第三章 .2 、3图形的旋转中心对称

合集下载

第三章 中心对称图形(一)知识点

第三章  中心对称图形(一)知识点

第三章中心对称图形(一)1、图形的旋转(1)图形的旋转:在平面内,将一个图形绕一个定点转动一定的角度,这样的图形运动称为图形的旋转,这个定点称为旋转中心,旋转的角度称为旋转角。

旋转问题的三要素:旋转中心、旋转方向、旋转角度。

(2)基本性质:旋转前、后的图形全等;对应点到旋转中心的距离相等;每一对对应点与旋转中心的连线所成的角彼此相等。

2、中心对称与中心对称图形(1)中心对称:如果把一个图形绕着某一点旋转180度后能与另一个图形重合,那么我们就说,这两个图形成中心对称,这个点叫做对称中心,两个图形中的对应点叫做对称点。

(2)中心对称图形:平面内,如果把一个图形绕着某一点旋转180度后能与自身重合,那么这个图形叫做中心对称图形。

这个点就是它的对称中心。

(3)确定关于某点成中心对称的两个图形的对称中心的方法:方法一:连接任意一对对称点,取这条线段的中点,则该点为对称中心;方法二: 任意连接两对对称点,则这两条线段的交点即是对称中心;(4)如何画对称图形关键:作多边形各顶点关于对称中心的对称点成中心对称的两个图形:对应角、对应边相等,对应边还互相平行(或在同一直线上)3、平行四边形(1)概念:两组对边分别平行的四边形叫做平行四边形。

(2)性质:平行四边形对角相等,对边平行且相等,邻角互补,对角线相互平分。

(3)判定:①两组对边分别平行的四边形是平行四边形。

②两组对边分别相等的四边形是平行四边形。

③一组对边平行且相等的四边形是平行四边形。

④对角线互相平分的四边形是平行四边形。

(4)平行四边形中常用辅助线的添法1、连结对角线或平移对角线。

2、过顶点作对边的垂线构成直角三角形。

3、连结对角线交点与一边中点,或过对角线交点作一边的平行线,构成线段平行或中位线。

4、连结顶点与对边上一点的线段或延长这条线段,构造相似三角形或等积三角形。

5、过顶点作对角线的垂线,构成线段平行或三角形全等。

4、矩形(1)概念:有一个角是直角的平行四边形是矩形。

八年级数学北师大版初二下册--第三单元 3.3《中心对称》(第二课时)课件

八年级数学北师大版初二下册--第三单元 3.3《中心对称》(第二课时)课件

知1-讲
例2 如图,在下列图形中,中心对称图形有( C ) A.1个 B.2个 C.3个 D.4个
导引:这些图形绕某一点旋转一定角度都能与原图形完 全重合,但旋转180°后能与原图形重合的有3个, 只有最后一个图形不重合.
总结
知1-讲
正多边形图案是否为中心对称图形的识别方法: 边数为偶数的正多边形图案是中心对称图形,
知识点 1 中心对称图形的定义
知1-导
问题
(1)如图,将线段AB绕它的中点旋转180°,你 有什么发现?
A
B
可以发现:线段AB绕它的中点旋转180°后与 它BCD 绕它的两条对角线的交点O旋
转180°,你有什么发现?
A
D
O
B
C
Y 可以发现: ABCD 绕它的两条对角线的交点O旋
第三章 图形的平移与旋转
3.3 中心对称
第2课时 中心对称图形
1 课堂讲解 2 课时流程
中心对称图形的定义 中心对称图形的性质 中心对称图形的作图
逐点 导讲练
课堂 小结
作业 提升
我们上节课学习了中心对称的相关知识,中心对 称是指两个图形的关系,而把这两个图形看作一个整 体是什么图形呢?是我们这节课所要学习的中心对称 图形.
相应地,与边数为偶数的正多边形具有类似的特 征的图形是中心对称图形;边数为奇数的正多边 形或具有类似的特征的图形一定不是中心对称图 形.
1 下列哪些图形是中心对称图形?
知1-练
解:中心对称图形有(1)(2)(3).
(来自《教材》)
知1-练
2 下面扑克牌中,哪些牌的牌面是中心对称图形?
解:第一张和第三张牌的牌面是中心对称图形.
(2)本题还有其他分割方法,请分割试一试.

北师大版八年级下册数学课本目录

北师大版八年级下册数学课本目录

北师大版八年级下册数学课本目录北师大版数学教材是八年级数学教师进行教学、学生进行学习的最主要媒介,教材目录是哪些内容你知道吗?整理了关于北师大版八年级下册数学课本的目录,希望对大家有帮助!北师大版八年级下数学课本目录第一章三角形的证明1. 等腰三角形2. 直角三角形3. 线段的垂直平分线4. 角平分线回顾与思考复习题第二章一元一次不等式与一元一次不等式组1. 不等关系2. 不等式的基本性质3. 不等式的解集4.一元一次不等式5.一元一次不等式与一次函数6.一元一次不等式组回顾与思考复习题第三章图形的平移与旋转1. 图形的平移2. 图形的旋转3. 中心对称4. 简单的图案设计回顾与思考复习题第四章因式分解1. 因式分解2. 提公因式法3. 公式法回顾与思考复习题第五章分式与分式方程1. 认识分式2. 分式的乘除法3. 分式的加减法4. 分式方程回顾与思考复习题第六章平行四边形1. 平行四边形的性质2. 平行四边形的判定3. 三角形的中位线4. 多边形的内角和与外角和回顾与思考复习题综合与实践⊙生活中的“一次模型”综合与实践⊙平面图形的镶嵌总复习北师大版八年级下册数学知识点:三角形的证明一、全等三角形的判定定理:三边分别相等的两个三角形全等.(SSS)定理:两边及其夹角分别相等的两个三角形全等.(SAS)定理:两角及其夹边分别相等的两个三角形全等.(ASA)定理:两角分别相等且其中一组等角的对边相等的两个三角形全等.(AAS)定理:斜边和一条直角边分别相等的两个直角三角形全等.(HL)二、全等三角形的性质全等三角形对应边相等、对应角相等.三、等腰(边)三角形的性质定理:等腰三角形的两底角相等.(等边对等角)推论:等腰三角形顶角的平分线、底边上的中线及底边上的高线互相重合.定理:等边三角形的三个内角都相等,并且每个角都等于60°.四、等腰(边)三角形的判定定理:有两个角相等的三角形是等腰三角形.(等角对等边) 定理:三个角都相等的三角形是等边三角形.定理:有一个角等于60°的等腰三角形是等边三角形.五、反证法在证明时,先假设命题的结论不成立,然后推导出与定义、基本事实、已有定理或已知条件相矛盾的结果,从而证明命题的结论一定成立.这种证明方法称为反证法.六、直角三角形的性质定理:直角三角形的两个锐角互余.定理:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.勾股定理:直角三角形两条直角边的平方和等于斜边的平方.七、直角三角形的判定定理:有两个角互余的三角形是直角三角形.定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形.八、线段垂直平分线定理:线段垂直平分线上的点到这条线段两个端点的距离相等.定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上.三角形三条边的垂直平分线的性质:三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.九、角平分线定理:角平分线上的点到这个角的两边的距离相等.定理:在一个角的内部,到角的两边距离相等的点在这个角的平分线上.三角形三内角的平分线性质:三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等.十、互逆命题和互逆定理互逆命题:在两个命题中,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题.互逆定理:如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理称为互逆定理,其中一个定理称为另一个定理的逆定理.备注:一个命题一定有逆命题,但一个定理不一定有逆定理.十一、尺规作图的应用已知等腰三角形的底边及底边上的高作等腰三角形.。

旋转对称图形与中心对称图形

旋转对称图形与中心对称图形

初二数学讲义第三讲 旋转对称图形与中心对称图形一、主要知识点1.把—个图形绕旋转中心旋转一定(小于周角)角度后,所得图形能够与自身重合,这种图形称为旋转对称图形。

2.中心对称图形是绕某一中心点旋转180°后能与自身重合的旋转对称图形,这个中心点叫做对称中心;3.中心对称图形是旋转对称图形的特例。

4.中心对称的特征:如果两个图形成中心对称,那么对称中心在对应点的连线上且平分这条线段.两个图形的对应角相等,对应线段平行且相等,两个图形的形状和大小都一样。

5.中心对称与中心对称图形:中心对称与中心对称图形是两个不同的概念,它们既有区别又有联系。

区别:(1)中心对称是指两个图形的关系,中心对称图形是指一个具有某种性质的图形。

(2)成中心对称的两个图形的对称点分别在两个图形上,中心对称图形的对称点在一个图形上。

联系:若把中心对称图形的两部分看成两个图形,则它们成中心对称,若把中心对称的两个图形看成—个整体,则成为中心对称图形。

6.常见的中心对称图形有:①线段;②相交直线;③平行四边形;④矩形;⑤菱形;⑥正方形;⑦圆。

既是轴对称图形,又是中心对称图形的有:①线段;②相交直线;④矩形;⑤菱形;⑥正方形;⑦圆。

二、例题与练习例1.下列旋转对称图形中绕哪一个点旋转多少度与自身重合?答:例2.如图所示,该图按顺时针绕旋转中心旋转,可与自身重合的度数是 ( ) (A )60°; (B )180°; (C )120°; (D )320°。

答:(1)(3) (4) (5)例3.如图,△ABC 为等边三角形,D 为△ABC 内一点,△ABD 经过旋转后到达△ACE 的位置。

(1)旋转中心是点 ;(2)旋转角度是 ;(3)△ADE 是 三角形。

例4、如图,已知△ABC 和点O ,画出△A ’B ’C ’,使△A ’B ’C ’和△ABC 关于点O 成中心对称。

解:(1)连结 并延长 到 ,使 = ,于是得到点 的对称点 ;(2)同样画出点 和点 的对称点 和 ; (3)顺次连结 、 、 。

苏科版八上 3.2中心对称与中心对称图形 案例1

苏科版八上 3.2中心对称与中心对称图形 案例1

中心对称与中心对称图形连云港市新海实验中学乔乃英义务教育课程标准实验教科书数学(苏科版)八年级上册第三章第2节第1课时一、教学目标:1.了解中心对称图形及其基本性质2.在探索的过程中培养学生有条理地表达,及与人交流合作的能力。

3.经历观察、操作、发现、探究中心对称图形的有关概念和基本性质的过程,培养学生观察能力和动手操作能力,感受对称、匀称、均衡的美感,积累一定的审美体验。

二、学情分析:学生刚学习了图形的旋转,知道图形旋转的性质。

中心对称是一种特殊的旋转,所以学生能理解它的概念和性质。

在日常生活中,也可以找到中心对称的实例。

学生对此有感性认识,因此中心对称的概念无论从知识储备还是从认知水平较能为学生所接受。

所以但学生在今后的学习中容易和轴对称概念混淆。

所以有必要在本节课把两种概念进行比较,加深学生对中心对称的理解。

也渗透类比思想方法。

三、教学重、难点:理解中心对称的概念及其基本性质。

四、教学准备:多媒体教学设备。

学生课前准备较透明的白纸、图钉。

五、教学过程:(一)创设问题情境1.利用课件展示几幅图片,(1)几幅轴对称的图片。

(2)几幅中心对称的图片师:(1)中的两个图形有什么特点? 生:都成轴对称。

师:什么样的两个图形成轴对称?生:……师:(2)中的两个图形是不是成轴对称?生:不是。

师:(2)中的两个图形有什么特点? 他们怎么才能重合呢?生:把其中一个图形绕着一个点旋转180°能和另一个图形重合。

(利用几组对称图片的播放,引导学生对轴对称进行复习,通过学生对轴对称概念、性质的回答来了解学生对该问题的掌握程度,也为下一步中心对称与轴对称概念的区别的教学作铺垫。

同时让学生自己发现,有几组图片也是对称,但却不是轴对称,这是一种新的对称,从而引出课题)2实践操作师:让我们一起来操作。

拿出课前准备的较透明的白纸,图钉,按书上的要求进行操作。

(通过实际操作活动,激发学生的好奇心,和主动学习的欲望,为学生能概括出中心对称的概念,作铺垫。

中心对称与旋转的联系和区别

中心对称与旋转的联系和区别

中心对称与旋转的联系和区别
中心对称和旋转都是几何变换中常见的概念,它们之间有一些联系和区别。

联系:
1. 中心对称和旋转都是二维平面上的变换操作,可以改变图形的位置、形状和方向。

2. 中心对称和旋转都是保持图形不变的操作,即变换后的图形与变换前的图形相似。

3. 在一些特定情况下,中心对称和旋转可以相互转化。

例如,一个图形绕着某个点旋转180度后,可以与它的中心对称图形重合。

区别:
1. 中心对称是将图形关于某个中心点进行对称,保持图形形状不变,但可能改变图形的位置和方向。

旋转是将图形绕着某个点旋转一定角度,保持图形位置不变,但可能改变图形的形状和方向。

2. 中心对称的对称轴是直线,而旋转的旋转轴是一个点。

3. 中心对称的变换方式只有一种,即图形关于中心点的对称。

旋转的变换方式有多种,可以是顺时针或逆时针旋转,可以是任意角度的旋转。

4. 中心对称可以是任意次数的对称,而旋转可以是任意角度的旋转。

综上所述,中心对称和旋转虽然有一些联系,但在变换方式、变换效果和变换特点上都存在一些区别。

第三章《中心对称图形》之基础知识、基本问题和基本方法分解

第三章《中心对称图形》之基础知识、基本问题和基本方法分解

第三章《中心对称图形》之基础知识、基本问题和基本方法《图形的旋转》一、图形的旋转应抓住“旋转中心”和“旋转的角度”这两个要素1、如图,正方形ABCD中,M是CD的中点.(1)△ABN是顺时针方向旋转△ADM得到的,则旋转中心是:,旋转角度等于。

(2)△CEM也是旋转△ADM得到的,则旋转中心是:,旋转角度等于。

MABDC E N二、要注意旋转中图形相容部分面积的求法:1、如图,正方形的一个顶点与边长为1的正方形的中心O重合,则两个正方形的重叠部分的面积等于O《中心对称》一、首先应该明确,中心对称也是一种旋转,从“旋转中心”和“旋转的角度”这两个要素来看,中心对称的“旋转中心”我们称作“”,而中心对称的“旋转的角度”是确定的度,换言之,一个图形绕一个定点旋转一定的角度能与自身重合,它还不一定就是中心对称图形,只有绕一个点旋转度能与自身重合时,我们才能称这个图形是中心对称图形,试问,等边三角形是中心对称图形吗?。

因为等边三角形绕它的中心旋转180度后与自身重合(填“能”或“不能”),当然,等边三角形绕它的中心至少旋转度后就能与自身重合了。

二、类比学习是很好的记忆和理解知识的方法,所以我们还应该将“轴对称”与“中心对称”结合起来加以区别,如下表:轴对称中心对称有一条对称轴(是直线)有一个(是一个点)图形沿对称轴对折后重合(即:翻折180°) 图形绕旋转度后重合对称点的连线被对称轴且对称点连线经过,且被平分因此,轴对称和中心对称是有区别的,但这并不排除有些图形具有双重对称性,填表(正确的打钩)线段角等腰梯形等边三角形平行四边形矩形菱形正方形圆轴对称中心对称三、对于中心对称的性质,要能准确的对一些“命题”进行判断:1、关于中心对称的两个图形是全等形()对2、两个能够互相重合的图形一定成中心对称()错3、成中心对称的两个图形一定能够互相重合()对4、把一个图形绕着某一点旋转一定的角度,如果它能与另一个图形重合,那么这两个图形一定成中心对称(错)5、如果两个图形的对应点连线都经过某一点,那么这两个图形关于这一点成中心对称()错6、如果两个图形成中心对称,那么对称点的连线必过对称中心()对;7、如果两个图形成中心对称,那么这两个图形的形状和大小完全相同()对;8、如果两个图形成中心对称,那么这两个图形的对应线段一定互相平行()错;9、如果两个图形成中心对称,那么将一个图形围绕对称中心旋转某个角度后必与另一个图形重合(错)10、如果两个图形对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点成中心对称(对)《平行四边形》一、基础知识:1、定 义: 两组对边分别 的四边形叫做平行四边形2、性质定理: 边:平行四边形的对边平行且相等 角:平行四边形的 相等, 对角线:平行四边形的对角线3、判定定理: 边:两组对边分别 的四边形叫做平行四边形 两组对边分别 的四边形是平行四边形 一组对边 的四边形是平行四边形 角:两组对角分别 的四边形是平行四边形 对角线:对角线 的四边形是平行四边形 二、基本问题与基本方法:1、平行四边形是 对称图形,两条对角线的交点是它的 ,进一步的,经过两条对角线的交点任意一条直线都将平行四边形分成了两部分全等 (1)如图,口ABCD 的对角线相交于点O ,一条直线经过点O ,交AD 于点E,交BC 于点F ,试问OE=OF 吗?为什么?FE OD A CB(2)如图,沿平行四边形的一条边,剪去一个矩形,你能只画一条直线,就将该多边形分成面积相等的两部分吗?试试看。

八年级数学下册第三章图形的平移与旋转知识总结北师大版

八年级数学下册第三章图形的平移与旋转知识总结北师大版

第三章图形的平移与旋转一、平移定义和规律1平移的定义:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移.关键:a. 平移不改变图形的形状和大小(也不会改变图形的方向,但改变图形的位置)。

b. 图形平移三要素:原位置、平移方向、平移距离。

2平移的规律(性质):经过平移,对应点所连的线段平行且相等,对应线段平行且相等、对应角相等。

注意:平移后,原图形与平移后的图形全等。

3简单的平移作图:平移作图要注意:①方向;②距离。

整个平移作图,就是把整个图案的每一个特征点按一定方向和一定的距离平行移动。

二、旋转的定义和规律1旋转的定义:在平面内,将一个图形饶一个定点沿某个方向转动一个角度,这样的图形运动称为旋转。

这个定点称为旋转中心;转动的角称为旋转角.关键:a。

旋转不改变图形的形状和大小(但会改变图形的方向,也改变图形的位置)。

b。

图形旋转四要素:原位置、旋转中心、旋转方向、旋转角。

2旋转的规律(性质):经过旋转,图形上的每一个点都绕旋转中心沿相同方向转动了相同的角度,任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等.(旋转前后两个图形的对应线段相等、对应角相等。

)注意:旋转后,原图形与旋转后的图形全等.3简单的旋转作图:旋转作图要注意:①旋转方向;②旋转角度。

整个旋转作图,就是把整个图案的每一个特征点绕旋转中心按一定的旋转方向和一定的旋转角度旋转移动。

三、中心对称1.中心对称的有关概念:中心对称、对称中心、对称点把一个图形绕着某一点旋转180°,如果它能够与另一个图形重合,那么称这两个图形关于这点对称,也称这两个图形成中心对称,这个点叫做对称中心,两个图形中的对应点叫做对称点。

2.中心对称的基本性质:(1).成中心对称的两个图形具有图形旋转的一切性质。

(2).成中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。

3.中心对称图形的有关概念:中心对称图形、对称中心把一个平面图形绕某一点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形.这个点就是它的对称中心。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

- 1 -
3.2图形的旋转
一、基本知识
1、旋转的概念:在平面内,将一个图形绕一个定点按某个方向转动一个角度,这样的图形运动称为旋转。

2、旋转不改变图形的形状和大小,只改变图形的位置。

2、旋转的三个要素:旋转中心、旋转的角度和旋转的方向。

3、旋转的性质(1)一个图形和它经过旋转所得的图形中,对应点到旋转中心的距离相等。

(2)任意一组对应点与旋转中心的连线所成的角都等于旋转角。

(3)对应线段相等;对应角相等。

(4)旋转对应点之间的运动轨迹是一条弧。

5、旋转、平移、轴对称的异同。

6、简单的旋转作图。

二、基础知识巩固与拓展 1、如图3.2.1,△ABC 绕O 点旋转后,顶点 A 的对应点为A 1,试确定旋转后的三角形。

2、如图3.2.2,P 为等边△ABC 内的一点,若将△PAB 绕点A 逆时针旋转到△P 1AC 的位置,则∠PAP 1的度数等于 度 。

3、如图3.2.3,P 为等边△ABC 内部一点,∠APB 、∠BPC 、∠CPA 的大小之比是5:6:7,将△APB 绕顶角A 逆时针旋转60°到△ACQ 的位置,且∠APQ=∠AQP=60°,则△PQC 的三个内角之比等于 。

4、从1点到1点25分,分针转过了 度;时针转过了 度;1点25分时刻时针与分针的夹角等于 度。

5、如图3.2.4,分别以正方形ABCD 的边AD 和DC 为直径画两个半圆交于点O 。

若正方形的边长为10cm ,则阴影部分面积为 。

6、如图3.2.5,在直角△OAB 中,∠AOB=30°,将△AOB 绕点O 逆时针方向旋转100°得到△OA 1B 1,则∠A 1OB 等于 度。

7、如图3.2.6的正方形的面积为16,观察如下的操作并回答问题:
(1)连对角线,把正方形分成2个三角形,如图1,则每个三角形的面积等于多少?
(2)再画另一条对角线,两对角线将正方形分成4个小三角形,如图2,则每个小三角形的面积是多少?这4个小三角形之间是什么关系?
(3)点O 为正方形的中心,将两条互相垂直于点O 的直线绕O 点旋转形成四个小四边形,如图3,这4个小四边形间有何关系?每一个四边形的面积是多少?
3.3 中心对称
一、基本知识点
1、中心对称:把一个图形绕着某一个点旋转180°,它能够与另一个图形重合,那么这两个图形关于这个点对称或中心对称。

(对称中心概念
2、中心对称是对两个图形来说的,它表示两个图形之间的对称性。

3、中心对称特征:(1)对应点所连的线段经过对称中心,且被对称中心平分;(2)成对称中心的两个图形,对应线段平行(或在一条直线上)且相等;(3)成中心对称的两个图形全等;
4、中心对称图形:(1)定义把一个图形绕某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形。

这个点叫做它的对称中心。

(2)任何一条经过对称中心的直线都把一个中心对称图形分成全等的两部分。

(3)中心对称图形上两对对应点连线的交点就是对称中心且对称中心是他们的公共中点。

5、旋转对称图形:把一个图形绕某一个点旋转一定角度后,能够与原来的图形重合,那么这个图形叫做旋转对称图形。

(1)旋转对称图形不一定是中心对称图形。

(2)旋转对称图形旋转的角度小于360°。

(3)旋转对称图形满足的三个条件:①具有同一个旋转中心;②对应点到旋转中心的距离相等③相邻对应点与旋转中心的连线的夹角都相等。

二、知识巩固与拓展
1、如图3.3.1是4×4正方形网格,请在其中选择一个白色的正方形并涂黑,使图中黑色部分是一个中心对称图形。

2、如图3.3.2,一个矩形内有任意一个圆,请你用一条直线同时
将圆和长方形的面积二等分,并说明作图的道理和方法。

3、如图3.3.3,在△ABC 中,AB=5,BC=4,AC=3,点O 在AC 的延长线上,且OC=4。

(1)试作出△ABC 关于点O 成中心对称的△A ′B ′C ′。

(2)连A ′B ,AB ′,四边形ABA ′B ′是中心对称图形吗? (3)3)求四边形ABA ′B ′面积。

4、如图用6根一样长的小棒搭成如图3.3.4的图形,试移动AC,BC 这两根小棒,使6根小棒组成中心对称图形;若移动AC,DE 这两根,能不能也达到要求呢?(画出图形)。

5、一块方角形钢材如图3.3.5所示,请你用两种不同的方法用一条直线将其分为面积相等的
A B C O A 1 3.2.1图 A B C P P 1
3.2.2图 A B
C Q
P
3.2.3图 3.2.4图
A B C D O
A B O B 1 A 1 3.2.5图 A B C D 1图
A B C D
O
2图 O A B C D 3图 3.3.1图 3.3.2图
A B
C O
3.3.3图 A B
D C E
3.3.4 3.3.5图
两部分。

- 2 -。

相关文档
最新文档