2015-2019高考数学全国卷真题(不等式选讲)

合集下载

2015年全国统一高考数学试卷(理科)(新课标i)附详细解析

2015年全国统一高考数学试卷(理科)(新课标i)附详细解析

2015年全国统一高考数学试卷(理科)(新课标I)一、选择题(共12小题,每小题5分,满分60分)1.(5分)设复数z满足=i,则|z|=()B2n4.(5分)投篮测试中,每人投3次,至少投中2次才能通过测试.己知某同学每次投篮投5.(5分)已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的两个焦点,若<0,则y0的取值范围是()....6.(5分)《九章算术》是我国古代内容极为丰富的数学明著,书中有如下问题:”今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?“其意思为:”在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?“已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()7.(5分)设D为△ABC所在平面内一点,,则().8.(5分)函数f(x)=cos(ωx+ϕ)的部分图象如图所示,则f(x)的单调递减区间为()﹣,,,)(2k+9.(5分)执行如图的程序框图,如果输入的t=0.01,则输出的n=()255211.(5分)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=()12.(5分)设函数f(x)=e x(2x﹣1)﹣ax+a,其中a<l,若存在唯一的整数x0使得f(x0)[[[[二、填空题(本大题共有4小题,每小题5分)13.(5分)若函数f(x)=xln(x+)为偶函数.则a=.14.(5分)一个圆经过椭圆=1的三个顶点.且圆心在x轴的正半轴上.则该圆标准方程为.15.(5分)若x,y满足约束条件.则的最大值为.16.(5分)在平面四边形ABCD中,∠A=∠B=∠C=75°.BC=2,则AB的取值范围是.三、解答题:17.(12分)S n为数列{a n}的前n项和,己知a n>0,a n2+2a n=4S n+3(I)求{a n}的通项公式:(Ⅱ)设b n =,求数列{b n }的前n 项和.18.(12分)如图,四边形ABCD 为菱形,∠ABC=120°,E ,F 是平面ABCD 同一侧的两点,BE 丄平面ABCD ,DF 丄平面 ABCD ,BE=2DF ,AE 丄EC . (Ⅰ)证明:平面AEC 丄平面AFC(Ⅱ)求直线AE 与直线CF 所成角的余弦值.19.(12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的年宣传费x i 和年销售量y i (i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.(x i﹣)2(w i ﹣)2(x i ﹣)(y i )(w i ﹣)(y i表中w i =1,=(Ⅰ)根据散点图判断,y=a+bx 与y=c+d 哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y 关于x 的回归方程;(Ⅲ)以知这种产品的年利率z与x、y的关系为z=0.2y﹣x.根据(Ⅱ)的结果回答下列问题:(i)年宣传费x=49时,年销售量及年利润的预报值是多少?(ii)年宣传费x为何值时,年利率的预报值最大?附:对于一组数据(u1 v1),(u2 v2)…..(u n v n),其回归线v=α+βu的斜率和截距的最小二乘估计分别为:=,=﹣.20.(12分)在直角坐标系xOy中,曲线C:y=与直线l:y=kx+a(a>0)交于M,N两点.(Ⅰ)当k=0时,分別求C在点M和N处的切线方程.(Ⅱ)y轴上是否存在点P,使得当k变动时,总有∠OPM=∠OPN?(说明理由)21.(12分)已知函数f(x)=x3+ax+,g(x)=﹣lnx(i)当a为何值时,x轴为曲线y=f(x)的切线;(ii)用min {m,n }表示m,n中的最小值,设函数h(x)=min { f(x),g(x)}(x>0),讨论h(x)零点的个数.选修4一1:几何证明选讲22.(10分)如图,AB是⊙O的直径,AC是⊙O的切线,BC交⊙O于点E.(Ⅰ)若D为AC的中点,证明:DE是⊙O的切线;(Ⅱ)若OA=CE,求∠ACB的大小.选修4一4:坐标系与参数方程23.(10分)(2015春•新乐市校级月考)在直角坐标系xOy中,直线C1:x=﹣2,圆C2:(x﹣1)2+(y﹣2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(Ⅰ)求C1,C2的极坐标方程;(Ⅱ)若直线C3的极坐标方程为θ=(ρ∈R),设C2与C3的交点为M,N,求△C2MN 的面积.选修4一5:不等式选讲24.(10分)已知函数f(x)=|x+1|﹣2|x﹣a|,a>0.(Ⅰ)当a=1时,求不等式f(x)>1的解集;(Ⅱ)若f(x)的图象与x轴围成的三角形面积大于6,求a的取值范围.2015年全国统一高考数学试卷(理科)(新课标I)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)设复数z满足=i,则|z|=()满足=iB.2n4.(5分)投篮测试中,每人投3次,至少投中2次才能通过测试.己知某同学每次投篮投5.(5分)已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的两个焦点,若<0,则y0的取值范围是()....=﹣(﹣<<6.(5分)《九章算术》是我国古代内容极为丰富的数学明著,书中有如下问题:”今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?“其意思为:”在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?“已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有(),则,××(,÷7.(5分)设D为△ABC所在平面内一点,,则().利用向量的三角形法则首先表示为=本题考查了向量的三角形法则的运用;关键是想法将向量表示为8.(5分)函数f(x)=cos(ωx+ϕ)的部分图象如图所示,则f(x)的单调递减区间为()﹣,,,)(2k+)的部分图象,可得函数的周期为(﹣可得+=,)≤≤2k+)的单调递减区间为()9.(5分)执行如图的程序框图,如果输入的t=0.01,则输出的n=()﹣﹣≤﹣≤﹣=﹣=2552,的通项为=的系数为11.(5分)圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r=()×+22r+12.(5分)设函数f(x)=e x(2x﹣1)﹣ax+a,其中a<l,若存在唯一的整数x0使得f(x0)[[[[<﹣时,,>﹣时,﹣,,解得二、填空题(本大题共有4小题,每小题5分)13.(5分)若函数f(x)=xln(x+)为偶函数.则a=1.x+14.(5分)一个圆经过椭圆=1的三个顶点.且圆心在x轴的正半轴上.则该圆标准方程为(x﹣)2+y2=.解:一个圆经过椭圆,解得,,).)15.(5分)若x,y满足约束条件.则的最大值为3.,则,解得,即=3的最大值为16.(5分)在平面四边形ABCD中,∠A=∠B=∠C=75°.BC=2,则AB的取值范围是(﹣,+).x x xx+m=+AD=x+mx+m=,x+m x=+x的取值范围是(﹣+﹣,)三、解答题:17.(12分)S n为数列{a n}的前n项和,己知a n>0,a n2+2a n=4S n+3(I)求{a n}的通项公式:(Ⅱ)设b n=,求数列{b n}的前n项和.,利用裂项法即可求数列==(﹣(﹣+﹣)(﹣.18.(12分)如图,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE丄平面ABCD,DF丄平面ABCD,BE=2DF,AE丄EC.(Ⅰ)证明:平面AEC丄平面AFC(Ⅱ)求直线AE与直线CF所成角的余弦值.AG=GC=,且BE=,故,,EF=,),=,)=,﹣,,>=﹣.19.(12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的年宣传费x i 和年销售量y i (i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.(x i ﹣)2(w i ﹣)2(x i ﹣)(y i )(w i ﹣)(y i表中w i=1,=(Ⅰ)根据散点图判断,y=a+bx与y=c+d哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y关于x的回归方程;(Ⅲ)以知这种产品的年利率z与x、y的关系为z=0.2y﹣x.根据(Ⅱ)的结果回答下列问题:(i)年宣传费x=49时,年销售量及年利润的预报值是多少?(ii)年宣传费x为何值时,年利率的预报值最大?附:对于一组数据(u1 v1),(u2 v2)…..(u n v n),其回归线v=α+βu的斜率和截距的最小二乘估计分别为:=,=﹣.w=,建立y=c+dw=的线性回归方程,由于===563的线性回归方程为的回归方程为=100.6+68,的预报值=100.6+68=576.6的预报值的预报值=0.2100.6+68)﹣+20.12=20.(12分)在直角坐标系xOy中,曲线C:y=与直线l:y=kx+a(a>0)交于M,N两点.(Ⅰ)当k=0时,分別求C在点M和N处的切线方程.(Ⅱ)y轴上是否存在点P,使得当k变动时,总有∠OPM=∠OPN?(说明理由),利用导数的运算法则,利用导数的几何意义、点斜式即可得出切线方程..)联立M Ny=点处的切线斜率为=a=处的切线方程为:,化为==.21.(12分)已知函数f(x)=x3+ax+,g(x)=﹣lnx(i)当a为何值时,x轴为曲线y=f(x)的切线;(ii)用min {m,n }表示m,n中的最小值,设函数h(x)=min { f(x),g(x)}(x>0),讨论h(x)零点的个数.,,即可得出零点的个数;,解得.时,﹣=a+<﹣=a+=,∴当)在内单调递减,在x==,即,则,即,=a+a时,或时,或选修4一1:几何证明选讲22.(10分)如图,AB是⊙O的直径,AC是⊙O的切线,BC交⊙O于点E.(Ⅰ)若D为AC的中点,证明:DE是⊙O的切线;(Ⅱ)若OA=CE,求∠ACB的大小.,BE=选修4一4:坐标系与参数方程23.(10分)(2015春•新乐市校级月考)在直角坐标系xOy中,直线C1:x=﹣2,圆C2:(x﹣1)2+(y﹣2)2=1,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(Ⅰ)求C1,C2的极坐标方程;(Ⅱ)若直线C3的极坐标方程为θ=(ρ∈R),设C2与C3的交点为M,N,求△C2MN 的面积.3的面积(3=2=.选修4一5:不等式选讲24.(10分)已知函数f(x)=|x+1|﹣2|x﹣a|,a>0.(Ⅰ)当a=1时,求不等式f(x)>1的解集;(Ⅱ)若f(x)的图象与x轴围成的三角形面积大于6,求a的取值范围.,或求得<,a|=,,[2a+1]参与本试卷答题和审题的老师有:刘长柏;qiss;maths;changq;caoqz;cst;lincy;吕静;双曲线;whgcn;孙佑中(排名不分先后)菁优网2015年7月20日。

2015高考数学全国卷

2015高考数学全国卷
620 600 580 560 540 520 500 480 34 36 38 40 42 44 46 48 50 52 54 56
· · ·
·
· ··
·
年宣传费/千元
1 1 1 1

x

y

w
2 x) ( x --
1
2 w) (w - -
1
x )(y-- y) (x --
1
w )(y-- y) (w - -
4
1 D. 2
3.设命题 P:∃n∈N,n2>2n,则¬P 为 B.∃n N, n2≤2n A.∀n N, n2>2n D.∃n N, n2=2n C.∀n N, n2≤2n 4.投篮测试中,每人投 3 次,至少投中 2 次才能通过测试.已知某同学每次投篮投中的概率为 0.6,且各 次投篮是否投中相互独立,则该同学通过测试的概率为 A.0.648 B.0.432 C.0.36 D.0.312 x2 → → 5.已知 M(x0,y0)是双曲线 C: -y2=1 上的一点,F1、F2 是 C 上的两个焦点,若MF1·MF2<0 2 y0 的取值范围是 A.- ,则
O
23.(本小题满分 10 分)选修 4-4:坐标系与参数方程 在直角坐标系 xOy 中,直线 C1:x=-2,圆 C2:(x-1)2+(y-2)2=1,以坐标原点为极点, x 轴的正 半轴为极轴建立极坐标系. (Ⅰ)求 C1,C2 的极坐标方程; π (Ⅱ)若直线 C3 的极坐标方程为 θ= (ρ∈R),设 C2 与 C3 的交点为 M 、 N ,求△C2MN 的面积. 4 24.(本小题满分 10 分)选修 4—5:不等式选讲 已知函数 f(x)=|x+1|-2|x-a|,a>0. (Ⅰ)当 a=1 时,求不等式 f(x)>1 的解集; (Ⅱ)若 f(x)的图像与 x 轴围成的三角形面积大于 6,求 a 的取值范围.

历年全国高考数学考试试卷附详细解析.doc

历年全国高考数学考试试卷附详细解析.doc

2015年高考数学试卷1. (5 分)(2015・原题)复数 i (2-i)二( )A. l+2iB. 1—2iC. — 1 +2iD. — 1 — 2ix - y=C02. (5分)(2015*原题)若x, y 满足< x+y^ 1 ,则z=x+2y 的最大值为() .x>03A. 0B. 1C. —D. 2 23. (5分)(2015-原题)执行如图所示的程序框图输出的结果为( )A. ( -2, 2)B. ( -4, 0)C. ( -4, -4)D. (0, -8)4. (5分)(2015•原题)设oc,卩是两个不同的平面,m 是克线且ms,缶//0“是“oc //卩” 的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件 一、选择J (每小题5分,共40分)5.(5分)(2015•原题)某三棱锥的三视图如图所示,则该三棱锥的表面积是()6. (5分)(2015・原题)设{%}是等差数列,下列结论屮正确的是( )八・若 a 1+a 2>0,贝!j a 2+a 3>0 B.若 a 1+a 3<0> 贝lj a]+a 2<07. (5分)(2015•原题)如图,函数f (x )的图象为折线ACB,则不等式f (x ) >1<)& (x+1)A. {x| -l<x<0}B. {x| -Kx<l}C. {x| - 1<x<1}D. {x| -l<x<2}8. (5分)(2015-原题)汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,如图描 述了甲、乙、丙三辆汽车在不同速度下燃油效率情况,下列叙述中正确的是( )C.若 0<ai <a 2,则 2〉寸8护3D.若 2]V0,贝lj (a 2-a 1) (a 2-a 3) >0 A. 2+V5 B. 4+^5 C. 2+2A /5 D ・ 5A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同路程,三辆车屮,甲车消耗汽油最多C.甲车以80千米/小时的速度行驶1小时,消耗10升汽油D. 某城市机动车最高限速80千米/小时,相同条件下,在该市用丙车比用乙车更省油9. (5分)(2015•原题)在(2+x )'的展开式中,J 的系数为 __________ (用数字作答)10. (5分)(2015-原题)已知双曲线岭-y2=l (a >0)的一条渐近线为V3x+y=0,贝911. (5分)(2015-原题)在极坐标系中,点(2,牛)到直线° (cosO+V3sinO ) =6的距离 为 ____________ •12. (5 分)(2015・原题)在AABC 中,a=4, b=5, c=6,则二 ____________________ .sinC在AABC 中,点 M, N 满足 AM=2MC, BN=NC,若MN=xAB+yAC,① 若汗1,则f (x )的最小值为 _____________ ;② 若f (x )恰有2个零点,则实数a 的取值范围是 ____________15. (13 分)(2015・原题)已矢U 函数 F (x ) =V2sin —cos — - V2sin ^―.2 2 2(I )求f (x )的最小正周期;(H ) 求F (x )在区间[■心0]上的最小值.16. (13分)(2015-原题)A, B 两组各有7位病人,他们服用某种药物后的康复时间(单位: 天)记录如下:A 组:10, 11, 12, 13, 14, 15, 16B 组;12, 13, 15, 16, 17, 14, a假设所有病人的康复时间相互独立,从八,B 两组随机各选1人,八组选出的人记为甲,B 组选出的人记为乙.(I ) 求甲的康复时间不少于14天的概率;(U )如果沪25,求甲的康复时间比乙的康复时间长的概率;(HI )当a 为何值时,A, B 两组病人康复时间的方差相等?(结论不要求证明)17. (14分)(206原题)如图,在四棱锥A-EFCB 中,AAEF 为等边三角形,平面AEF 丄平面 EFCB, EF//BC, BC=4, EF=2a,上EBC 二上FCB 二60° , O 为 EF 的中点.(I )求证:AO1BE.二、填空题侮小丿 5分,共30分)13. (5 分)(2015*原题)14. (5分)(2015•原题)设函数f (x )= 2x-a, 4(x - a ) (x _ 2 a ),x<l 三、解答] (共6小题 ,共80分)(U)求二面角F-AE-B的余弦值;(HI)若BE丄平面AOC,求a的值.18. (13分)(2015*原题)已知函数f (x)二1门丿注,(I )求曲线尸f (X )在点(0, f (0))处的切线方程; 3(H) 求证,当*€ (0, 1)时,f (x) >2(x+^-);3(m)设实数k 使得f (x) >k(x+专-)对乂€ (o, 1)恒成立,求k 的最大值.19. (14分)(2015•原题)已知椭圆C:三+笃二1 (a>b>0)的离心率为李,点P (0, 1)/ b , 2和点A (m, n) (mHO)都在椭圆C±,直线PA 交x 轴于点M.(I) 求椭圆C 的方程,并求点M 的坐标(用n 表示);(U )设O 为原点,点B 与点A 关于x 轴对称,直线PB 交x 轴于点N,问:y 轴上是否存 在点Q,使得ZOQM=ZONQ?若存在,求点Q 的坐标,若不存在,说明理由.2(). (13 分)(2013 •原题)已知数列{%}满足: , a t <36,且 a n+1 = (n=l, 2,…),记集合 M ={a n |n€N +}.(I)若引二6,写出集合M 的所有元素;(n )如集合M 存在一个元素是3的倍数,证明:M 的所有元素都是3的倍数; (111)求集合M 的元索个数的最大值.2%,a n <18 2%-36, %>182015年原题市高考数学试卷(理科)1. (5 分)(2015-原题)复数 i (2-i )二()A. l+2iB. 1 -2iC. —l+2iD. - 1 - 2i【分析】利用复数的运算法则解答.【解答】解:原式=2i - i 2=2i - (-1) =l+2i;故选:A.【点评】本题考查了复数的运算;关键是熟记运算法则.注意i 2=-l. &-y<02. (5分)(2015•原题)若x, y 满足《 x+yCl ,则z=x+2y 的最大值为()、x>03A. 0B. 1C. —D. 2 2【分析】作出题中不等式组表示的平面区域,再将目标函数z 二x+2y 对应的直线进行平移, 即可求出z 取得最大值."x-y<0【解答】解:作出不等式组x+y< 1表示的平面区域,.xi>0当1经过点B 时,目标函数z 达到最大值 z 煨大值二0+2X1 —2・【点评】本题给出二元一次不等式组,求目标函数Z 二x+2y 的最大值,着重考查了二元一次 不一、选择题(每小, 5分,共40分)等式组表示的平面区域和简单的线性规划等知识,属于基础题•3.(5分)(2015•原题)执行如图所示的程序框图输出的结果为()A. (—2, 2)B. (一4, 0) C- (一4, -4) D. (0, -8)【分析】模拟程序框图的运行过程,即可得出程序运行后输出的结果.【解答】解:模拟程序框图的运行过程,如下;x=l, y=l,k=0 时,s=x - y=0, t=x+y=2 ;x=s=0, y=t=2,k二1 时,s=x - y= - 2, t二x+y二2;x二s二一2,y二t二2,k=2 吋,s=x - y= ~ 4, t=x+y=0 ;x=s= -4, y=t=0,k=3时,循环终止,输出(x, y)是(-4, 0).故选:B.【点评】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,是基础题目•4.(5分)(2015-原题)设冷卩是两个不同的平面,口是直线且muoc, //0 “是、//卩” 的()A.充分而不必耍条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【分析】m // p并得不到a II ,3,根据面面平行的判定定理,只有a内的两相交直线都平行于P,而a//0,并且mua,显然能得到这样即可找出正确选项.【解答】解:mca, 口//(3得不到00”(3,因为oc, 0可能相交,只要m和a,卩的交线平行即可得到m" (3;a // P,mCa, m 和0 没有公共点,.'.m//p,即oc//0 能得到m//0;二“m/邙”是、/人3”的必要不充分条件.故选B.【点评】考查线面平行的定义,线面平行的判定定理,面面平行的定义,面面平行的判定定 理,以及充分条件、必要条件,及必要不充分条件的概念.5. (5分)(2015-原题)某三棱锥的三视图如图所示,则该三棱锥的表面积是( )A. 2+^^/5B. 4+A /5C. 2+2A /5D. 5【分析】根据三视图可判断克观图为:()A 丄面ABC,AC=AB,E 为BC 中点,EA=2,E/\=EB=1, OA二 1,: BC 丄 ffi AEO, AC=V5, OE=V5判断儿何体的各个面的特点,计算边长,求解面积.【解答】解:根据三视图可判断立观图为:()八丄面ABC, AC 二AB, E 为BC 屮点,EA=2, EC=EB=1, ()A 二 1,•••可彳导/\E 丄BC, BC 丄OA,运用£[线平面的垂立得岀:BC 丄面AEO, AC=V5, OR=V5S/XBCO 二专 X2x V5-V5.故该三棱锥的表面积是2+2丽, 故选:C.【点评】本题考查了空间几何体的三视图的运用,空间想象能力,计算能力,关键是恢复直 观图,得出几何体的性质.6. (5分)(2015•原题)设{%}是等差数列,下列结论中正确的是()• • ^AABCX2X2 二 2, S AO/\C =^AOAB-^ XV5>< 1=^^-A.若引+玄2>0,贝lj a2+a3>0B.若卯+%<0,贝lj a1+a2<0C.若0<旬<近,则阴D・若吗<0,贝lj (a2-aj) (a2-a3) >0【分析】对选项分别进行判断,即可得岀结论.【解答】解:若a1+a2>0,则2a]+d>0, a2+a3=2a]+3d>2d, d>0时,结论成立,即A不正确;若吗+%<(),贝lj a1+a2=2a1+d<0, a2+a3=2a1+3d<2d, dV()日寸,结论丿成立,即B 不止确;{%}是詩差数列,0<则<^2,2屯二引+%>2寸3]阴,;•耳>勺a]巧,即C止确;若引V0,贝I」(迈—吗)(a2-a3) =-d2<0,即D不正确.故选:C.【点评】本题考查等差数列的通项,考查学生的计算能力,比较基础.7.(5分)(2015•原题)如图,函数f (x)的图象为折线ACB,则不等式f(x) >lo& (x+1)-l<x<l}C. {x| - l<x<l}D. {x| -l<x<2}【分析】在已知坐标系内作IB y=log2 (x+1)的图象,利用数形结合得到不等式的解集.【解答】解:由已知F(x)的图象,在此坐标系内作出y二1。

2015年全国各地高考数学试题(卷)与解答分类汇编大全(05_不等式)

2015年全国各地高考数学试题(卷)与解答分类汇编大全(05_不等式)

2015年全国各地高考数学试题及解答分类汇编大全(05不等式)一、选择题:1.(2015文)已知x,y满足约束条件401x yx yy-≥⎧⎪+-≤⎨⎪≥⎩,则yxz+-=2的最大值是()(A)-1 (B)-2(C)-5 (D)12.(2015理)若x,y满足1x yx yx-⎧⎪+⎨⎪⎩≤,≤,≥,则2z x y=+的最大值为()A.0 B.1 C.32D.2【答案】D【解析】试题分析:如图,先画出可行域,由于2z x y=+,则1122y x z=-+,令0Z=,作直线12y x=-,在可行域中作平行线,得最优解(0,1),此时直线的截距最大,Z取得最小值2.考点:线性规划;3.(2015文)若直线1(0,0)x ya ba b+=>>过点(1,1),则a b+的最小值等于()A.2 B.3 C.4 D.5【答案】C考点:基本不等式.4.(2015理)若变量,x y满足约束条件20,0,220,x yx yx y+≥⎧⎪-≤⎨⎪-+≥⎩则2z x y=-的最小值等于 ( ) A.52- B.2- C.32- D.2【答案】A【解析】试题分析:画出可行域,如图所示,目标函数变形为2y x z=-,当z最小时,直线2y x z=-的纵截距最大,故将直线2y x=经过可行域,尽可能向上移到过点1(1,)2B-时,z取到最小值,最小值为152(1)22z=⨯--=-,故选A.考点:线性规划.5.(2015文)变量,x y满足约束条件220x yx ymx y+≥⎧⎪-+≥⎨⎪-≤⎩,若2z x y=-的最大值为2,则实数m等于()A.2- B.1-C.1 D.2【答案】C【解析】x–1–2–3–41234–1–2–3–4123BOC试题分析:将目标函数变形为2y x z =-,当z 取最大值,则直线纵截距最小,故当0m ≤时,不满足题意;当0m >时,画出可行域,如图所示, 其中22(,)2121mB m m --.显然(0,0)O 不是最优解,故只能22(,)2121m B m m --是最优解,代入目标函数得4222121mm m -=--,解得1m =,故选C .考点:线性规划.6.(2015文)若变量x ,y 满足约束条件2204x y x y x +≤⎧⎪+≥⎨⎪≤⎩,则23z x y =+的最大值为( )A .10B .8C .5D .2 【答案】C考点:线性规划.7.(2015理)若变量x ,y 满足约束条件⎪⎩⎪⎨⎧≤≤≤≤≥+2031854y x y x 则y x z 23+=的最小值为( )A .531 B. 6 C. 523D. 4【答案】C .【解析】不等式所表示的可行域如下图所示,由32z x y =+得322z y x =-+,依题当目标函数直线l :322z y x =-+经过41,5A ⎛⎫⎪⎝⎭时,z 取得最小值即min42331255z =⨯+⨯=,故选C【考点定位】本题考查二元一次不等式的线性规划问题,属于容易题.8. (2015文)不等式2340x x --+>的解集为 .(用区间表示) 【答案】()4,1- 【解析】试题分析:由2340x x --+<得:41x -<<,所以不等式2340x x --+>的解集为()4,1-,所以答案应填:()4,1-. 考点:一元二次不等式.9、(2015文)若变量x 、y 满足约束条件111x y y x x +≥⎧⎪-≤⎨⎪≤⎩,则z=2x-y 的最小值为( )A 、-1B 、0C 、1D 、2【答案】AxyOA l考点:简单的线性规划10. (2015理)若变量x,y满足约束条件1 211 x yx yy+≥-⎧⎪-≤⎨⎪≤⎩,则3z x y=-的最小值为()A.-7B.-1C.1D.2【答案】A.而可知当2-=x,1=y时,min3(2)17z=⨯--=-的最小值是7-,故选A.【考点定位】线性规划.【名师点睛】本题主要考查了利用线性规划求线性目标函数的最值,属于容易题,在画可行域时,首先必须找准可行域的围,其次要注意目标函数对应的直线斜率的大小,从而确定目标函数取到最优解时所经过的点,切忌随手一画导致错解.11、(2015文)若实数a,b满足12aba b+=,则ab的最小值为( )A2 B、2 C、2 D、4【答案】C考点:基本不等式12.(2015理)已知,x y满足约束条件2x yx yy-≥⎧⎪+≤⎨⎪≥⎩,若z ax y=+的最大值为4,则a=()(A)3 (B)2 (C)-2 (D)-3 【答案】B【解析】不等式组2xyx yy-≥⎧⎪+≤⎨⎪≥⎩在直角坐标系中所表示的平面区域如下图中的阴影部分所示,若z ax y=+的最大值为4,则最优解可能为1,1x y==或2,0x y==,经检验,2,0x y==是最优解,此时2a=;1,1x y==不是最优解.故选B.【考点定位】简单的线性规划问题.【名师点睛】本题考查了简单的线性规划问题,通过确定参数a的值,考查学生对线性规划的方法理解的深度以及应用的灵活性,意在考查学生利用线性规划的知识分析解决问题的能力.13.(2015理)设()ln,0f x x a b=<<,若)p f ab=,()2a bq f+=,1(()())2r f a f b=+,则下列关系式中正确的是()A.q r p=< B.q r p=> C.p r q=< D.p r q=>【答案】C考点:1、基本不等式;2、基本初等函数的单调性.14. (2015文)设()ln ,0f x x a b =<<,若()p f ab =,()2a b q f +=,1(()())2r f a f b =+,则下列关系式中正确的是( )A .q r p =<B .q r p =>C .p r q =<D .p r q => 【答案】C 【解析】试题分析:1()ln ln 2p f ab ab ab ===;()ln22a b a bq f ++==;11(()())ln 22r f a f b ab =+=因为2a b ab +>,由()ln f x x =是个递增函数,()()2a b f f ab +>所以q p r >=,故答案选C考点:函数单调性的应用.15. (2015文) 某企业生产甲乙两种产品均需用A ,B 两种原料,已知生产1吨每种产品需原料及每天原料的可用限额表所示,如果生产1吨甲乙产品可获利润分别为3万元、4万元,则该企业每天可甲乙原料限额A(吨)3212B(吨)128万元【答案】D当直线340x y z +-=过点(2,3)A 时,z 取得最大值324318z =⨯+⨯=故答案选D考点:线性规划.16. (2015理)某企业生产甲、乙两种产品均需用A ,B 两种原料.已知生产1吨每种产品需原料及每天原料的可用限额如表所示,如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为( )D .18万元甲乙原料限额A(吨)3212B(吨)128【解析】试题分析:设该企业每天生产甲、乙两种产品分别为x 、y 吨,则利润34z x y =+由题意可列32122800x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩,其表示如图阴影部分区域:当直线340x y z +-=过点(2,3)A 时,z 取得最大值,所以max 324318z =⨯+⨯=,故选D . 考点:线性规划.17. (2015文)下列不等式中,与不等式23282<+++x x x 解集相同的是( ).A. 2)32)(8(2<+++x x xB. )32(282++<+x x xC.823212+<++xxxD.218322>+++xxx【答案】B18、(2015理)记方程①:2110x a x++=,方程②:2220x a x++=,方程③:2340x a x++=,其中1a,2a,3a是正实数.当1a,2a,3a成等比数列时,下列选项中,能推出方程③无实根的是()A.方程①有实根,且②有实根 B.方程①有实根,且②无实根C.方程①无实根,且②有实根 D.方程①无实根,且②无实根【答案】B【解析】当方程①有实根,且②无实根时,22124,8a a≥<,从而4222321816,4aaa=<=即方程③:2340x a x++=无实根,选B.而A,D由于不等式方向不一致,不可推;C推出③有实根【考点定位】不等式性质19. (2015文)若不等式组2022020x yx yx y m+-≤⎧⎪+-≥⎨⎪-+≥⎩,表示的平面区域为三角形,且其面积等于43,则m的值为()(A)-3 (B) 1 (C)43(D)3【答案】B【解析】试题分析:如图,;由于不等式组2022020x y x y x y m +-≤⎧⎪+-≥⎨⎪-+≥⎩,表示的平面区域为三角形ABC ,且其面积等于43,再注意到直线AB :x+y-2=0与直线BC:x-y+2m=0互相垂直,所以三角形ABC 是直角三角形;易知,A (2,0),B (1-m,m+1),C(2422,33m m -+); 从而112222122223ABC m S m m m ∆+=+⋅+-+⋅=43,化简得:2(1)4m +=,解得m=-3,或m=1;检验知当m=-3时,已知不等式组不能表示一个三角形区域,故舍去;所以m=1; 故选B.考点:线性规划.20、(2015文)设实数x ,y 满足2102146x y x y x y +≤⎧⎪+≤⎨⎪+≥⎩,则xy 的最大值为( )(A )252(B )492 (C )12 (D )14【答案】A【考点定位】本题主要考查线性规划与基本不等式的基础知识,考查知识的整合与运用,考查学生综合运用知识解决问题的能力.【名师点睛】本题中,对可行域的处理并不是大问题,关键是“求xy 最大值”中,xy 已经不是“线性”问题了,如果直接设xy =k ,,则转化为反比例函数y =的曲线与可行域有公共点问题,难度较大,且有超出“线性”的嫌疑.而上面解法中,用基本不等式的思想,通过系数的配凑,即可得到结论,当然,对于等号成立的条件也应该给以足够的重视.属于较难题.21.(2015天津文)设变量,y x 满足约束条件2020280x x y x y ì-?ïï-?íï+-?ïî,则目标函数3y z x =+的最大值为( )(A) 7 (B) 8 (C) 9 (D)14【答案】C考点:线性规划22.( 2015天津理)设变量,x y 满足约束条件2030230x x y x y +≥⎧⎪-+≥⎨⎪+-≤⎩,则目标函数6z x y =+的最大值为( )(A )3 (B )4 (C )18 (D )40【答案】C864224681510551015AB考点:线性规划.23、(2015文)有三个房间需要粉刷,粉刷方案要求:每个房间只用一种颜色,且三个房间颜色各不相同.已知三个房间的粉刷面积(单位:2m)分别为x,y,z,且x y z<<,三种颜色涂料的粉刷费用(单位:元/2m)分别为a,b,c,且a b c<<.在不同的方案中,最低的总费用(单位:元)是()A.ax by cz++ B.az by cx++ C.ay bz cx++ D.ay bx cz++【答案】B考点:1.不等式性质;2.不等式比较大小.二、填空题:1、(2015文)如图,C∆AB及其部的点组成的集合记为D,(),x yP为D中任意一点,则23z x y=+的最大值为.【答案】7考点:线性规划.2.(2015文)若变量,x y满足约束条件4,2,30,x yx yx y+≤⎧⎪-≤⎨⎪-≥⎩则3x y+的最大值是_________.【答案】10.【考点定位】本题考查线性规划的最值问题,属基础题.【名师点睛】这是一道典型的线性规划问题,重点考查线性规划问题的基本解决方法,体现了数形结合的思想在数学解题中重要性和实用性,能较好的考查学生准确作图能力和灵活运用基础知识解决实际问题的能力.3、(2015全国新课标Ⅰ卷文)若x,y满足约束条件20210220x yx yx y+-≤⎧⎪-+≤⎨⎪-+≥⎩,则z=3x+y的最大值为.【答案】4【解析】作出可行域如图中阴影部分所示,作出直线l:30x y+=,平移直线l,当直线l:z=3x+y 过点A时,z取最大值,由2=021=0x yx y+-⎧⎨-+⎩解得A(1,1),∴z=3x+y的最大值为4.【考点定位】简单线性规划解法【名师点睛】对线性规划问题,先作出可行域,在作出目标函数,利用z的几何意义,结合可行域即可找出取最值的点,通过解方程组即可求出做最优解,代入目标函数,求出最值,要熟悉相关公式,确定目标函数的意义是解决最优化问题的关键,目标函数常有距离型、直线型和斜率型.4.(2015全国新课标Ⅰ卷理)若x,y满足约束条件1040xx yx y-≥⎧⎪-≤⎨⎪+-≤⎩,则yx的最大值为 .【答案】3【解析】试题分析:作出可行域如图中阴影部分所示,由斜率的意义知,yx是可行域一点与原点连线的斜率,由图可知,点A(1,3)与原点连线的斜率最大,故yx的最大值为3.考点:线性规划解法5. (2015全国新课标Ⅱ卷文)若x,y满足约束条件50210210x yx yx y+-≤⎧⎪--≥⎨⎪-+≤⎩,则z=2x+y的最大值为.【答案】8考点:线性规划6.(2015全国新课标Ⅱ卷理)若x,y满足约束条件1020,220,x yx yx y-+≥⎧⎪-≤⎨⎪+-≤⎩,,则z x y=+的最大值为____________.【答案】32【解析】试题分析:画出可行域,如图所示,将目标函数变形为y x z=-+,当z取到最大时,直线y x z=-+的纵截距最大,故将直线尽可能地向上平移到1(1,)2D,则z x y=+的最大值为32.考点:线性规划.xy–1–2–3–41234–1–2–3–41234DCBO7. (2015文)若x,y满足约束条件13,1y xx yy-≤⎧⎪+≤⎨⎪≥⎩则3z x y=+的最大值为 .【答案】7【解析】试题分析:画出可行域及直线30x y+=,平移直线30x y+=,当其经过点(1,2)A时,直线的纵截距最大,所以3z x y=+最大为1327z=+⨯=.考点:简单线性规划.8. (2015文)定义运算“⊗”:22x yx yxy-⊗=(,0x y R xy∈≠,).当00x y>>,时,(2)x y y x⊗+⊗的最小值是 .2【解析】试题分析:由新定义运算知,2222(2)4(2)(2)2y x y xy xy x xy--⊗==,因为,00x y>>,,所以,2222224222(2)2222x y y x x y xyx y y xxy xy xy xy--+⊗+⊗=+=≥=2x y=时,(2)x y y x⊗+⊗2考点:1.新定义运算;2.基本不等式.9. (2015文)若yx,满足⎪⎩⎪⎨⎧≥≤+≥-2yyxyx,则目标函数yxz2+=的最大值为 .【答案】3【考点定位】不等式组表示的平面区域,简单的线性规划.10. (2015天津文)已知0,0,8,a b ab>>=则当a的值为时()22log log2a b⋅取得最大值. 【答案】4【解析】试题分析:()()()()22222222log log211log log2log2log164,244a ba b ab+⎛⎫⋅≤===⎪⎝⎭当2a b=时取等号,结合0,0,8,a b ab>>=可得4, 2.a b==考点:基本不等式.11. (2015文)设,0,5a b a b>+=,1++3a b+ ________.【答案】23考点:基本不等式.12、(2015文)已知实数x ,y 满足221x y +≤,则2463x y x y +-+--的最大值是 . 【答案】15 【解析】试题分析: 22,2224631034,22x y y xz x y x y x y y x+-≥-⎧=+-+--=⎨--<-⎩由图可知当22y x ≥-时,满足的是如图的AB 劣弧,则22z x y =+-在点(1,0)A 处取得最大值5;当22y x <-时,满足的是如图的AB 优弧,则1034z x y =--与该优弧相切时取得最大值,故1015z d -==,所以15z =,故该目标函数的最大值为15.考点:1.简单的线性规划;13. (2015理)若实数,x y 满足221x y +≤,则2263x y x y +-+--的最小值是 .三、解答题。

2015年全国各地高考数学分类汇编-18 几何证明选讲、坐标系与参数方程、不等式选讲、矩阵与变换

2015年全国各地高考数学分类汇编-18 几何证明选讲、坐标系与参数方程、不等式选讲、矩阵与变换

2015年全国各地高考数学试题及解答分类汇编大全(18选修4:几何证明选讲、坐标系与参数方程、不等式选讲、矩阵与变换)一、几何证明选讲:选修4—1;几何证明选讲1.(2015广东理)如图1,已知AB是圆O的直径,4AB=,EC是圆O的切线,切点为C,1BC=,过圆心O做BC的平行线,分别交EC和AC于点D和点P,则OD=图1P OECDAB【答案】8.【考点定位】本题考查直线与圆、直角三角形的射影定理,属于中档题.2.(2015广东文)如图1,AB为圆O的直径,E为AB的延长线上一点,过E作圆O的切线,切点为C,过A作直线CE的垂线,垂足为D.若4AB=,C23E=,则DA=.【答案】3考点:1、切线的性质;2、平行线分线段成比例定理;3、切割线定理.3.(2015湖北理)如图,PA 是圆的切线,A 为切点,PBC 是圆的割线,且3BC PB =,则ABAC=.【答案】21考点:1.圆的切线、割线,2.切割线定理,3.三角形相似.4. (2015湖南理)(Ⅰ)如图,在圆O 中,相交于点E 的两弦AB ,CD 的中点分别是M ,N ,直线MO 与直线CD 相交于点F ,证明: (1)180MEN NOM ∠+∠=; (2)FE FN FM FO ⋅=⋅【答案】(1)详见解析;(2)详见解析.【考点定位】1.垂径定理;2.四点共圆;3.割线定理.【名师点睛】本题主要考查了圆的基本性质等知识点,属于容易题,平面几何中圆的有关问题是高考考查的热点,解题时要充分利用圆的性质和切割线定理,相似三角形,勾股定理等其他平面几何知识点的交汇.5. (2015江苏) 如图,在ABC ∆中,AC AB =,ABC ∆的外接圆圆O 的弦AE 交BC 于点D求证:ABD ∆∽AEB ∆【答案】详见解析考点:三角形相似6.(2015全国新课标Ⅰ卷文、理)如图AB 是O 直径,AC 是O 切线,BC 交O 与点E .(I )若D 为AC 中点,求证:DE 是O 切线; (II )若3OA CE =,求ACB ∠的大小.ABCE DO(第21——A 题)【答案】(Ⅰ)见解析(Ⅱ)60° 【解析】 试题分析:(Ⅰ)由圆的切线性质及圆周角定理知,AE ⊥BC ,AC ⊥AB ,由直角三角形中线性质知DE =DC ,OE =OB ,利用等量代换可证∠DEC +∠OEB =90°,即∠OED =90°,所以DE 是圆O 的切线;(Ⅱ)设CE =1,由OA =得,AB=AE =x,由勾股定理得BE =,由直角三角形射影定理可得2AE CE BE =,列出关于x 的方程,解出x ,即可求出∠ACB 的大小.【考点定位】圆的切线判定与性质;圆周角定理;直角三角形射影定理【名师点睛】在解有关切线的问题时,要从以下几个方面进行思考:①见到切线,切点与圆心的连线垂直于切线;②过切点有弦,应想到弦切角定理;③若切线与一条割线相交,应想到切割线定理;④若要证明某条直线是圆的切线,则证明直线与圆的交点与圆心的连线与该直线垂直.7. (2015全国新课标Ⅱ卷文、理)如图,O 为等腰三角形ABC 内一点,圆O 与ABC ∆的底边BC 交于M 、N 两点与底边上的高AD 交于点G ,与AB 、AC 分别相切于E 、F 两点.GAEFONDB CM(Ⅰ)证明://EF BC ;(Ⅱ) 若AG 等于O 的半径,且AE MN ==求四边形EBCF 的面积.【答案】(Ⅰ)详见解析;. 【解析】 试题分析:(Ⅰ)由已知得AD BC ⊥,欲证明//EF BC ,只需证明AD EF ⊥,由切线长定理可得AE AF =,故只需证明AD 是角平分线即可;(Ⅱ)连接OE ,OM ,在Rt AEO ∆中,易求得030OAE ∠=,故AEF ∆和AEF ∆都是等边三角形,求得其边长,进而可求其面积.四边形EBCF 的面积为两个等边三角形面积之差. 试题解析:(Ⅰ)由于ABC ∆是等腰三角形,AD BC ⊥,所以AD 是CAB ∠的平分线.又因为O 分别与AB 、AC 相切于E 、F 两点,所以AE AF =,故AD EF ⊥.从而//EF BC .(Ⅱ)由(Ⅰ)知,AE AF =,AD EF ⊥,故AD 是EF 的垂直平分线,又EF 是O 的弦,所以O 在AD 上.连接OE ,OM ,则OE AE ⊥.由AG 等于O 的半径得2AO OE =,所以030OAE ∠=.所以ABC ∆和AEF ∆都是等边三角形.因为AE =,所以4AO =,2OE =.因为2OM OE ==,12DM MN ==,所以1OD =.于是5AD =,AB =.所以四边形EBCF 的面积221122⨯⨯=考点:1.等腰三角形的性质;2、圆的切线长定理;3、圆的切线的性质. 8. (2015陕西文、理)如图,AB 切O 于点B ,直线AO 交O 于,D E 两点,,BC DE ⊥垂足为C .(I)证明:CBD DBA ∠=∠(II)若3,AD DC BC ==O 的直径.【答案】(I)证明略,详见解析; (II)3. 【解析】 试题分析::(I)因为DE 是O 的直径,则90BED EDB ∠+∠=︒,又BC DE ⊥,所以90CBD EDB ∠+∠=︒,又AB 切O 于点B ,得DBA BED ∠=∠,所以CBD DBA ∠=∠;(II)由(I)知BD 平分CBA ∠,则3BA ADBC CD==,又BC =,从而AB =222AB BC AC =+,解得4AC =,所以3AD =,由切割线定理得2AB AD AE =⋅,解得6AE =,故3DE AE AD =-=,即O 的直径为3.试题解析:(I)因为DE 是O 的直径, 则90BED EDB ∠+∠=︒又BC DE ⊥,所以90CBD EDB ∠+∠=︒ 又AB 切O 于点B , 得DBA BED ∠=∠ 所以CBD DBA ∠=∠(II)由(I)知BD 平分CBA ∠,则3BA ADBC==,又BC =,从而AB =,所以4AC == 所以3AD =,由切割线定理得2AB AD AE =⋅即26AB AE AD==, 故3DE AE AD =-=, 即O 的直径为3.考点:1.几何证明;2.切割线定理.9.(2015天津文、理)如图,在圆O 中,,M N 是弦AB 的三等分点,弦,CD CE 分别经过点,M N .若2,4,3CM MD CN === ,则线段NE 的长为( )(A )83 (B )3 (C )103 (D )52E【答案】A【解析】 试题分析:由相交弦定理可知,,AM MB CM MD CN NE AN NB ⋅=⋅⋅=⋅,又因为,M N 是弦AB 的三等分点,所以AM MB AN NB CN NE CM MD ⋅=⋅∴⋅=⋅,所以24833CM MD NE CN ⋅⨯===,故选A.考点:相交弦定理.10.(2015重庆理)如图,圆O 的弦AB ,C D 相交于点E ,过点A 作圆O 的切线与DC 的延长线交于点P ,若PA =6,AE =9,PC =3,CE :ED =2:1,则BE =_______.【答案】2【考点定位】相交弦定理,切割线定理.二、坐标系与参数方程:选修4-4:坐标系与参数方程1.(2015安徽理)在极坐标中,圆8sin ρθ=上的点到直线()3R πθρ=∈距离的最大值是 .【答案】6【解析】由题意2sin ρρθ=,转化为普通方程为228x y y +=,即22(4)16x y +-=;直线()3R πθρ=∈2. (2015北京理)在极坐标系中,点π23⎛⎫ ⎪⎝⎭‚到直线()cos 6ρθθ+=的距离为.【答案】1 【解析】试题分析:先把点(2,)3π极坐标化为直角坐标,再把直线的极坐标方程()cos 6ρθθ=化为直角坐标方程60x +-=,利用点到直线距离公式1d ==.考点:1.极坐标与直角坐标的互化;2.点到直线距离.3.(2015福建理)在平面直角坐标系xoy 中,圆C 的参数方程为13cos (t )23sin x ty tì=+ïí=-+ïî为参数.在极坐标系(与平面直角坐标系xoy 取相同的长度单位,且以原点O 为极点,以x 轴非负半轴为极轴)中,直线l 的方程为sin()m,(m R).4pq -=? (Ⅰ)求圆C 的普通方程及直线l 的直角坐标方程; (Ⅱ)设圆心C 到直线l 的距离等于2,求m 的值. 【答案】(Ⅰ) ()()22129x y -++=,0x y m --=;(Ⅱ) m=-3±【解析】试题分析:(Ⅰ)将圆的参数方程通过移项平方消去参数得()()22129x y -++= ,利用cos x ρθ=,sin y ρθ=将直线的极坐标方程化为直角坐标方程;(Ⅱ)利用点到直线距离公式求解. 试题解析:(Ⅰ)消去参数t ,得到圆的普通方程为()()22129x y -++=,sin()m 4pq -=,得sin cos m 0r q r q --=, 所以直线l 的直角坐标方程为0x y m --=.(Ⅱ)依题意,圆心C 到直线l 的距离等于2|12m |2,--+=解得m=-3±考点:1、参数方程和普通方程的互化;2、极坐标方程和直角坐标方程的互化;3、点到直线距离公式.4.(2015广东理) 已知直线l 的极坐标方程为24sin(2=-)πθρ,点A 的极坐标为74A π⎛⎫ ⎪⎝⎭,则点A 到直线l 的距离为 【答案】2.【解析】依题已知直线l :2sin 4πρθ⎛⎫-=⎪⎝⎭74A π⎛⎫ ⎪⎝⎭可化为l :10x y -+=和()2,2A -,所以点A 与直线l 的距离为2d ==,故应填入. 【考点定位】本题考查极坐标与平面直角坐标的互化、点与直线的距离,属于容易题.5. (2015广东文) 在平面直角坐标系x y O 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.曲线1C 的极坐标方程为()cos sin 2ρθθ+=-,曲线2C的参数方程为2x ty ⎧=⎪⎨=⎪⎩t 为参数),则1C 与2C 交点的直角坐标为 .【答案】()2,4- 【解析】试题分析:曲线1C 的直角坐标方程为2x y +=-,曲线2C 的普通方程为28y x =,由228x y y x+=-⎧⎨=⎩得:24x y =⎧⎨=-⎩,所以1C 与2C 交点的直角坐标为()2,4-,所以答案应填:()2,4-. 考点:1、极坐标方程化为直角坐标方程;2、参数方程化为普通方程;3、两曲线的交点. 16.(2015湖北理)在直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴建立极坐标系. 已知直线l 的极坐标方程为(sin 3cos )0ρθθ-=,曲线C 的参数方程为1,1x t t y t t ⎧=-⎪⎪⎨⎪=+⎪⎩( t 为参数) ,l 与C 相交于A ,B 两点,则||AB =. 【答案】52考点:1.极坐标方程、参数方程与普通方程的转化,2.两点间的距离.7.(2015湖南理)(Ⅱ)已知直线5:12x l y t⎧=⎪⎪⎨⎪=⎪⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2cos ρθ=.(1) 将曲线C 的极坐标方程化为直角坐标方程;(2) 设点M的直角坐标为,直线l 与曲线C 的交点为A ,B ,求||||MA MB ⋅的值. 【答案】(1)0222=-+x y x ;(2)18.的两个实数根分别为1t ,2t ,则由参数t 的几何意义即知,1821==⋅|t |t |MB||MA|. 【考点定位】1.极坐标方程与直角坐标方程的互相转化;2.直线与圆的位置关系.【名师点睛】本题主要考查了极坐标方程与直角坐标方程的互相转化以及直线与圆的位置关系,属于容易题,在方程的转化时,只要利用θρcos =x ,θρsin =y 进行等价变形即可,考查极坐标方程与参数方程,实为考查直线与圆的相交问题,实际上为解析几何问题,解析几何中常用的思想,如联立方程组等,在极坐标与参数方程中同样适用.8、(2015湖南文)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.若曲线C 的极坐标方程为2sin ρθ=,则曲线C 的直角坐标方程为_____.【答案】2211x y +-=() 【解析】试题分析:将极坐标化为直角坐标,求解即可.曲线C 的极坐标方程为222sn sn ρθρρθ=∴=,,它的直角坐标方程为222x y y += , 2211x y ∴+-=(). 故答案为:2211x y +-=(). 考点:圆的极坐标方程9.(2015江苏)已知圆C 的极坐标方程为2sin()404πρθ+--=,求圆C 的半径.考点:圆的极坐标方程,极坐标与之间坐标互化10.(2015全国新课标Ⅰ卷文)在直角坐标系xOy 中,直线1:2C x =-,圆()()222:121C x y -+-=,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.(I )求12,C C 的极坐标方程.(II )若直线3C 的极坐标方程为()πR 4θρ=∈,设23,C C 的交点为,M N ,求2C MN ∆ 的面积. 【答案】(Ⅰ)cos 2ρθ=-,22cos 4sin 40ρρθρθ--+=(Ⅱ)12【解析】试题分析:(Ⅰ)用直角坐标方程与极坐标互化公式即可求得1C ,2C 的极坐标方程;(Ⅱ)将将=4πθ代入22cos 4sin 40ρρθρθ--+=即可求出|MN|,利用三角形面积公式即可求出2C MN 的面积.试题解析:(Ⅰ)因为cos ,sin x y ρθρθ==,∴1C 的极坐标方程为cos 2ρθ=-,2C 的极坐标方程为22cos 4sin 40ρρθρθ--+=.……5分(Ⅱ)将=4πθ代入22cos 4sin 40ρρθρθ--+=,得240ρ-+=,解得1ρ=2ρ,|MN|=1ρ-2ρ,因为2C 的半径为1,则2C MN 的面积o 11sin 452⨯=12. 【考点定位】直角坐标方程与极坐标互化;直线与圆的位置关系【名师点睛】对直角坐标方程与极坐标方程的互化问题,要熟记互化公式,另外要注意互化时要将极坐标方程作适当转化,若是和角,常用两角和与差的三角公式展开,化为可以公式形式,有时为了出现公式形式,两边可以同乘以ρ,对直线与圆或圆与圆的位置关系,常化为直角坐标方程,再解决.11. (2015全国新课标Ⅰ卷理)在直角坐标系xOy 中,直线1C :x =-2,圆2C :()()22121x y -+-=,以坐标原点为极点, x 轴的正半轴为极轴建立极坐标系。

历年高考数学真题精选52 不等式选讲

历年高考数学真题精选52 不等式选讲

高考数学真题精选(按考点分类)专题52 不等式选讲(学生版)1.(2019•新课标Ⅱ)已知f(x)=|x﹣a|x+|x﹣2|(x﹣a).(1)当a=1时,求不等式f(x)<0的解集;(2)当x∈(﹣∞,1)时,f(x)<0,求a的取值范围.2.(2018•新课标Ⅰ)已知f(x)=|x+1|﹣|ax﹣1|.(1)当a=1时,求不等式f(x)>1的解集;(2)若x∈(0,1)时不等式f(x)>x成立,求a的取值范围.3.(2018•新课标Ⅱ)设函数f(x)=5﹣|x+a|﹣|x﹣2|.(1)当a=1时,求不等式f(x)≥0的解集;(2)若f(x)≤1,求a的取值范围.4.(2017•新课标Ⅰ)已知函数f(x)=﹣x2+ax+4,g(x)=|x+1|+|x﹣1|.(1)当a=1时,求不等式f(x)≥g(x)的解集;(2)若不等式f(x)≥g(x)的解集包含[﹣1,1],求a的取值范围.5.(2017•新课标Ⅲ)已知函数f(x)=|x+1|﹣|x﹣2|.(1)求不等式f(x)≥1的解集;(2)若不等式f(x)≥x2﹣x+m的解集非空,求m的取值范围.6.(2016•新课标Ⅲ)已知函数f(x)=|2x﹣a|+a.(1)当a=2时,求不等式f(x)≤6的解集;(2)设函数g(x)=|2x﹣1|,当x∈R时,f(x)+g(x)≥3,求a的取值范围.7.(2016•新课标Ⅱ)已知函数f(x)=|x−12|+|x+12|,M为不等式f(x)<2的解集.(Ⅰ)求M;(Ⅱ)证明:当a,b∈M时,|a+b|<|1+ab|.8.(2015•新课标Ⅰ)已知函数f(x)=|x+1|﹣2|x﹣a|,a>0.(Ⅰ)当a=1时,求不等式f(x)>1的解集;(Ⅱ)若f(x)的图象与x轴围成的三角形面积大于6,求a的取值范围.9.(2014•新课标Ⅱ)设函数f(x)=|x+1a|+|x﹣a|(a>0).(Ⅰ)证明:f(x)≥2;(Ⅱ)若f(3)<5,求a的取值范围.10.(2014•新课标Ⅰ)若a >0,b >0,且1a+1b=√ab .(Ⅰ)求a 3+b 3的最小值;(Ⅱ)是否存在a ,b ,使得2a +3b =6?并说明理由.11.(2013•新课标Ⅰ)已知函数f (x )=|2x ﹣1|+|2x +a |,g (x )=x +3. (Ⅰ)当a =﹣2时,求不等式f (x )<g (x )的解集;(Ⅱ)设a >﹣1,且当x ∈[−a2,12]时,f (x )≤g (x ),求a 的取值范围.12.(2011•辽宁)选修4﹣5:不等式选讲 已知函数f (x )=|x ﹣2|﹣|x ﹣5|. (1)证明:﹣3≤f (x )≤3;(2)求不等式f (x )≥x 2﹣8x +15的解集. 13.(2019•新课标Ⅲ)设x ,y ,z ∈R ,且x +y +z =1. (1)求(x ﹣1)2+(y +1)2+(z +1)2的最小值;(2)若(x ﹣2)2+(y ﹣1)2+(z ﹣a )2≥13成立,证明:a ≤﹣3或a ≥﹣1. 14.(2019•新课标Ⅰ)已知a ,b ,c 为正数,且满足abc =1.证明: (1)1a +1b+1c≤a 2+b 2+c 2;(2)(a +b )3+(b +c )3+(c +a )3≥24.15.(2017•新课标Ⅱ)已知a >0,b >0,a 3+b 3=2.证明: (1)(a +b )(a 5+b 5)≥4; (2)a +b ≤2.16.(2015•新课标Ⅱ)设a ,b ,c ,d 均为正数,且a +b =c +d ,证明: (1)若ab >cd ,则√a +√b >√c +√d ;(2)√a +√b >√c +√d 是|a ﹣b |<|c ﹣d |的充要条件. 17.(2013•辽宁)(1)证明:当x ∈[0,1]时,√22x ≤sinx ≤x ; (2)若不等式ax +x 2+x 32+2(x +2)cosx ≤4对x ∈[0,1]恒成立,求实数a 的取值范围.18.(2013•新课标Ⅱ)【选修4﹣﹣5;不等式选讲】 设a ,b ,c 均为正数,且a +b +c =1,证明: (Ⅰ)ab +bc +ca ≤13(Ⅱ)a 2b+b 2c+c 2a≥1.历年高考数学真题精选(按考点分类)专题52 不等式选讲(学生版)一.解答题(共18小题)1.(2019•新课标Ⅱ)已知f (x )=|x ﹣a |x +|x ﹣2|(x ﹣a ). (1)当a =1时,求不等式f (x )<0的解集;(2)当x ∈(﹣∞,1)时,f (x )<0,求a 的取值范围. 解:(1)当a =1时,f (x )=|x ﹣1|x +|x ﹣2|(x ﹣1),∵f (x )<0,∴当x <1时,f (x )=﹣2(x ﹣1)2<0,恒成立,∴x <1; 当x ≥1时,f (x )=(x ﹣1)(x +|x ﹣2|)≥0恒成立,∴x ∈∅; 综上,不等式的解集为(﹣∞,1);(2)当a ≥1时,f (x )=2(a ﹣x )(x ﹣1)<0在x ∈(﹣∞,1)上恒成立; 当a <1时,x ∈(a ,1),f (x )=2(x ﹣a )>0,不满足题意, ∴a 的取值范围为:[1,+∞)2.(2018•新课标Ⅰ)已知f (x )=|x +1|﹣|ax ﹣1|. (1)当a =1时,求不等式f (x )>1的解集;(2)若x ∈(0,1)时不等式f (x )>x 成立,求a 的取值范围.解:(1)当a =1时,f (x )=|x +1|﹣|x ﹣1|={2,x >12x ,−1≤x ≤1−2,x <−1,由f (x )>1,∴{2x >1−1≤x ≤1或{2>1x >1, 解得x >12,故不等式f (x )>1的解集为(12,+∞),(2)当x ∈(0,1)时不等式f (x )>x 成立, ∴|x +1|﹣|ax ﹣1|﹣x >0, 即x +1﹣|ax ﹣1|﹣x >0,即|ax﹣1|<1,∴﹣1<ax﹣1<1,∴0<ax<2,∵x∈(0,1),∴a>0,∴0<x<2 a,∴a<2 x∵2x>2,∴0<a≤2,故a的取值范围为(0,2].3.(2018•新课标Ⅱ)设函数f(x)=5﹣|x+a|﹣|x﹣2|.(1)当a=1时,求不等式f(x)≥0的解集;(2)若f(x)≤1,求a的取值范围.解:(1)当a=1时,f(x)=5﹣|x+1|﹣|x﹣2|={2x+4,x≤−1 2,−1<x<2−2x+6,x≥2.当x≤﹣1时,f(x)=2x+4≥0,解得﹣2≤x≤﹣1,当﹣1<x<2时,f(x)=2≥0恒成立,即﹣1<x<2,当x≥2时,f(x)=﹣2x+6≥0,解得2≤x≤3,综上所述不等式f(x)≥0的解集为[﹣2,3],(2)∵f(x)≤1,∴5﹣|x+a|﹣|x﹣2|≤1,∴|x+a|+|x﹣2|≥4,∴|x+a|+|x﹣2|=|x+a|+|2﹣x|≥|x+a+2﹣x|=|a+2|,∴|a+2|≥4,解得a≤﹣6或a≥2,故a的取值范围(﹣∞,﹣6]∪[2,+∞).4.(2017•新课标Ⅰ)已知函数f(x)=﹣x2+ax+4,g(x)=|x+1|+|x﹣1|.(1)当a=1时,求不等式f(x)≥g(x)的解集;(2)若不等式f (x )≥g (x )的解集包含[﹣1,1],求a 的取值范围.解:(1)当a =1时,f (x )=﹣x 2+x +4,是开口向下,对称轴为x =12的二次函数,g (x )=|x +1|+|x ﹣1|={2x ,x >12,−1≤x ≤1−2x ,x <−1,当x ∈(1,+∞)时,令﹣x 2+x +4=2x ,解得x =√17−12,g (x )在(1,+∞)上单调递增,f (x )在(1,+∞)上单调递减,∴此时f (x )≥g (x )的解集为(1,√17−12]; 当x ∈[﹣1,1]时,g (x )=2,f (x )≥f (﹣1)=2.当x ∈(﹣∞,﹣1)时,g (x )单调递减,f (x )单调递增,且g (﹣1)=f (﹣1)=2.综上所述,f (x )≥g (x )的解集为[﹣1,√17−12];(2)依题意得:﹣x 2+ax +4≥2在[﹣1,1]恒成立,即x 2﹣ax ﹣2≤0在[﹣1,1]恒成立,则只需{12−a ⋅1−2≤0(−1)2−a(−1)−2≤0,解得﹣1≤a ≤1,故a 的取值范围是[﹣1,1].5.(2017•新课标Ⅲ)已知函数f (x )=|x +1|﹣|x ﹣2|. (1)求不等式f (x )≥1的解集;(2)若不等式f (x )≥x 2﹣x +m 的解集非空,求m 的取值范围.解:(1)∵f (x )=|x +1|﹣|x ﹣2|={−3,x <−12x −1,−1≤x ≤23,x >2,f (x )≥1,∴当﹣1≤x ≤2时,2x ﹣1≥1,解得1≤x ≤2; 当x >2时,3≥1恒成立,故x >2; 综上,不等式f (x )≥1的解集为{x |x ≥1}.(2)原式等价于存在x ∈R 使得f (x )﹣x 2+x ≥m 成立, 即m ≤[f (x )﹣x 2+x ]max ,设g (x )=f (x )﹣x 2+x .由(1)知,g (x )={−x 2+x −3,x ≤−1−x 2+3x −1,−1<x <2−x 2+x +3,x ≥2,当x ≤﹣1时,g (x )=﹣x 2+x ﹣3,其开口向下,对称轴方程为x =12>−1, ∴g (x )≤g (﹣1)=﹣1﹣1﹣3=﹣5;当﹣1<x <2时,g (x )=﹣x 2+3x ﹣1,其开口向下,对称轴方程为x =32∈(﹣1,2), ∴g (x )≤g (32)=−94+92−1=54;当x ≥2时,g (x )=﹣x 2+x +3,其开口向下,对称轴方程为x =12<2, ∴g (x )≤g (2)=﹣4+2+3=1; 综上,g (x )max =54,∴m 的取值范围为(﹣∞,54].6.(2016•新课标Ⅲ)已知函数f (x )=|2x ﹣a |+a . (1)当a =2时,求不等式f (x )≤6的解集;(2)设函数g (x )=|2x ﹣1|,当x ∈R 时,f (x )+g (x )≥3,求a 的取值范围. 解:(1)当a =2时,f (x )=|2x ﹣2|+2, ∵f (x )≤6,∴|2x ﹣2|+2≤6, |2x ﹣2|≤4,|x ﹣1|≤2, ∴﹣2≤x ﹣1≤2, 解得﹣1≤x ≤3,∴不等式f (x )≤6的解集为{x |﹣1≤x ≤3}. (2)∵g (x )=|2x ﹣1|,∴f (x )+g (x )=|2x ﹣1|+|2x ﹣a |+a ≥3, 2|x −12|+2|x −a 2|+a ≥3, |x −12|+|x −a 2|≥3−a2, 当a ≥3时,成立,当a <3时,|x −12|+|x −a 2|≥12|a ﹣1|≥3−a2>0, ∴(a ﹣1)2≥(3﹣a )2, 解得2≤a <3,∴a 的取值范围是[2,+∞).7.(2016•新课标Ⅱ)已知函数f (x )=|x −12|+|x +12|,M 为不等式f (x )<2的解集. (Ⅰ)求M ;(Ⅱ)证明:当a ,b ∈M 时,|a +b |<|1+ab |.解:(I )当x <−12时,不等式f (x )<2可化为:12−x ﹣x −12<2,解得:x >﹣1, ∴﹣1<x <−12,当−12≤x ≤12时,不等式f (x )<2可化为:12−x +x +12=1<2,此时不等式恒成立, ∴−12≤x ≤12,当x >12时,不等式f (x )<2可化为:−12+x +x +12<2, 解得:x <1, ∴12<x <1,综上可得:M =(﹣1,1); 证明:(Ⅱ)当a ,b ∈M 时, (a 2﹣1)(b 2﹣1)>0, 即a 2b 2+1>a 2+b 2,即a 2b 2+1+2ab >a 2+b 2+2ab , 即(ab +1)2>(a +b )2, 即|a +b |<|1+ab |.8.(2015•新课标Ⅰ)已知函数f (x )=|x +1|﹣2|x ﹣a |,a >0. (Ⅰ)当a =1时,求不等式f (x )>1的解集;(Ⅱ)若f (x )的图象与x 轴围成的三角形面积大于6,求a 的取值范围. 解:(Ⅰ)当a =1时,不等式f (x )>1,即|x +1|﹣2|x ﹣1|>1, 即{x <−1−x −1−2(1−x)>1①,或{−1≤x <1x +1−2(1−x)>1②,或{x ≥1x +1−2(x −1)>1③. 解①求得x ∈∅,解②求得23<x <1,解③求得1≤x <2.综上可得,原不等式的解集为(23,2).(Ⅱ)函数f (x )=|x +1|﹣2|x ﹣a |={x −1−2a ,x <−13x +1−2a ,−1≤x ≤a −x +1+2a ,x >a,由此求得f (x )的图象与x 轴的交点A (2a−13,0),B (2a +1,0),故f (x )的图象与x 轴围成的三角形的第三个顶点C (a ,a +1), 由△ABC 的面积大于6, 可得12[2a +1−2a−13]•(a +1)>6,求得a >2. 故要求的a 的范围为(2,+∞).9.(2014•新课标Ⅱ)设函数f (x )=|x +1a |+|x ﹣a |(a >0). (Ⅰ)证明:f (x )≥2;(Ⅱ)若f (3)<5,求a 的取值范围.解:(Ⅰ)证明:∵a >0,f (x )=|x +1a |+|x ﹣a |≥|(x +1a )﹣(x ﹣a )|=|a +1a |=a +1a ≥2√a ⋅1a =2,故不等式f (x )≥2成立. (Ⅱ)∵f (3)=|3+1a|+|3﹣a |<5,∴当a >3时,不等式即a +1a<5,即a 2﹣5a +1<0,解得3<a <5+√212. 当0<a ≤3时,不等式即 6﹣a +1a <5,即 a 2﹣a ﹣1>0,求得1+√52<a ≤3. 综上可得,a 的取值范围(1+√52,5+√212).10.(2014•新课标Ⅰ)若a >0,b >0,且1a+1b=√ab .(Ⅰ)求a 3+b 3的最小值;(Ⅱ)是否存在a ,b ,使得2a +3b =6?并说明理由. 解:(Ⅰ)∵a >0,b >0,且1a +1b=√ab ,∴√ab =1a +1b ≥2√1ab ,∴ab ≥2,当且仅当a =b =√2时取等号.∵a 3+b 3 ≥2√(ab)3≥2√23=4√2,当且仅当a =b =√2时取等号, ∴a 3+b 3的最小值为4√2.(Ⅱ)∵2a +3b ≥2√2a ⋅3b =2√6ab ,当且仅当2a =3b 时,取等号. 而由(1)可知,2√6ab ≥2√12=4√3>6, 故不存在a ,b ,使得2a +3b =6成立.11.(2013•新课标Ⅰ)已知函数f (x )=|2x ﹣1|+|2x +a |,g (x )=x +3. (Ⅰ)当a =﹣2时,求不等式f (x )<g (x )的解集;(Ⅱ)设a >﹣1,且当x ∈[−a2,12]时,f (x )≤g (x ),求a 的取值范围.解:(Ⅰ)当a =﹣2时,求不等式f (x )<g (x )化为|2x ﹣1|+|2x ﹣2|﹣x ﹣3<0. 设y =|2x ﹣1|+|2x ﹣2|﹣x ﹣3,则y ={−5x ,x <12−x −2,12≤x ≤13x −6,x >1,它的图象如图所示:结合图象可得,y <0的解集为(0,2),故原不等式的解集为(0,2). (Ⅱ)设a >﹣1,且当x ∈[−a2,12]时,f (x )=1+a ,不等式化为1+a ≤x +3,故x ≥a ﹣2对x ∈[−a 2,12]都成立.故−a 2≥a ﹣2, 解得a ≤43,故a 的取值范围为(﹣1,43].12.(2011•辽宁)选修4﹣5:不等式选讲 已知函数f (x )=|x ﹣2|﹣|x ﹣5|. (1)证明:﹣3≤f (x )≤3;(2)求不等式f (x )≥x 2﹣8x +15的解集.解:(1)f (x )=|x ﹣2|﹣|x ﹣5|={−3,x ≤22x −7,2<x <53,x ≥5.当2<x <5时,﹣3<2x ﹣7<3. 所以﹣3≤f (x )≤3. (2)由(1)可知,当x ≤2时,f (x )≥x 2﹣8x +15的解集为空集;当2<x <5时,f (x )≥x 2﹣8x +15的解集为{x |5−√3≤x <5};当x ≥5时,f (x )≥x 2﹣8x +15的解集为{x |5≤x ≤6}. 综上,不等式f (x )≥x 2﹣8x +15的解集为{x |5−√3≤x ≤6}. 13.(2019•新课标Ⅲ)设x ,y ,z ∈R ,且x +y +z =1. (1)求(x ﹣1)2+(y +1)2+(z +1)2的最小值;(2)若(x ﹣2)2+(y ﹣1)2+(z ﹣a )2≥13成立,证明:a ≤﹣3或a ≥﹣1. 解:(1)x ,y ,z ∈R ,且x +y +z =1, 由柯西不等式可得(12+12+12)[(x ﹣1)2+(y +1)2+(z +1)2]≥(x ﹣1+y +1+z +1)2=4, 可得(x ﹣1)2+(y +1)2+(z +1)2≥43,即有(x ﹣1)2+(y +1)2+(z +1)2的最小值为43;(2)证明:由x +y +z =1,柯西不等式可得(12+12+12)[(x ﹣2)2+(y ﹣1)2+(z ﹣a )2]≥(x ﹣2+y ﹣1+z ﹣a )2=(a +2)2,可得(x ﹣2)2+(y ﹣1)2+(z ﹣a )2≥(a+2)23, 即有(x ﹣2)2+(y ﹣1)2+(z ﹣a )2的最小值为(a+2)23,由题意可得(a+2)23≥13,解得a ≥﹣1或a ≤﹣3.14.(2019•新课标Ⅰ)已知a ,b ,c 为正数,且满足abc =1.证明: (1)1a +1b+1c≤a 2+b 2+c 2;(2)(a +b )3+(b +c )3+(c +a )3≥24.证明:(1)分析法:已知a ,b ,c 为正数,且满足abc =1. 要证(1)1a +1b+1c≤a 2+b 2+c 2;因为abc =1. 就要证:abc a+abc b+abc c≤a 2+b 2+c 2;即证:bc +ac +ab ≤a 2+b 2+c 2; 即:2bc +2ac +2ab ≤2a 2+2b 2+2c 2; 2a 2+2b 2+2c 2﹣2bc ﹣2ac ﹣2ab ≥0 (a ﹣b )2+(a ﹣c )2+(b ﹣c )2≥0; ∵a ,b ,c 为正数,且满足abc =1.∴(a ﹣b )2≥0;(a ﹣c )2≥0;(b ﹣c )2≥0恒成立;当且仅当:a =b =c =1时取等号. 即(a ﹣b )2+(a ﹣c )2+(b ﹣c )2≥0得证.故1a +1b +1c ≤a 2+b 2+c 2得证.(2)证(a +b )3+(b +c )3+(c +a )3≥24成立;即:已知a ,b ,c 为正数,且满足abc =1.(a +b )为正数;(b +c )为正数;(c +a )为正数;(a +b )3+(b +c )3+(c +a )3≥3(a +b )•(b +c )•(c +a );当且仅当(a +b )=(b +c )=(c +a )时取等号;即:a =b =c =1时取等号; ∵a ,b ,c 为正数,且满足abc =1.(a +b )≥2√ab ;(b +c )≥2√bc ;(c +a )≥2√ac ;当且仅当a =b ,b =c ;c =a 时取等号;即:a =b =c =1时取等号;∴(a +b )3+(b +c )3+(c +a )3≥3(a +b )•(b +c )•(c +a )≥3×8√ab •√bc •√ac =24abc =24;当且仅当a =b =c =1时取等号;故(a +b )3+(b +c )3+(c +a )3≥24.得证.故得证.15.(2017•新课标Ⅱ)已知a >0,b >0,a 3+b 3=2.证明:(1)(a +b )(a 5+b 5)≥4;(2)a +b ≤2.证明:(1)由柯西不等式得:(a +b )(a 5+b 5)≥(5+√b ⋅b 5)2=(a 3+b 3)2≥4, 当且仅当√ab 5=√ba 5,即a =b =1时取等号,(2)∵a 3+b 3=2,∴(a +b )(a 2﹣ab +b 2)=2,∴(a +b )[(a +b )2﹣3ab ]=2,∴(a +b )3﹣3ab (a +b )=2,∴(a+b)3−23(a+b)=ab ,由均值不等式可得:(a+b)3−23(a+b)=ab ≤(a+b 2)2, ∴(a +b )3﹣2≤3(a+b)34,∴14(a +b )3≤2, ∴a +b ≤2,当且仅当a =b =1时等号成立.16.(2015•新课标Ⅱ)设a ,b ,c ,d 均为正数,且a +b =c +d ,证明:(1)若ab >cd ,则√a +√b >√c +√d ;(2)√a +√b >√c +√d 是|a ﹣b |<|c ﹣d |的充要条件.证明:(1)由于(√a +√b )2=a +b +2√ab ,(√c +√d )2=c +d +2√cd ,由a ,b ,c ,d 均为正数,且a +b =c +d ,ab >cd ,则√ab >√cd ,即有(√a +√b )2>(√c +√d )2,则√a +√b >√c +√d ;(2)①若√a +√b >√c +√d ,则(√a +√b )2>(√c +√d )2,即为a +b +2√ab >c +d +2√cd ,由a +b =c +d ,则ab >cd ,于是(a ﹣b )2=(a +b )2﹣4ab ,(c ﹣d )2=(c +d )2﹣4cd ,即有(a ﹣b )2<(c ﹣d )2,即为|a ﹣b |<|c ﹣d |;②若|a ﹣b |<|c ﹣d |,则(a ﹣b )2<(c ﹣d )2,即有(a +b )2﹣4ab <(c +d )2﹣4cd ,由a +b =c +d ,则ab >cd ,则有(√a +√b )2>(√c +√d )2.综上可得,√a +√b >√c +√d 是|a ﹣b |<|c ﹣d |的充要条件.17.(2013•辽宁)(1)证明:当x ∈[0,1]时,√22x ≤sinx ≤x ; (2)若不等式ax +x 2+x 32+2(x +2)cosx ≤4对x ∈[0,1]恒成立,求实数a 的取值范围.(1)证明:记F (x )=sin x −√22x ,则F ′(x )=cos x −√22.当x ∈(0,π4)时,F ′(x )>0,F (x )在[0,π4]上是增函数; 当x ∈(π4,1)时,F ′(x )<0,F (x )在[π4,1]上是减函数;又F (0)=0,F (1)>0,所以当x ∈[0,1]时,F (x )≥0,即sin x ≥√22x ,记H (x )=sin x ﹣x ,则当x ∈(0,1)时,H ′(x )=cos x ﹣1<0,所以H (x )在[0,1]上是减函数;则H (x )≤H (0)=0,即sin x ≤x .综上,√22x ≤sin x ≤x . (2)∵当x ∈[0,1]时,ax +x 2+x 32+2(x +2)cos x ﹣4 =(a +2)x +x 2+x 32−4(x +2)sin 2x 2≤(a +2)x +x 2+x 32−4(x +2)(√24x)2 =(a +2)x ,∴当a ≤﹣2时,不等式ax +x 2+x 32+2(x +2)cos x ≤4对x ∈[0,1]恒成立,下面证明,当a >﹣2时,不等式ax +x 2+x 32+2(x +2)cos x ≤4对x ∈[0,1]不恒成立. ∵当x ∈[0,1]时,ax +x 2+x 32+2(x +2)cos x ﹣4 =(a +2)x +x 2+x 32−4(x +2)sin 2x 2≥(a +2)x +x 2+x 32−4(x +2)(x 2)2 =(a +2)x ﹣x 2−x 32≥(a +2)x −32x 2=−32x [x −23(a +2)].所以存在x 0∈(0,1)(例如x 0取a+23和12中的较小值)满足 ax 0+x 02+x 032+2(x 0+2)cos x 0﹣4>0,即当a >﹣2时,不等式ax +x 2+x 32+2(x +2)cos x ≤4对x ∈[0,1]不恒成立. 综上,实数a 的取值范围是(﹣∞,﹣2].18.(2013•新课标Ⅱ)【选修4﹣﹣5;不等式选讲】设a ,b ,c 均为正数,且a +b +c =1,证明:(Ⅰ)ab +bc +ca ≤13(Ⅱ)a 2b +b 2c +c 2a ≥1.证明:(Ⅰ)由a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ca 得a 2+b 2+c 2≥ab +bc +ca , 由题设得(a +b +c )2=1,即a 2+b 2+c 2+2ab +2bc +2ca =1,所以3(ab +bc +ca )≤1,即ab +bc +ca ≤13. (Ⅱ)因为a 2b +b ≥2a ,b 2c +c ≥2b ,c 2a +a ≥2c , 故a 2b +b 2c +c 2a +(a +b +c )≥2(a +b +c ),即a 2b +b 2c +c 2a ≥a +b +c . 所以a 2b +b 2c +c 2a ≥1.。

2015高考数学全国卷(精美word版)

2015高考数学全国卷(精美word版)

绝密★启封并使用完毕前试题类型:A2015年普通高等学校招生全国统一考试理科数学注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4. 考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设复数z 满足1+z1-z=i ,则|z |=A .1B . 2C . 3D .22.sin 20°cos 10°-cos 160°sin 10°= A .-32 B .32 C .-12 D .123.设命题P :∃n ∈N ,n 2>2n ,则¬P 为A .∀n ∈N , n 2>2nB .∃n ∈N , n 2≤2nC .∀n ∈N , n 2≤2nD .∃n ∈N , n 2=2n4.投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为A .0.648B .0.432C .0.36D .0.3125.已知M (x 0,y 0)是双曲线C :x 22-y 2=1 上的一点,F 1、F 2是C 上的两个焦点,若MF 1→·MF 2→<0 ,则y 0的取值范围是A .⎝⎛⎭⎫-33,33 B .⎝⎛⎭⎫-36,36 C .⎝⎛⎭⎫-223,223 D .⎝⎛⎭⎫-233,2336.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧度为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放斛的米约有 A .14斛 B .22斛 C .36斛 D .66斛7.设D 为△ABC 所在平面内一点BC →=3CD →,则A .AD →=-13AB →+43AC → B .AD →=13AB →-43AC → C .AD →=43AB →+13AC → D .AD →=43AB →-13AC →8.函数f (x )=cos (ωx +φ)的部分图像如图所示,则f (x )的单调递减区间为A .⎝⎛⎭⎫k π-14,k π+34 (k ∈Z )B .⎝⎛⎭⎫2k π-14,2k π+34 (k ∈Z )C .⎝⎛⎭⎫k -14,k +34 (k ∈Z )D .⎝⎛⎭⎫2k -14,2k +34 (k ∈Z )9.执行右面的程序框图,如果输入的t =0.01,则输出的n =A .5B .6C .7D .810.(x 2+x +y )5的展开式中,x 5y 2的系数为A .10B .20C .30D .60 (第11题图)11.圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16+20π,则r =A .1B .2C .4D .812.设函数f (x )=e x (2x -1)-ax +a ,其中a <1,若存在唯一的整数x 0,使得f (x 0)<0,则a 的取值范围是A .⎣⎡⎭⎫-32e ,1B . ⎣⎡⎭⎫-32e ,34C . ⎣⎡⎭⎫32e ,34D . ⎣⎡⎭⎫32e ,1第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题未选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分13.若函数f (x )=xln (x +a +x 2)为偶函数,则a =______.2rr正视图俯视图r2r14.一个圆经过椭圆 x 216+y 24=1 的三个顶点,且圆心在x 轴上,则该圆的标准方程为 .15.若x ,y 满足约束条件⎩⎪⎨⎪⎧x -1≥0 (1)x -y ≤0 (2)x +y -4≤0 (3),则 yx的最大值为 .16.在平面四边形ABCD 中,∠A =∠B =∠C =75°,BC =2,则AB 的取值范围是 .三.解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)S n 为数列{a n }的前n 项和.已知a n >0,a 2n +2a n =4S n +4.(Ⅰ)求{a n }的通项公式;(Ⅱ)设b n =1a n a n +1 ,求数列{b n }的前n 项和.18.如图,四边形ABCD 为菱形,∠ABC =120°,E ,F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,BE =2DF ,AE ⊥EC . (1)证明:平面AEC ⊥平面AFC ;(2)求直线AE 与直线CF 所成角的余弦值.19.某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的年宣传费x i 和年销售量y i (i =1,2,···,8)数据作了初步处理,得到下面的散点图及一些统计量的值.ABCFED36 38 34 40 42 44 46 48 50 52 54 56年宣传费/千元表中w 1 =x 1, ,w - =18∑x +11w 1(Ⅰ)根据散点图判断,y =a +bx 与y =c +d x 哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型?(给出判断即可,不必说明理由)(Ⅱ)根据(Ⅰ)的判断结果及表中数据,建立y 关于x 的回归方程;(Ⅲ)已知这种产品的年利率z 与x 、y 的关系为z =0.2y -x .根据(Ⅱ)的结果回答下列问题:(ⅰ)年宣传费x =49时,年销售量及年利润的预报值是多少? (ⅱ)年宣传费x 为何值时,年利率的预报值最大?附:对于一组数据(u 1 v 1),(u 2 v 2),……,(u n v n ),其回归线v =αβ+u 的斜率和截距的最小二乘估计分别为:β=∑i =1n(u i -u -)(v i -v -) ∑i =1n(u i -u -)2α=v --βu -20.(本小题满分12分)在直角坐标系xoy 中,曲线C :y =x 24与直线y =kx +a (a >0)交于M ,N 两点,(Ⅰ)当k =0时,分别求C 在点M 和N 处的切线方程;(Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由.21.(本小题满分12分)已知函数f (x )=x 3+ax +14,g (x )=-lnx .(Ⅰ)当a 为何值时,x 轴为曲线y =f (x ) 的切线;(Ⅱ)用min {},m n 表示m ,n 中的最小值,设函数h (x )=min{f (x ),g (x )} (x >0),讨论h (x )零点的个数.请考生在(22)、(23)、(24)三题中任选一题作答.注意:只能做所选定的题目,如果多做,则按所做第一个题目计分,做答时,请用2B22.(本题满分10分)选修4-1:几何证明选讲 如图,AB 是⊙O 的直径,AC 是⊙O 的切线,BC 交⊙O 于点E . (Ⅰ)若D 为AC 的中点,证明:DE 是⊙O 的切线;(Ⅱ)若OA =3CE ,求∠ACB 的大小.23.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,直线C 1:x =-2,圆C 2:(x -1)2+(y -2)2=1,以坐标原点为极点, x 轴的正半轴为极轴建立极坐标系. (Ⅰ)求C 1,C 2的极坐标方程;(Ⅱ)若直线C 3的极坐标方程为 θ=π4 (ρ∈R ),设C 2与C 3的交点为M 、N ,求△C 2MN 的面积.24.(本小题满分10分)选修4—5:不等式选讲 已知函数f (x )=|x +1|-2|x -a |,a >0.(Ⅰ)当a =1时,求不等式f (x )>1的解集;(Ⅱ)若f (x )的图像与x 轴围成的三角形面积大于6,求a 的取值范围.。

高考数学十年真题专题解析—不等式选讲

高考数学十年真题专题解析—不等式选讲

不等式选讲年份题号考点考查内容2011文理24不等式选讲绝对值不等式的解法2012文理24不等式选讲绝对值不等式的解法,不等式恒成立参数取值范围问题的解法2013卷1文理24不等式选讲绝对值不等式的解法,不等式恒成立参数取值范围问题的解法卷2文理24不等式选讲多元不等式的证明2014卷1文理24不等式选讲基本不等式的应用卷2文理24不等式选讲绝对值不等式的解法2015卷1文理24不等式选讲绝对值不等式的解法,不等式恒成立参数取值范围问题的解法卷2文理24不等式选讲不等式的证明2016卷1文理24不等式选讲分段函数的图像,绝对值不等式的解法卷2文理24不等式选讲绝对值不等式的解法,绝对值不等式的证明卷3文理24不等式选讲绝对值不等式的解法,不等式恒成立参数取值范围问题的解法2017卷1文理23不等式选讲绝对值不等式的解法,不等式恒成立参数取值范围问题的解法卷2文理23不等式选讲不等式的证明卷3文理23不等式选讲绝对值不等式的解法,绝对值不等式解集非空的参数取值范围问题2018卷1文理23不等式选绝对值不等式的解法,不等式恒成立参数取值范围问题的解法讲卷2文理23不等式选讲绝对值不等式的解法,不等式恒成立参数取值范围问题的解法卷3文理23不等式选讲绝对值函数的图象,不等式恒成立参数最值问题的解法2019卷1文理23不等式选讲三元条件不等式的证明卷2文理23不等式选讲绝对值不等式的解法,不等式恒成立参数取值范围问题的解法卷3文理23不等式选讲三元条件最值问题的解法,三元条件不等式的证明2020卷1文理23不等式选讲绝对值函数的图像,绝对值不等式的解法卷2文理23不等式选讲绝对值不等式的解法,不等式恒成立参数取值范围问题的解法卷3文理23不等式选讲三元条件不等式的证明考点出现频率2021年预测考点120绝对值不等式的求解23次考4次2021年主要考查绝对值不等式的解法、绝对值不等式的证明,不等式恒成立参数取值范围问题的解法等.考点121含绝对值不等式的恒成立问题23次考12次考点122不等式的证明23次考7次考点120绝对值不等式的求解1.(2020全国Ⅰ文理22)已知函数()3121f x x x =+--.(1)画出()y f x =的图像;(2)求不等式()()1f x f x >+的解集.【解析】(1)∵()3,1151,1313,3x x f x x x x x ⎧⎪+≥⎪⎪=--<<⎨⎪⎪--≤-⎪⎩,作出图像,如图所示:(2)将函数()f x 的图像向左平移1个单位,可得函数()1f x +的图像,如图所示:由()3511x x --=+-,解得76x =-,∴不等式的解集为7,6⎛⎫-∞- ⎪⎝⎭.2.(2020江苏23)设x ∈R ,解不等式2|1|||4x x ++≤.【答案】22,3⎡⎤-⎢⎥⎣⎦【思路导引】根据绝对值定义化为三个不等式组,解得结果.【解析】1224x x x <-⎧⎨---≤⎩ 或10224x x x -≤≤⎧⎨+-≤⎩或0224x x x >⎧⎨++≤⎩,21x ∴-≤<-或10x -≤≤或203x <≤,∴解集为22,3⎡⎤-⎢⎥⎣⎦.3.(2016全国I 文理)已知函数()|1||23|f x x x =+--.(I)在图中画出()y f x =的图像;(II)求不等式|()|1f x >的解集.【解析】(1)如图所示:(2)()4133212342x x f x x x x x ⎧⎪--⎪⎪=--<<⎨⎪⎪-⎪⎩,≤,,≥,()1f x >.当1x -≤,41x ->,解得5x >或3x <,1x -∴≤;当312x -<<,321x ->,解得1x >或13x <,113x -<<∴或312x <<;当32x ≥,41x ->,解得5x >或3x <,332x <∴≤或5x >.综上,13x <或13x <<或5x >,()1f x >∴,解集为()()11353⎛⎫-∞+∞ ⎪⎝⎭ ,,,.4.(2014全国II 文理)设函数()f x =1(0)x x a a a++->(Ⅰ)证明:()f x ≥2;(Ⅱ)若()35f <,求a 的取值范围.【解析】(I)由0a >,有()f x 111()2x x a x x a a a a a=++-≥+--=+≥,∴()f x ≥2.(Ⅱ)1(3)33f a a=++-.当时a >3时,(3)f =1a a+,由(3)f <5得3<a <5212;当0<a ≤3时,(3)f =16a a-+,由(3)f <5得12<a ≤3.综上:a 的取值范围是(152+,5212+).5.(2011新课标文理)设函数()3f x x a x =-+,其中0a >.(Ⅰ)当1a =时,求不等式()32f x x ≥+的解集;(Ⅱ)若不等式()0f x ≤的解集为{}|1x x ≤-,求a 的值.【解析】(Ⅰ)当1a =时,()32f x x ≥+可化为|1|2x -≥,由此可得3x ≥或1x ≤-.故不等式()32f x x ≥+的解集为{|3x x ≥或1}x ≤-.(Ⅱ)由()0f x ≤得30x a x -+≤,此不等式化为不等式组30x ax a x ≥⎧⎨-+≤⎩或30x aa x x ≤⎧⎨-+≤⎩,即4x a a x ⎧⎪⎨⎪⎩≥≤或2x aax ⎧⎪⎨-⎪⎩≤≤,因为0a >,∴不等式组的解集为{}|2a x x ≤-,由题设可得2a-=1-,故2a =.考点121含绝对值不等式的恒成立问题6.(2020全国Ⅱ文理22)已知函数()221f x x a x a =-+-+.(1)当2a =时,求不等式()4f x ≥的解集;(2)若()4f x ≥,求a 的取值范围.【答案】(1)32x x ⎧≤⎨⎩或112x ⎫≥⎬⎭;(2)(][),13,-∞-+∞ .【思路导引】(1)分别在3x ≤、34x <<和4x ≥三种情况下解不等式求得结果;(2)利用绝对值三角不等式可得到()()21f x a ≥-,由此构造不等式求得结果.【解析】(1)当2a =时,()43f x x x =-+-.当3x ≤时,()43724f x x x x =-+-=-≥,解得:32x ≤;当34x <<时,()4314f x x x =-+-=≥,无解;当4x ≥时,()43274f x x x x =-+-=-≥,解得:112x ≥;综上所述:()4f x ≥的解集为32x x ⎧≤⎨⎩或112x ⎫≥⎬⎭.(2)()()()()22222121211f x x a x a x ax a a a a =-+-+≥---+=-+-=-(当且仅当221a x a -≤≤时取等号),()214a ∴-≥,解得:1a ≤-或3a ≥,a ∴的取值范围为(][),13,-∞-+∞ .7.(2019全国II 文理23)[选修4-5:不等式选讲](10分)已知()|||2|().f x x a x x x a =-+--(1)当1a =时,求不等式()0f x <的解集;(2)若(,1)x ∈-∞时,()0f x <,求a 的取值范围.【解析】(1)当a=1时,()=|1| +|2|(1)f x x x x x ---.当1x <时,2()2(1)0f x x =--<;当1x ≥时,()0f x ≥,∴不等式()0f x <的解集为(,1)-∞.(2)因为()=0f a ,∴1a ≥.当1a ≥,(,1)x ∈-∞时,()=() +(2)()=2()(1)<0f x a x x x x a a x x -----∴a 的取值范围是[1,)+∞.8.(2018全国Ⅰ文理)已知()|1||1|f x x ax =+--.(1)当1a =时,求不等式()1f x >的解集;(2)若(0,1)x ∈时不等式()f x x >成立,求a 的取值范围.【解析】(1)当1a =时,()|1||1|f x x x =+--,即2,1,()2,11,2, 1.--⎧⎪=-<<⎨⎪⎩≤≥x f x x x x 故不等式()1f x >的解集为1{|}2x x >.(2)当(0,1)x ∈时|1||1|x ax x +-->成立等价于当(0,1)x ∈时|1|1ax -<成立.若0≤a ,则当(0,1)x ∈时|1|1-≥ax ;若0a >,|1|1ax -<的解集为20x a <<,∴21≥a,故02<≤a .综上,a 的取值范围为(0,2].9.(2018全国Ⅱ文理)设函数()5|||2|=-+--f x x a x .(1)当1a =时,求不等式()0≥f x 的解集;(2)若()1≤f x ,求a 的取值范围.【解析】(1)当1=a 时,24,1,()2,12,26, 2.+-⎧⎪=-<⎨⎪-+>⎩≤≤x x f x x x x 可得()0≥f x 的解集为{|23}-≤≤x x .(2)()1≤f x 等价于|||2|4++-≥x a x .而|||2||2|++-+≥x a x a ,且当2=x 时等号成立.故()1≤f x 等价于|2|4+≥a .由|2|4+≥a 可得6-≤a 或2≥a ,∴a 的取值范围是(,6][2,)-∞-+∞ .10.(2018全国Ⅲ文理)设函数()|21||1|f x x x =++-.(1)画出()y f x =的图像;(2)当[0,)x ∈+∞时,()f x ax b +≤,求a b +的最小值.【解析】(1)13,,21()2,1,23, 1.x x f x x x x x ⎧-<-⎪⎪⎪=+-<⎨⎪⎪⎪⎩≤≥()y f x =的图像如图所示.(2)由(1)知,()y f x =的图像与y 轴交点的纵坐标为2,且各部分所在直线斜率的最大值为3,故当且仅当3a ≥且2b ≥时,()f x ax b +≤在[0,)+∞成立,因此a b +的最小值为5.11.(2018江苏)若x ,y ,z 为实数,且226x y z ++=,求222x y z ++的最小值.【解析】由柯西不等式,得2222222()(122)(22)x y z x y z ++++++≥.因为22=6x y z ++,∴2224x y z ++≥,当且仅当122x y z ==时,不等式取等号,此时244333x y z ===,,,∴222x y z ++的最小值为4.12.(2017全国Ⅰ文理)已知函数2()4f x x ax =-++,()|1||1|g x x x =++-.(1)当1a =时,求不等式()()f x g x ≥的解集;(2)若不等式()()f x g x ≥的解集包含[1,1]-,求a 的取值范围.【解析】(1)当1a =时,不等式()()f x g x ≥等价于2|1||1|40x x x x -+++--≤.①当1x <-时,①式化为2340x x --≤,无解;当11x -≤≤时,①式化为220x x --≤,从而11x -≤≤;当1x >时,①式化为240x x +-≤,从而11712x -+<≤,∴()()f x g x ≥的解集为117{|1}2x x -+-<≤.(2)当[1,1]x ∈-时,()2g x =,∴()()f x g x ≥的解集包含[1,1]-,等价于当[1,1]x ∈-时()2f x ≥.又()f x 在[1,1]-的最小值必为(1)f -与(1)f 之一,∴(1)2f -≥且(1)2f ≥,得11a -≤≤,∴a 的取值范围为[1,1]-.13.(2017全国Ⅲ文理)已知函数()|1||2|f x x x =+--.(1)求不等式()1f x ≥的解集;(2)若不等式2()f x x x m -+≥的解集非空,求m 的取值范围.【解析】(1)3,1()21,123,2x f x x x x -<-⎧⎪=--⎨⎪>⎩≤≤,当1x <-时,()f x 1≥无解;当x -12≤≤时,由()f x 1≥得,x -211≥,解得x 12≤≤;当>2x 时,由()f x 1≥解得>2x .∴()f x 1≥的解集为{}x x 1≥.(2)由()f x x x m -+2≥得m x x x x +---+212≤,而x x x x x x x x +---+--+2212+1+2≤x ⎛⎫ ⎪⎝⎭2355=--+244≤,且当32x =时,2512=4x x x x +---+,故m 的取值范围为5-,4⎛⎤∞ ⎥⎝⎦.14.(2016全国III 文理)已知函数()|2|f x x a a =-+(Ⅰ)当a=2时,求不等式()6f x ≤的解集;(Ⅱ)设函数()|21|g x x =-,当x ∈R 时,()()3f x g x +≥,求a 的取值范围.【解析】(Ⅰ)当2a =时,()|22|2f x x =-+.解不等式|22|26x -+ ,得13x - ,因此()6f x ≤的解集为{|13}x x - .(Ⅱ)当x R ∈时,()()|2||12|f xg x x a a x +=-++-|212|x a x a -+-+ |1|a a =-+,当12x =时等号成立,∴当x R ∈时,()()3f x g x + 等价于|1|3a a -+ .①当1a 时,①等价于13a a -+ ,无解.当1a >时,①等价于13a a -+ ,解得2a .∴a 的取值范围是[2,)+∞.15.(2015全国I 文理)已知函数()|1|2||f x x x a =+--,0a >.(Ⅰ)当1a =时,求不等式()1f x >的解集;(Ⅱ)若()f x 的图像与x 轴围成的三角形面积大于6,求a 的取值范围.【解析】(Ⅰ)当1a =时,不等式()1f x >化为|1|2|1|10x x +--->,当1x -≤时,不等式化为40x ->,无解;当11x -<<时,不等式化为320x ->,解得213x <<;当1x ≥时,不等式化为20x -+>,解得12x <≤.∴()1f x >的解集为2{|2}3x x <<.(Ⅱ)有题设可得,12,1()312,112,x a x f x x a x a x a x a --<-⎧⎪=+--⎨⎪-++>⎩≤≤,∴函数()f x 图象与x 轴围成的三角形的三个顶点分别为21(,0),(21,0),(,1)3a A B a C a a -++,ABC ∆的面积为22(1)3a +.有题设得22(1)63a +>,故2a >.∴a 的取值范围为(2,)+∞.16.(2014全国I 文理)若0,0ab >>,且11a b +=.(Ⅰ)求33a b +的最小值;(Ⅱ)是否存在,a b ,使得236a b +=?并说明理由.【解析】(I)11a b =+≥,得2ab ≥,且当a b ==时取等号.故33ab+≥≥,且当a b ==∴33a b +的最小值为(II)由(I)知,23a b +≥.由于6>,从而不存在,a b ,使得236a b +=.16.(2013全国I 文理)已知函数()f x =|21||2|x x a -++,()g x =3x +.(Ⅰ)当a =-2时,求不等式()f x <()g x 的解集;(Ⅱ)设a >-1,且当x ∈[2a -,12)时,()f x ≤()g x ,求a 的取值范围.【解析】(Ⅰ)当a =-2时,不等式()f x <()g x 化为|21||22|30x x x -+---<,设函数y =|21||22|3x x x -+---,y =15, 212, 1236, 1x x x x x x ⎧-<⎪⎪⎪--≤≤⎨⎪->⎪⎪⎩,其图像如图所示,从图像可知,当且仅当(0,2)x ∈时,y <0,∴原不等式解集是{|02}x x <<.(Ⅱ)当x ∈[2a -,12)时,()f x =1a +,不等式()f x ≤()g x 化为13a x ++≤,∴2x a -≥对x ∈[2a -,12)都成立,故2a -≥2a -,即a ≤43,∴a 的取值范围为(-1,43].17.(2012新课标文理)已知函数|2|||)(-++=x a x x f .(Ⅰ)当|3-=a 时,求不等式()3f x 的解集;(Ⅱ)若()|4|f x x - 的解集包含]2,1[,求a 的取值范围.【解析】(1)当3a =-时,()3323f x x x ⇔-+- 2323x x x ⎧⇔⎨-+-⎩ 或23323x x x <<⎧⇔⎨-+-⎩ 或3323x x x ⎧⇔⎨-+-⎩ 1x ⇔ 或4x .(2)原命题()4f x x ⇔- 在[1,2]上恒成立24x a x x ⇔++-- 在[1,2]上恒成立22x a x ⇔--- 在[1,2]上恒成立30a ⇔- .考点122不等式的证明18.(2020全国Ⅲ文理23)设,,,0,1a b c a b c abc ∈++==R .(1)证明:0ab bc ca ++<;(2)用{}max ,,a b c 表示,,a b c 的最大值,证明:{}3max ,,4a b c ≥【答案】(1)证明见解析(2)证明见解析.【思路导引】(1)根据题设条件,0=++c b a 两边平方,再利用均值不等式证明即可;(2)思路一:不妨设max{,,}a b c a =,由题意得出0,,0a b c ><,由()222322b c b c bc a a a bc bc+++=⋅==,结合基本不等式,即可得出证明.思路二:假设出c b a ,,中最大值,根据反证法与基本不等式推出矛盾,即可得出结论.【解析】(1)证明:().0,02=++∴=++c b a c b a ,0222222=+++++∴ca ac ab c b a 即()222222c b a ca bc ab ++-=++.0,0222<++∴<++∴ca bc ab ca bc ab (2)证法一:不妨设max{,,}a b c a =,由0,1a b c abc ++==可知,0,0,0a b c ><<,1,a b c a bc =--= ,()222322224b c b c bc bc bc a a a bc bc bc++++∴=⋅==≥=,当且仅当b c =时,取等号,a ∴≥,即max{,,}a b c .证法二:不妨设403<<<≤c b a ,则,4,41133>=-->=c b a c ab而1132a b ->--≥>==矛盾,∴命题得证.19.(2019全国I 文理23)已知a ,b ,c 为正数,且满足abc=1.证明:(1)222111a b c a b c++≤++;(2)333()()()24a b b c c a +++≥++.【解析】(1)因为2222222,2,2a b ab b c bc c a ac +≥+≥+≥,又1abc =,故有222111ab bc ca a b c ab bc ca abc a b c ++++≥++==++,∴222111a b c a b c++≤++.(2)因为, , a b c 为正数且1abc =,故有333()()()a b b c c a +++++≥=3(+)(+)(+)a b b c ac 3≥⨯⨯⨯=24.∴333()()()24a b b c c a +++++≥.20.(2019全国III 文理23)设,,x y z ∈R ,且1x y z ++=.(1)求222(1)(1)(1)x y z -++++的最小值;(2)若2221(2)(1)()3x y z a -+-+-≥成立,证明:3a ≤-或1a ≥-.【解析】(1)由于2[(1)(1)(1)]x y z -++++222(1)(1)(1)2[(1)(1)(1)(1)(1)(1)]x y z x y y z z x =-+++++-++++++-2223(1)(1)(1)x y z ⎡⎤≤-++++⎣⎦,故由已知得2224(1)(1)(1)3x y z -++++≥,当且仅当x=53,y=–13,13z =-时等号成立.∴222(1)(1)(1)x y z -++++的最小值为43.(2)由于2[(2)(1)()]x y z a -+-+-222(2)(1)()2[(2)(1)(1)()()(2)]x y z a x y y z a z a x =-+-+-+--+--+--2223(2)(1)()x y z a ⎡⎤-+-+-⎣⎦ ,故由已知2222(2)(2)(1)()3a x y z a +-+-+- ,当且仅当43a x -=,13a y -=,223a z -=时等号成立,因此222(2)(1)()x y z a -+-+-的最小值为2(2)3a +.由题设知2(2)133a + ,解得3a - 或1a - .21.(2017全国Ⅱ文理)已知0a >,0b >,332a b +=,证明:(1)()()554a b a b ++≥;(2)2a b +≤.【解析】(1)556556()()a b a b a ab a b b ++=+++3323344()2()a b a b ab a b =+-++()22244ab a b =+-≥.(2)∵33223()33a b a a b ab b +=+++23()ab a b =++23()2()4a b a b +≤++33()24a b +=+,∴3()8a b +≤,因此2a b +≤.22.(2017江苏)已知a ,b ,c ,d 为实数,且224a b +=,2216c d +=,证明8ac bd +≤.【解析】证明:由柯西不等式可得:22222()()()ac bd a b c d +++≤,因为22224,16,a b c d +=+=∴2()64ac bd +≤,因此8ac bd +≤.23.(2016全国II 文理)已知函数()1122f x x x =-++,M 为不等式()2f x <的解集.(I)求M ;(II)证明:当a ,b M ∈时,1a b ab +<+.【解析】(I)当12x <-时,()11222f x x x x =---=-,若112x -<<-;当1122x -≤≤时,()111222f x x x =-++=<恒成立;当12x >时,()2f x x =,若()2f x <,112x <<.综上可得,{}|11M x x =-<<.(Ⅱ)当()11a b ∈-,,时,有()()22110a b -->,即22221a b a b +>+,则2222212a b ab a ab b +++>++,则()()221ab a b +>+,即1a b ab +<+,证毕.24.(2015全国II 文理)设,,,a b c d 均为正数,且a b c d +=+,证明:(Ⅰ)若ab >cd ,则a b c d +>+;(Ⅱ)a b c d +>+是||||a b c d -<-的充要条件.【解析】(Ⅰ)∵2()2a b a b ab +=++,2()c d c d cd +=++由题设a b c d +=+,ab cd >得22()a b c d >+a b c d +>(Ⅱ)(ⅰ)若||||a b c d -<-,则22()()a b c d -<-,即22()4()4a b ab c d cd +-<+-.因为a b c d +=+,∴ab cd >,由(Ⅰ)得a b c d >(ⅱ)a b c d +>则22(a b c d >+,即a b ab c d cd ++>++因为a b c d +=+,∴ab cd >,于是2222()()4()4()a b a b ab c d cd c d -=+-<+-=-.因此||||a b c d -<-.a b c d +>||||a b c d -<-的充要条件.25.(2013全国II 文理)设,,a b c 均为正数,且1a b c ++=,证明:(Ⅰ)13ab bc ca ++≤;(Ⅱ)2221a b c b c a++≥.【解析】(Ⅰ)2222222,2,2a b ab b c bc c a ca +≥+≥+≥得222a b c ab bc ca ++≥++,由题设得()21a b c ++=,即2222221a b c ab bc ca +++++=,∴()31ab bc ca ++≤,即13ab bc ca ++≤.(Ⅱ)∵2222,2,2a b c b a c b a c b c a +≥+≥+≥,∴222()2()a b c a b c a b c b c a +++++≥++,即222a b c a b c b c a ++≥++,∴2221a b c b c a ++≥.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015-2019高考数学全国卷真题(不等式选讲)
2019-3-23.设,,,x y z R ∈且1x y z +
+=. (1)求()()()222111x y z -++++的最小值;
(2)()()()2221213x y z a -+-+-≥成立,证明:3a ≤-或1a ≥-.
2019-2-23.已知()|||2|().f x x a x x x a =-+--
(1)当1a =时,求不等式()0f x <的解集;
(2)若(,1)x ∈-∞时,()0f x <,求a 的取值范围.
2019-1-23.已知a ,b ,c 为正数,且满足1=abc .证明: (1)22211
1
a b c a b c ++≤++;
(2)333()()()24a b b c c a +++≥++.
2018-3-23.已知函数()211f x x x =++-.
(1)画出()y f x =的图像;
(2)当[)0,x ∈+∞时,()f x ax b ≤+,求a b +的最小值.
2018-2-23.设函数()5|||2|f x x a x =-+--.
(1)当1a =时,求不等式()0f x ≥的解集;
(2)若()1f x ≤,求a 的取值范围.
2018-1-23.已知()|1||1|f x x ax =+--.
(1)当1a =时,求不等式()1f x >的解集;
(2)若(0,1)x ∈时不等式()f x x >成立,求a 的取值范.
2017-3-23.已知函数21)(--+=x x x f .
(1)求不等式1)(≥x f 的解集;
(2)若不等式m x x x f +-≥2)(的解集非空,求m 的取值范围.
2017-2-23.已知20033=+b a b a ,>,>.证明:
(1)4))((55≥++b a b a ;
(2)2≤+b a .
2017-1-23.已知函数()()2411f x x ax g x x x =-++=++-,. (1)当1a =时,求不等式()()f x g x ≥的解集;
(2)若不等式()()f x g x ≥的解集包含[]11-,
,求a 的取值范围.
2016-3-23.已知函数()2f x x a a =-+.
(1)当2=a 时,求不等式()6f x ≤的解集;
(2)设函数()21g x x =-. 当x R ∈时,()()3f x g x +≥,求a 的取值范围。

2016-2-23.已知函数()1122
f x x x =-
++,M 为不等式()2f x <的解集. (I )求M ;
(II )证明:当a ,b M ∈时,1a b ab +<+.
2016-1-23.已知函数()123f x x x =+--.
(I )画出()y f x =的图像;
(II )求不等式()1f x >的解集.
2015-2-23.设d c b a 、、、均为正数,且d c b a +=+,证明: (I )若ab >cd ,则d c b a ++>;
(II )d c b a ++>是d c b a --<的充要条件.
2015-1-23.已知函数0,21)(>a a x x x f --+=. (Ⅰ)当1=a 时,求不等式1)(>
x f 的解集; (Ⅱ)若)(x f 的图像与x 轴围成的三角形面积大于6,求a 的取值范围.。

相关文档
最新文档