ANSYS坐标系以及工作平面几点心得
ANSYS中坐标系应用及总结

ANSYS中坐标系应用及总结ansys 坐标系节点坐标系用以确定节点的每个自由度的方向,每个节点都有其自己的坐标系,在缺省状态下,不管用户在什么坐标系下建立的有限元模型,节点坐标系都是与总体笛卡尔坐标系平行。
节点力和节点边界条件(约束)指的是节点坐标系的方向。
时间历程后处理器 /POST26 中的结果数据是在节点坐标系下表达的。
而通用后处理器 /POST1中的结果是按结果坐标系进行表达的。
例如: 模型中任意位置的一个圆,要施加径向约束。
首先需要在圆的中心创建一个柱坐标系并分配一个坐标系号码(例如CS,11)。
这个局部坐标系现在成为激活的坐标系。
然后选择圆上的所有节点。
通过使用 "Prep7> Move/Modify>Rotate Nodal CS to active CS", 选择节点的节点坐标系的朝向将沿着激活坐标系的方向。
未选择节点保持不变。
节点坐标系的显示通过菜单路径Pltctrls>Symbols>Nodal CS。
这些节点坐标系的X方向现在沿径向。
约束这些选择节点的X方向,就是施加的径向约束。
注意:节点坐标系总是笛卡尔坐标系。
可以将节点坐标系旋转到一个局部柱坐标下。
这种情况下,节点坐标系的X方向指向径向,Y方向是周向(theta)。
可是当施加theta方向非零位移时,ANSYS总是定义它为一个笛卡尔Y位移而不是一个转动(Y位移不是theta位移)。
有限元分析中的很多相关量都是在节点坐标系下解释的,这些量包括:输入数据:1 自由度常数2 力3 主自由度4 耦合节点5 约束方程等输出数据:1 节点自由度结果2 节点载荷3 反作用载荷等但实际情况是,在很多分析中,自由度的方向并不总是与总体笛卡尔坐标系平行,比如有时需要用柱坐标系、有时需要用球坐标系等等,这些情况下,可以利用ANSYS的“旋转节点坐标系”的功能来实现节点坐标系的变化,使其变换到我们需要的坐标系下。
ansys心得体会

ansys心得体会ANSYS是一款非常强大的通用有限元分析软件,它广泛应用于工程领域的结构力学、流体力学、热传导、电磁场等领域。
经过一段时间的学习和使用,我对ANSYS有了一些心得体会如下:首先,ANSYS的界面简洁直观,操作方便。
软件的界面布局清晰,功能模块分类明确,用户可以根据自己的需求选择相应的模块进行分析和计算。
在进行模型建立和后处理时,软件提供了丰富的工具和命令,可以轻松完成复杂的操作,大大提高了工作效率。
其次,ANSYS具有强大的模拟和计算能力。
软件内置了丰富的材料模型、加载模型和边界条件等,可以模拟各种复杂的结构和工况,并进行准确的分析和计算。
无论是进行静力学、动力学、流体力学还是热传导分析,ANSYS都能够提供准确可靠的结果,并帮助用户更好地理解和解决问题。
此外,ANSYS支持多种求解器和求解方法,可以根据问题的特点选择合适的求解器来进行计算。
软件提供了强大的预处理和后处理功能,可以对模型进行优化和修正,以减少计算误差和提高计算效率。
ANSYS还支持多种标准和规范,用户可以根据需要选择相应的标准进行分析和设计,使得计算结果更加准确和可靠。
另外,ANSYS还具有良好的可扩展性和可定制性。
软件支持用户自定义材料模型和加载模型,在满足特定需求和研究目标的同时,可以充分发挥软件的计算能力。
用户还可以编写自己的脚本和宏命令,自动化完成重复性工作,提高工作效率。
ANSYS还支持与其他软件的接口,可以方便地进行数据交换和共享,实现多领域、多物理场的耦合模拟。
总之,ANSYS是一款非常强大和灵活的工程分析软件,其功能强大、计算精确、操作简单以及可扩展性强等特点,使得它在工程领域得到广泛应用。
通过学习和使用ANSYS,我不仅对有限元分析理论有了更深入的理解,也对实际工程问题的分析与解决有了更好的把握。
希望在以后的工作和学习中,能够继续充分发挥ANSYS的优势,更好地应用于实际工程中。
ANSYS学习总结范文

ANSYS学习总结ANSYS学习总结范文1学习ANSYS需要认识到的几点相对于其他应用型软件而言,ANSYS作为大型权威性的有限元分析软件,对提高解决问题的能力是一个全面的锻炼过程,是一门相当难学的软件,因而,要学好ANSYS,对学习者就提出了很高的要求,一方面,需要学习者有比较扎实的力学理论基础,对ANSYS分析结果能有个比较准确的预测和判断,可以说,理论水平的高低在很大程度上决定了ANSYS使用水平;另一方面,需要学习者不断摸索出软件的使用经验不断总结以提高解决问题的效率。
在学习ANSYS的方法上,为了让初学者有一个比较好的把握,特提出以下五点建议:1.1将ANSYS的学习紧密与工程力学专业结合起来毫无疑问,刚开始接触ANSYS时,如果对有限元,单元,节点,形函数等《有限元单元法及程序设计》中的基本概念没有清楚的了解话,那么学ANSYS 很长一段时间都会感觉还没入门,只是在僵硬的模仿,即使已经了解了,在学ANSYS之前,也非常有必要先反复看几遍书,加深对有限元单元法及其基本概念的理解。
作为工程力学专业的学生,虽然力学理论知识学了很多,但对许多基本概念的理解许多人基本上是只停留于一个符号的认识上,理论认识不够,更没有太多的感性认识,比如一开始学ANSYS时可能很多人都不知道钢材应输入一个多大的弹性模量是合适的。
而在进行有限元数值计算时,需要对相关参数的数值有很清楚的了解,比如材料常数,直接关系到结果的正确性,一定要准确。
实际上在学ANSYS时,以前学的很多基本概念和力学理论知识都忘得差不多了,因而遇到有一定理论难度的问题可能很难下手,特别是对结果的分析,需要用到《材料力学》,《弹性力学》和《塑性力学》里面的知识进行理论上的判断,所以在这种情况下,复习一下《材料力学》,《弹性力学》和《塑性力学》是非常有必要的,加深对基本概念的理解,实际上,适当的复习并不要花很多时间,效果却很明显,不仅能勾起遥远的回忆,加深理解,又能使遇到的问题得到顺利的解决。
学习ansys的一些心得

学习ansys的一些心得(送给初学者和没有盟币的兄弟)1 做了布尔运算后要重画图形(删除实体)时:需拾取Utility Menu>Plot>Replot2 标点的输入是在英文状态下,“,”。
3 线段中点的建立:Modling>Creat>Keypoints>Fill between kps4 还不会环形阵列。
5 所谓杆系结构指的是长度远远大于其他方向尺寸(10:1)的构件组成的结构,如连续梁,桁架,钢架等。
6 静力学分析的结果包括结构的位移,应变,应力和反作用力等,一般是使用POST1处理(普通后处理器)和查看这些结果。
7 干系结构的静力学分析—平面桁架的建模,用NODE(节点),ELEMENT(元素)创建。
复杂体积的建模一般用KPS(关键点),LINE(Straight line—直线),再生成面,再生成体。
8 如果输入的数据单位是国际单位制单位,则输出的数据单位也是国际制单位。
9 创建正六边形:Creat>Areas>Polygon>Hexagon.指定中心和半径。
10 由面沿线挤出体:Modling>Operate>Extrude>Areas>Along Lines.11 Ansys中没有Undo命令.需及时保存数据库文件.Def Shape Only:只显示变形图.Def + Undeformed:显示未变形的图.Def + Udef egde:显示未变形的图形的边界.13 用等高线显示:Plot Results>Contour Plot>Nodal Solu.14 模态分析用于分析结构的振动特性,即确定结构的固有频率和振型,它也是谐响应分析,瞬态动力学分析以及谱分析等其他动力学分析的基础。
15 Ansys的模态分析是线型分析。
任何非线型分析,例如,塑性,接触单元等,即使被定义了也将被忽略。
16 平面桁架:Beam(2D elastic 3) 厚壁圆筒:Solid(8 node 13)>Options(K3—Plane strain)17 一般材料的弹性模量(EX):2e11.泊松比(PRXY):0.3.密度:780018 做完静力学分析后,再做模态分析时,要再次求解,同时预应力效果也应该打开(PSTRES,on).可以在命令行中输入:pstres,on 也可以用菜单路径:Solution>Analysis Type>Analysis Options.19 弹簧阻尼器单元:Combination-Spring damper 14.20 接触问题属于状态非线性问题,是一种高度非线性行为,需要较多的计算资源。
ANSYS的工作平面与坐标系

工作平面WP与坐标系Cartesian的区别?如在建模area 时,创建的area的位置随Workplane的改变而改变。
回答:工作平面和坐标系是有区别的,同时通过一些操作也可以将两者联系其来。
Working Plane 是一个2D作图平面,主要用于实体模型的定向和定位。
Working Plane是一个无限大的平面,有原点、2D坐标系、捕捉增量和显示栅格。
在同一时刻只能定义一个Working Plane。
Working Plane与坐标系无关,是独立的,如工作平面与激活的坐标系可以有不同的原点和旋转方向。
在进入ANSYS时,系统有一个默认的Working Plane,即Global Cartesion 的XY平面,Cartesion坐标系的X、Y轴就是该Working Plane的WX、WY轴。
详细分析参下:4.2. Working Plane Enhancements4.2.5. Working Plane TrackingIf you've used working planes in conjunction with coordinate systems to define your geometry, you've probably discovered that working planes arecompletely separate from coordinate systems. When you change or move the working plane, for instance, the coordinate system does not change to reflect the new working plane type or location. This can be frustrating if you are using a combination of picking (based on the working plane), and keyboard input of entities such as keypoints (based on active coordinate system). For instance, if you move the working plane from its default position, then wish to define a keypoint at the new origin of the working plane with keyboard input (that is K,1205,0,0,0), you'll find that the keypoint is located at the coordinate system origin rather than the working plane origin (see Figure 4.4: Working Plane/Coordinate System Mismatch)If you find yourself forcing the active coordinate system to follow theworking plane around as you model, consider using an option on the CSYS command or GUI path to do this automatically. The command CSYS,WP or CSYS,4 will force the active coordinate system to be of the same system type (for example, Cartesian) and in the same location as the working plane. Then, as long as you leave the active coordinate system be WP or 4, as you move the working plane, the coordinate system will move with it. The coordinate system is also updated if you change the type of working plane that you are using. For instance, if you change the working plane from Cartesian to polar, the active coordinate system will change from Cartesian to cylindrical.\To revisit the example discussed above, suppose that you wish to place a keypoint at the origin of your working plane after you've moved that plane. You moved your plane, as before, but this time you activated working plane tracking(CSYS,WP) before you moved the plane. Now, when you use the keyboard to locate your keypoint (that is K,1205,0,0,0), the keypoint is placed at the origin of the working plane because the coordinate system is in the same location as the working plane (see Figure 4.5: Matched Working Plane Coordinate System (CSYS,WP)).activated working plane tracking (CSYS,WP) :Utility Menu>WorkPlane>Change Active CS to>Working Plane。
ANSYS坐标系总结

ANSYS坐标系总结坐标系的种类创建有限元模型,需要通过坐标系对所要生成的模型进行宇间定位。
ansys根据不同的用途,用广提供了多种座标系,用户可以根据具体情况选择使用、●整体和局部坐标系:确定几何形状参数(节点、关键点等)在空间中的位置。
●节点坐标系:定父各节点的自由度方向和节点结果数据的取向。
●举元坐标系·定义单元各向异性材料性质、施加面荷载的方向和单元结果数据的取向。
●显示坐标系:决定几何体被列出和显示的坐标系,默认时为整体直角坐标系.●结果坐标系:节点或单元结果数据在列表或显示时所采用的特殊坐标系,默认时为整体坐标系。
1.整体与局部坐标系整体和局部座标系用来对几何体进行空间定位。
默认情况下,ANSYS使用的坐标系是整体的笛卡儿坐标系(即直角坐标系)。
为方便建立模型,根据模型特点;用户可以选择ANSYS预定义的几种(整体)座标系中的任意一种输入儿何数据—用户也可以使用自己定义的(局部)坐标系。
ANSYS的整体坐标系有二类:直角坐标系/Cartesian coordinate system,C,S,O)、柱座标系(Cylindrical coordinate system,C.S.1)和球座标系(Spherical coordinate system,C.S.2)、如图2、1所不,三类坐标系均属右手系,而且原点相互重合。
局部坐标系是用户自己建立的坐标系,其原点不同于"整体座标系的原点‘偏离一定距离),或其方位不同于整体坐标系(坐标轴偏移一定角度)。
每个坐标系均分配一个坐标号以标识,对用户创建的局部座标系,其坐标系号必须是不小于ll的整数。
可以按下面几种方式创建局部坐标系.根据整体座标系定义局部坐标系:命令:LOCAL,KCN,KCS.XC,YC,2C,THXY,THYZ,THZX,PARl,PAR2●GUI:Utility Menu(适用菜单)>Work Plane(工作平面)>Local Coordinate Systems(局部坐标系)>Create Local CS(创建局部坐标系统)>At Specified loc(在特定点)——OKKCN Ref number of new coord sys——输入自定义坐标的序号KCS Type of coordinate system——选择自定义坐标的类型(Cartesian(直角坐标系,笛卡尔) Cylindrical(柱) Spherical(球) toroidal(圆环))XC,YC,ZC Origin of coord system——输入自定义坐标系的原点THXY Rotation zbout local Z——输入自定义座标系旋转的角度THYZ Rotation zbout local XTHZX Rotation zbout local YFollowing used only elliptical ang toroidal systems-first parameter-second parameter——输入椭圆坐标系和圆环坐标系的参数例如:LOCAL,11,0,1.O,2.O,3.0,5.O,10.O,15.O--定义局部坐标系为11,原点为整体直角坐标系上的点(1.0,2.0,3.0),绕Z,X,Y轴旋转角度为5.0,10.0,15.0。
学习有限元ANSYS总结
学习ANSYS经验总结一学习ANSYS需要认识到的几点相对于其他应用型软件而言,ANSYS作为大型权威性的有限元分析软件,对提高解决问题的能力是一个全面的锻炼过程,是一门相当难学的软件,因而,要学好ANSYS,对学习者就提出了很高的要求,一方面,需要学习者有比较扎实的力学理论基础,对ANSYS分析结果能有个比较准确的预测和判断,可以说,理论水平的高低在很大程度上决定了ANSYS使用水平;另一方面,需要学习者不断摸索出软件的使用经验不断总结以提高解决问题的效率。
在学习ANSYS的方法上,为了让初学者有一个比较好的把握,特提出以下五点建议:(1)将ANSYS的学习紧密与工程力学专业结合起来毫无疑问,刚开始接触ANSYS时,如果对有限元,单元,节点,形函数等《有限元单元法及程序设计》中的基本概念没有清楚的了解话,那么学ANSYS 很长一段时间都会感觉还没入门,只是在僵硬的模仿,即使已经了解了,在学ANSYS之前,也非常有必要先反复看几遍书,加深对有限元单元法及其基本概念的理解。
作为工程力学专业的学生,虽然力学理论知识学了很多,但对许多基本概念的理解许多人基本上是只停留于一个符号的认识上,理论认识不够,更没有太多的感性认识,比如一开始学ANSYS时可能很多人都不知道钢材应输入一个多大的弹性模量是合适的。
而在进行有限元数值计算时,需要对相关参数的数值有很清楚的了解,比如材料常数,直接关系到结果的正确性,一定要准确。
实际上在学ANSYS时,以前学的很多基本概念和力学理论知识都忘得差不多了,因而遇到有一定理论难度的问题可能很难下手,特别是对结果的分析,需要用到《材料力学》,《弹性力学》和《塑性力学》里面的知识进行理论上的判断,所以在这种情况下,复习一下《材料力学》,《弹性力学》和《塑性力学》是非常有必要的,加深对基本概念的理解,实际上,适当的复习并不要花很多时间,效果却很明显,不仅能勾起遥远的回忆,加深理解,又能使遇到的问题得到顺利的解决。
anays坐标系总结
ANSYS坐标系总结2010-03-24 17:15直角坐标系在平面内画两条互相垂直,并且有公共原点的数轴。
其中横轴为X轴,纵轴为Y轴。
这样就说在平面上建立了平面直角坐标系,简称直角坐标系。
平面极坐标系坐标系的一种。
在平面上取一定点o,称为极点,由o出发的一条射线ox,称为极轴。
对于平面上任意一点p,用ρ表示线段op的长度,称为点p的极径或矢径,从ox到op的角度θε[0,2π],称为点p的极角或辐角,有序数对(ρ,θ)称为点p的极坐标。
极点的极径为零,极角不定。
除极点外,点和它的极坐标成一一对应。
柱面坐标系柱坐标系中的三个坐标变量是 r、φ、z。
与直角坐标系相同,柱坐标系中也有一个z变量。
各变量的变化范围是:0 ≤ r < +∞,0 ≤φ≤ 2π-∞<z<+∞其中x=rcosφy=rsinφz=z球坐标系(空间极坐标系)球坐标是一种三维坐标。
设P(x,y,z)为空间内一点,则点P也可用这样三个有次序的数r,φ,θ来确定,其中r为原点O与点P间的距离,θ为有向线段与z轴正向所夹的角,φ为从正z轴来看自x轴按逆时针方向转到有向线段的角,这里M为点P在xOy面上的投影。
这样的三个数r,φ,θ叫做点P的球面坐标,x=rsinθcosφy=rsinθsinφz=rcosθ/zhishi/184852.htmlANSYS坐标系以及工作平面的具体说明ANSYS中定义点(K)的坐标是在当前激活的坐标系(CSYS)中进行,包括由点生成线,与工作平面的位置以及全局坐标系无关。
而体(V)是在工作平面内(WP)进行,不依赖于当前激活的坐标系以及全局坐标系。
▲ANSYS中定义局部坐标系是通过LOCAL命令:LOCAL, KCN, KCS, XC, YC, ZC, THXY, THYZ, THZX, PAR1, PAR2其中,KCN为编号,从11开始,KCS为坐标系的类型,XC, YC, ZC值采用全局坐标系,为要定义的局部坐标系的原点位置,THXY, THYZ, THZX为局部坐标系相对全局坐标系沿着各个坐标轴旋转的角度。
ANSYS使用心得体会
ANSYS使用心得体会首先,熟练掌握基本操作是非常重要的。
ANSYS界面繁杂,功能众多,初学者往往会有些迷茫。
但只要掌握了基本操作,就能够快速上手。
比如,了解如何创建几何模型、应用合适的材料属性、添加边界条件等等。
这些基本操作的熟练掌握,能够极大地提高工作效率。
其次,合理的前处理工作是确保结果准确性的关键。
在进行有限元分析前,需要对几何模型进行前处理,包括划分单元网格、定义材料属性和边界条件等。
这些工作的准确性直接影响到最终的分析结果。
因此,需要对模型进行严谨的检查,确保网格质量良好、边界条件设置合理等。
同时,也需要考虑到实际工程情况,合理简化模型,减少计算量。
同时,了解不同分析方法的适用范围也非常重要。
ANSYS提供了很多分析方法和求解器,比如静力学分析、热传导分析、流体流动分析等。
不同的分析方法适用于不同的问题,需要根据实际情况选择合适的分析方法。
比如,对于涉及气体流动的问题,可以选择CFD模块进行流体流动仿真;而对于机械结构的分析,可以选择结构力学模块进行静力学分析等。
另外,对结果的合理解读也是非常重要的。
有限元分析的结果不仅仅是一个数字,它反映了结构或流场的内部应力、变形、温度等信息。
因此,对结果的合理解释能够帮助我们更好地理解问题,并进行后续的工程判断。
比如,在结构分析中,我们可以通过查看应力云图、变形云图等来判断结构的强度、刚度等;在流体流动分析中,我们可以通过查看流速、压力分布等来判断流场的稳定性、流动特性等。
最后,不断学习和探索是提高使用ANSYS技能的关键。
ANSYS是一个功能强大的软件,涉及的领域非常广泛。
通过参加培训课程、阅读相关文献等方式,可以不断提升自己的技能水平。
此外,要保持好奇心,勇于探索新的理论和方法。
只有不断学习和探索,才能够在日常工作中更好地应用ANSYS。
总之,ANSYS是一款非常优秀的工程分析软件,通过使用它,我对工程问题的理解能力得到了很大的提高。
熟练掌握基本操作、合理的前处理工作、选择合适的分析方法、合理解读结果以及不断学习和探索,是我使用ANSYS的一些心得体会。
Ansys工作平面与坐标系使用心得
Ansys工作平面与坐标系使用心得
1、要改变工作位置只需要变换工作平面位置即可,例如建平面,里面的名字就只让输入X和Y坐标,这是只要偏移工作平面的Z坐标,就可以在想要的Z坐标上画平面了。
2、坐标系,是操作的坐标系,如笛卡尔坐标系换到柱坐标系等等。
3、工作平面与坐标系联合使用才能方便操作,如偏移一个工作平面后,在
当前的工作平面建立一个局部坐标系,因为Ansys并不保存工作平面,当还需要这个工作平面时,再用开始创建的局部坐标系建一个工作平面即可(要记住建立的局部坐标系号,当然也可以让他显示出来)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ANSYS坐标系以及工作平面的具体说明
ANSYS中定义点(K)的坐标是在当前激活的坐标系(CSYS)中进行,包括由点生成线,与工作平面的位置以及全局坐标系无关。
而体(V)是在工作平面内(WP)进行,不依赖于当前激活的坐标系以及全局坐标系。
▲ANSYS中定义局部坐标系是通过LOCAL命令:LOCAL, KCN, KCS, XC, YC, ZC, THXY, THYZ, THZX, PAR1, PAR2
其中,KCN为编号,从11开始,KCS为坐标系的类型,XC, YC, ZC值采用全局坐标系,为要定义的局部坐标系的原点位置,THXY, THYZ, THZX为局部坐标系相对全局坐标系沿着各个坐标轴旋转的角度。
输入过程中未给出值的符号用0默认。
LOCAL的目的主要是为了建模方便以及选取便利。
LOCAL,11,0 !定义局部坐标系11,笛卡尔类型,原点在全局坐标(0,0,0) LOCAL,12,1 !定义局部坐标系12,圆柱类型,原点在全局坐标(0,0,0) LOCAL,13,2,0,1,2 !定义局部坐标系12,球坐标类型,原点在全局坐标(0,1,2)
【注意】:执行LOCAL以后,CSYS会自动激活为该坐标系(This local system becomes the active coordinate system).仅此命令有这个功能,其他的均要附加CSYS才能改变当前的激活坐标系。
▲ANSYS中激活坐标系采用CSYS命令:CSYS, KCN
ANSYS启动后CSYS默认为0(全局笛卡尔坐标),直到有LOCAL或者CSYS命令才改变。
这个命令影响到点(K)坐标的输入类型。
工作平面(WP)与全局坐标系重合。
CSYS,0 !激活全局笛卡尔坐标,原点在全局坐标的原点
CSYS,1 !激活全局圆柱坐标,原点在全局坐标的原点
CSYS,2 !激活全局球坐标,原点在全局坐标的原点
CSYS,4(WP) !激活工作平面,原点在工作平面的原点
CSYS,11 !激活先前定义的局部坐标11,原点在局部坐标的原点
▲ANSYS中定义工作平面的位置采用WPLANE或者WPAVE命令:
1)WPLANE, WN, XORIG, YORIG, ZORIG, XXAX, YXAX, ZXAX, XPLAN, YPLAN, ZPLAN
注:所有点的坐标均是全局坐标。
XORIG, YORIG, ZORIG为要定义的工作平面原点O的位置,坐标类型为全局坐标系,与当前激活的坐标类型(CSYS)无关。
XXAX, YXAX, ZXAX为确定局部坐标系的X轴的方向,坐标类型为全局坐标系,局部坐标系的X轴就沿着原点O与此点的连线方向。
XPLAN, YPLAN, ZPLAN为确定局部坐标系的Y轴方向,类型为全局坐标系,原点O与此点的连线确定Y轴的方向,不要求与OX垂直,只要成一弧度就可以确定。
wplane,,1,0,0 !将工作平面原点平行移动到全局坐标点(1,0,0),X和Y方向均
与全局坐标系相同。
wplane,,1,0,0,1,1,0 !将工作平面原点平行移动到全局坐标点(1,0,0),X方向为由全局坐标(1,0,0)指向(1,1,0),Y方向为保证Z方向与全局坐标系相同的方向。
wplane,,1,0,0,0.8,0.8,0,1.2,0.2,0 !将工作平面原点平行移动到全局坐标点(1,0,0),X方向为由全局坐标(1,0,0)指向(0.8,0.8,0),Y的方向由全局坐标(1,0,0)指向(1.2,0.2,0)的方向确定。
Z方向不一定与全局坐标系相同。
2)WPAVE, X1, Y1, Z1, X2, Y2, Z2, X3, Y3, Z3
将工作平面的坐标原点O移动到由上述三点所确定的平面的中心(坐标的算术平均)
注:所有坐标均是针对当前激活的坐标系类型而言。
wpave,0.5,0,0 !将工作平面的坐标原点移动到当前激活坐标系类型(假定为笛卡尔类型,CSYS,0)下的点(0.5,0,0)处
wpave,0.5,0,0,0.5,90,0 !将工作平面的坐标原点移动到当前激活坐标系类型(假定为笛卡尔类型,CSYS,1)下的点(0.5,0,0)与点(0.5,90,0)的连线(为该坐标系下的连线,不为直线,为圆弧形)中点处。
wpave,0.5,0,0,0.5,90,0,0.7,45,0 !将工作平面的坐标原点移动到当前激活坐标系类型(假定为笛卡尔类型,CSYS,1)下的点(0.5,0,0)、点(0.5,90,0)与点(0.7,45,0)的平面的几何中心处(形心)。