牛顿第二定律典范例题
必修一牛顿第二定律典型例题(含答案)

【例1】在光滑水平面上的木块受到一个方向不变,大小从某一数值逐渐变小的外力作用时,木块将作 [ ]A.匀减速运动B.匀加速运动C.速度逐渐减小的变加速运动 D.速度逐渐增大的变加速运动【例2】一个质量m=2kg的木块,放在光滑水平桌面上,受到三个大小均为F=10N、与桌面平行、互成120°角的拉力作用,则物体的加速度多大?若把其中一个力反向,物体的加速度又为多少?【例3】沿光滑斜面下滑的物体受到的力是 [ ]A.重力和斜面支持力 B.重力、下滑力和斜面支持力C.重力、正压力和斜面支持力 D.重力、正压力、下滑力和斜面支持力【例4】图中滑块与平板间摩擦系数为μ,当放着滑块的平板被慢慢地绕着左端抬起,α角由0°增大到90°的过程中,滑块受到的摩擦力将 [ ]A.不断增大 B.不断减少C.先增大后减少D.先增大到一定数值后保持不变【例5】如图,质量为M的凹形槽沿斜面匀速下滑,现将质量为m的砝码轻轻放入槽中,下列说法中正确的是 [ ]A.M和m一起加速下滑B.M和m一起减速下滑C.M和m仍一起匀速下滑【例6】图1表示某人站在一架与水平成θ角的以加速度a向上运动的自动扶梯台阶上,人的质量为m,鞋底与阶梯的摩擦系数为μ,求此时人所受的摩擦力。
【例7】在粗糙水平面上有一个三角形木块abc,在它的两个粗糙斜面上分别放两个质量m1和m2的木块,m1>m2,如图1所示。
已知三角形木块和两个物体都是静止的,则粗糙水平面对三角形木块[ ]A.有摩擦力作用,摩擦力方向水平向右B.有摩擦力作用,摩擦力方向水平向左C.有摩擦力作用,但摩擦力方向不能确定D.以上结论都不对【例8】质量分别为m A和m B的两个小球,用一根轻弹簧联结后用细线悬挂在顶板下(图1),当细线被剪断的瞬间,关于两球下落加速度的说法中,正确的是 [ ]A.a A=a B=0 B.a A=a B=gC.a A>g,a B=0 D.a A<g,a B=0【例9】在车箱的顶板上用细线挂着一个小球(图1),在下列情况下可对车厢的运动情况得出怎样的判断:(1)细线竖直悬挂:______;(2)细线向图中左方偏斜:___;(3)细线向图中右方偏斜:___________ 。
牛顿第二定律典型例题

典型例题一、动力学的两类基本问题:例:如图所示,一木箱质量为m ,与水平地面间的动摩擦因数为μ,现用斜向右下方与水平方向成θ角的力F 推木箱,求经过t 秒时木箱的速度。
例:如图所示,传送带保持1m/s 的速度运动,现将一质量为m 的小物体从传送带左端放上。
设物体与皮带间的动摩擦因数为0.1,传送带两端水平距离为2.5m ,则物体从左端运动到右端所经历的时间为多少?例:广场所放的花炮升高的最大高度是100 m.假设花炮爆炸前做竖直上抛运动,且在最高点爆炸,花炮的质量为2 kg,在炮筒中运动的时间为0.02 s,则火药对花炮的平均推力约为_______ N.(g 取10 m/s2)例:如图所示,质量为m 的木块在推力F 作用下,沿竖直墙壁匀加速向上运动,F 与竖直方向的夹角为、已知木块与墙壁间的动摩擦因数为μ,则木块受到的滑动摩擦力大小是 ( ) A 、μmg B 、Fcos θ -mg C 、Fcos θ+mg D 、μFsin θ二、整体法与隔离法处理连接体的问题:例:如图所示,固定在水平面上的斜面其倾角θ=37°,长方体木块A 的MN 面上钉着一颗小钉子,质量m=1.5kg 的小球B 通过一细线与小钉子相连接,细线与斜面垂直.木块与斜面间的动摩擦因数μ=0.50。
现将木块由静止释放,木块将沿斜面下滑.求在木块下滑的过程中小球对木块MN 面的压力大小.(取g=10m/s ²,sin37°=0.6,cos37°=0.8)例:如图所示,A 、B 两物体之间用轻质弹簧连接,用水平恒力F 拉A ,使A 、B 一起沿光滑水平面做匀加速直线运动,这时弹簧长度为L1;若将A 、B 置于粗糙水平面上,用相同的水平恒力F 拉A ,使A 、B 一起做匀加速直线运动,此时弹簧长度为L2。
若A 、B 与粗糙水平面之间的动摩擦因数相同,则下列关系式正确的是 ( ) A 、L2<L1 B 、L2>L1 C 、L2=L1D 、由于A 、B 质量关系未知,故无法确定L1、L2的大小关系 例:如图所示,A 、B 两木块的质量分别为mA 、mB ,在水平推力F 作用下沿光滑水平面匀加速向右运动,求A 、B 间的弹力FN 。
牛顿第二定律典型题型

牛顿第二定律典型题型题型1:矢量性:加速度的方向总是与合外力的方向相同。
在解题时,可以利用正交分解法进行求解。
1、如图所示,物体A放在斜面上,与斜面一起向右做匀加速运动,物体A受到斜面对它的支持力和摩擦力的合力方向可能是 ( )A.斜向右上方 B.竖直向上C.斜向右下方 D.上述三种方向均不可能1、A 解析:物体A受到竖直向下的重力G、支持力F N和摩擦力三个力的作用,它与斜面一起向右做匀加速运动,合力水平向右,由于重力没有水平方向的分力,支持力F N和摩擦力F f的合力F一定有水平方向的分力,F在竖直方向的分力与重力平衡,F向右斜上方,A正确。
2、如图所示,有一箱装得很满的土豆,以一定的初速度在摩擦因数为的水平地面上做匀减速运动,(不计其它外力及空气阻力),则其中一个质量为m的土豆A受其它土豆对它的总作用力大小应是 ( )A.mg B.mgC.mg D.mg2、C 解析:像本例这种物体系的各部分具有相同加速度的问题,我们可以视其为整体,求关键信息,如加速度,再根据题设要求,求物体系内部的各部分相互作用力。
选所有土豆和箱子构成的整体为研究对象,其受重力、地面支持力和摩擦力而作减速运动,且由摩擦力提供加速度,则有mg=ma,a=g。
而单一土豆A的受其它土豆的作用力无法一一明示,但题目只要求解其总作用力,因此可以用等效合力替代。
由矢量合成法则,得F总=,因此答案C正确。
例3、如图所示,电梯与水平面夹角为300,当电梯加速向上运动时,人对梯面压力是其重力的6/5,则人与梯面间的摩擦力是其重力的多少倍?拓展:如图,动力小车上有一竖杆,杆端用细绳拴一质量为m的小球.当小车沿倾角为30°的斜面匀加速向上运动时,绳与杆的夹角为60°,求小车的加速度和绳中拉力大小.题型2:必须弄清牛顿第二定律的瞬时性牛顿第二定律是表示力的瞬时作用规律,描述的是力的瞬时作用效果—产生加速度。
物体在某一时刻加速度的大小和方向,是由该物体在这一时刻所受到的合外力的大小和方向来决定的。
牛顿第二定律典型例题

牛顿第二定律典型例题一、力的瞬时性1、无论绳所受拉力多大,绳子的长度不变,由此特点可知,绳子中的张力可以突变.2、弹簧和橡皮绳受力时,要发生形变需要一段时间,所以弹簧和橡皮绳中的弹力不能突变,但是,当弹簧或橡皮绳被剪断时,它们所受的弹力立即消失.【例1】如图3-1-2所示,质量为m 的小球与细线和轻弹簧连接后被悬挂起来,静止平衡时AC 和BC 与过C 的竖直线的夹角都是600,则剪断AC 线瞬间,求小球的加速度;剪断B 处弹簧的瞬间,求小球的加速度.练习1、(2010年全国一卷)15.如右图,轻弹簧上端与一质量为m 的木块1相连,下端与另一质量为M 的木块2相连,整个系统置于水平放置的光滑木坂上,并处于静止状态。
现将木板沿水平方向突然抽出,设抽出后的瞬间,木块1、2的加速度大小分别为1a 、2a ︒重力加速度大小为g ︒则有A. 10a =,2a g =B. 1a g =,2a g =C. 120,m M a ag M +==D. 1a g =,2m Ma g M+=2、一物体在几个力的共同作用下处于静止状态.现使其中向东的一个力F 的值逐渐减小到零,又马上使其恢复到原值(方向不变),则( ) A .物体始终向西运动B .物体先向西运动后向东运动C .物体的加速度先增大后减小D .物体的速度先增大后减小3、如图3-1-13所示的装置中,中间的弹簧质量忽略不计,两个小球质量皆为m ,当剪断上端的绳子OA 的瞬间.小球A 和B 的加速度多大?4、如图3-1-14所示,在两根轻质弹簧a 、b 之间系住一小球,弹簧的另外两端分别固定在地面和天花板上同图3-1-13图3-1-2图3-1-14一竖直线上的两点,等小球静止后,突然撤去弹簧a ,则在撤去弹簧后的瞬间,小球加速度的大小为2.5米/秒2,若突然撤去弹簧b ,则在撤去弹簧后的瞬间,小球加速度的大小可能为( ) A .7.5米/秒2,方向竖直向下 B .7.5米/秒2,方向竖直向上 C .12.5米/秒2,方向竖直向下 D .12.5米/秒2,方向竖直向上二、临界问题的分析与计算【例2】如图3-2-3所示,斜面是光滑的,一个质量是0.2kg 的小球用细绳吊在倾角为53o的斜面顶端.斜面静止时,球紧靠在斜面上,绳与斜面平行;当斜面以8m/s 2的加速度向右做匀加速运动时,求绳子的拉力及斜面对小球的弹力.假设斜面向右加速运动时,斜面对小球的弹力恰好为0,这时绳中的拉力F 与小球的重力mg 的合力使它具有加速度a ,因此有:mgcotα=ma ,即0.2×10×cot53°=0.2a , ∴a=7.5m/s^2,由于这一加速度<10m/s^2,所以当斜面以10m/s2的加速度向右运动时,小球已离开斜面向上了。
牛顿第二定律经典例题

牛顿第二定律应用的典型问题1. 力和运动的关系力是改变物体运动状态的原因,而不是维持运动的原因。
由知,加速度与力有直接关系,分析清楚了力,就知道了加速度,而速度与力没有直接关系。
速度如何变化需分析加速度方向与速度方向之间的关系,加速度与速度同向时,速度增加;反之减小。
在加速度为零时,速度有极值。
例1. 如图1所示,轻弹簧下端固定在水平面上。
一个小球从弹簧正上方某一高度处由静止开始自由下落,接触弹簧后把弹簧压缩到一定程度后停止下落。
在小球下落的这一全过程中,下列说法中正确的是()图1A. 小球刚接触弹簧瞬间速度最大B. 从小球接触弹簧起加速度变为竖直向上C. 从小球接触弹簧到到达最低点,小球的速度先增大后减小D. 从小球接触弹簧到到达最低点,小球的加速度先减小后增大例2. 一航天探测器完成对月球的探测任务后,在离开月球的过程中,由静止开始沿着与月球表面成一倾斜角的直线飞行,先加速运动,再匀速运动,探测器通过喷气而获得推动力,以下关于喷气方向的描述中正确的是()A. 探测器加速运动时,沿直线向后喷气B. 探测器加速运动时,竖直向下喷气C. 探测器匀速运动时,竖直向下喷气D. 探测器匀速运动时,不需要喷气解析:小球的加速度大小决定于小球受到的合外力。
从接触弹簧到到达最低点,弹力从零开始逐渐增大,所以合力先减小后增大,因此加速度先减小后增大。
当合力与速度同向时小球速度增大,所以当小球所受弹力和重力大小相等时速度最大。
故选CD。
解析:受力分析如图2所示,探测器沿直线加速运动时,所受合力方向与运动方向相同,而重力方向竖直向下,由平行四边形定则知推力方向必须斜向上方,由牛顿第三定律可知,喷气方向斜向下方;匀速运动时,所受合力为零,因此推力方向必须竖直向上,喷气方向竖直向下。
故正确答案选C。
图22. 力和加速度的瞬时对应关系(1)物体运动的加速度a与其所受的合外力F有瞬时对应关系。
每一瞬时的加速度只取决于这一瞬时的合外力,而与这一瞬时之间或瞬时之后的力无关。
牛顿第二定律经典例题

牛顿第二定律应用的典型问题1. 力和运动的关系力是改变物体运动状态的原因,而不是维持运动的原因。
由知,加速度与力有直接关系,分析清楚了力,就知道了加速度,而速度与力没有直接关系。
速度如何变化需分析加速度方向与速度方向之间的关系,加速度与速度同向时,速度增加;反之减小。
在加速度为零时,速度有极值。
例1. 如图1所示,轻弹簧下端固定在水平面上。
一个小球从弹簧正上方某一高度处由静止开始自由下落,接触弹簧后把弹簧压缩到一定程度后停止下落。
在小球下落的这一全过程中,下列说法中正确的是()图1A. 小球刚接触弹簧瞬间速度最大B. 从小球接触弹簧起加速度变为竖直向上C. 从小球接触弹簧到到达最低点,小球的速度先增大后减小D. 从小球接触弹簧到到达最低点,小球的加速度先减小后增大例2. 一航天探测器完成对月球的探测任务后,在离开月球的过程中,由静止开始沿着与月球表面成一倾斜角的直线飞行,先加速运动,再匀速运动,探测器通过喷气而获得推动力,以下关于喷气方向的描述中正确的是()A. 探测器加速运动时,沿直线向后喷气B. 探测器加速运动时,竖直向下喷气C. 探测器匀速运动时,竖直向下喷气D. 探测器匀速运动时,不需要喷气解析:小球的加速度大小决定于小球受到的合外力。
从接触弹簧到到达最低点,弹力从零开始逐渐增大,所以合力先减小后增大,因此加速度先减小后增大。
当合力与速度同向时小球速度增大,所以当小球所受弹力和重力大小相等时速度最大。
故选CD。
解析:受力分析如图2所示,探测器沿直线加速运动时,所受合力方向与运动方向相同,而重力方向竖直向下,由平行四边形定则知推力方向必须斜向上方,由牛顿第三定律可知,喷气方向斜向下方;匀速运动时,所受合力为零,因此推力方向必须竖直向上,喷气方向竖直向下。
故正确答案选C。
图22. 力和加速度的瞬时对应关系(1)物体运动的加速度a与其所受的合外力F有瞬时对应关系。
每一瞬时的加速度只取决于这一瞬时的合外力,而与这一瞬时之间或瞬时之后的力无关。
最新高中物理牛顿第二定律经典例题(精彩4篇)

最新高中物理牛顿第二定律经典例题(精彩4篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、演讲发言、策划方案、合同协议、心得体会、计划规划、应急预案、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, speeches, planning plans, contract agreements, insights, planning, emergency plans, teaching materials, essay summaries, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!最新高中物理牛顿第二定律经典例题(精彩4篇)练习题从狭义上讲,练习题是以巩固学习效果为目的要求解答的问题;从广义上讲,练习题是指以反复学习、实践,以求熟练为目的的问题,包括生活中遇到的麻烦、难题等。
高中物理牛顿第二定律经典练习题专题训练(含答案)

高中物理牛顿第二定律经典练习题专题训
练(含答案)
高中物理牛顿第二定律经典练题专题训练(含答案)
1. Problem
已知一个物体质量为$m$,受到一个力$F$,物体所受加速度为$a$。
根据牛顿第二定律,力、质量和加速度之间的关系可以表示为:
$$F = ma$$
请计算以下问题:
1. 如果质量$m$为2kg,加速度$a$为3m/s^2,求所受的力
$F$的大小。
2. 如果质量$m$为5kg,力$F$的大小为10N,求物体的加速度$a$。
2. Solution
使用牛顿第二定律的公式$F = ma$来解决这些问题。
1. 问题1中,已知质量$m$为2kg,加速度$a$为3m/s^2。
将这些值代入牛顿第二定律的公式,可以得到:
$$F = 2 \times 3 = 6 \,\text{N}$$
所以,所受的力$F$的大小为6N。
2. 问题2中,已知质量$m$为5kg,力$F$的大小为10N。
将这些值代入牛顿第二定律的公式,可以得到:
$$10 = 5a$$
解方程可以得到:
$$a = \frac{10}{5} = 2 \,\text{m/s}^2$$
所以,物体的加速度$a$为2m/s^2。
3. Conclusion
通过计算题目中给定的质量、力和加速度,我们可以使用牛顿第二定律的公式$F = ma$来求解相关问题。
掌握这一定律的应用可以帮助我们更好地理解物体运动的规律和相互作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
物体受 力情况
牛顿第 二定律
加速度 a
运动学 公式
物体运 动情况
一木箱质量为m=10Kg,与水平地面间的动摩擦因数为
μ=0.2,现用斜向右下方F=100N的力推木箱,使木箱
在水平面上做匀加速运动。F与水平方向成θ=37O角,
求经过t=5秒时木箱的速度。 解:木箱受力如图:将F正交分解,则:
FN
F1= F cosθ
牛顿第二定律的应用
一、 从受力确定运动情况
已知物体受力情况确定运动情况,指的是在受力 情况已知的条件下,要求判断出物体的运动状态或求 出物体的速度、位移等。
处理这类问题的基本思路是:先分析物体受力情 况求合力,据牛顿第二定律求加速度,再用运动学公 式求所求量(运动学量)。
物体受 力情况
牛顿第 二定律
加速度 a
运动学 公式
物体运 动情况
二、从运动情况确定受力
已知物体运动情况确定受力情况,指的是在运动情 况(知道三个运动学量)已知的条件下,要求得出物体 所受的力或者相关物理量(如动摩擦因数等)。
处理这类问题的基本思路是:先分析物体的运动情 况,据运动学公式求加速度,再在分析物体受力情况的
基础上,用牛顿第二定律列方程求所求量(力)。
①
F2= F sinθ
②
竖直方向: FN (F2 mg ) ③0
水平方向: F1 Ff=ma ④
Ff=μFN
⑤
θ
Ff
F1
F2
F
mg
v =at
⑥
由①②③④⑤ ⑥得 v = F cos - (mg + F sin ) t
m
代入数据可得: v =24m/s
一个滑雪的人,质量m=75kg,以v0=2m/s的初速度沿 山坡匀加速滑下,山坡的倾角θ=30°,在t=5s的时
例4.质量为M的斜面放置于水平面上,其上有质量为m
的小物块,各接触面均无摩擦力,将水平力 F加在M上,
要求m与M不发生相对滑动,力F应为多大?
解:以m为对象;其受力如
图:由图可得:
F合 mg tan
m
F
由牛顿第二定律有
M
mg tan ma........1()
θ
以整体为对象, 受力如图, 则
F (M m)a........(2)
用水平推力F
向左推 m1、m2 间的作用力与
m1 m2
Ff
原来相同吗?
F1
0
a m1 m2
m2g
F1
=
m2a
=
m2 F m1 + m2
0
a F (m1 m2 )g
m1 m2
F1 - m2 g = m2a
F1
=
m2
F
-
(m1 + m2 )g
m1 + m2
+ m2 g
=
m2 F m1 + m2
由(1)(2)有
F (M m)g tan
动力学中的临界极值问题
瞬时加速度的分析问题
分析物体在某一时刻的瞬时加速度,关键——分析瞬时 前后的受力情况及运动状态,再由牛顿第二定律求出瞬 时加速度。
有两种模型:
①刚性绳(或接触面):是一种不需要发生明显形变就
能产生弹力的物体,若剪断(或脱离)后,其中弹力立 即发生变化,不需要形变恢复的时间。
间内滑下的路程S=60m,求滑雪人受到的阻力(包括摩
擦和空气阻力)。
由S=v0 t+at2 21得
已知运动情况求 受力情况
a
=
2(S-v0t)
t2
1
FN
F阻
滑雪的人滑雪时受力如图,将G分解得:
F1= mgsinθ
②
根据牛顿第二定律:F1-F阻=m a ③
由①②③
F1
θ
θ
F2
mg
得F阻=F1-ma
=
mgsinθ-2
在刚撤开的瞬间P,Q的加速度各是
多少?
如图, 质量为m的小球处
于静止状态,若将绳剪断,
则此瞬间小球的加速度是
B
多少?
θ
A
m
如图所示,吊篮A、物体B、物体C的质量均为m,B和C分
别固定在竖直弹簧两端,弹簧的质量不计.整个系统在 轻绳悬挂下处于静止状态.现将悬挂吊篮的轻绳剪断, 在轻绳刚断的瞬间( )
[ 解法二 ]:
F m1 m2
对m1、m2视为整体作受力分析
FN
有 :F = (m 1+ m2)a (1)
F
对m2作受力分析 有 :F1 = m2 a
(2)
联立(1)、(2)可得
F1 =
m2F m1 m2
(m1 + m2)g
[m2]
FN2 F1
m2g
求m1对m2的作用力大小。
对m2受力分析: FN
0 A
的加速度分别是多少?
B
质量皆为m的A,B两球之间系着一个不计质量 的轻弹簧,放在光滑水平台面上,A球紧靠墙壁, 今用力F将B球向左推压弹簧,平衡后,突然将力 F撤去的瞬间A,B的加速度分别为多少?
两物体P,Q分别固定在质量可以忽 P 略不计的弹簧的两端,竖直放在一
块水平板上并处于平衡状态,两物 Q 体的质量相等,如突然把平板撤开,
m(S-v0t)
t2
代入数据可得: F阻=67.5N
F阻 方向沿斜面向上
一木箱质量为m,与水平地面间的动摩擦因数为 μ,现用斜向右下方与水平方向成θ角的力F推 木箱,求从静止开始经过 t 秒时木箱的速度?
N
竖直方向 N– Fsinθ = G ①
V0= 0
Vt=? 水平方向 Fcosθ- f = ma ②
②弹簧(或橡皮绳):特点是形变量大,形变恢复需
要较长时间,在瞬时问题中,其弹力可以看成不变。
一条轻弹簧上端固定在天花板上,
下端连接一物体A,A的下边通过
一轻绳连接物体B。A、B的质量
相同均为m,待平衡后剪断A、B间
A
的细绳,则剪断细绳的瞬间,物体 A、B加速度和方向?
B
如图,两个质量均为m的重物静止, 若剪断绳OA,则剪断瞬间A和B
[ 解法一 ]:
F m1 m2
分别以m1、m2为隔离体作受力分析 对m1有 :F – F1 = m 1a (1) [m1] F1
对m2有: F1 = m2 a (2)
FN1 F
m1g
联立(1)、(2)可得
F1 =
m2F m1 m2
[m2]
FN2 F1
m2g
光滑的水平面上有质量分别为m1、m2的两物体 静止靠在 一起(如图) ,现对m1施加一个大小为 F 方向向右的推 力作用。求此时物体m2受到物体 m1的作用力F1
Fcosθ f
二者联系 f=μN
③
θ
Fsinθ
F
G
a F cos (mg F sin )
m
如果还要求经过 t 秒时木箱的速度vt=a t
连结体问题:
连结体:两个(或两个以上)物体相互连 结参与运动的系统。
隔离法,整体法
光滑的水平面上有质量分别为m1、m2的两物体 静止靠在 一起(如图) ,现对m1施加一个大小为 F 方向向右的推 力作用。求此时物体m2受到物体 m1的作用力F1