充分的练习之后,引出因数和倍数是相互依存的关系,不能够单独存在,加深对因数、倍数概念的理解.并且提示为了方便,在研究因数和倍数的时候,所说的数指的是自然数(一般不包括0)环节四:应用概念基于学生的特点以及本节课的知识点,我设置了有梯度的练习题,并以游戏的方式呈现出来.(1)游戏的名称叫做,我是几,我的因数在哪里?游戏规则:假如你的学号是老师报的数的因数,请以最快的速度到讲台上按小到大的顺序站好!(2)看谁能准确地找出1~100的自然数里7的所有倍数,并且将所有倍数排序(要求找出最小的和最大的倍数).环节五:小结作业9关于课堂小结,我打算让学生自己来总结,你这节课学到了什么.这样既可以提高学生的总结概括能力,也可以让我在第一时间内获得它们的学习反馈.我将课后的第一题留作今天的作业,以巩固学生对本节课知识的掌握.2020年湖北农村义务教师招聘考试模拟卷四小学数学专业知识一、选择题(本大题共15 题,每题2 分,共30 分)1.【答案】A.解析:a ÷ b = 7 (a、b均为自然数),那么a是b的倍数,b是a的因数.2.【答案】B.解析:误将加数96看成69,另一个加数是不变的,96-69=27,即正确的和比现在的和多27.3.【答案】C.解析:平行四边形的面积=底×高,所以等高等底的平行四边形的面积是三角形面积的2倍,面积比是2:1;故答案为:C.4.【答案】D.解析:∵a、b、c是三个非零有理数,∴||1或1,||1或1,||1或1,当a、b、c都是正数,||||||=1+1+1=3;当a、b、c只有两个正数,||||||=1+1−1=1;当a、b、c只有一个正数,||||||=1−1−1=−1;当a、b、c都是负数,||||||=−1−1−1=−3.故选:D.5.【答案】B.解析:设该商场这两个月销售额的平均增长率为x,根据题意得:160(1+x)2=250,解得:x1=0.25=25%,x2=-2.25(舍去).答:该商场这两个月销售额的平均增长率为25%.故选B.6.【答案】B.解析:∵反比例函数y=(k≠0)的图象经过点(−2,3),∴k=−2×3=−6,∴k<0,∴反比例函数y=(k≠0)的图象在第二、四象限.故选:B.7.【答案】C.解析:∵∠EDC=135°,∴∠ADE=45°,∠ABC=180°-∠EDC=180°-135°=45°;∵∠ACB=90°,∴∠A=45°,∴∠ADE=∠A=45°,∴AE=AD,∠AED=90°;∵EF为⊙O的直径,∴∠FCE=90°,∵∠ABC=∠EFC=45°,CF=2√2,∴EF=4;连接BD,∵∠AED=90°,∴∠BED=90°,∴BD为⊙O的直径,∴BD=4;在Rt△BDE中,416,∴AE2+BE2=16.故选C.8.【答案】C.解析:由A(a,1)关于原点的对称点为B(﹣4,b),得a=4,b=﹣1,a+b=3,故选:C.9.【答案】A.解析:因为,是方程310的两根,所以1,因此1,因为2<0,所以0,1,从而“,是方程310的两根”是“1”充分而不必要条件,选A.10.【答案】C.解析:(sinx|sinx|)dx sinxdx|sinx|dx|sinx|dx2sinxdx2cosx|2,故选C.11.【答案】A.解析:因为函数f(x)=3 x +1,则lim ∆x→0f (1-∆x)∆x-f(1)的值为-f’(1)=1-,选3A.12.【答案】C.解析:作可行域,直线3过点A(2,3)时取最大值9.故选C.13.【答案】C.解析:所谓新课程小学数学教学设计就是在《数学课程标准》的指导下,依据现代教育理论和教师的经验,基于对学生需求的理解、对课程性质的分析,而对教学内容、教学手段、教学方式、教学活动等进行规划和安排的一种可操作的过程.14.【答案】C.解析:合作学习的实质是学生间建立起积极的相互依存关系,每个组员不仅要自己主动学习,还有责任帮助其他同学学习,以全组每个同学都学好为目标,教师根据小组的总体表现进行小组奖励.215.【答案】D.解析:教学模式指的是广大教学工作者经过长期教学实践逐渐认识并总结出来的规范的实践方式.二、填空题(本大题共5 题,每题3 分,共15 分)16.【答案】选择题.解析:10个不同的题目中选择题6个,判断题4个,6>4,他从中任选一个,选中的选择题可能性大.故答案为:选择题.17.【答案】x≥2.解析:依题意,得x−2≥0,解得:x≥2,故答案为:x≥2.18.【答案】(﹣2,3).解析:原函数可变形为:y=k(x+2)+3,则当x=﹣2时,y=3,故不论k为何值,该函数的图象都经过点A(﹣2,3).故答案为(﹣2,3).1 0 119.【答案】(1,-2).解析:因为x y 2 1 = 01 1,得到方程:2+x-2y-1=0,化简得:x-2y+1=0,其一个方向向量为(2,1).故它的法向量为:(1,-2).20.【答案】教学动机.解析:教学方法是指教学的途径和手段,是教学过程中教师教的方法和学生学的方法的结合,是完成教学任务的方法的总称.三、解答题(本大题共4 题,第21、22、23 题各6 分,第24 题7 分,共25 分)21.【答案】(1)见解析;(2)2;(3)2n+4;(4)72.解析:(1)一张桌子可做6人,两张桌子可坐8人,三张桌子可做10人,四张桌子可坐12人,五张桌子可坐14人,六张桌子可坐16人,由此填表:(2)由(1)得出每增加一张桌子,可以多坐2人;(3)由(1)的规律可知摆n张桌子时,可坐(2n+4)人.(4)四张桌子可坐12人,24 ÷ 4⨯12 = 72 (人),如果客人106人,长着摆3张成一大张,可以坐14人,摆成7大张,可以坐14⨯ 7 = 98 人,还剩下8人和3张桌子,摆成一张大桌子,一面坐两个人即可.22.【答案】(1)每辆A型自行车的进价为2000元,每辆B型自行车的进价为1600元;(2)当购进A型自行车34辆,B型自行车66辆时获利最大,最大利润为13300元.解析:(1)设每辆B型自行车的进价为x元,则每辆A型自行车的进价为(x+400)元,根据题意,得80000 = 64000x + 400x,解得x=1600,经检验,x=1600是原方程的解,x+400=1600+400=2000,答:每辆A型自行车的进价为2000元,每辆B型自行车的进价为1600元;(2)由题意,得y=(2100﹣2000)m+(1750﹣1600)(100﹣m)=﹣50m+15000,根据题意,得⎧100 - m ≤ 2m ⎨-⎩ 50m +15000 ≥ 13000⇒3313≤m≤40,3∵m为正整数,∴m=34,35,36,37,38,39,40.∵y=﹣50m+15000,k=﹣50<0,∴y随m的增大而减小,∴当m=34时,y有最大值,最大值为:﹣50×34+15000=13300(元).答:当购进A型自行车34辆,B型自行车66辆时获利最大,最大利润为13300元.23.【答案】渔船此时与C岛之间的距离为50海里.解析:过点C作CD⊥AB于点D,由题意得:∠BCD=30°,设BC=x,则:在Rt BCD中,BD=BC•sin30°=x,CD=BC•cos30°=√x;∴AD=30+x,∵AD2+CD2=AC2,即:(30+x)2+(√x)2=702,解得:x=50(负值舍去). 24.【答案】(1);(2)6只.解析:(1)取出白球与取出红球为对立事件,概率之和为1.故P(取出白球)=1﹣P(取出红球)=1;答:取出白球的概率是.(2)设袋中的红球有x只,则有(或),解得x=6.经检验x=6是分式方程的解.故口袋中的红球有6只.四、综合题(本大题共4 题,第25、26 题各6 分,27 题7 分,第28 题11 分,共30 分)25.【参考答案】“预设”是预测和设计,是教师在课前对教学进行的有目的、有计划的设想和安排.“生成”是生长和构建,是师生在与教学情境的交互作用以及师生对话互动中超出教师预设方案的新问题、新情况.因此,在新课程理念下的教学设计,应充分考虑学生的知识背景、生活经历与情感体验,在知识学习的过程中,吸引学生的主动参与,处理好预设与生成的关系,是激发学生学习兴趣,引导学生主动探究的关键.在“勾股定理的应用”教学中这样设计了一堂课:准备了皮尺,把学生带到操场上,让学生分别在体育老师、校长那里获取篮板和教学楼的高度后,提出问题:在篮板的右上角有一只小鸟要飞到教学楼的左上角,请你利用皮尺和所学知识求出小鸟飞行的最短路径(篮板和教学楼的顶端不能到达).学生开始活动.有的测量篮板顶端与教学楼顶端的水平距离,有的在绘制几何图形,每一个同学都很认真,大家也很开心,乐在其中,课堂上洋溢着和谐、愉悦、轻松的气息.这堂课既训练了学生的数学“建模”思想,又让学生亲历了数学与生活、生产的关系.教学应当在预设与生成的和谐中发展,只有架起教学预4设与动态生成和谐的桥梁,才能让智慧之火“激情”燃烧在课堂教学之中.26.【参考答案】(1)目的性,要围绕教学重难点设计练习,要针对学生存在的问题展开练习.(2)层次性,练习的设计要由易到难,由浅入深,有单一到综合,要有一定的坡度.多层训练有利于暴露差异,发展学生的思维能力.(3)多样性,练习的形式多样,有利于学生学习兴趣的激发和思维的发展,要加强知识的应用性和开放性,培养灵活应用知识和解决问题的能力.(4)反馈调节性,及时反馈了解学生练习的情况,适当调整练习.(5)要有弹性,分量要适中,做到质、量兼顾;能促进各个层次的学生的发展,让每个学生都得到不同的收获;无论做什么练习都要面向全体学生,让全体学生都有练习的机会,都能得到提高.27.【参考答案】(1)教师注意创设情境来激发学生的兴趣,但只是尊重了学生的兴趣,而没有引导学生的兴趣,致使数学课“变成”看图说话课.(2)教师没有把握好创设情境与数学课堂教学的关系.创设情境的运用是沟通数学与儿童生活经验的联系,有效地降低了数学的门槛,激发学生学习数学的兴趣的手段.而数学课堂教学本质上是让学生学会必需的数学知识.教师要始终关注数学教学的本质.(3)教师在提出问题时,没有做到全面思考,指向性不明确,误导了学生没能从数学的角度去观察、去思考,使学生丧失了发现数学的眼睛.(4)课堂教学应有效地“利用兴趣去激发兴趣”,使学生对学习保持热情成为学生一种稳定的心理品质.放任兴趣就不能从表面深入下去,教师要大胆地、及时地引导学生的兴趣和观察方向,既发挥情境创设的作用,也能顺利地完成教学目标.28.【参考答案】环节一:导入新课首先利用学生熟悉并且感兴趣的事物,找《西游记》当中的人物关系,引起学生的兴趣,然后引入数学中自然数和自然数之间也有各种关系,初步体会数和数的对应关系,既拉近了数学和生活的联系,又激发了学生的学习兴趣.环节二:情境教学(1)情境体验,初步感知因数和倍数的意义我会采用启发式的教学方法.我会在多媒体上呈现出一些等式,并让学生将看到的等式进行分类.通过学生的已有经验,能够将上面的等式分为两类,一种是能够整除的,一种是不能够整除的.(2)在具体的乘法算式和除法算式中,理解因数和倍数的意义根据两类算式,让学生发现两类算式的特点,让学生讨论研究在能够整除的等式中除数和被除数存在什么样的关系,从而介绍因数和倍数的概念.概念:在整数除法中,如果商是整数而没有余数,我们就说被除数是除数的倍数,除数是被除数的因数.为了加强学生的理解,所以马上出示几道例题,让学生判断谁是谁的因数,谁是谁的倍数.例如:12÷6=2,12是2的倍数,2是12的因数.环节三:深化概念因数与倍数是相互依存的关系,对于这一部分的内容学生不是很好理解,也容易出错,所以在做了充分的练习之后,引出因数和倍数是相互依存的关系,不能够单独存在,加深对因数、倍数概念的理解.并且提示为了方便,在研究因数和倍数的时候,所说的数指的是自然数(一般不包括0)环节四:应用概念基于学生的特点以及本节课的知识点,我设置了有梯度的练习题,并以游戏的方式呈现出来.(1)游戏的名称叫做,我是几,我的因数在哪里?游戏规则:假如你的学号是老师报的数的因数,请以最快的速度到讲台上按小到大的顺序站好!(2)看谁能准确地找出1~100的自然数里7的所有倍数,并且将所有倍数排序(要求找出最小的和最大的倍数).环节五:小结作业关于课堂小结,我打算让学生自己来总结,你这节课学到了什么.这样既可以提高学生的总结概括能力,也可以让我在第一时间内获得它们的学习反馈.我将课后的第一题留作今天的作业,以巩固学生对本节课知识的掌握.。
湖北教师招聘考试小学数学教师学科知识测试题

小学数学教师学科知识测试题一、填空:(每题2分,共50分)1.在6.03,633%,6 和6.3中,最大的数是(),最小的数是()。
2.如果甲数是乙数的2/5,那么乙数是甲数的()%。
3.等腰三角形的顶角与一底角的比是3:1,那么它的顶角( )度。
4.有一桶油,取出2/5后,剩下的比取出的多12千克,全桶油重()千克。
5.从18的约数中,选择两个质数和两个合数,组成一个比例式是()。
6.做一个长8厘米,宽6厘米,高4厘米的长方体框架,至少需要铁丝()厘米。
如果在框架外糊一层纸,至少需要白纸()平方厘米。
7.把7枝红铅笔和3枝蓝铅笔放在一个包里,每次任意摸出1枝,再放回。
这样摸10000次,摸出红铅笔的次数大约占总数的8.在一个直径是10分米的半圆形钢板上做一个最大的三角形,这个三角形的面积是()平方分米。
9.一个修路队用4天的时间修了一段路的20%。
照这样计算,修完这段路一共需要()天。
10.一种油桶每只能装5千克油,现在要装43千克的油,至少需要()只这样的油桶。
11.有1.5,4,和6三个数,再添上一个数,就可以组成一个比例。
添上的这个数可以是()或()或()。
12.三个数的平均数是6,这三个数的比是::。
其中最大的数是()。
13.2002减去它的,再减去余下的,再减去余下的,依次类推,一直减到余下的。
最后剩下的数是()。
14.轮船在静水中的速度是每小时21千米,轮船自甲港逆水航行8小时到达相距144千米的乙港,再从乙港返回甲港需要()小时。
15.小刚将200元钱存入银行定期一年,年利率4.76%,到期后,可得到利息和本金一共()元。
(需交纳20%利息税)16.大人上楼的速度为小孩的2倍,小孩从一楼到四楼要90秒,问大人从一楼到六楼要()秒钟。
17.某班学生排队,如果每排3人,就多1人;如果每排5人,就多3人,如果每排7人,就多2人,这个班级至少有()人。
2013年湖北教师招聘考试复习资料一本通一、湖北省教师招聘考试真题试卷参考。
2020年湖北省农村义务教育学校教师招聘考试《小学数学》真题含答案

2020 年湖北省义务教师教育教学专业知识小学数学真题考试时间: 90 分钟总分: 100 分一、单项选择题(本大题共 12 小题,每小题 4 分,共 48 分)1.每年的第三季度的天数是( )。
A.90B.91C.92D.932.如果▲÷█=8,那么(▲×3)÷(█×6)的商为()。
A.4B.8C.12D.243.一个大于零的数乘一个真分数,所得的积和原来的数比较会( )。
A.变小B.变大C.不变D.不确定4.下列计算正确的是( ) 。
A.x3+x5=x8B.(x3)3=x9C.3x+5y=8xyD.x6 ÷x3=x25.把 4 个同样的小方块摆成如下图的立体图形。
如果再添加个大小相同的小方块后,从A.3 种B.5 种C.6 种D.8 种6.如下图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于 4 的数的概率是( )。
1 1 1A. B. C. D. 1 16 3 2 2 63 54 7豆豆双休日想帮妈妈做以下事情 :洗衣服(用洗衣机洗)20 分钟,扫地 6 分钟,擦家具10 分钟,晾衣服 5 分钟。
她经过合理安排,做完这些事至少要花的时间是( )A.21 分钟B.25 分钟C.26 分钟D.41 分钟18.已知∠a为锐角,且cos a= 则三a= ( )。
2A.30°B.45°C.60°D.75°9.某小组 5 名同学在一周内参加家务劳动的时间如下表:劳动时间(小时 2 3 4 5)人数 1 1 2 1 那么关于“劳动时间”的这组数据,以下说法正确的是( )。
A. 中位数是 2B. 中位数是 3C. 中位数是 4D. 中位数是 510.古希腊人常用小石子在沙滩上摆成各种形状来研究数,例如:他们研究过题 10-1中的 1, 3, 6, 10, ...,由于这些数能够表示成三角形,将其称为三角形数,类似地,称题10-2 图中的 1, 4, 9, 16, ...这样的数为正方形数。
2023湖北教师招聘数学考试真题及答案

选择题:下列哪个数不是有理数?A. 1/2B. √2(正确答案)C. -3D. 0.5已知等差数列的前n项和为Sn,若a1 = 1,公差d = 2,则S5等于?A. 5B. 15C. 25(正确答案)D. 35函数f(x) = x2 - 4x + 3的顶点坐标是?A. (2, -1)(正确答案)B. (-2, 1)C. (2, 1)D. (-2, -1)下列哪个选项是平面几何中直线的一般式方程?A. y = mx + bB. Ax + By + C = 0(正确答案)C. x2 + y2 = r2D. (x - h)2 + (y - k)2 = r2在三角形ABC中,若角A = 60°,b = 1,c = √3,则三角形ABC的面积是?A. √3/2B. √3/4C. √3(正确答案)D. 3√3/2下列哪个选项是复数z = 1 + i的共轭复数?A. 1 - i(正确答案)B. -1 + iC. 1 + iD. -1 - i已知向量a = (1, 2),向量b = (-3, 4),则向量a与向量b的点积是多少?A. -1B. 1C. 5(正确答案)D. -5下列哪个选项是描述正态分布曲线的正确说法?A. 曲线关于y轴对称B. 曲线关于x轴对称(正确答案)C. 曲线关于原点对称D. 曲线没有对称性在平面直角坐标系中,点P(-2, 3)关于x轴的对称点坐标是?A. (-2, -3)(正确答案)B. (2, -3)C. (2, 3)D. (-3, 2)。
小学数学教师招聘考试教师专业知识试题及答案

小学数学教师专业知识考试试题及答案一、填空(每空0。
5分,共20分)1、数学是研究(数量关系 )和( 空间形式)的科学。
2、数学课程应致力于实现义务教育阶段的培养目标,体现(基础性)、(普及性 )和(发展性 )。
义务教育的数学课程应突出体现(全面)、(持续 )、(和谐发展 ).3、义务教育阶段的数学课程要面向全体学生,适应学生个性发展的需要,使得:(人人都能获得良好的数学教育),(不同的人在数学上得到不同的发展).4、学生是数学学习的(主体),教师是数学学习的( 组织者 )、(引导者)与(合作者).5、《义务教育数学课程标准》(修改稿)将数学教学内容分为(数与代数)、(图形与几何)、(统计与概率)、(综合与实践)四大领域;将数学教学目标分为(知识与技能 )、(数学与思考)、(解决问题 )、(情感与态度)四大方面。
6、学生学习应当是一个(生动活泼的)、主动的和(富有个性)的过程.除(接受学习 )外,(动手实践)、(自主探索)与(合作交流)也是学习数学的重要方式。
学生应当有足够的时间和空间经历观察、实验、猜测、(计算)、推理、(验证)等活动过程。
7、通过义务教育阶段的数学学习,学生能获得适应社会生活和进一步发展所必须的数学的“四基”包括(基础知识)、(基本技能 )、(基本思想)、(基本活动经验);“两能"包括(发现问题和提出问题能力)、(分析问题和解决问题的能力).8、教学中应当注意正确处理:预设与(生成)的关系、面向全体学生与(关注学生个体差异)的关系、合情推理与(演绎推理)的关系、使用现代信息技术与(教学手段多样化)的关系。
二、简答题:(每题5分,共30分)1、义务教育阶段的数学学习的总体目标是什么?通过义务教育阶段的数学学习,学生能:(1)。
获得适应社会生活和进一步发展所必须的数学的基础知识、基本技能、基本思想、基本活动经验。
(2). 体会数学知识之间、数学与其他学科之间、数学与生活之间的联系,运用数学的思维方式进行思考,增强发现和提出问题的能力、分析和解决问题的能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学数学教师学科知识测试题
一、填空:(每题2分,共50分)
1.在6.03,633%,6 和6.3中,最大的数是(),最小的数是()。
2.如果甲数是乙数的2/5,那么乙数是甲数的()%。
3.等腰三角形的顶角与一底角的比是3:1,那么它的顶角( )度。
4.有一桶油,取出2/5后,剩下的比取出的多12千克,全桶油重()千克。
5.从18的约数中,选择两个质数和两个合数,组成一个比例式是()。
6.做一个长8厘米,宽6厘米,高4厘米的长方体框架,至少需要铁丝()厘米。
如果在框架外糊一层纸,至少需要白纸()平方厘米。
7.把7枝红铅笔和3枝蓝铅笔放在一个包里,每次任意摸出1枝,再放回。
这样摸10000次,摸出红铅笔的次数大约占总数的
8.在一个直径是10分米的半圆形钢板上做一个最大的三角形,这个三角形的面积是()平方分米。
9.一个修路队用4天的时间修了一段路的20%。
照这样计算,修完这段路一共需要()天。
10.一种油桶每只能装5千克油,现在要装43千克的油,至少需要()只这样的油桶。
11.有1.5,4,和6三个数,再添上一个数,就可以组成一个比例。
添上的这个数可以是()或()或()。
12.三个数的平均数是6,这三个数的比是::。
其中最大的数是()。
13.2002减去它的,再减去余下的,再减去余下的,依次类推,一直减到余下的。
最后剩下的数是()。
14.轮船在静水中的速度是每小时21千米,轮船自甲港逆水航行8小时到达相距144千米的乙港,再从乙港返回甲港需要()小时。
15.小刚将200元钱存入银行定期一年,年利率4.76%,到期后,可得到利息和本金一共()元。
(需交纳20%利息税)
16.大人上楼的速度为小孩的2倍,小孩从一楼到四楼要90秒,问大人从一楼到六楼要()秒钟。
17.某班学生排队,如果每排3人,就多1人;如果每排5人,就多3人,如果每排7人,就多2人,这个班级至少有()人。
2013年湖北教师招聘考试复习资料一本通
一、湖北省教师招聘考试真题试卷参考。
二、湖北省2013年教师考试录用大纲与分析详细介绍。
三、2013教师招聘考试全套在线视频教学(重点)。
四、2013教师招聘考试全套在线音频教学(重点)。
五、专业复习资料。
六、湖北省教师招聘考试面试资料与面试视频。
七、湖北省教师招聘考试预测模拟试卷。
八、教师招聘综合知识(政治)。
九、教师招聘综合知识(经济)。
十、教师招聘综合知识(法律)。
十一、教师招聘综合知识(科技)。
十二、教师招聘综合知识(历史)。
十三、教师招聘综合知识(时事)。
十四、教师招聘综合知识(英语)。
十五、教师招聘综合知识(计算机)。
十六、教育教学专业知识(教育学复习资料)。
十七、教育教学专业知识(心理学复习资料)。
十八、教育教学专业知识(教育心理学复习资料)。
十九、教育教学专业知识(教育法律法规复习资料)。
二十、教育教学专业知识(新课程理念复习资料)。
二十一、教育教学专业知识(教师职业道德修养复习资料)。
二十二、教育教学专业知识(教学技能复习资料)。
资料下载地址:
/forum-81-1.html
18.一只筐里共有96个苹果,如果不一次拿出,也不一个一个地拿出,但每次拿出的个数要相等,最后一次正好拿完,那么,共有()种拿法。
19.一长方形的长、宽之比是7:3,现将长减少,宽增加12厘米,就变成一个正方形,原长方形的长是()厘米、宽是()厘米。
20.某市为庆祝新年,特组织了2007名男女运动员参加乒乓球单打比赛,比赛采用淘汰制,最后分别产生男、女单打冠军,问共需要安排()场比赛。
21.一位马车夫拉着去往同一方向的甲、乙两位乘客。
走了4公里,甲下车了,然后又走了4公里乙才下车,车费一共是12个铜币。
问甲应分摊车费()铜币,乙应分摊车费()铜币。
22.音乐教室每排有8个座位,小丽和小青想坐在一起,在同一排有()种不同坐法。
23.公路边有一排电线杆,共25根,每相邻两根之间的距离都是45米,现在要改成每相邻两根之间都相距60米,有()根电线杆不需要移动。
24.一个两位数,十位上的数字是个位上的数字的,把它的数字颠倒顺序后,所得的数比原来的数大18。
这个两位数是()。
25.有一列数2、9、8、2……从第三个数起,每个数都是它前面两个数乘积的个位数。
那么,这一列数的第160个数是()。
二、判断题:(每小题1分,共10分)
1.1平方厘米比0.01平方米大。
…………………………()
2.同底等高的平行四边形面积相等。
………………………()
3.一个数的约数都比它的倍数小。
…………………………()
4.长方形、等腰三角形和等边三角形的对称轴一共有6条。
…()
5.在比例中,若两个外项的乘积为1,那么内项的两个数就互为倒数。
()
6.梯形是特殊的平行四边形。
()
7.两个合数的积不一定大于它们的最小公倍数。
()
8.某人乘车上班,因堵车,车速降低了20%,那么,他在路上的时间要增加20%。
()
9.钝角三角形中最小的一个角不一定小于45°。
()
10.175至少加上5,就能同时被2、3、5整除。
()
三、选择题:(每小题1分,共5分)
1.甲数比乙数多,乙数与甲数的比是()A.6:5B.4:5C.5:6
2.把一根2米长的绳子对折两次,每份是总长的()
3.甲数的4/5与乙数的2/3相等,乙数是126,甲数是()A.42B.84C.168
4.连接大正方形各边的中点成一个小正方形,小正方形的()是大正方形的一半。
A.周长B.面积C.周长和面积
5.将棱长为3厘米的两个正方体拼成一个长方体后,长方体的表面积是原来两个正方体的表面积和的()
A.5/6B.1倍C.2倍
四、操作题:(第1、3题各2分,第2题3分,第4题4分)
1.将下图分成形状相同的四等份。
(画出草图)一个上底4厘米,下底8厘米,高4厘米的直角梯形。
2.下面是一个直角三角形。
(单位:厘米)
(1)用两个这样的三角形拼成一个平行四边形,要使拼成的平行四边形周长最长,怎样拼?(画出草图表示你的拼法)
一个边长为9、12、15的直角三角形
(2)拼成的平行四边形的周长是()厘米,面积是()平方厘
米
3.一个长方形,长7厘米。
宽6厘米,把它分割成边长都是整厘米数的正方形,要求分成的正方形个数尽可能少。
(写出思考过程,并画出分割的草图)
4.下图是正方体的展开图中的一种,正方体的展开图还可能是怎样的形状?请你画出不同形状的正方体展开图(草图),至少画出4种。
五、解决问题:(每题4分,共24分)
1.一辆汽车从甲地开往乙地,每小时行70千米,5小时到达。
如果要4小时到达,每小时需要行驶多少千米?
算术方法:比例方法:(写出判断过程)
2.一个圆柱体的表面积是527.52平方厘米,侧面积是301.44平方厘米。
把这个圆柱体平均截成三段,表面积增加了多少平方厘米?
3.甲、乙两仓库,甲仓库的存粮是乙仓库的。
后来甲仓库运出84吨,乙仓库运出它的45%,这时两个仓库存粮数相等。
乙仓原有存粮多少吨?
4.圆形餐桌的直径为2米,高为1米。
铺在桌面上的正方形桌布的四角恰好刚刚接触地面,求正方形桌布的面积。
5.学校一次选拔考试,参加的男生与女生之比是4:3,结果录取91人,其中男女生人数之比是8:5,在未被录取的学生中,男女生人数之比是3:4,那么,参加这次考试共有多少名学生?
6.甲、乙两人各做一项工程。
如果全是晴天,甲需12天,乙需15天完成。
雨天甲的工作效率比晴天低40%,乙降低10%。
两人同时开工,恰好同时完成。
问工作中有多少个雨天?。