风力发电机组齿轮箱的故障及其分析

合集下载

风力发电机组齿轮箱故障诊断

风力发电机组齿轮箱故障诊断

风力发电机组齿轮箱故障诊断
齿轮箱是风力发电机组的核心组件之一,它起到传递风轮动力、调节转速和扩大扭矩等重要作用。

齿轮箱的故障会影响整个发电系统的运行和效率,因此对齿轮箱故障进行及时、准确的诊断至关重要。

齿轮箱的故障可以分为机械故障和电气故障两大类。

机械故障包括齿轮磨损、断裂、齿面剥落、轴承损坏等,电气故障包括电机绕组短路、绝缘击穿等。

下面将从机械故障和电气故障两个方面介绍齿轮箱故障的诊断方法。

机械故障的诊断主要依靠振动和声学信号分析。

振动分析可以通过安装振动传感器来收集齿轮箱的振动信号,然后利用谱分析技术对信号进行处理和分析,可以识别出齿轮磨损、断裂、齿面剥落等故障类型。

声学信号分析则是利用齿轮箱产生的噪声信号,通过声学传感器收集并进行信号处理和分析,可以判断其声音频谱的异常情况,以诊断齿轮箱是否存在故障。

电气故障的诊断主要通过电气参数检测和绝缘测试。

电气参数检测可以通过测量电机的电压、电流和温度等参数来判断其工作状态。

当电气参数出现异常时,可能是电机绕组短路、绝缘击穿等电气故障的信号。

绝缘测试是通过在电机绕组和地之间加压,检测绝缘阻抗来判断绝缘状态的好坏。

如果绝缘阻抗不达标,可能会导致电气故障的发生。

还可以利用红外热像仪进行温度检测,通过观察齿轮箱各个部位的温度分布,可以判断是否存在异常的热点,在故障预警方面起到了重要的作用。

风力发电机组齿轮箱故障的诊断主要依靠振动和声学信号分析、电气参数检测和绝缘测试等技术手段。

综合利用这些方法,可以及时发现齿轮箱故障,并进行相应的维修和保养,提高风力发电机组的可靠性和运行效率。

风力发电机齿轮箱常见故障及预防措施

风力发电机齿轮箱常见故障及预防措施

胶合是相啮合齿面在啮合处的边界膜受到破坏,导致接触齿面金属融焊而撕落齿面上的金属的现象,很可能是由于润滑条件不好或有干涉引起,适当改善润滑条件和及时排除干涉起因,调整传动件的参数,清除局部载荷集中,可减轻或消除胶合现象。

二、轴承损坏轴承是齿轮箱中最为重要的零件,其失效常常会引起齿轮箱灾难性的破坏。

轴承在运转过程中,套圈与滚动体表面之间经受交变负荷的反复作用,由于安装、润滑、维护等方面的原因,而产生点蚀、裂纹、表面剥落等缺陷,使轴承失效,从而使齿轮副和箱体产生损坏。

据统计,在影响轴承失效的众多因素中,属于安装方面的原因占16%,属于污染方面的原因也占16%,而属于润滑和疲劳方面的原因各占34%。

使用中70%以上的轴承达不到预定寿命。

因而,重视轴承的设计选型,充分保证润滑条件,按照规范进行安装调试,加强对轴承运转的监控是非常必要的。

通常在齿轮箱上设置了轴承温控报警点,对轴承异常高温现象进行监控,同一箱体上不同轴承之间的温差一般也不超过15゜C,要随时随地检查润滑油的变化,发现异常立即停机处理。

三、断轴断轴也是齿轮箱常见的重大故障之一。

究其原因是轴在制造中没有消除应力集中因素,在过载或交变应力的作用下,超出了材料的疲劳极限所致。

因而对轴上易产生的应力集中因素要给予高度重视,特别是在不同轴径过渡区要有圆滑的圆弧连接,此处的光洁度要求较高,也不允许有切削刀具刃尖的痕迹。

设计时,轴的强度应足够,轴上的键槽、花键等结构也不能过分降低轴的强度。

保证相关零件的刚度,防止轴的变形,也是提高轴的可靠性的相应措施。

四、油温高齿轮箱油温最高不应超过80゜C,不同轴承间的温差不得超过15゜C。

一般的齿轮箱都设置有冷却器和加热器,当油温底于10゜C时,加热器会自动对油池进行加热;当油温高于65゜C时,油路会自动进入冷却器管路,经冷却降温后再进入润滑油路。

如齿轮箱出现异常高温现象,则要仔细观察,判断发生故障的原因。

首先要检查润滑油供应是否充分,特别是在各主要润滑点处,必须要有足够的油液润滑和冷却。

风力发电机组齿轮箱故障诊断

风力发电机组齿轮箱故障诊断

风力发电机组齿轮箱故障诊断1. 引言1.1 背景介绍齿轮箱是风力发电机组中的重要组成部分,承担着转动力传递和速度变换的功能。

由于长期运行和恶劣环境条件的影响,齿轮箱容易出现各种故障,影响发电机组的正常运行和发电效率。

及时准确地诊断齿轮箱故障尤为重要。

随着风力发电技术的飞速发展,齿轮箱故障诊断技术也在不断创新和完善。

通过对齿轮箱故障进行精确诊断,可以有效提高风力发电机组的运行可靠性和安全性,降低运维成本,延长设备寿命,最大限度地实现风能资源的利用。

本文旨在对风力发电机组齿轮箱故障诊断方法进行概述,探讨常见的齿轮箱故障特征,介绍故障诊断技术和原理,分析振动信号分析方法和温度监测技术的应用,并总结齿轮箱故障诊断的重要性和未来发展趋势。

希望通过本文的研究,为风力发电行业的技术进步和发展贡献一份力量。

1.2 研究目的研究目的:本文旨在探讨风力发电机组齿轮箱故障诊断的方法与技术,提供有效的故障诊断方案,为风力发电行业提供更加可靠、高效的运维保障。

通过对常见齿轮箱故障特征、故障诊断技术及原理、振动信号分析方法、温度监测技术等方面进行综合分析与研究,旨在提高齿轮箱故障的预警能力,减少故障带来的损失和影响,保障风力发电机组的安全稳定运行。

本研究还将探讨齿轮箱故障诊断的重要性,展望未来发展趋势,为该领域的深入研究和技术创新提供参考和借鉴。

通过本文的研究成果,期望能够为风力发电行业提供更加科学、可靠的齿轮箱故障诊断解决方案,推动行业的持续发展与进步。

1.3 研究意义风力发电机组在风能资源利用中起到至关重要的作用。

齿轮箱作为风力发电机组的核心部件之一,其故障诊断对于发电机组的正常运行至关重要。

研究齿轮箱故障诊断技术可以帮助提前发现和解决齿轮箱的故障问题,保障风力发电机组的运行稳定性和有效性。

齿轮箱故障诊断的研究意义主要体现在以下几个方面:在风力发电行业中,齿轮箱故障是一种常见的故障类型,及时准确地诊断齿轮箱故障可以有效降低故障率,延长齿轮箱的使用寿命,减少维修成本,提高发电效率;齿轮箱故障一旦发生,可能会导致整个风力发电机组的停机维修,给发电厂和电网带来损失,影响电力供应的稳定性,因此研究齿轮箱故障诊断技术对于保障电力供应的可靠性具有重要意义;齿轮箱故障诊断技术的研究也可以促进风力发电行业技术的进步和发展,推动我国清洁能源产业的发展。

风力发电机组齿轮箱故障分析及检修讲解

风力发电机组齿轮箱故障分析及检修讲解
风力发电机组齿轮箱故障分析及检修
一、风力发电机组齿轮箱简单介绍 二、常见一般故障的处理 三、常见齿轮箱大修故障分析 四、风电齿轮箱的使用、维护和检查
一、风力发电机组齿轮箱简单介绍
(一)、风力发电机组中的齿轮箱是一个重要的机械部件,其 主要作用是将风轮在风力作用下所产生的动力传递给发电机并使 其得到相应的转速。使齿轮箱的增速来达到发电机发电的要求。 (二)、认识齿轮箱从铭牌开始
2、由温控阀控制大小循环。 从图中可以看出它有此齿轮箱只有 一个双速电机控制齿轮油冷却循环系统 ,在Vestas600kW Hansen与Valmet的 齿轮箱上在三轴轴端装配了一个与三轴 同步的齿轮油泵,当风力机启动并网后 齿轮油泵达到额定转速开始工作。在温 控阀的作用下齿轮油循环,当油温达到 45度时温控阀慢慢开启,冷却电机在低 带状态下运行,此时大小循环同时存在 。当油温达到55度时,大循环开启,冷 却电机在高速下运行。此时齿轮油的压 力在压力阀的控制下运行在 0.5bar(+_0.2bar)的范围内,保证有一 定的压力向齿轮啮合面与轴承喷射齿轮 油。当温度下降时,冷却电机先向低速 降速,同时温控阀也在向小循环过渡。 当风力机停机后齿轮油循环停止。这样 的系统非常智能化,比较节能。
每一台齿轮箱都会有一 个铭牌,铭牌就是它的 身份。 从右下图可以看出它的生 产厂家、生产地、传动比、 出厂序列号、型号、功率、 输入输出转速、齿轮油粘 度指标、齿轮油质量、齿 轮箱重量 右上图是齿轮箱选用的油 类型,加油量、加油时间
(三)、几种常见的风力机齿轮箱内部结构
一级行星两级平行轴斜齿,齿轮 箱分两个部分,行星齿箱部分与 斜齿箱部分。箱体特点:体积小 ,传递功率大,运行平稳,加工 困难。这样的齿轮箱有 Vestas600kW Hansen箱体, NegMicon750kW Flender箱体。

齿轮箱的维护与故障分析

齿轮箱的维护与故障分析

齿轮箱的维护与故障分析齿轮箱维护和故障分析概述风⼒发电机组由叶⽚、增速齿轮箱、风叶控制系统、刹车系统、发电机、塔架等组成。

其中增速齿轮箱作为其传动系统起到动⼒传输的作⽤,使叶⽚的转速通过增速齿轮箱增速,使其转速达到发电机的额定转速,以供发电机能正常发电。

⾼可靠性和良好的可维修性的增速齿轮箱是风⼒发电机组的关键技术保障。

所以,对海阳、莱州、开发区风场齿轮箱故障现象统计如下表:液压系统和齿轮的损坏三⼤⽅⾯。

齿轮和轴承在转动过程中它们实际都是⾮直接接触,这中间是靠润滑油建成油膜,使其形成⾮接触式的滚动和滑动,这时油起到了润滑的作⽤。

虽然它们是⾮接触的滚动和滑动,但由于加⼯精度等原因是其转动都有相对的滚动摩擦和滑动摩擦,这都会产⽣⼀定的热量。

如果这些热量在它们转动的过程中没有消除,势必会越集越多,最后导致⾼温烧毁齿轮和轴承。

因此齿轮和轴承在转动过程中必须⽤润滑油来进⾏冷却。

所以润滑油⼀⽅⾯起润滑作⽤,另⼀⽅⾯起冷却作⽤。

对于风电齿轮箱,对于所有的齿轮和轴承我们都要采⽤强制润滑。

因为强制润滑可以进⾏监控,⽽飞溅润滑是监控不了的。

从安全性考虑采⽤强制润滑。

⼀、风电齿轮的损坏类型及其判断下表为齿轮轮齿的主要故障形式及其原因根据裂纹扩展的情况和断齿原因断齿包括过载折断(包括冲击折断)疲劳折断以及随机断裂等断齿常由细微裂纹逐步扩展⽽成。

疲劳折断发⽣从危险截⾯(如齿根)的疲劳源起始的疲劳裂纹不断扩展,使轮齿剩余截⾯上的应⼒超过其极限应⼒,造成瞬时折断其根本原因是轮齿在过⾼的交变应⼒重复作⽤,在疲劳折断处,是贝状纹扩展的出发点并向外辐射产⽣的原因有很多。

主要是材料选⽤不当,齿轮精度过低,热处理裂纹,磨削烧伤,齿根应⼒集中等等因此在设计时需要考虑传动的动载荷谱,优选齿轮参数,正确选⽤材料和齿轮精度,充分保证加⼯精度消除应⼒集中集中因素等等。

过载折断总是由于作⽤在轮齿上的应⼒超过其极限应⼒,导致裂纹迅速扩展,常见的原因有轴承损坏突然冲击超载轴弯曲或较、⼤硬物挤⼊啮合区等断齿断⼝有两种形式⼀种呈放射状花样的。

风力发电增速齿轮箱的故障模式与失效机理分析

风力发电增速齿轮箱的故障模式与失效机理分析

风力发电增速齿轮箱的故障模式与失效机理分析引言:随着清洁能源的不断发展,风力发电已成为重要的可再生能源之一。

而风力发电机组中的齿轮箱作为核心部件,其工作稳定与否直接影响到整个发电系统的可靠性和效率。

因此,对风力发电增速齿轮箱的故障模式与失效机理进行深入分析与研究具有重要的意义。

1. 风力发电增速齿轮箱概述风力发电增速齿轮箱是将风轮转动传递到发电机,通过齿轮传动实现了速度提升和适应性调节。

通常,风力发电机组中的齿轮箱由输入轴、输出轴、搅拌轴、主要增速齿轮和中间齿轮等组成。

齿轮箱承受巨大扭矩和变化的负荷,同时还要经受长时间高速旋转和多种工况的复杂应力。

2. 风力发电增速齿轮箱存在的故障模式针对风力发电增速齿轮箱的实际运行情况和失效监测数据,我们可以总结出以下故障模式:(1)齿面磨损和齿轮刚度失效:长期运行使得齿面磨损,导致齿轮传动效率下降,并可能引起齿轮档位的跳动或失效。

此外,过载或异常负荷可能导致齿面疲劳剥落。

(2)轴承故障:由于风力发电机组工作条件恶劣,轴承往往承受较大的径向和轴向负荷,会出现疲劳、磨损或裂纹故障。

(3)油封泄漏:长时间高速运转和温度变化可能导致油封失效和泄漏,从而影响齿轮箱的润滑和密封性能。

(4)齿轮箱壳体破裂:齿轮箱长时间受到高速旋转和不均匀的负荷作用,壳体可能会发生应力集中和破裂现象。

(5)润滑油污染和变质:齿轮箱内部油封失效、油泵故障等可能导致润滑油的污染和变质,进而影响整个齿轮箱的润滑效果。

3. 风力发电增速齿轮箱的失效机理(1)疲劳失效:长时间高速运转和工作负荷的变化将导致齿面和齿根积累应力,并逐渐导致疲劳裂纹产生和扩展,最终导致齿轮断裂。

(2)磨损失效:由于齿轮与齿轮之间的相对滑动,以及颗粒污染、油膜破裂等因素,齿面和齿根将发生磨损,严重时可导致齿面失效。

(3)弯曲失效:由于外部负荷作用或轴承故障,齿轮可能会发生弯曲变形,造成传动不平稳,甚至引起齿面和齿根的过载破坏。

风力发电机组齿轮箱故障诊断

风力发电机组齿轮箱故障诊断

风力发电机组齿轮箱故障诊断风力发电机组是一种利用风能转换成电能的设备,其核心部件之一就是齿轮箱。

齿轮箱作为风力发电机组的动力传动部分,承载着巨大的负荷,长期运行在恶劣的环境条件下,因此容易出现各种故障。

及时准确地诊断齿轮箱故障,对于保障发电机组的安全稳定运行至关重要。

本文将从齿轮箱的结构特点、常见故障及诊断方法等方面对风力发电机组齿轮箱故障诊断进行详细介绍。

一、风力发电机组齿轮箱的结构特点风力发电机组齿轮箱一般由多级齿轮传动系统、轴承、润滑系统等部件组成。

多级齿轮传动系统是齿轮箱的核心部分,其结构主要包括主轴、大中小齿轮和联轴器等。

多级齿轮传动系统通过齿轮的啮合传递风机叶片转动的动能,最终驱动发电机发电。

风力发电机组齿轮箱具有重载、高转速、长期运行等特点,因此对齿轮箱的可靠性、稳定性和耐久性要求较高。

1. 齿轮疲劳断裂:因受到风力风向改变、过载等因素的影响,齿轮箱内部齿轮传动系统容易出现疲劳断裂现象。

2. 轴承故障:风力发电机组齿轮箱中的轴承承受着来自齿轮转动的巨大压力,长期运行容易导致轴承损坏,出现卡滞、摩擦、过热等故障。

3. 润滑系统故障:风力发电机组齿轮箱的润滑系统对齿轮传动系统的润滑起着至关重要的作用,一旦润滑不良或润滑系统故障,会导致齿轮箱温升过高、润滑油泄漏等严重后果。

4. 联轴器故障:联轴器作为齿轮箱和发电机之间的连接部件,承载着转矩传递和角位移补偿的功能,一旦联轴器出现故障会导致齿轮箱无法正常传动,严重影响风力发电机组的发电效率。

1. 振动测试法:通过振动传感器监测齿轮箱的振动情况,如果出现异常振动,往往是齿轮箱内部故障的信号。

3. 润滑油分析法:定期对齿轮箱内的润滑油进行取样分析,检测润滑油的品质和磨损颗粒的含量,可以判断齿轮箱内部是否存在异常磨损和故障。

4. 热像测试法:利用热像仪测试齿轮箱的温升情况,异常的温升往往与齿轮箱内部的故障有关。

5. 拆解检查法:定期对齿轮箱进行拆解检查,检查齿轮、轴承、联轴器等关键部件的磨损情况,及时发现并处理问题部件。

风力发电机组齿轮箱故障分析及检修讲解

风力发电机组齿轮箱故障分析及检修讲解

风力发电机组齿轮箱故障分析及检修讲解风力发电机组是利用风能转化为电能的设备,其中齿轮箱是发电机组中重要的传动部件。

齿轮箱负责将风力转换为旋转力,并将其传递给发电机,使发电机能够产生电能。

然而,由于长时间的运转以及风力的影响,齿轮箱存在着一定的故障风险。

因此,了解齿轮箱的故障原因、分析方法以及检修技巧对于保障风力发电机组的正常运行非常重要。

齿轮箱故障的分析可以从以下几个方面展开:1.齿轮箱噪音异常:齿轮箱在运行时会产生一定的噪音,但如果噪音异常变大或频率异常变化,则可能是齿轮磨损或断齿的表现。

此时可以通过检查齿轮箱中的润滑油是否正常,通过观察润滑油中是否有金属颗粒,来判断齿轮是否磨损严重。

2.齿轮箱温升过高:齿轮箱在运行时会产生一定的热量,但如果温升过高,则可能是因为油温过高或润滑不良,导致齿轮磨损加剧。

此时可以通过检查润滑系统是否正常工作,及时更换润滑油并增加润滑剂的供给,以降低齿轮箱的温升。

3.齿轮箱振动异常:齿轮箱在运行时会产生一定的振动,但如果振动异常明显,则可能是因为齿轮箱本身结构松动或齿轮配合不良,导致振动加剧。

此时可以通过检查齿轮箱的固定结构是否稳固,及时修复松动的部件,并进行齿轮的重新配合。

4.齿轮箱漏油:齿轮箱在运行时会消耗一定的润滑油,但如果漏油现象明显或周期过短,则可能是油封密封不良或油封磨损导致的。

此时可以通过检查油封是否正常工作,并及时更换磨损严重的油封。

针对齿轮箱故障的检修,可以按照以下步骤进行:1.停机检查:当发现齿轮箱存在异常故障时,首先应该停止风力发电机组的运行,以免故障进一步恶化。

2.润滑油更换:检查润滑油的油质和量,如有必要可以进行润滑油更换。

同时,检查润滑系统是否正常工作,确保润滑油的供给正常。

3.齿轮箱分解:将齿轮箱的外壳拆除,仔细检查各个部件的磨损情况和结构是否松动。

对于严重磨损或断齿的齿轮,应及时更换。

4.润滑系统维护:对润滑系统进行维护,包括检查和更换润滑油、清洗油路、更换油封等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

毕业设计(论文)2010 级风能与动力技术专业题目:风力发电机组齿轮箱的故障及其分析毕业时间:学生姓名:X X X指导教师:X X X班级:10风电(1)班目录一、绪论 (1)(一)风力发电机组齿轮箱故障诊断的意义 (1)二、风力发电机组齿轮箱的故障诊断 (2)(一)风力发电机组齿轮箱的常见故障模式及机理分析 (2)(二)齿轮箱典型故障振动特征与诊断策略 (6)(三)针对齿轮箱不同故障的改进措施 (9)三、结论 (12)参考文献: (12)致谢 (13)风力发电机组齿轮箱的故障及其分析摘要:随着全球经济的发展和人口的增长,人类正面临着能源利用和环境保护两方面的压力,能源问题和环境污染日益突出。

风能作为一种蕴藏量丰富的自然资源,因其使用便捷、可再生、成本低、无污染等特点,在世界范围内得到了较为广泛的使用和迅速发展。

风力发电己成为世界各国更加重视和重点开发的能源之一。

随着大型风力发电机组装机容量的增加,其系统结构也日趋复杂,当机组发生故障时,不仅会造成停电,而且会产生严重的安全事故,造成巨大的经济损失。

本论文先探讨了课题的实际意义以及风力发电机常见的故障模式,在这个基础上对齿轮箱故障这种常见故障做了详尽的阐述,包括引起故障的原因、如何识别和如何改进设计。

通过对常见故障的分析,给风力发电厂技术维护提供故障诊断帮助,同时也给风电设备制造和安装部门提供理论研究依据。

关键词:风力发电机;故障模式;齿轮箱;故障诊断一、绪论(一)风力发电机组齿轮箱故障诊断的意义风电对缓解能源供应,改善能源结构、保护环境和电力工业的持续发展意义重大。

这些年来,风电机组在我国得到了广泛的安装使用。

随着大型风力发电机组装机容量的增加,其系统结构也日趋复杂,风力发电机的故障也成为一个不容忽视的问题。

随着风电机组运行时间的加长,目前这些机组陆续出现了故障(包括风轮叶片、变流器、齿轮箱、变桨轴承,发电机、以及偏航系统等都有),导致机组停止运行。

当机组发生故障时,不仅会造成停电,而且会产生严重的安全事故。

风电机组的部分部件一旦损坏,在风电场无法修复,必须运到专业厂家进行修理。

因其维修费用高、周期长、难度大,势必给风电场造成巨大的经济损失,严重影响了风电的经济效益。

风电机组的输出功率是波动的,可能影响电网的电能质量,如电压的偏差、电压的波动和闪变、谐波以及周期电压脉动等。

当风电机组发生故障时,输往电网的有、无功功率发生波动,且造成电网的谐波污染和电压波动。

伴随的危害有照明灯光的闪烁、电视机画面质量下降、电动机转速不均和影响电子仪器、计算机、自动控制设备的正常工作状况等。

风电机组的故障也会导致风力发电机从额定出力状态自动退出并网状态,风力发电机组的脱网会导致电网电压的突降,而机端较多的电容补偿高于脱网前风电场的运行电压,引起了电网电压的急剧下降,从而影响接在同一个电网上的其它电气设备的正运行,甚至会影响到整个电网的稳定与安全。

风力发电机组因为长期工作在野外、暴晒和雷雨等恶劣环境中,其损坏率高达40%-50%。

同时,由于风力发电设备的维护技术跟不上风力发电的发展速度,一旦其关键零部件(如齿轮、轴承、叶片等)发生故障,将会使设备损坏、发电机停机,带来严重的经济损失。

例如,2006年,德国北部奥尔登堡的一台风力发电机的转子叶片被强风刮断,长达10米的沉重碎片飞到20米远的田地里,造成了严重的事故;2007年,荣成市港西镇附近的风力发电机因齿轮油泄漏,导致其周围5.07亩的海参饲养池受到污染,造成海参大量死亡。

风机维护主要分为定期检修和日常排故维护两种方式。

定期的维护保养可以让设备保持最佳状态,并延长风机的使用寿命,是重要的维护方式。

但是定期维修可能存在维修不足、维修过剩的问题。

日常排故维护是在风机出现故障时及时去现场进行设备检修,为了避免因故障造成意外停电,还要求维护人员能够实时监测风机的运行状态并预测、诊断故障。

随着野外装机规模的不断扩大,风力发电机系统的故障诊断也就显得越来越重要了。

风力发电系统主要由将风能转换为机械能的风力机和将机械能转换为电能的发电机两大部分组成,其中发电机是整个系统的核心,直接影响整个系统的性能、效率和供电质量,同时也是系统中易发生故障的部分。

由于风力发电机受到的风场切片风复杂多变,且长期工作在野外、暴晒和雷雨等的恶劣环境中,易发生多种机械或电气故障。

因此开展对风力发电机故障诊断的研究,及时发现系统的早期故障并进行维修,提高风力发电机组运行的可靠性,对保证风力发电机的正常安全运行具有重大的实际意义。

二、风力发电机组齿轮箱的故障诊断(一)风力发电机组齿轮箱的常见故障模式及机理分析风力发电机组中的齿轮箱是一个重要的机械部件,它安装在距地面几十米高架塔之上狭小的机舱内,其主要功能是将风轮在风力作用下所产生的动力传递给发电机并使其得到相应的转速,它的正常运行关系到整机的工作性能。

通常风轮的转速很低,远达不到发电机发电所要求的转速,必须通过齿轮箱齿轮的增速作用来实现,故也将齿轮箱称之为增速箱。

齿轮箱系统一般包括齿轮、轴承、轴和箱体4部分。

其零部件如齿轮、轴和轴承的加工工艺复杂,装配精度高,再加上风力发电机常常在高速重载荷下连续工作,而其状态的好坏往往直接影响到机械设备的正常工作,故对齿轮传动系统进行诊断是故障诊断技术问世以来一直受到人们普遍重视的课题之一。

风电技术的快速发展和单机容量的增加,使得风力机的规模越来越大,对其性能的要求也越来越高。

随着大重型机组的投入运行,齿轮箱的故障频率也随之增加。

据统计,一台风力机故障停机时间的20%是由齿轮箱故障引起的。

一旦齿轮箱出现问题,除了高额的维修费用,长时间停机造成的发电量损失也是巨大的。

风力发电机组齿轮箱常见故障按发生部位分主要有齿轮损伤,轴承损坏,断轴等。

齿轮损伤主要包括:齿面磨损、齿面胶合和擦伤、齿面接触疲劳、弯曲疲劳与断齿。

轴承损坏主要包括磨损失效、疲劳失效、腐蚀失效、断裂失效、压痕失效、胶合失效。

轴的故障主要有轴弯曲,轴向窜动,轴不对中等。

1.齿面磨损齿轮的磨损部位主要是齿的啮合和渐开线工作面以及齿轮两端平面。

磨损一般包括四种。

第一种是正常的磨损或磨光它是由接触表面上的金属以一定的速率缓慢的损耗,在齿轮的预期寿命内它对正常的使用将不影响。

第二种是中度磨损,它可能产生于重负荷的轮齿,是金属的较快的损耗。

该种磨损一定产生破坏, 也会降低使用寿命,并可能加大噪音。

第三种则是破坏性磨损,它是齿面的损伤、损坏或由于磨损而造成齿廓的变化以至于达到非常严重的程度, 显著的降低齿轮的寿命,平稳性也将受到破坏。

第四种是磨料性磨损,它是角于在轮齿的啮合中进入细颗粒而引起损坏。

这种颗粒可能是来自铸造后遗留的砂或片落,齿轮箱中未清除的污物, 油中或空气中的杂质以及轮齿表面或轴承剥下的金属颗粒。

根据不同的磨损机理,可将齿轮的磨损划分为四个基本类型:磨粒磨损、粘着磨损、疲劳磨损和腐蚀磨损。

磨粒磨损主要是梨沟和微观切削作用,粘着磨损与表面分子作用力和摩擦热密切相关。

疲劳磨损是在循环应力作用下表面疲劳裂纹萌生和扩展的结果,而腐蚀磨损则是由环境介质的化学作用产生。

在实际的磨损现象中,通常是几种形式的磨损同时存在,而且一种磨损发生后往往诱发其他形式的磨损。

轮齿磨损使齿廓改变,侧隙加大,以至由于齿轮过度减薄导致断齿。

2.胶合和擦伤对于重载和高速传动的齿轮,齿面工作区温度很高,一旦出现润滑条件不良,齿面间的油膜便会消失,一个齿面的金属会熔焊在与之啮合的另一个齿面上,在齿面上形成垂直于节线的划痕状胶合。

新齿轮未经磨合便投入使用时,常在某一局部产生这种现象,使齿轮擦伤。

胶合是相啮合齿面在啮合处的边界膜受到破坏,导致接触齿面金属融焊而撕落齿面上的金属的现象。

对于重载和高速齿轮的传动,一旦润滑条件不良,由于齿面工作区温度很高,齿面间的油膜就会受到影响甚至会消失,长时间工作之后,一个齿面的金属会熔焊在与之啮合的另一个齿面上,这样就会在齿面上形成垂直于节线的划痕状胶合。

3.接触疲劳与点蚀齿轮在实际啮合过程中,既有相对滚动,又有相对滑动,而且相对滑动的摩擦力在节点两侧的方向相反,从而产生脉动载荷。

载荷和脉动力的作用使齿轮表面的深处产生脉动循环变化的剪应力,当这种剪应力超过齿轮材料的疲劳极限时,在接触表面会产生疲劳裂纹,并随着裂纹的扩展,最终导致齿面剥落细小金属片,在齿面上形成小坑,称之为点蚀。

当点蚀现象严重时可连成片,形成齿面上金属块剥落。

此外,材质不均匀或局部擦伤,也容易在某一齿上首先出现接触疲劳,产生剥落。

疲劳裂纹的产生是由于齿轮在实际啮合过程中,既有相对滚动,又有相对滑动,从而产生脉动载荷,进而产生剪应力,这种力使齿轮表面层深处产生脉动循环变化使齿轮表面层深处产生脉动循环变化,当这种剪应力超过齿轮材料的疲劳极限时,接触表面将产生裂纹。

在过大的接触剪应力和应力循环次数作用下,轮齿表面或其表层下面产生疲劳裂纹并进一步扩展而造成的齿面损伤,其表现形式有破坏性点蚀、早期点蚀、齿面剥落、和表面压碎等。

特别是破坏性点蚀,常在齿轮啮合线部位出现,并且不断扩展,使齿面严重损伤,磨损也会加大,最终导致断齿失效。

正确进行选择好材质,齿轮强度设计,选择合适的精度配合,提高安装精度,保证热处理质量,改善润滑条件等,是解决齿面疲劳的根本措施。

4.弯曲疲劳与断齿在齿轮运行过程中,承受传动载荷的轮齿如同悬臂梁,其根部受到脉冲循环的弯曲应力作用最大,当这种周期性应力超过齿轮材料的疲劳极限时,会产生根部裂纹,并逐步扩展,当剩余轮齿无法承受载荷时就会发生断齿现象。

齿轮由于工作中严重的冲击、偏载以及材质不均匀也可能会引起断齿。

根据裂纹扩展的情况和断齿原因。

断齿包括过载折断(包括冲击折断)、疲劳折断以及随机断裂等,断齿常由细微裂纹逐步扩展而成。

疲劳折断发生从危险截面(如齿根)的疲劳源起始的疲劳裂纹不断扩展,使轮齿剩余截面上的应力超过其极限应力,造成瞬时折断。

其根本原因是轮齿在过高的交变应力重复作用,在疲劳折断的处,是贝状纹扩展的出发点并向外辐射。

产生的原因有很多,主要是材料选用不当、齿轮精度过低、热处理裂纹、磨削烧伤、齿根应力集中等等。

因此在设计时需要考虑传动的动载荷谱,优选齿轮参数,正确选用材料和齿轮精度,充分保证加工精度消除应力集中集中因素等等。

过载折断总是由于作用在轮齿上的应力超过其极限应力,导致裂纹迅速扩展,常见的原因有轴承损坏、突然冲击、超载轴弯曲或较大硬物挤入啮合区等。

断齿断口有两种形式,一种呈放射状花样的裂纹扩展区,一种是断口处有平整的塑性变形,断口副可以拼合。

仔细检查可看到齿面精度太差,材质的缺陷,轮齿根部未作精细处理等。

在设计中应采取必要的措施,充分考虑预防过载因素。

安装时防止箱体变形,防止硬质异物进入箱体内等等。

相关文档
最新文档