初二下册一次函数练习题.docx
(word)新人教版八年级下《一次函数》测试题及答案,文档

2021—2021学年度第二学期八年级〔下〕第十九章一次函数单元检测题班级____姓名_____得分_____一、选择题〔本大题共12个小题,每题3分,共36分。
在每题给出的四个选项中,只有一项为哪一项满足题目要求的,请把其代号填在答题栏中相应题号的下面〕。
题号123456789101112答案1 .假设点A〔2,4〕在函数ykx2的图象上,那么以下各点在此函数图象上的是〔〕.A.〔0,2〕B.〔3,0〕C.〔8,20〕D.〔1,1〕2222 .变量x,y有如下关系:①x+y=10②y=5③y=|x-3④y2=8x.其中y是x的函数的是xA.①②②③④ B.①②③ C.①② D.①3 .以下各曲线中不能表示y是x的函数是〔〕.A.B.C.D.4.一次函数y 2x a与y x b的图象都经过A〔2,0〕,且与y轴分别交于B、C两点,那么△ABC的面积为〔〕.A.4B.5C.6D.7正比例函数y=(k+5)x,且y随x的增大而减小,那么k的取值范围是>5<5>-5<-56.在平面直角坐标系xoy中,点M(a,1)在一次函数y=-x+3的图象上,那么点N(2a-1,a)所在的象限是A.一象限B.二象限C.四象限D.不能确定7.如果通过平移直线y x x5yx〕.得到y的图象,那么直线必须〔333A.向上平移5个单位B.向下平移5个单位C.向上平移5个单位D.向下平移5个单位338.经过一、二、四象限的函数是A.y=7B.y=-2xC.y=7-2xD.y=-2x-79.正比例函数y=kx(k≠0)的函数值y随x的增大而减小,那么函数y=kx-k的图象大致是10.假设方程x-2=0的解也是直线y=(2k-1)x+10与x轴的交点的横坐标,那么D.±2k的值为11.根据如图的程序,计算当输入x 3时,输出的结果y.输y x5(x1)输入出x y x5(x≤1)y12.直线y1=2x与直线y2=-2x+4相交于点 A.有以下结论:①点A的坐标为A(1,2);②当x=1时,两个函数值相等;③当x<1时,y1<y2④直线y1=2x与直线y2=2x-4在平面直角坐标系中的位置关系是平行.其中正确的选项是A.①③④B.②③C.①②③④D.①②③二、填空题〔本大题共5个小题,每题4分,共20分。
(word版)八年级下册数学《一次函数》测试题及答案,文档

第十九章一次函数时间:120分钟总分值:120分姓名班级分数一、选择题(每题3分,共30分)1.假设函数y=〔2m+1〕x 2+〔1-2m 〕x 〔m 为常数〕是正比例函数,那么 m 的值为〔 〕A .m>1B .m=1C .m<1D .m=-122222.假设一次函数y=〔3-k 〕x-k 的图象经过第二、三、四象限,那么 k 的取值范围是〔 〕A .k>3B.0<k ≤3 C .0≤k<3D.0<k<33.一次函数的图象与直线 y=-x+1平行,且过点〔8,2〕,那么此一次函数的解析式为〔〕A .y=-x-2B .y=-x-6C .y=-x+10D .y=-x-14.一次函数y=kx+b 的图象经过点〔 2,-1〕和〔0,3〕,?那么这个一次函数的解析式为 〔〕A .y=-2x+3B.y=-3x+2C.y=3x-2D.y=1x-325.李老师骑自行车上班,最初以某一速度匀速行进,?中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度, 仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程 y?〔千米〕与行进时间 t 〔小时〕的函数图象的示意图,同学们画出的图象如下列图,你认为正确的选项是〔〕6.假设直线 y =-x +a 与直线y =x +b 的交点坐标为 (2,8),那么a -b 的值为(A .2B .4C .6D .87.假设一次函数 y =ax +b 的图象经过第一、二、四象限,那么以下不等式一定成立的是)()A .a +b <0B .a -b >0C .ab >0bD.a <08.等腰三角形的周长是10,底边长 y 是腰长x 的函数,那么以下列图象中,能正确反映y 与x 之间函数关系的图象是()9.如是某复印店复印收y(元)与复印面数(8开)x(面)的函数象,那么从象中可看出,复印超A.元100面的局部,每面收B.元C.元()D.元第9第10210.如,直y=3x+4与x、y分交于A点和点B,点C,D分段AB,OB的中点,点POA上一点,当PC+PD最小,点P的坐()A.(-3,0)B.(-6,0)C.-3,0 D.-5,022二、填空(每小3分,共24分)11.直y=2x+1点(0,a),a=________.12.直l点M(-2,0),直的解析式可以写______________(只写出一个即可).13.直y=x+4与x、y所成的三角形的面________.14.一次函数y=(m-1)x+m2的象点(0,4),且y随x的增大而增大,m=________.15.直y=2x-1沿y平移3个位度,平移后直与y的交点坐______________.16.如,直l1:y=-2x+4与直l2:y=kx+b(k≠0)在第一象限交于点M.假设直l2与x的交点A(-2,0),k的取范是__________.第16第17第1817.甲、乙两点分从段AB的两端点同出,甲从点A出,向点 B运,乙从点B出,向点A运.段 AB90cm,甲的速度运x(s),甲、乙两点之的距离y(cm),y与x的函数象如所示,中段DE所表示的函数关系式____________________(并写出自量的取范).18.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,⋯按如所示的方式放置,点A1,A2,A3,⋯和点C1,C2,C3,⋯分在直y=x+1和x上,点B2021的坐是________.三、解答(共66分)19.(8分)y与x+1成正比例关系,当x=2,y=1.求:当x=-3,y的.20.(9分)一次函数y=2x+4.(1)在如所示的平面直角坐系中,画出函数的象;(2)求象与x的交点A的坐,与y交点B的坐;(3)在(2)的条件下,求出△AOB的面;(4)利用象直接写出:当y<0,x的取范.21.(8分)一次函数y=kx+b的象点A(0,-2),B(3,4),C(5,m).求:(1)个一次函数的解析式;(2)m的.22.(9分)某途汽客运公司定旅客可免携一定量的行李,当行李的量超定,需付的行李y(元)是行李量x(kg)的一次函数.行李量20k需付g 行李2元,行李量50kg需付行李8元.(1)当行李的量x超定,求y与x之的函数解析式;(2)求旅客最多可免携行李的量.23.(10分)如,直l1:y=2x+1与直l2:y=mx+4相交于点P(1,b).(1)求b,m的;(2)垂直于x的直x=a与直l1,l2分交于点C,D,假设段CD2,求a的.24.(10分)“五一〞期,小明一家乘坐高前往某市旅游,划第二天租用新能源汽自出游.根据以上信息,解答以下:(1)租 x小,租用甲公司的所需用y2元,分求出y1,y2关于x的函数解析式;(2)你帮助小明算并哪个出游方案合算.y1元,租用乙公司的所需用25.(12分)小慧根据学函数的,函数y=|x-1|的象与性行了探究.下面是小慧的探究程,充完整:(1)函数y=|x-1|的自量x的取范是(2)列表,找出y与x的几.____________;x y ⋯⋯-1b112132⋯⋯其中,b=________;(3)在如所示的平面直角坐系xOy中,描出上表中以各坐的点,并画出函数的象;(4)写出函数的一条性:____________________.答案CDACB BDDC11.1 =x +2(答案不唯一) 13. 15.(0,2)或(0,-4) 16.0<k<2 =-90(20≤x ≤36)18.2202119.解:∵y 与x +1成正比例关系,∴设y =k(x +1),(1分)将x =2,y =1 代入得1 1 1 1 1 1 1 =3k ,解得k =,∴函数解析式为y =(x +1)= x + .(5分)当x =-3时,y =-3×+=-33 33 3 323.(8分)20.解:(1)当x =0时,y =4,当y =0时,x =-2,那么该函数的图象如下列图.(3分)(2)由(1)可知点A 的坐标为(-2, 0),点B 的坐标为(0,4).(5分)(3)∵OA =2,OB =4,∴S= 2OA ·OB =2×2×4=4.(7分)△AOB1 1(4)x <-2.(9分)21.解:(1)∵一次函数y =kx +b 的图象经过点A(0,-2),B(3,4),∴b =-2,(23k +b =4,分)解得k =2,y =2x -2.(4分)∴这个一次函数的解析式为b =-2,(2)把C(5,m)代入y =2x -2,得m =2×5-2=8.(8分)22.解:(1)设y 与x 的函数解析式为y =kx +b.(1分)将(20,2),(50,8)代入y =kx +b1中,得20k +b =2,(3分)解得k =5,∴当行李的质量x 超过规定时,y 与x 之间的函数50k +b =8,b =-2,1解析式为 y =5x -2.(5分) 1 (2)当y =0时,5x -2=0,(7分)解得x =10.答:旅客最多可免费携带行李10kg.(9分)23.解:(1)∵点P(1,b)在直线l 1:y =2x +1 上,∴ b =2×1+1=3.(2分)∵点P(1,3)在直线l 2:y =mx +4上,∴3=m +4,∴m =-1.(4分)(2)当x =a 时,y C =2a +1.当x =a 时,y D =4-a.(6分)∵CD =2,∴|2a +1-(4-a)|=2,15(8分)解得a =或.(10分)24.解:(1)设y 1=k 1x +80,把点(1,95)代入,可得95=k 1+80,解得k 1=15,∴y 1=15x +80(x ≥0).(2分)设y 2=k 2x ,把(1,30)代入,可得k 2=30,∴y 2=30x(x ≥0).(4分)(2)当y 1=y 2时,15x +80=30x ,解得x =163;当y 1>y 2时,15x +80>30x ,解得x <163;当y 121616小时,选择甲、乙公司一<y 时,15x+80<30x ,解得x >3.(7分)∴当租车时间为3样合算;当租车时间小于16小时,选择乙公司合算;当租车时间大于16小时,选择甲公司合33算.(10 分)25.解:(1)任意实数(3分)(2)2(6分)(3)如下列图.(9分)(4)函数的最小值为 0(答案不唯一)(12分)。
八年级数学(下)第十九章《一次函数》同步练习题(含答案)

八年级数学(下)第十九章《一次函数》同步练习(含答案)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列函数中,y 是x 的一次函数的是①y =x -6;②y =-3x –1;③y =-0.6x ;④y =7-x .A .①②③B .①③④C .①②③④D .②③④ 【答案】C【解析】根据一次函数的定义,可知是一次函数的有①y =x -6;②y =-3x –1;③y =-0.6x ;④y =7-x ,故选C . 2.如果23(2)2my m x -=-+是一次函数,那么m 的值是 A .2B .-2C .±2D .±1 【答案】B【解析】由题意得:22031m m -≠⎧⎨-=⎩,解得m =-2,故选B . 3.下列说法中正确的是A .一次函数是正比例函数B .正比例函数不是一次函数C .不是正比例函数就不是一次函数D .不是一次函数就不是正比例函数 【答案】D【解析】A .一次函数不一定是正比例函数,故本选项说法错误;B .正比例函数是一次函数,故本选项说法错误;C .不是正比例函数,但有可能是一次函数,故本选项说法错误;C .不是一次函数就不是正比例函数,故本选项说法正确,故选D .4.一次函数y =-2x +1的图象经过A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限【答案】B【解析】在一次函数y =-2x +1中,k =-2<0,b =1>0,∴一次函数y =-2x +1的图象经过第一、二、四象限,故选B .5.把直线3y x =-+向上平移m 个单位后,与直线24y x =+的交点在第一象限,则m 的取值范围是A .1<m <7B .3<m <4C .m >1D .m <4【答案】C 【解析】直线3y x =-+向上平移m 个单位后可得:3y x m =-++,联立两直线解析式得:324y x m y x =-++⎧⎨=+⎩,解得132103m x m y -⎧=⎪⎪⎨+⎪=⎪⎩,∴交点坐标为1210()33m m -+,, ∵交点在第一象限,∴10321003m m -⎧>⎪⎪⎨+⎪>⎪⎩,解得m >1,故选C . 6.如果函数y =3x +m 的图象一定经过第二象限,那么m 的取值范围是A .m >0B .m ≥0C .m <0D .m ≤0【答案】A【解析】图象一定经过第二象限,则函数一定与y 轴的正半轴相交,因而0m >,故选A . 7.关于函数y =-x +1,下列结论正确的是A .图象必经过点(-1,1)B .y 随x 的减小而减小C .当x >1时,y <0D .图象经过第二、三、四象限 【答案】C【解析】选项A ,∵当x =-1时,y =2,∴图象不经过点(-1,1),选项A 错误;选项B ,∵k =-1<0,∴y 随x 的增大而减小,选项B 错误;选项C ,∵y 随x 的增大而减小,当x =1时,y =0,∴当x >1时,y <0,选项C 正确;选项D ,∵k =-1<0,b =1>0,∴图象经过第一、二、四象限,选项D 错误.故选C .8.一次函数y =kx +b 的图象如图所示,则k 、b 的值分别为A .k =−12,b =1B .k =-2,b=1C.k=12,b=1 D.k=2,b=1【答案】B【解析】由图象可知:过点(0,1),(12,0),代入一次函数的解析式得:112bk b=⎧⎪⎨=+⎪⎩,解得:k=−2,b=1,故选B.二、填空题:请将答案填在题中横线上.9.已知一次函数y=(m-3)x-2的图象经过一、三、四象限,则m的取值范围为__________.【答案】m>3【解析】∵y=(m-3)x-2的图象经过一、三、四象限,∴m-3>0,解得m>3.故答案为:m>3.10.点(-1,y1),(2,y2)是直线y=2x+1上的两点,则y1__________y2(填“>”或“=”或“<”).【答案】<【解析】∵k=2>0,y将随x的增大而增大,2>−1,∴y1<y2,故y1与y2的大小关系是:y1<y2,故答案为:<.11.已知一次函数的图象与直线y=12x+3平行,并且经过点(-2,-4),则这个一次函数的解析式为__________.【答案】y=12x-3【解析】∵一次函数的图象与直线y=12x+3平行,∴设一次函数的解析式为y=12x+b.∵一次函数经过点(-2,-4),∴12×(-2)+b=-4,解得b=-3,所以这个一次函数的表达式是:y=1 2x-3.故答案为:y=12x-3.12.若点M(x1,y1)在函数y=kx+b(k≠0)的图象上,当-1≤x1≤2时,-2≤y1≤1,则这条直线的函数解析式为__________.【答案】y=x-1或y=-x【解析】∵点M(x1,y1)在在直线y=kx+b上,-1≤x1≤2时,-2≤y1≤1,∴点(-1,-2)、(2,1)或(-1,1)、(2,-2)都在直线上,则有:221k bk b-+=-⎧⎨+=⎩,或122k bk b-+=⎧⎨+=-⎩,解得11kb=⎧⎨=-⎩或1kb=-⎧⎨=⎩,∴y=x-1或y=-x,故答案为:y=x-1或y=-x.三、解答题:解答应写出文字说明、证明过程或演算步骤.13.已知一次函数经过点A(3,5)和点B(-4,-9).(1)求此一次函数的解析式;(2)若点C(m,2)是该函数上一点,求C点坐标.【解析】(1)设其解析式为y=kx+b(k、b是常数,且k≠0),则5394k bk b=+⎧⎨-=-+⎩,∴k=2,b=−1.∴其解析式为y=2x-1,(2)∵点C(m,2)在y=2x-1上,∴2=2m-1,∴m=32,∴点C的坐标为(32,2).14.已知一次函数的图象经过点A(2,1),B(-1,-3).(1)求此一次函数的解析式;(2)求此一次函数的图象与x轴、y轴的交点坐标;(3)求此一次函数的图象与两坐标轴所围成的三角形面积.【解析】(1)根据一次函数解析式的特点,可得出方程组213 k bk b+=⎧⎨-+=-⎩,解得4353 kb⎧=⎪⎪⎨⎪=-⎪⎩,则得到y=43x-53.(2)根据一次函数的解析式y=43x-53,得到当y=0,x=54;当x=0时,y=-53.所以与x轴的交点坐标(54,0),与y轴的交点坐标(0,-53).(3)在y=43x-53中,令x=0,解得:y=-53,在y=43x-53中,令y=0,解得:x=54.因而此一次函数的图象与两坐标轴所围成的三角形面积是:15525 23424⨯⨯=.15.已知一次函数y=(4-k)x-2k2+32.(1)k为何值时,它的图象经过原点;(2)k为何值时,它的图象经过点(0,-2);(3)k为何值时,它的图象平行于直线y=-x;(4)k为何值时,y随x的增大而减小.【解析】(1)∵一次函数y=(4-k)x-2k2+32的图象经过原点,∴-2k2+32=0,解得:k=±4,∵4-k≠0,∴k=-4.(2)∵一次函数y=(4-k)x-2k2+32的图象经过(0,-2),∴-2k2+32=-2,解得:k.(3)∵一次函数y=(4-k)x-2k2+32的图象平行于直线y=-x,∴4-k=-1,∴k=5.(4)∵一次函数y=(4-k)x-2k2+32中y随x的增大而减小,∴4-k<0,∴k>4.16.已知一次函数图象经过(-4,-9)和(3,5)两点.(1)求一次函数解析式.(2)求图象和坐标轴交点坐标.并画出图象.(3)求图象和坐标轴围成三角形的面积.(4)若点(2,a)在函数图象上,求a的值.【解析】(1)设一次函数解析式为y=kx+b,把点(3,5),(-4,-9)分别代入解析式,则3549 k bk b+=⎧⎨-+=-⎩,解得21 kb=⎧⎨=-⎩,∴一次函数解析式为y=2x-1.(2)当x=0时,y=-1,当y=0时,2x-1=0,解得:x=0.5,∴与坐标轴的交点为A(0,-1)、B(0.5,0),图象如图,(3)S△AOB1122=⨯⨯|-1|=0.25.(4)∵点(2,a)在图象上,∴a=2×2-1=3,∴a=3.。
人教版八年级的数学下《一次函数》期末典型题型练习试卷含答案.doc

一次函数1、下列问题中,变量y 与x 成一次函数关系的是( )A. 路程一定时,时间y 和速度x 的关系B. 长 10 米的铁丝折成长为C. 圆的面积y 与它的半径xy 米,宽为x 米的长方形D. 斜边长为 5 的直角三角形的直角边y 和x2、函数A.x ≠1B.x >- 1 的自变量C.x≥-x 的取值范围为(1 D.x≥- 1 且)x≠13、图象中所反映的过程是:小敏从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家,其中 x 表示时间, y 表示小敏离家的距离,根据图象提供的信息,以下说法错误的是()A. 体育场离小敏家 2.5 千米B. 体育场离早餐店 4 千米C. 小敏在体育场锻炼了15 分钟D.小敏从早餐店回到家用时30 分钟4、已知如图,正比例函数y=kx (k≠0)的函数值y 随 x 的增大而增大,则一次函数y=x+k 的图象大致是()A. B. C. D.5、一次函数y=-x+6 的图像不经过()A. 第一象限B.第二象限C.第三象限D.第四象限6、已知A(﹣ 4, y1), B( 2,y2)在直线y=﹣1/2x+20 上,则y1、 y2大小关系是()A.y 1> y2B.y 1=y2C.y 1<y2D. 不能比较7、已知某一次函数的图象与直线y=﹣x+1 平行,且过点(8, 2),那么此一次函数为()A.y= ﹣x﹣2B.y= ﹣x+10C.y=﹣x﹣6D.y=﹣x﹣108、在同一平面直角坐标系中,直线与直线的交点不可能在()A. B. C. D.9、如图,已知函数y=3x+b 和 y=ax﹣3的图象交于点P(﹣ 2,﹣ 5),则根据图象可得不等式3x+b>ax﹣3的解集是()A.x >﹣5B.x >﹣2C.x >﹣3D.x <﹣210、某学校组织团员举行申奥成功宣传活动,从学校骑车出发,先上坡到达 A 地后,宣传 8 分钟;然后下坡到 B 地宣传 8 分钟返回,行程情况如图 . 若返回时,上、下坡速度仍保持不变,在 A 地仍要宣传 8 分钟,那么他们从 B 地返回学校用的时间是()A.45.2分钟B.48分钟C.46分钟D.33分钟11、已知直线y=﹣x+8 与 x 轴、 y 轴分别交于点 A 和点 B, M是 OB上的一点,若将△ ABM 沿 AM折叠,点B 恰好落在x 轴上的点B′处,则直线AM的函数解析式是()A.y= ﹣x+8B.y= ﹣x+8C.y=﹣x+3D.y=﹣x+312、如图,直线y= x+4 与x 轴、 y 轴分别交于点 A 和点B,点C、D 分别为线段AB、OB的中点,点P 为直线OA上一动点,PC+PD值最小时点P 的坐标为()A.(﹣ 3, 0)B. (﹣ 6, 0)C. (﹣,0)D. (﹣, 0)13、“五四”青年节期间,校团委对团员参加活动情况进行表彰,计划分为优秀奖和贡献奖,为此联系印刷公司设计了两种奖状,A,B 两家公司都为学校提出了相同规格和单价的两种奖状,其中优秀奖的奖状 6 元/ 张,贡献奖的奖状 5 元 / 张,经过协商, A 公司的优惠条件是:两种奖状都打八折,但要收制版费50 元;B 公司的优惠条件是:两种奖状都打九折;根据学校要求,优秀奖的个数是贡献奖的2 倍还多10 个,如果设贡献奖的个数是x 个 .(1)分别写出校团委购买A, B 两家印刷厂所需要的总费用y1(元)和y2(元)与贡献奖个数x 之间的函数关系式;(2)校团委选择哪家印刷公司比较合算?请说明理由.14、某超市鸡蛋供应紧张,需每天从外地调运鸡蛋1200 斤 . 超市决定从甲、乙两大型养殖场调运鸡蛋,已知甲养殖场每天最多可调出800 斤,乙养殖场每天最多可调出900 斤,从甲、乙两养殖场调运鸡蛋到该超市的路程和运费如下表:到超市的路程(千米) 运费 ( 元/ 斤·千米 )甲养殖场200 0.012乙养殖场140 0.015设从甲养殖场调运鸡蛋x 斤,总运费为W元(1)试写出 W与 x 的函数关系式 .(2)怎样安排调运方案才能使每天的总运费最省?参考答案1、 B2、 D3、 B4、 A5、 C6、 A7、 B.8、 D9、 B10、 A11、 C12、 C13、解:( 1)由题意y1=4.8 (2x+10 ) +4x+50=13.6x+98 ,y2 =5.4 ( 2x+10) +4.5x=15.3x+54.(2)当 y1>y2时, 13.6x+98 ∴当贡献奖个数小于等于>15.3x+54 ,解得 x<25,∵x为整数,25 个时,选 B 公司比较合算;当贡献奖个数大于25 个时,选 A 公司比较合算.14、解:从甲养殖场调运了x 斤鸡蛋,从乙养殖场调运了(1200﹣x)斤鸡蛋,根据题意得:解得: 300≤x≤800,总运费 W=200×0.012x+140×0.015 ×(1200﹣x)=0.3x+2520∵W随 x 的增大而增大,∴当x=300 时, W最小 =2610 元,,( 300≤x≤800),∴每天从甲养殖场调运了300 斤鸡蛋,从乙养殖场调运了900 斤鸡蛋,每天的总运费最省.。
八年级数学下册《一次函数》练习题及答案(人教版)

第 1 页 共 4 页八年级数学下册《一次函数》练习题及答案(人教版)一、单选题 1.下列函数:①y =-2x ;②21y x =+;③y =-0.5x -1.其中是一次函数的个数有( )A .0个B .1个C .2个D .3个2.若正比例函数的图象经过点(2,4),则这个图象也必经过点( )A .(2,1)B .(﹣1,﹣2)C .(1,﹣2)D .(4,2)3.一次函数y=x+3的图像与y 轴的交点坐标是( )A .(0,3)B .(0,-3)C .(3,0)D .(-3,0)4.一次函数(0)y kx b k =+≠的图象过点(2,1)-和点(0,4),那么k 、b 的值为( )A .23k =-,4b =B .4k =,32b =- C .32k =-,4b = D .32k ,4b = 5.已知A (﹣1,a ),B (2,b )两点都在关于x 的一次函数y =﹣x +m 的图像上,则a ,b 的大小关系为( )A .a ≥bB .a >bC .a <bD .无法确定6.已知不等式ax+b >0的解集是x <-2,则函数y=ax+b 的图象可能是( )A .B .C .D .7.一次函数()13y k x =++的图象经过点P ,且y 的值随x 值的增大而增大,则点P 的坐标不可能为( )A .()5,4B .1,2C .()2,2--D .()5,1-8.若点P 在一次函数42y x =-+的图像上,则点P 一定不在( )A .第一象限B .第二象限C .第三象限D .第四象限9.如图,过点A 的一次函数的图象与正比例函数y=2x 的图象相交于点B ,能表示这个一次函数图象的方程二、填空题11.若点(),m n在一次函数31y x的图象上,则31n m-+的值为______.12.将直线y=x向右平移1个单位长度,再向上平移3个单位长度得到的直线解析式为________.13.一次函数1y kx k=+-的图象经过第一、三、四象限,则k的取值范围是___________.14.一个函数的图象经过点()1,2,且y随x的增大而增大,则这个函数的解析式可能是______.(答案不唯一,只需写一个)15.直线y=(2﹣a)x+3﹣a在直角坐标系中的图象如图所示,化简|3﹣a|+|2﹣a|=______.三、解答题16.已知直线:l y kx b=+与直线2y x=平行,且直线l过点(2,8),求直线l与x轴的交点坐标17.已知函数y=(2-m)x+2n-3.求当m为何值时.第2页共4页第 3 页 共 4 页 (1)此函数为一次函数?(2)此函数为正比例函数?18.已知2y +与4x -成正比例,且3x =时,1y =.(1)求y 与x 之间的函数表达式;(2)当21y -<<时,求x 的取值范围.19.已知一次函数的图像平行于直线y 12=x ,且经过点A (2,3). (1)求这个一次函数的解析式;(2)当x =4时,求这个一次函数的函数值.第4页共4页。
人教版八年级数学下册一次函数的实际应用解答题专项练习(word版含解析)

八年级数学下册一次函数的实际应用解答题专项练习1.甲、乙两台机器共同加工一批零件,一共用了6小时,在加工过程中乙机器因故障停止工作,排除故障后,乙机器提高了工作效率且保持不变,继续加工,甲机器在加工过程中工作效率保持不变,甲、乙两台机器加工零件的总数y(个)与甲加工时间x(h)之间的函数图象为折线OA﹣AB﹣BC.如图所示.(1)这批零件一共有个,甲机器每小时加工个零件;(2)在整个加工过程中,求y与x之间的函数解析式;(3)乙机器排除故障后,求甲加工多长时间时,甲与乙加工的零件个数相差10个.2.某企业计划通过扩大生产能力来消化第一季度积累的订单,决定增加一条新的生产线并招收工人.根据以往经验,一名熟练工人每小时完成的工件数量比一名普通工人每小时完成的工件数量多10个,且一名熟练工人完成160个工件与一名普通工人完成80个工件所用的时间相同.(1)求一名熟练工人和一名普通工人每小时分别能完成多少个工件?(2)新生产线的目标产能是每小时生产200个工件,计划招聘n名普通工人与m名熟练工人共同完成这项任务,请写出m与n的函数关系式(不需要写自变量n的取值范围);(3)该企业在做市场调研时发现,一名普通工人每天工资为120元,一名熟练工人每天工资为150元,而且本地区现有熟练工人不超过8人.在(2)的条件下,该企业如何招聘工人,使得工人工资的总费用最少?3.某电信公司推出如下A,B两种通话收费方式,记通话时间为x分钟,总费用为y元.根据表格内信息完成以下问题:(1)分别求出A,B两种通话收费方式对应的函数表达式;(2)在给出的坐标系中作出收费方式A对应的函数图象,并求出;①通话时间为多少分钟时,两种收费方式费用相同;②结合图象,直接写出选择哪种通话方式能节省费用?4.如图(1)是某手机专卖店每周收支差额y(元)(手机总利润减去运营成本)与手机台数x(台)的函数图象,由于疫情影响目前这个专卖店亏损,店家决定采取措施扭亏.方式一:改善管理,降低运营成本,以此举实现扭亏.方式二:运营成本不变,提高每台手机利润实现扭亏(假设每台手机的利润都相同).解决以下问题:(1)说明图(1)中点A和点B的实际意义;(2)若店家决定采用方式一如图(2),要使每周卖出70台时就能实现扭亏(收支平衡),求节约了多少运营成本?(3)若店家决定两种方式都采用,降低运营成本为m元,提高每台手机利润n元,当5000≤m≤7000,50≤n≤100时,求店家每周销售100台手机时可获得的收支差额范围,并在图(3)中画出取得最大收支差额时y与x的关系的大致图象,要求描出反映关键数据的点.5.如图,l A、l B分别表示A步行与B骑车在同一路上行驶的路程S与时间t的关系.(1)B出发时与A相距千米.(2)B走了一段路后,自行车发生故障,B进行修理,所用的时间是小时.(3)B第二次出发后小时与A相遇.(4)若B的自行车不发生故障,保持出发时的速度前进,则出发多长时间与A相遇?(写出过程)6.甲、乙两人相约周末登崂山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,且当乙提速后,乙的登山上升速度是甲登山上升速度的3倍,且根据图象所提供的信息解答下列问题:(1)乙在A地时距地面的高度b为米;t的值为;(2)请求出甲在登山全程中,距离地面高度y(米)与登山时间x(分)之间的函数关系式;(3)已知AB段对应的函数关系式为y=30x﹣30,则登山多长时间时,甲、乙两人距地面的高度差为70米?(直接写出答案)7.某水果店11月份购进甲、乙两种水果共花费1800元,其中甲种水果10元/千克,乙种水果16元/千克.12月份,这两种水果的进价上调为:甲种水果13元/千克,乙种水果18元/千克.(1)若该店12月份购进这两种水果的数量与11月份都相同,将多支付货款400元,求该店11月份购进甲、乙两种水果分别是多少千克?(2)若12月份将这两种水果进货总量减少到130千克,设购进甲种水果a千克,需要支付的货款为w元,求w与a的函数关系式;(3)在(2)的条件下,若甲种水果不超过80千克,则12月份该店需要支付这两种水果的货款最少应是多少元?8.甲骑电动车,乙骑自行车从深圳湾公园门口出发沿同一路线匀速游玩,设乙行驶的时间为x(h),甲、乙两人距出发点的路程S甲、S乙关于x的函数图象如图①所示,甲、乙两人之间的路程差y关于x的函数图象如图②所示,请你解决以下问题:(1)甲的速度是km/h,乙的速度是km/h;(2)对比图①、图②可知:a=,b=;(3)乙出发多少时间,甲、乙两人路程差为7.5km?9.某市为了鼓励居民节约用电,采用分段计费的方法按月计算每户家庭的电费,月用电量不超过200度时,按0.55元/度计费,月用电量超过200度时,其中的200度仍按0.55元/度计费,超过部分按0.70元/度计费,设每户家庭月用电量为x度时,应交电费y元.(1)分别求出0≤x≤200和x>200时,y与x的函数解析式.(2)小明家4月份用电250度,应交电费多少元?(3)小明家6月份交纳电费117元,小明家这个月用电多少度?10.甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y(m)与挖掘时间x(h)之间的关系如图所示,请根据图象所提供的信息解答下列问题:(1)乙队开挖到30m时,用了小时,甲队在开挖后6小时内,每小时挖m;(2)分别求出y甲、y乙与x的函数解析式,并写出自变量x的取值范围;(3)开挖2小时,甲、乙两队挖的河渠的长度相差m,开挖6小时,甲、乙两队挖的河渠的长度相差m;(4)求开挖后几小时,甲、乙两队挖的河渠的长度相差5m.11.新冠肺炎疫情爆发后,口罩成为了最紧缺的防护物资之一,比亚迪,长安,格力等企业响应国家号召,纷纷开设口罩生产线.2月1日,重庆东升公司复工,利用原有的A生产线开始生产口罩,8天后,采用最新技术的B生产线建成投产同时,为加大口罩产能,公司耗时2天对A 生产线进行技术升级,升级期间A生产线暂停生产,升级后,产能提高20%.如图反映了每条A,B生产线的口罩总产量y(万个)与时间x(天)之间的关系,根据图象,解答下列问题:(1)技术升级后,每条A生产线每天生产口罩万个;(2)每条B生产线每天生产口罩万个;(3)技术升级后,东升公司的口罩日总产量为136万个,已知公司有15条A生产线,则B 生产线有条;(4)在(3)的条件下,东升公司进一步扩大产能,两生产线在原每日工作时长8小时的基础上,增加m小时(m为正整数),同时新增k条B生产线,此时公司口罩日总产量达到260万个,求正整数k的值.12.某校开展“文明在行动”的志愿者活动,准备购买某一品牌书包送到希望学校.在A商店,无论一次购买多少,价格均为每个50元,在B商店,一次购买数量不超过10个时,价格为每个60元;一次购买数量超过10个时,超出10个部分打八折.设一次购买该品牌书包的数量为x个(x>0).(Ⅰ)根据题意填表:(Ⅱ)设在A商店花费y1元,在B商店花费y2元,分别求出y1,y2关于x的函数解析式;(Ⅲ)根据题意填空:①若小丽在A商店和在B商店一次购买书包的数量相同,且花费相同,则她在同一商店一次购买书包的数量为个.②若小丽在同一商店一次购买书包的数量为50个,则她在A,B两个商店中的商店购买花费少;③若小丽在同一商店一次购买书包花费了1800元,则她在A,B两个商店中商店购买数量多.13.小明和妈妈元旦假期去看望外婆,返回时,他们先搭乘顺路车到A地,约定小明爸爸驾车到A地接他们回家.一家人在A地见面,休息半小时后,小明爸爸驾车返回家中.已知小明他们与外婆家的距离s(km)和小明从外婆家出发的时间t(h)之间的函数关系如图所示.(1)小明家与外婆家的距离是km,小明爸爸驾车返回时平均速度是km/h:(2)点P的实际意义是什么?(3)求他们从A地驾车返回家的过程中,s与t之间的函数关系式.14.新冠疫情期间,口罩的需求量增大,某口罩加工厂承揽生产1600万个口罩的任务,每天生产的口罩数量相同,计划用x天(x>4)完成.(1)求每天生产口罩y(万个)与生产时间x(天)之间的函数表达式;(2)由于疫情形势严峻,卫生管理部门要求厂家提前4天交货,那么加工厂每天要多做20万个口罩才能完成任务,求实际生产时间.15.某公司销售玉米种子,价格为5元/千克,如果一次性购买10千克以上的种子,超过10千克部分的种子的价格打8折,部分表格如下:(1)直接写出表格中a,b的值;(2)设购买种子数量为x(x>10)千克,付款金额为y元,求y与x的函数关系式;(3)小李第一次购买种子35千克,第二次又购买了8千克,若两次购买种子的数量合在一起购买可省多少钱?参考答案1.解:(1)由函数图象可知,共用6小时加工完这批零件,一共有270个.AB段为甲机器单独加工,每小时加工个数为(90﹣50)÷(3﹣1)=20(个),故答案为:270,20;(2)设y OA=k1x,当x=1时,y=50,则50=k1,∴y OA=50x;设y AB=k2x+b2,,解得,∴y AB=20x+30;设y BC=k3x+b3,,解得,∴y BC=60x﹣90;综上所述,在整个加工过程中,y与x之间的函数解析式是y=;(3)乙开始的加工速度为:50÷1﹣20=30(个/小时),乙后来的加工速度为:(270﹣90)÷(6﹣3)﹣20=40(个/小时),设乙机器排除故障后,甲加工a小时时,甲与乙加工的零件个数相差10个,20a﹣[30×1+40(a﹣3)]=±10,解得a=4或a=5,答:排除故障后,甲加工4小时或5小时时,甲与乙加工个数相差10.2.解:(1)设一名普通工人每小时完成x个工件,则一名熟练工人每小时完成(x+10)个工件,,解得x=10,经检验,x=10是原分式方程的解,∴x+10=20,即一名熟练工人和一名普通工人每小时分别能完成20个工件、10个工件;(2)由题意可得,10n+20m=200,则m=﹣0.5n+10,即m与n的函数关系式是m=﹣0.5n+10;(3)设工人工资的总费用为w元,w=120n+150m=120n+150(﹣0.5m+10)=45n+1500,∴w随n的增大而增大,∵本地区现有熟练工人不超过8人,∴m≤8,即﹣0.5n+10≤8,解得n≥4,∴当n=4时,w取得最小值,此时w=1680,m=﹣0.5n+10=8,答:招聘普通工人4人,熟练工人8人时,工人工资的总费用最少.3.解:(1)由表格可得,收费方式A对应的函数表达式是y=0.2x+12,收费方式B对应的函数表达式是:当0≤x≤40时,y=18,当x>40时,y=0.3(x﹣40)+18=0.3x+6,由上可得,收费方式A对应的函数表达式是y=0.2x+12,收费方式B对应的函数表达式是y =;(2)∵收费方式A对应的函数表达式是y=0.2x+12,∴当x=0时,y=12,当x=40时,y=20,收费方式A对应的函数图象如右图所示;①设通话时间为a分钟时,两种收费方式费用相同,0.2a+12=18或0.2a+12=0.3a+6,解得a=30或a=60,即通话时间为30分钟或60分钟时,两种收费方式费用相同;②由图象可得,当0≤x<30或x>60时,选择A种通话方式能节省费用;当x=30或x=60时,两种通话方式一样;当30<x<60时,选择B种通话方式能节省费用.4.解:(1)由图像可知A点是函数图象与x轴的交点,所以点A的实际意义表示当卖出100台手机时,该专卖店每周收支差额为0;B点是函数图象与y轴的交点,所以点B的实际意义表示当手机店一台手机都没有卖出时,该专卖店亏损20000元;(2)由图(1)可求出以前的函数为y=200x﹣20000,若店家决定采用方式一,降低运营成本,即将函数图象上下平移,所以可以设新函数为y=200x+b,∵函数图象经过点(70,0),代入可得200×70+b=0,解得:b=﹣14000,∴要使每周卖出70台时就能实现扭亏(收支平衡),运营成本为14000元,节约了6000元运营成本;(3)设新函数为y=(200+n)x﹣(20000﹣n),∵50≤n≤100,∴250≤200+n≤300,当店家每周售出100台手机,收支差额最小时y=250×100﹣7000=18000,收支差额最大时y=300×100﹣5000=25000,∴收支差额范围为18000≤y≤25000,图象为:.5.解:(1)∵当t=0时,S=10,∴B出发时与A相距10千米.故答案为:10.(2)1.5﹣0.5=1(小时).故答案为:1.(3)观察函数图象,可知:B第二次出发后1.5小时与A相遇.(4)设A行走的路程S与时间t的函数关系式为S=kt+b(k≠0),将(0,10),(3,22.5)代入S=kt+b,得:,解得:,∴A行走的路程S与时间t的函数关系式为S=x+10.设若B的自行车不发生故障,则B行走的路程S与时间t的函数关系式为S=mt.∵点(0.5,7.5)在该函数图象上,∴7.5=0.5m,解得:m=15,∴设若B的自行车不发生故障,则B行走的路程S与时间t的函数关系式为S=15t.联立两函数解析式成方程组,得:,解得:,∴若B的自行车不发生故障,保持出发时的速度前进,小时与A相遇.6.解:(1)甲登山上升的速度是:(300﹣100)÷20=10(米/分钟), 乙提速后的速度为:10×3=30(米/分钟),b=15÷1×2=30;t=2+(300﹣30)÷30=11,故答案为:30;11;(2)设甲在登山全程中,距离地面高度y(米)与登山时间x(分)之间的函数关系式为y=kx+100,根据题意,得20k+100=300,解得k=10,故y=10x+100(0≤x≤20);(3)根据题意,得:当10x+100﹣(30x﹣30)=70时,解得:x=3;当30x﹣30﹣(10x+100)=70时,解得:x=10;当300﹣(10x+100)=70时,解得:x=13.答:登山3分钟、10分钟或13分钟时,甲、乙两人距地面的高度差为70米.7.解:(1)设该店11月份购进甲种水果x千克,购进乙种水果y千克, 根据题意得:,解得,答:该店11月份购进甲种水果100千克,购进乙种水果50千克;(2)设购进甲种水果a千克,需要支付的货款为w元,则购进乙种水果(130﹣a)千克, 根据题意得:w=10a+20(130﹣a)=﹣10a+2600;(3)根据题意得,a≤80,由(2)得,w=﹣10a+2600,∵﹣10<0,w随a的增大而减小,∴a=80时,w有最小值w最小=﹣10×80+2600=1600(元).答:12月份该店需要支付这两种水果的货款最少应是1600元.8.解:(1)由图可得,甲的速度为:25÷(1.5﹣0.5)=25÷1=25(km/h),乙的速度为:25÷2.5=10(km/h), 故答案为:25,10;(2)由图可得,a=25×(1.5﹣0.5)﹣10×1.5=10,b=1.5,故答案为:10;1.5;(3)由题意可得,前0.5h,乙行驶的路程为:10×0.5=5<7.5,则甲、乙两人路程差为7.5km是在甲乙相遇之后,设乙出发xh时,甲、乙两人路程差为7.5km,25(x﹣0.5)﹣10x=7.5,解得,x=,25﹣10x=7.5,得x=;即乙出发或时,甲、乙两人路程差为7.5km.9.解:(1)当0≤x≤200时,y与x的函数解析式是y=0.55x;当x>200时,y与x的函数解析式是y=0.55×200+0.7(x﹣200),即y=0.7x﹣30;(2)小明家4月份用电250度,月用电量超过200度,所以应交电费为:0.7×250﹣30=145(元),(3)因为小明家6月份的电费超过110元,所以把y=117代入y=0.7x﹣30中,得x=210.答:小明家6月份用电210度.10.解:(1)依题意得,乙队开挖到30m时,用了2h,开挖6h时甲队比乙队多挖了60﹣50=10(m);故答案为:2;10;=k1x, (2)设甲队在0≤x≤6的时段内y与x之间的函数关系式y甲由图可知,函数图象过点(6,60),∴6k1=60,解得k1=10,∴y甲=10x,设乙队在2≤x≤6的时段内y与x之间的函数关系式为y=k2x+b,乙由图可知,函数图象过点(2,30)、(6,50),∴,解得,∴y 乙=5x +20;当0≤x ≤2时,设y 乙与x 的函数解析式为y 乙=kx ,可得2k =30,解得k =15,即y 乙=15x ; ∴y 乙=,(3)依题意得,开挖2小时,甲、乙两队挖的河渠的长度相差10m ,开挖6小时,甲、乙两队挖的河渠的长度相差10m ;故答案为:10;10;(4)当0≤x ≤2时,15x ﹣10x =5,解得x =1.当2<x ≤4时,5x +20﹣10x =5,解得x =3,当4<x ≤6时,10x ﹣(5x +20)=5,解得x =5.答:当两队所挖的河渠长度之差为5m 时,x 的值为1h 或3h 或5h .11.解:(1)由图可知,升级前A 生产线的日产量为:32÷8=4(万个),∵升级后,日产能提高20%,∴技术升级后,每条A 生产线每天生产口罩4×(1+20%)=4.8(万个), 故答案为:4.8;(2)A 生产线技术升级后,A 生产线的产量由32万到56万,所用的时间为(56﹣32)÷4.8=5(天),故B 生产线从第8天开始生产到第15天的产能为56万个,所以每条B 生产线每天生产口罩:56÷(15﹣8)=8(万个),故答案为:8;(3)设B 生产线有x 条,根据题意得:15×4.8+8x =136,解得:x =8,故答案为:8;(4)A生产线升级后每小时产能为:4.8÷8=0.6(万个),B生产线的每小时产能为:8÷8=1(万个),根据题意得:0.6×(8+m)×15+(8+m)(8+k)=260,整理得:(8+m)(17+k)=260,∵m、k为正整数,∴8+m为大于8的正整数,17+k为大于17的正整数,∴(8+m)(17+k)=260=10×26=13×20,∴8+m=10,17+k=26或8+m=13,17+k=20,∴m=2,k=9或m=5,k=3,∴每日工作时长增加2小时,B生产线增加9条或每日工作时长增加5小时,B生产线增加3条即可使公司口罩日总产量达到260万个,∴正整数k的值为9或3.答:正整数k的值为9或3.12.解:(Ⅰ)在A商店,购买5个费用=5×50=250(元),购买15个费用为15×50=750(元),在B商店,购买5个费用=5×60=300(元),购买15个费用为10×60+60×0.8(15﹣10)=840(元),故答案为:250,750,300,840;(Ⅱ)由题意可得:y1=50x(x≥0),当0≤x≤10时,y2=60x,当x>10时,y2=60×10+60×0.8×(x﹣10)=48x+120(x>10),∴y2=;(Ⅲ)①由题意可得:50x=48x+120,解得x=60,故答案为:60;②∵50×50<48×50+120,∴在A商店购买花费少,故答案为:A;③若在A商店,=36(个),若在B商店,=35(个),∵36>35,∴在A商店购买的数量多,故答案为:A.13.解:(1)由图象可得小明家与外婆家的距离为300km,小明经过2小时到达点A,点A到小明外婆家的距离=(300﹣2×90)=120(km),∴小明爸爸驾车返回时平均速度==60(km/h),故答案为:300,60;(2)点P表示小明出发2小时到达A地与小明爸爸相遇;(3)设s与t之间的函数关系式为s=kt+b,且过点(2.5,180),(4.5,300),∴,解得,∴s与t之间的函数关系式为s=60t+30(2.5≤t≤4.5).14.解:(1)每天生产口罩y(万个)与生产时间x(天)之间的函数表达式为:y=(x>4);(2)由题意可得:+20=,解得:x1=20,x2=﹣16,经检验,x1=20,x2=﹣16是原分式方程的解,但x=﹣16不合题意舍去,∴20﹣4=16(天),答:实际生产时间为16天.15.解:(1)a=5×5=25,b=5×10+(20﹣10)×0.8×5=90;(2)y=5×10+5×0.8(x﹣10)=4x+10;(3)购买35千克付款金额=4×35+10=150(元),购买8千克付款金额=5×8=40(元),一起购买付款金额=4×(35+8)+10=182(元), ∴150+40﹣182=8(元),答:一起购买可省8元.。
初二下册一次函数练习题
初二下册一次函数练习题一、填空题1. 若一次函数的图象过点(3, 5),且该函数的解析式为y=2x+1,则该函数过点(4, ?)。
2. 若一次函数的图象过点(2, 7),且该函数的解析式为y=kx+3,则该函数过点(5, ?)。
3. 若一次函数的图象过点(3, -4),且该函数的解析式为y=3x+b,则该函数过点(8, ?)。
4. 若一次函数的图象过点(1, k),且该函数的解析式为y=2x+3,则该函数过点(5, ?)。
5. 若一次函数的图象过点(2, -1),且该函数的解析式为y=4x+c,则该函数过点(-3, ?)。
二、解答题1. 画出 y=3x+2 的图象,并根据图象回答以下问题:a) 该函数的斜率是多少?b) 该函数的截距是多少?c) 该函数的自变量和因变量在什么区间内变化?d) 该函数的图象在坐标系中如何位置?e) 从图象上可以读出什么信息?2. 已知一次函数 f(x) = -2x + 5。
a) 求函数 f(x) 的解析式。
b) 求函数 f(x) 的图象过点 (3, y) 的 y 值。
c) 求函数 f(x) 的零点。
d) 求函数 f(x) 的自变量和因变量的取值范围。
e) 画出函数 f(x) 的图象。
3. 画出一次函数 y=-x+2 和 y=2x-1 的图象,并根据图象回答以下问题:a) 两个函数的斜率是否相等?b) 两个函数的截距是否相等?c) 两个函数的解析式中的系数与两个函数的斜率是否相等?d) 两个函数的图象是否平行?e) 两个函数的图象是否相交?初二下册一次函数练习题答案一、填空题1. 若一次函数的图象过点(3, 5),且该函数的解析式为y=2x+1,则该函数过点(4, 9)。
2. 若一次函数的图象过点(2, 7),且该函数的解析式为y=kx+3,则该函数过点(5, 17)。
3. 若一次函数的图象过点(3, -4),且该函数的解析式为y=3x+b,则该函数过点(8, 20)。
八年级数学(下)《一次函数》练习题(含答案)
八年级数学(下)《一次函数》练习题(含答案)一、选择题(每小题4分,共12分)1.(2013·眉山中考)若实数a,b,c满足a+b+c=0,且a<b<c,则函数y=cx+a的图象可能是( )2.把函数y=-2x+3的图象向下平移4个单位后的函数图象的解析式为( )A.y=-2x+7B.y=-6x+3C.y=-2x-1D.y=-2x-53.(2013·福州中考)A,B两点在一次函数图象上的位置如图所示,两点的坐标分别为A(x+a,y+b),B(x,y),下列结论正确的是( )A.a>0B.a<0C.b=0D.ab<0二、填空题(每小题4分,共12分)4.(2013·永州中考)已知一次函数y=kx+b的图象经过点A(1,-1),B(-1,3)两点,则k 0(填“>”或“<”).5.(2013·鞍山中考)在一次函数y=kx+2中,若y随x的增大而增大,则它的图象不经过第象限.6.若一次函数y=(2m-1)x+3-2m的图象经过第一、二、四象限,则m的取值范围是.三、解答题(共26分)7.(8分)如图,一次函数y=(m-3)x-m+1的图象分别与x轴,y轴的负半轴相交于点A,B.(1)求m的取值范围.(2)若该一次函数向上平移2个单位就过原点,求m的值.8.(8分)已知直线y=2x+4与x轴交于点A,与y轴交于点B,点P在坐标轴上,且PO=240.求△ABP的面积.【拓展延伸】9.(10分)已知一次函数y=(m-2)x-+1,问:(1)m为何值时,函数图象过原点?(2)m为何值时,函数图象过点(0,-3)?(3)m为何值时,函数图象平行于直线y=2x?答案解析1.【解析】选C.∵a+b+c=0且a<b<c,∴a<0,c>0.因为c>0,图象经过第一、三象限,又因为a<0,图象与y轴的交点在x轴的下方,所以C 符合.2.【解析】选C.把函数y=-2x+3的图象向下平移4个单位后的函数图象的解析式为y=-2x+3-4,即为y=-2x-1.3.【解析】选B.由图象可知x+a<x,y+b<y,所以a<0,b<0.4.【解析】从A(1,-1),B(-1,3)的坐标可看出:y随x的增大而减小,于是k<0.答案:<5.【解析】∵在一次函数y=kx+2中,y随x的增大而增大,∴k>0,∵2>0,∴此函数的图象经过第一、二、三象限,不经过第四象限.答案:四6.【解析】∵y=(2m-1)x+3-2m的图象经过第一、二、四象限,∴2m-1<0,3-2m>0,∴解不等式得:m<,m<,∴m的取值范围是m<.答案:m<7.【解析】(1)该函数图象经过第二、三、四象限,∴m-3<0,且-m+1<0,解得,1<m<3.即m的取值范围是1<m<3.(2)该一次函数向上平移2个单位的解析式为y=(m-3)x-m+1+2,即y=(m-3)x-m+3.把点(0,0)代入,得-m+3=0,解得,m=3.8.【解析】∵直线y=2x+4与x轴交于点A,与y轴交于点B,∴A(-2,0),B(0,4),当点P在x轴的正半轴上时,S△ABP=S△AOB+S△OBP=×2×4+×4×240=484;当点P在x轴的负半轴上时,S△ABP=S△OBP-S△AOB=×4×240-×2×4=476;当点P在y轴的正半轴上时,S△ABP=S△OAP-S△AOB=×2×240-×2×4=236;当点P在y轴的负半轴上时,S△A BP=S△OAP+S△AOB=×2×240+×2×4=244.答:△ABP的面积为484或476或236或244.9.【解析】(1)依题意,(0,0)满足函数解析式,即-+1=0.所以m2=4,m=±2.又因为m-2≠0,所以m≠2.所以当m=-2时,函数图象过原点. (2)依题意,把点(0,-3)的坐标代入函数解析式,得-3=-+1,解得m=±4,所以当m=±4时,函数图象过点(0,-3).(3)因为k1=k2,且b1≠b2时,两直线平行,所以m-2=2,-+1≠0,所以m=4.所以当m=4时,函数图象平行于直线y=2x.。
初二下册一次函数练习题(内含两份)Word版
一次函数练习题(一)一、选择题1.下列函数中,自变量x 的取值范围是x ≥2的是( ) A .y=2x - B .y=2x - C .y=24x - D .y=2x +·2x - 2.下面哪个点在函数y=12x+1的图象上( ) A .(2,1) B .(-2,1) C .(2,0) D .(-2,0) 3.下列函数中,y 是x 的正比例函数的是( ) A .y=2x-1 B .y=3x C .y=2x 2D .y=-2x+1 4.一次函数y=-5x+3的图象经过的象限是( ) A .一、二、三 B .二、三、四 C .一、二、四 D .一、三、四6.若一次函数y=(3-k )x-k 的图象经过第二、三、四象限,则k 的取值范围是( ) A .k>3 B .0<k ≤3 C .0≤k<3 D .0<k<3 7.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为( )A .y=-x-2B .y=-x-6C .y=-x+10D .y=-x-18.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量y (升)与行驶时间t (时)的函数关系用图象表示应为下图中的( )9.李老师骑自行车上班,最初以某一速度匀速行进,•中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y•(千米)与行进时间t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )10.一次函数y=kx+b 的图象经过点(2,-1)和(0,3),•那么这个一次函数的解析式为( ) A .y=-2x+3 B .y=-3x+2 C .y=3x-2 D .y=12x-3 二、填空题1.已知自变量为x 的函数y=mx+2-m 是正比例函数,则m=________,•该函数的解析式为_________.2.若点(1,3)在正比例函数y=kx 的图象上,则此函数的解析式为________. 3.已知一次函数y=kx+b 的图象经过点A (1,3)和B (-1,-1),则此函数的解析式为_________. 4.若解方程x+2=3x-2得x=2,则当x_________时直线y=x+•2•上的点在直线y=3x-2上相应点的上方.5.已知一次函数y=-x+a 与y=x+b 的图象相交于点(m ,8),则a+b=_________.6.若一次函数y=kx+b 交于y•轴的负半轴,•且y•的值随x•的增大而减少,•则k____0,b______0.(填“>”、“<”或“=”) 7.已知直线y=x-3与y=2x+2的交点为(-5,-8),则方程组30220x y x y --=⎧⎨-+=⎩的解是________.8.已知一次函数y=-3x+1的图象经过点(a ,1)和点(-2,b ),则a=________,b=______.9.如果直线y=-2x+k 与两坐标轴所围成的三角形面积是9,则k 的值为_____.10.如图,一次函数y=kx+b 的图象经过A 、B 两点,与x 轴交于点C ,则此一次函数的解析式为__________,△AOC 的面积为_________.三、解答题1.根据下列条件,确定函数关系式: (1)y 与x 成正比,且当x=9时,y=16;(2)y=kx+b 的图象经过点(3,2)和点(-2,1).2.一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售.售出土豆千克数与他手中持有的钱数(含备用零 钱)的关系如图所示,结合图象回答下列问题: (1)农民自带的零钱是多少?(2)降价前他每千克土豆出售的价格是多少?(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,问他一共带了多少千克土豆?xy1234-2-1CA-14321O3.如图所示的折线ABC•表示从甲地向乙地打长途电话所需的电话费y(元)与通话时间t(分钟)之间的函数关系的图象.(1)写出y与t•之间的函数关系式.(2)通话2分钟应付通话费多少元?通话7分钟呢?4.已知雅美服装厂现有A种布料70米,B种布料52米,•现计划用这两种布料生产M、N两种型号的时装共80套.已知做一套M型号的时装需用A种布料1.•1米,B种布料0.4米,可获利50元;做一套N型号的时装需用A种布料0.6米,B种布料0.•9米,可获利45元.设生产M型号的时装套数为x,用这批布料生产两种型号的时装所获得的总利润为y 元.(1)求y(元)与x(套)的函数关系式,并求出自变量的取值范围;(2)当M型号的时装为多少套时,能使该厂所获利润最大?最大利润是多?)一次函数练习题(二)一、填空题1.已知一个正比例函数的图象经过点(-2,4),则这个正比例函数的表达式是 .2.已知一次函数y=kx+5的图象经过点(-1,2),则k= .3.一次函数y= -2x+4的图象与x轴交点坐标是,与y轴交点坐标是,图象与坐标轴所围成的三角形面积是 .4.某种储蓄的月利率为0.15%,现存入1000元,则本息和y(元)与所存月数x之间的函数关系式是 .由上表得y与x之间的关系式是 .二、选择题1.下列函数(1)y=πx (2)y=2x-1 (3)y=1x(4)y=2-1-3x (5)y=x2-1中,是一次函数的有()(A)4个(B)3个(C)2个(D)1个2.已知点(-4,y1),(2,y2)都在直线y=-12x+2上,则y1 y2大小关系是( )(A)y1 >y2(B)y1 =y2(C)y1 <y2(D)不能比较3.一支蜡烛长20厘米,点燃后每小时燃烧5厘米,燃烧时剩下的高度n(厘米)与燃烧时间t(时)的函数关系的图象是( )4.已知一次函数y=kx+b的图象如图所示,则k,b的符号是( )(A)k>0,b>0 (B)k>0,b<0(C)k<0,b>0 (D)k<0,b<05.弹簧的长度y cm与所挂物体的质量x(kg)的关系是一次函数,右图所示,则弹簧不挂物体时的长度是( )(A)9cm (B)10cm (C)10.5cm (D)11cm6.若把一次函数y=2x -3,向上平移3个单位长度,得到图象解析式是( ) (A) y=2x (B) y=2x -6 (C ) y=5x -3 (D )y=-x -37.下面函数图象不经过第二象限的为 ( )(A) y=3x+2 (B) y=3x -2 (C) y=-3x+2 (D) y=-3x -2 8.阻值为1R 和2R 的两个电阻,其两端电压U 关于电流强度I 的函数图象如图,则阻值( )(A )1R >2R (B )1R <2R (C )1R =2R (D )以上均有可能三.解答题1.已知函数y=(2m+1)x+m -3(1)若函数图象经过原点,求m 的值(2) 若函数图象在y 轴的截距为-2,求m 的值 (3)若函数的图象平行直线y=3x –3,求m 的值 (4)若这个函数是一次函数,且y 随着x 的增大而减小,求m 的 取值范围.2.如图是某出租车单程收费y(元)与行驶路程x(千米)之间的函数关系图象,根据图象回答下列问题(1)当行驶8千米时,收费应为 元(2)求出收费y(元)与行使x(千米)(x ≥3)之间的函数关系式3.已知y+2与x-1成正比例,且x=3时y=4。
初二下册一次函数练习题
一次函数练习题(一)一、选择题1.下列函数中,自变量x 的取值范围是x ≥2的是( )A ... D .2.下面哪个点在函数y=12x+1的图象上( ) A .(2,1) B .(-2,1) C .(2,0) D .(-2,0) 3.下列函数中,y 是x 的正比例函数的是( ) A .y=2x-1 B .y=3x C .y=2x 2D .y=-2x+1 4.一次函数y=-5x+3的图象经过的象限是( ) A .一、二、三 B .二、三、四 C .一、二、四 D .一、三、四6.若一次函数y=(3-k )x-k 的图象经过第二、三、四象限,则k 的取值范围是( ) A .k>3 B .0<k ≤3 C .0≤k<3 D .0<k<3 7.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为( )A .y=-x-2B .y=-x-6C .y=-x+10D .y=-x-18.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量y (升)与行驶时间t (时)的函数关系用图象表示应为下图中的( )9.李老师骑自行车上班,最初以某一速度匀速行进,•中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y•(千米)与行进时间t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )10.一次函数y=kx+b 的图象经过点(2,-1)和(0,3),•那么这个一次函数的解析式为( )A .y=-2x+3B .y=-3x+2C .y=3x-2D .y=12x-3 二、填空题1.已知自变量为x 的函数y=mx+2-m 是正比例函数,则m=________,•该函数的解析式为_________.2.若点(1,3)在正比例函数y=kx 的图象上,则此函数的解析式为________. 3.已知一次函数y=kx+b 的图象经过点A (1,3)和B (-1,-1),则此函数的解析式为_________. 4.若解方程x+2=3x-2得x=2,则当x_________时直线y=x+•2•上的点在直线y=3x-2上相应点的上方.5.已知一次函数y=-x+a 与y=x+b 的图象相交于点(m ,8),则a+b=_________. 6.若一次函数y=kx+b 交于y•轴的负半轴,•且y•的值随x•的增大而减少,•则k____0,b______0.(填“>”、“<”或“=”)7.已知直线y=x-3与y=2x+2的交点为(-5,-8),则方程组30220x yx y--=⎧⎨-+=⎩的解是________.8.已知一次函数y=-3x+1的图象经过点(a,1)和点(-2,b),则a=________,b=______.9.如果直线y=-2x+k与两坐标轴所围成的三角形面积是9,则k的值为_____.10.如图,一次函数y=kx+b的图象经过A、B两点,与x轴交于点C,则此一次函数的解析式为__________,△AOC的面积为_________.三、解答题1.根据下列条件,确定函数关系式:(1)y与x成正比,且当x=9时,y=16;(2)y=kx+b的图象经过点(3,2)和点(-2,1).2.一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售.售出土豆千克数与他手中持有的钱数(含备用零钱)的关系如图所示,结合图象回答下列问题:(1)农民自带的零钱是多少(2)降价前他每千克土豆出售的价格是多少(3)降价后他按每千克元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,问他一共带了多少千克土豆3.如图所示的折线ABC•表示从甲地向乙地打长途电话所需的电话费y(元)与通话时间t(分钟)之间的函数关系的图象.(1)写出y与t•之间的函数关系式.(2)通话2分钟应付通话费多少元通话7分钟呢4.已知雅美服装厂现有A种布料70米,B种布料52米,•现计划用这两种布料生产M、N 两种型号的时装共80套.已知做一套M型号的时装需用A种布料1.•1米,B种布料0.4米,可获利50元;做一套N型号的时装需用A种布料0.6米,B种布料0.•9米,可获利45元.设生产M型号的时装套数为x,用这批布料生产两种型号的时装所获得的总利润为y元.(1)求y(元)与x(套)的函数关系式,并求出自变量的取值范围;(2)当M型号的时装为多少套时,能使该厂所获利润最大最大利润是多一次函数练习题(二)一、 填空题1. 已知一个正比例函数的图象经过点(-2,4),则这个正比例函数的表达式是 . 2. 已知一次函数y=kx+5的图象经过点(-1,2),则k= .3. 一次函数y= -2x+4的图象与x 轴交点坐标是 ,与y 轴交点坐标是 ,图象与坐标轴所围成的三角形面积是 .4. 某种储蓄的月利率为%,现存入1000元,则本息和y (元)与所存月数x 之间的函数关系式是 .5.某商店出售一种瓜子,其售价y (元)与瓜子质量x (千克)之间的关系如下表由上表得y 与x 之间的关系式是 .二、选择题1.下列函数(1)y=πx (2)y=2x-1 (3)y=1x (4)y=2-1-3x (5)y=x 2-1中,是一次函数的有( )(A )4个 (B )3个 (C )2个 (D )1个2.已知点(-4,y 1),(2,y 2)都在直线y=- 12x+2上,则y 1 y 2大小关系是( ))(A)y1 >y2(B)y1 =y2(C)y1 <y2(D)不能比较3.一支蜡烛长20厘米,点燃后每小时燃烧5厘米,燃烧时剩下的高度n(厘米)与燃烧时间t(时)的函数关系的图象是( )(A) (B)(C)4.已知一次函数y=kx+b的图象如图所示,则k,b的符号是( )(A)k>0,b>0 (B)k>0,b<0(C)k<0,b>0 (D)k<0,b<05.弹簧的长度y cm与所挂物体的质量x(kg)的关系是一次函数,右图所示,则弹簧不挂物体时的长度是( )(A)9cm (B)10cm (C)10.5cm (D)11cm6.若把一次函数y=2x-3,向上平移3个单位长度,得到图象解析式是( )(A)y=2x (B) y=2x-6(C) y=5x-3 (D)y=-x-37.下面函数图象不经过第二象限的为()(A) y=3x+2 (B) y=3x-2 (C) y=-3x+2 (D) y=-3x-28.阻值为和的两个电阻,其两端电压关于电流强度的函数图象如图,则阻值()(A)>(B)<(C)=(D)以上均有可能三.解答题1.已知函数y=(2m+1)x+m -3(1)若函数图象经过原点,求m的值(2) 若函数图象在y轴的截距为-2,求m的值(3)若函数的图象平行直线y=3x –3,求m的值(4)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.2.如图是某出租车单程收费y(元)与行驶路程x(千米)之间的函数关系图象,根据图象回答下列问题(1)当行驶8千米时,收费应为 元(2)求出收费y(元)与行使x(千米)(x ≥3)之间的函数关系式3.已知y+2与x-1成正比例,且x=3时y=4。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数练习题 ( 一)一、选择题1.下列函数中,自变量 x 的取值范围是 x ≥ 2 的是()A . y=2 x B . y= 12 C .y= 4 x 2D .y=x 2 · x 2x2.下面哪个点在函数y= 1x+1 的图象上()2A .( 2, 1)B .( -2 , 1)C .( 2, 0)D .( -2 ,0)3.下列函数中, y 是 x 的正比例函数的是()A . y=2x-1B. y=xC. y=2x 2D .y=-2x+134.一次函数 y=-5x+3的图象经过的象限是()A .一、二、三B .二、三、四C .一、二、四 D.一、三、四6.若一次函数 y=(3-k ) x-k的图象经过第二、三、四象限,则k 的取值范围是()A . k>3 B. 0<k ≤ 3 C . 0≤k<3D. 0<k<37.已知一次函数的图象与直线y=-x+1 平行,且过点(8, 2),那么此一次函数的解析式为()A . y=-x-2B. y=-x-6C. y=-x+10D. y=-x-18.汽车开始行驶时,油箱内有油 40 升,如果每小时耗油 5 升,则油箱内余油量y (升)与行驶时间 t (时)的函数关系用图象表示应为下图中的()9.李老师骑自行车上班,最初以某一速度匀速行进,? 中途由于自行车发生故障,停下修车耽误了几分钟, 为了按时到校, 李老师加快了速度, 仍保持匀速行进, 如果准时到校. 在 课堂上,李老师请学生画出他行进的路程y? (千米)与行进时间 t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是()10.一次函数 y=kx+b 的图象经过点( 2, -1 )和( 0, 3),? 那么这个一次函数的解析式为()A . y=-2x+3B. y=-3x+2C. y=3x-2 D. y= 1x-32二、填空题1.已知自变量为x 的函数 y=mx+2-m 是正比例函数,则m=________, ? 该函数的解析式为_________ .2.若点( 1, 3)在正比例函数 y=kx 的图象上,则此函数的解析式为 ________.3.已知一次函数 y=kx+b 的图象经过点A (1,3)和B ( -1 ,-1 ),则此函数的解析式为 _________.4.若解方程 x+2=3x-2 得 x=2,则当 x_________ 时直线 y=x+?2?上的点在直线y=3x-2 上相应点的上方.5.已知一次函数y=-x+a 与 y=x+b 的图象相交于点(m , 8),则 a+b=_________.6.若一次函数 y=kx+b 交于 y? 轴的负半轴, ? 且 y? 的值随 x? 的增大而减少, ? 则 k____0,b______0 .(填“ >”、“ <”或“=”)x y30 7.已知直线 y=x-3 与 y=2x+2 的交点为(-5 ,-8 ),则方程组y2的解是 ________.2x08.已知一次函数y=-3x+1 的图象经过点(a,1)和点( -2 ,b),则 a=________, b=______.9.如果直线y=-2x+k 10.如图,一次函数与两坐标轴所围成的三角形面积是y=kx+b 的图象经过A、B 两点,与9,则 k 的值为 _____.x 轴交于点C,则此一次函数的解析式为 __________ ,△ AOC的面积为 _________ .三、解答题1.根据下列条件,确定函数关系式:(1) y 与 x 成正比,且当x=9 时, y=16;(2) y=kx+b 的图象经过点(3, 2)和点( -2 , 1).2.一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售.售出土豆千克数与他手中持有的钱数(含备用零钱)的关系如图所示,结合图象回答下列问题:(1)农民自带的零钱是多少(2)降价前他每千克土豆出售的价格是多少(3)降价后他按每千克元将剩余土豆售完,这时他手中的钱(含备用零钱)是一共带了多少千克土豆26 元,问他3. 如图所示的折线ABC? 表示从甲地向乙地打长途电话所需的电话费间 t (分钟)之间的函数关系的图象.(1)写出 y 与 t?之间的函数关系式.(2)通话 2 分钟应付通话费多少元通话7 分钟呢y(元)与通话时4. 已知雅美服装厂现有 A 种布料 70 米, B 种布料 52 米, ? 现计划用这两种布料生产M、 N两种型号的时装共80 套.已知做一套M型号的时装需用 A 种布料 1.?1米,B种布料0.4米,可获利50 元;做一套N 型号的时装需用 A 种布料 0.6 米, B 种布料 0.?9米,可获利 45 元.设生产M型号的时装套数为x,用这批布料生产两种型号的时装所获得的总利润为 y 元.(1)求 y(元)与 x(套)的函数关系式,并求出自变量的取值范围;(2)当 M型号的时装为多少套时,能使该厂所获利润最大最大利润是多一次函数练习题(二)一、填空1.已知一个正比例函数的象点(-2,4),个正比例函数的表达式是.2.已知一次函数y=kx+5 的象点(-1 , 2), k=.3.一次函数y= -2x+4的象与x 交点坐是,与y 交点坐是,象与坐所成的三角形面是.4.某种蓄的月利率%,存入1000 元,本息和y(元)与所存月数x 之的函数关系式是.5.某商店出售一种瓜子,其售价y(元)与瓜子量 x(千克)之的关系如下表量 x(千克)1234⋯⋯售价 y(元)++++⋯⋯由上表得 y 与 x 之的关系式是.二、1.下列函数( 1) y=π x (2)y=2x-1(3)y=1(4)y=2-1 -3x(5)y=x2-1 中,是一x次函数的有()( A)4 个( B) 3 个(C) 2 个(D) 1 个12.已知点( -4 , y1),( 2,y2)都在直 y=-2 x+2 上, y1 y2 大小关系是()( A ) y 1 >y 2 ( B ) y 1 =y 2 ( C ) y 1 <y 2 ( D )不能比较3. 一支蜡烛长 20 厘米 , 点燃后每小时燃烧 5 厘米 , 燃烧时剩下的高度 n( 厘米 ) 与燃烧时间 t( 时 ) 的函数关系的图象是 ( )h ( 厘 h ( 厘 h ( 厘h ( 厘 米) 米) 米) 202020204t4 t44 t(A)( B )( C )( D )4. 已知一次函数 y=kx+b 的图象如图所示 , 则 k,b 的符号是 ( ) y(A)k>0,b>0(B)k>0,b<0(C)k<0,b>0(D)k<0,b<05. 弹簧的长度 y cm 与所挂物体的质量 x(kg) 的关系是一次函数右图所示 , 则弹簧不挂物体时的长度是 ( )(A)9cm(B)10cm (C)10.5cm (D)11cm x, 图象。
如2012 .56. 若把一次函数 y=2x - 3, 向上平移 3 个单位长度, 得到图象解析式是x ( cm )( )520 (A) y=2x(B) y=2x- 6( C ) y=5x - 3( D ) y=- x - 37.下面函数图象不经过第二象限的为()(A) y=3x+2 (B) y=3x- 2 (C) y=- 3x+2 (D) y=- 3x -28.阻值为和的两个电阻,其两端电压关于电流强度的函数图象如图,则阻值( )( A )> ( B )<( C )=( D )以上均有可能三.解答题1. 已知函数 y=(2m+1)x+m -3(1) 若函数图象经过原点 , 求 m 的值(2) 若函数图象在 y 轴的截距为- 2,求 m 的值( 3)若函数的图象平行直线 y=3x –3,求 m 的值( 4)若这个函数是一次函数 , 且 y 随着 x 的增大而减小 , 求 m 的取值范围 .2. 如图是某出租车单程收费 y( 元 ) 与行驶路程 x( 千米 ) 之间的函数关系图象 , 根据图象回答下列问题( 1)当行驶8 千米时 , 收费应为元( 2)求出收费y( 元 ) 与行使 x( 千米 )(x ≥ 3) 之间的函数关系式3. 已知 y+2 与 x-1 成正比例,且x=3 时 y=4。
(1)求 y 与 x 之间的函数关系式;(2)当 y=1 时,求 x 的值。
4.已知,函数 y 1 3k x 2k 1 ,试回答:( 1) k 为何值时,图象交x 轴于点(3, 0)4(2) k 为何值时, y 随 x 增大而增大5. 一次函数y=kx +b的自变量的取值范围是- 3 ≤x ≤6,相应函数值的取值范围是-5≤y≤-2,求这个一次函数的解析式。
6.为了加强公民的节水意识 , 合理利用水资源 , 各地采用价格调控手段达到节约用水的目的 , 某市规定如下用水收费标准: 每户每月的用水量不超过 6 立方米时 , 水费按每立方米 a 元收费 , 超过 6 立方米时 , 不超过的部分每立方米仍按 a 元收费 , 超过的部分每立方米按 c 元收费 , 该市某户今年9、 10 月份的用水量和所交水费如下表所示:月份用水量收费(元)(m3)设某户每月用水量x( 立方米 ), 应交水费95y( 元 )10927(1)求 a,c 的值(2)当 x≤6,x ≥ 6 时 , 分别写出 y 于 x 的函数关系式(3)若该户 11 月份用水量为 8 立方米 , 求该户 11 月份水费是多少元7.一农民带上若干千克自产的土豆进城出售, 为了方便 , 他带了一些零钱备用 , 按市场价售出一些后 , 又降价出售 , 售出的土豆千克数与他手中持有的钱数( 含备用零钱 ) 的关系 ,如图所示 , 结合图象回答下列问题.(1)农民自带的零钱是多少(2)试求降价前 y 与 x 之间的关系式(3)由表达式你能求出降价前每千克的土豆价格是多少(4)降价后他按每千克元将剩余土豆售完 , 这时他手中的钱 ( 含备用零钱 ) 是 26 元, 试问他一共带了多少千克土豆8.今年以来,广东大部分地区的电力紧缺,电力公司为鼓励市民节约用电,采取按月用电量分段收费办法.若某户居民每月应交电费 y( 元 ) 与用电量 x( 度 ) 的函数图像是一条折线 ( 如图所示 ) ,根据图像解答下列问题:(1)分别写出 0≤ x≤ 100 和 x≥ 100 时, y 与 x 的函数关系式;(2)利用函数关系式,说明电力公司采取的收费标准;9. 如图,直线 L:y1 2 与x轴、y轴分别交于A、B两点,在y轴上有一点C(0,x24) , 动点 M从 A 点以每秒 1 个单位的速度沿x 轴向左移动。