(完整版)第5讲光纤布拉格光栅(FBG)解读

合集下载

光纤布拉格光栅FBG

光纤布拉格光栅FBG

最新进展
布拉格衍射效应在半导体光电器件中的应用与发展
1、为了改善以量子效应为基础的半导体光电子器件的 电学和光学特性,利用X 射线双晶衍射技术来检测器件 的生长结构参数,以便予以控制和优化。
2、分布布拉格反射激光器 在半导体激光器内部建立一个布拉格光栅结构,用光 栅代替激光器的腔面来分布式地反馈光。
实验仪器
本实验采用北京大华无线电仪器厂生产的 DH926AB型微波分光仪,结构图如图所示。
A固定板 B移动板 接收喇叭
发射喇叭
检流计
微波信号源 微波迈克尔逊干涉装置图
实验原理
微波波长通常划定范围为1mm-1m。众所周知,迈 克尔逊干涉实验传统上是用可见光来进行的,而布 拉格衍射则是英国物理学家布拉格父子用X射线在 实际晶体中实现的。本实验是上述两个著名实验在 微波领域的拓展,因此,通过该实验可以很直观地 理解迈克尔逊干涉和布拉格衍射实验。
最新进展
3、可调波长DFB/ DBR激光器 基本工作原理也是以布拉格衍射效应为基础,通过 改变注入到布拉格光栅区的电流,(根据等离子体效 应) 使光栅区的有效折射率发生改变,其布拉格波 长也就会有相应的移动。 4、光纤布拉格光栅( FBG) 采用全息曝光技术在光纤上制作各种波长的布拉格光 栅。
背景介绍
1915年诺贝尔奖授给W.H.布拉 格和W.L.布拉格父子俩,以表 彰他们在的杰出用X射线研究 晶体结构方面所作出贡献。 1912年,W.L.布拉格在德国物理学家 M.von劳厄发现X射 线通过晶体产生衍射的基础上, 进行了一系列实验, 1913年提出布拉格公式。 他们父子二人研究出晶体结构 分析的方法,从理论及实验上证明了晶体结构的周期性 和几何对称性,奠定了X射线谱学及X射线结构分析的基 础,从而为深入研究物质内部结构开辟了可靠的途径

布拉格光纤光栅传感原理

布拉格光纤光栅传感原理

布拉格光纤光栅传感原理
嘿,你知道吗?布拉格光纤光栅,这玩意儿可太神奇了!就好像是光通信世界里的魔法棒!
说起来啊,这布拉格光纤光栅的传感原理就像是一个超级敏锐的侦探。

比如想象一下,你走在路上,能感觉到每一步地面的微小变化,这布拉格光纤光栅就能对光进行这样精细的感知和探测!它能捕捉到光在光纤中传播时极其细微的变化。

咱就拿桥梁监测来举例子吧!它就像是桥梁的贴心小卫士,时刻关注着桥梁的健康状况。

当桥梁出现哪怕一点点的变形或应力变化时,布拉格光纤光栅马上就能察觉到!哇,这多厉害呀!它就这么默默地工作着,不断地给我们传递着重要的信息。

再比如说在石油化工领域,它也能大显身手呢!就像一个经验丰富的老工人,精准地监控着各种设备的运行状态。

你说神奇不神奇?这布拉格光纤光栅简直就是无处不在的小能手呀!
哎呀,真的,要是没有这布拉格光纤光栅,好多事情都没法那么顺利地进行下去呀!它就是科技的力量,就是为了让我们的生活变得更美好,让各
种复杂的工程和系统都能更安全、更可靠地运行。

所以呀,可千万别小瞧了这小小的布拉格光纤光栅,它可有着大本事呢!反正我是对它佩服得五体投地!这就是布拉格光纤光栅传感原理,厉害吧!。

光纤布拉格光栅传感器测量温度和应变的原理

光纤布拉格光栅传感器测量温度和应变的原理

光纤布拉格光栅传感器测量温度和应变的原理光纤布拉格光栅传感器,简称FBG传感器,这可是个神奇的东西哦!它不仅可以测量温度,还能测量应变,简直就是个万能的小助手。

今天,我就来给大家聊聊这个神奇的小家伙是怎么工作的,让我们一起揭开它的神秘面纱吧!我们来了解一下FBG传感器的基本结构。

它是由一系列周期性折射率不同的光纤组成的,这些光纤就像一根根细细的琴弦,当光线通过它们时,会发生折射现象。

而这种折射现象正是FBG传感器测量温度和应变的关键所在。

FBG传感器是如何测量温度的呢?其实,这就要靠那些神奇的光纤了。

当阳光或者光源照射到光纤上时,光纤中的原子会吸收一部分光线,使得光线在光纤内部发生反射。

而反射回来的光线经过多次反射后,最终到达了FBG传感器的检测器。

检测器会根据反射光线的强度和时间变化来计算出光纤的温度。

是不是很厉害啊!我们再来聊聊FBG传感器是如何测量应变的。

其实,这也是利用了光纤的折射现象。

当FBG传感器受到外力作用时,光纤会发生形变,从而导致折射光线的变化。

而这种变化又被检测器捕捉到,从而计算出了应变的大小。

是不是感觉FBG传感器就像一个神奇的变形金刚一样,可以感知到周围的变化呢!FBG传感器有哪些应用呢?其实,它的应用范围非常广泛。

在建筑行业中,它可以用来检测混凝土的结构变化;在医疗行业中,它可以用来监测人体的生理指标;在汽车制造行业中,它可以用来检测车身的变形情况。

只要有需要测量温度和应变的地方,FBG传感器都可以派上用场哦!当然啦,虽然FBG传感器非常神奇,但它也有一些局限性。

比如说,它的灵敏度有限,不能用来检测非常微小的应变;而且,它的精度也有一定的误差。

随着科技的发展,相信这些问题都会得到解决的。

今天关于光纤布拉格光栅传感器测量温度和应变的原理就给大家介绍到这里了。

希望对大家有所帮助哦!下次再见啦!。

光纤Brag光栅(FBG)设计

光纤Brag光栅(FBG)设计

J I A N G S U U N I V E R S I T Y 光纤Bragg光栅(FBG)设计学院名称:机械工程学院专业班级:光信息学生姓名:学生学号:指导教师:陈明阳目录一、光栅定义和发展历程 (2)1.1、光栅的定义 (2)1.2、光纤Bragg光栅的发现与发展 (2)二、光纤Bragg光栅特点及工作原理 (3)2.1 光纤Bragg光栅的特点 (3)2.2 光纤Bragg光栅的工作原理 (4)三、光纤Bragg光栅的制作方法 (4)3.1 光敏光纤的制备 (4)四、光纤Bragg光栅在光纤激光器里的应用 (5)4.1 光纤激光器简介 (5)4.2 在光纤激光器里的工作原理 (6)4.3 光纤Bragg光栅的设计要求 (7)4.3.1 设计的基本参数要求 (8)4.3.2 设计的基本步骤 (9)五、设计结论及应用前景 (15)5.1 结论及计算结果 (15)5.2 应用前景 (16)参考文献 (17)附程序 (18)一、光栅定义和发展历程1.1、光栅的定义自从19世纪末Henry Rowland发明衍射光栅刻划机和凹面光栅分光装置以来,光栅分光仪器就已成为光谱分析领域的主角。

光栅是光谱分析研究中的重要色散元件,其作用与棱镜相似,但在许多方面光栅的性能更好,并且使用方便。

在许多光谱仪器中,光栅成本仅占总成本的很小部分,但衍射光栅的质量却从根本上决定了整个系统所能达到的光谱性能。

衍射光栅是能对入射光波的振幅和相位或者二者之一进行空间周期性调制的一种光学元件。

通常讲的衍射光栅都是基于夫琅禾费多缝衍射效应进行工作的。

1.2、光纤Bragg光栅的发现与发展光纤布拉格光栅(简称FBG)是在单模光纤的纤芯内通过某种方式对其折射率产生周期性的调制而形成的一种全光纤器件,如图1所示。

图1 FBG的基本结构1978年,加拿大Hill 等人使用如图2所示的实验装置将488nm 的氩离子激光注入到掺锗光纤中,首次观察到入射光与反射光在光纤纤芯内形成的干涉条纹场而导致的纤芯折射率沿光纤轴向的周期性调制,从而发现了光纤的光敏特性,并制成了世界上第一个光纤布拉格光栅。

光纤布拉格光栅(fbg)反射中心波长

光纤布拉格光栅(fbg)反射中心波长

光纤布拉格光栅(fbg)反射中心波长下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!光纤布拉格光栅(FBG)反射中心波长是光纤传感器领域的重要参数之一。

光纤布拉格光栅(FBG)

光纤布拉格光栅(FBG)

多功能FBG
研发具有多参量感知能力 的FBG,如同时感知温度 和应变,提高FBG在实际 应用中的多功能性。
耐久性和稳定性
提高FBG的长期稳定性和 耐久性,使其在恶劣环境 下仍能保持可靠的传感性 能。
FBG在物联网领域的应用前景
智能交通
工业自动化
利用FBG传感器监测道路状况、车辆 速度和流量等信息,提高交通管理效 率和安全性。
光纤布拉格光栅(FBG)
contents
目录
• 引言 • FBG的基本原理 • FBG的制造工艺 • FBG的应用案例 • FBG的未来发展与挑战 • 结论
01 引言
FBG的定义与特性
定义
光纤布拉格光栅是一种特殊的光纤结 构,通过在光纤中产生周期性的折射 率变化,实现对特定波长光的反射。
特性
FBG具有窄带反射特性,反射光谱范 围窄、精度高、稳定性好,且易于与 光纤系统集成,适用于长距离、高可 靠性的光信号传输和传感应用。
写入技术
目前最常用的写入技术是 采用紫外激光干涉法,通 过在光纤上产生干涉图案 来形成光栅。
写入速度与精度
提高写入速度和精度是关 键技术难点,这有助于提 高生产效率和降低成本。
FBG的性能参数与测试方法
性能参数
01
光纤布拉格光栅的性能参数包括反射光谱、温度稳定性、机械
稳定性等。
测试方法
02
对光纤布拉格光栅的性能参数进行测试,可以采用光谱分析仪、
优势
FBG具有高灵敏度、高精度、抗电磁干扰等优势,使其在许多领域 中成为理想的选择。
未来发展前景
随着科技的不断发展,FBG的应用前景将更加广阔,其在各个领域 中的价值也将得到更充分的体现。
FBG的未来发展方向与挑战

第5讲光纤布拉格光栅(FBG)解读

• •

掺N2(氮气)
• SPCVD过程中,加入0.1%氮气可使光敏性加 倍 • 折射率变化~2.8×10-3
高温载氢处理
• 在含氢1mol%环境下,使用CO2激光将 光纤加温至600℃ • 短时间(10秒)内增加光纤的光敏性
光电子技术精品课程
光纤光栅分类
Ⅰ类光栅
掺杂浓度较低的光纤内形成 较低UV曝光量 局部缺陷引起折射率变化 折射率变化⊿n~10-5—10-3>0 温度稳定性较差(300℃) 可使脉冲或连续激光,前者更有效 掺杂浓度较高(eg >25mol% GeO2)的光纤内形成 较高UV曝光量( > 500J/cm2), 结构重构引起折射率变化 折射率变化⊿n<0 温度稳定性较好(500℃) 可使脉冲或连续激光 极高UV曝光量,瞬间局部温度达上千度 物理破坏引起折射率变化 折射率变化⊿n可达10-2 温度稳定性好(800℃) 只能使用脉冲激光
WDM Transmitters
• Source lasers (CW, DML) • Lithium niobate optical assemblies and modulators • Wavelockers • Tx/Rx modules
WDM Mux/Demux
• Thin film filters • Fibre gratings • Waveguides • Diffr. gratings • Circulators • Interleavers • Mux/Demux modules
光致折射率变化的阈值特性(右上图)
折射率变化的温度稳定性(右下图)
光致折射率变化使光纤处于一种亚 稳态 在一定温度下,折射率变化变小甚 至完全消失

光纤布拉格光栅的解调方法

ig t i s n o e d lto t c nq e sn a n sr n- e s r d mo ua in e h i u u i g a wa ee gh iiin c u lr v ln t d vso o p e .Elcr n et 1 9 , e to .L t , 9 4 . 3 f1 5 7 . O l :7  ̄ 7
参 考文 献
[ ai M A a hd ftrier ao eh 1 ]D v .M t e - l n r gtn t — s c ie t o i c n u o ie rg ga n a a [1 l t n i e fr b r B a g rt g r y J Ee r . q f i r . co Lt, 9,11)2 —2 . et1 5 (o: 2 83 .9 3 8 [ ai M A e e . l f e rg rt 2 ]D vs ,K r yA D Ali rBagga s —b —
图 3非 平衡 M— Z干 涉仪 法
反射波长重合时 , 探测器能探测到最大光强 , 此时 压电陶瓷的驱动电压对应光栅的反射波长 ,进而 得到被测量的大小, 如图 5 所示。该方案体积小 、 图 5 可调 光 纤 F P滤波 器解调 法 — 价格低 ,在 4 r 0n n的范围内可以得到约 1p m的 i r f e F- v ln h i t r Op .L t , 1 9 , 1 b P wa ee g f e . t l t et 9 3 8 . 测量分辨率 , 2— 0 C 在 0 20 0范围内温度分辨率可达 f6 :1 7  ̄1 7 11 30 32 01℃ , 期 测量 精 度可 达 ± . ℃; 以直接 输 出 . 长 O 2 可 作 者简 介 : 张静 (9 1 ) , 族 , 北 保 定 18 一 女 汉 河 对应于波长变化的电信号 ,可同时对多个光纤光 人, 华北电力大学 , 助工 , 硕士, 主要研 究方向 : 光 栅的反射波长进行解调 。 纤传 感技 术 。 2结论 陈 于扬 (9 6 )男 , 士研 究生 , 要研 究方 18 , 硕 主 可调光纤 F P — 滤波器法精度高、体积小 、 价 现代 传 感与测 量技 术 。 格低 、 定 性好 , 稳 适用 于 分 布式 测 量 , 比较 理 想 向 : 是 的解 调方 法 。

光纤布拉格光栅(fbg)反射谱和投射谱

光纤布拉格光栅(fbg)反射谱和投射谱光纤布拉格光栅(Fiber Bragg Grating,简称FBG)是一种在光纤中制造的周期性折射率调制结构。

它可以实现对光信号的反射和透射控制,因此在光通信、光传感和光纤激光器等领域有着广泛的应用。

FBG的反射谱和投射谱是FBG的重要特性之一,下面将对其进行详细介绍。

1.反射谱FBG的反射谱是指当光信号入射到FBG上时,被FBG反射的光的频谱特性。

当光信号穿过光纤进入FBG后,根据FBG的周期性折射率变化,会发生部分光的反射。

这些反射光的波长取决于FBG的周期和折射率调制情况。

反射谱可以通过光谱仪或光频谱分析仪来测量和观察。

典型的FBG反射谱是一个窄带滤波器,其反射峰的位置和宽度与FBG的物理参数和环境条件相关。

由于FBG 的周期性调制结构,反射谱通常呈现出周期性重复的特点。

2.投射谱FBG的投射谱是指当光信号经过FBG时,透射到光纤另一侧的光的频谱特性。

由于FBG具有特定的反射特性,它可以作为一个选择性滤波器,在特定的波长范围内使光透射,而在其他波长处进行反射或吸收。

投射谱的形状和特性取决于FBG的设计和制备参数,包括周期、折射率调制情况等。

通过调整这些参数,可以实现不同的投射谱特性,如带通滤波、带阻滤波、多通道滤波等。

3.应用FBG的反射谱和投射谱在许多应用中发挥着重要作用:-光通信:FBG可用作光纤传感器,通过测量反射谱变化来检测温度、压力、形变等物理量。

-光纤传感:利用FBG的反射谱特性,可以实现对光纤周围环境的监测,如油气管道的泄漏检测、结构的应力监测等。

-光纤激光器:FBG可用作激光器的频率选择性元件,调节反射谱特性来实现激光器的单模操作和波长选择。

总之,FBG的反射谱和投射谱是FBG的重要特性之一,它们描述了FBG对光信号的反射和透射特性。

通过测量和分析反射谱和投射谱,可以实现对FBG的性能和应用进行评估和优化,为光纤通信、光传感和光纤激光器等领域的应用提供基础支持。

光纤布拉格光栅-[自动保存的]

动实考 自惠核 觉的后 去东需 做西要 的员在 ︒工奖 是惩 不上 会跟 内部写入法制作光纤光栅的实验装置 主上 ︐
要求:严格要求氩离子激光器的后向反射光的隔离度 光纤放在石英管之中隔热(防止泵浦激光的不稳定)
优点:装置简单,方法简单。
缺点:谐振波长与入射光波长一致。折射率改变较小
3.FBG的制作方法
2.FBG的原理
动实考 自惠核 觉的后 去东需 做西要 的员在 ︒工奖 是惩 不上 会跟 主上 光纤布拉格光栅的模式耦合图 ︐
光纤光栅通常以一级衍射为主,取m=-1,
3.FBG的制作方法
(1)高掺锗
原理
自 觉 去 做 的 ︒
光纤的光敏性
(2)硼锗共掺 (3)高压载氢 (4)锡锗共掺
飞秒激光加工:飞秒激光脉冲借助极短的脉冲宽度和极高的峰 值功率,可以在石英光纤内诱导获得较大的折射率调制从而形 成光纤光栅。
光纤光栅
(a)
(b)
动实考 自惠核 觉的后 去东需 做西要 的员在 ︒工奖 是惩 不上 会跟 主上 ︐
Thanks
自 觉 去 做 的 ︒
飞秒激光刻写光纤光栅的原理
3.FBG的制作方法
动实考 自惠核 觉的后 去东需 做西要 的员在 ︒工奖 全息干涉法制作光纤布拉格光栅 是惩 不上 会跟 主上 ︐
相位掩膜法制作光纤布拉格光栅
3.FBG的制作方法
优点: 1.飞秒激光制备光纤光栅具有更好的加工灵活性; 动实考 自惠核 觉的后 去东需 做西要 的员在 ︒工奖 是惩 飞秒激光逐点写入法制作光纤布拉格光栅 不上 会跟 主上 ︐
相位掩膜法制作光纤光栅的实验装置
3.FBG的制作方法
(5)在线成栅
光纤拉丝塔下横向侧面干涉曝光法光纤 光栅在线制作装置示意图
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最大反射率为 R(l, ) tanh2 (l)
反射谱带宽为
Bs
(
n 2 n0
)
2
(
1 N
)2
光电子技术精品课程
光纤的光敏特性

❖ 掺杂光纤光敏性机理
▪ 掺杂物质与SiO2混合时形成的结构缺陷 ▪ 外界光场作用下通过单光子或双光子吸收
过程使错位键破裂形成色心 ▪ 标准光纤:GeOx ▪ 其它掺杂物质:Erbium(铒), Europium
▪ 倍频氩离子激光器 ▪ 准分子激光器 ▪ 倍频铜蒸气激光器 ▪ 倍频可调谐染料激光器 ▪ 倍频可调谐OPO ▪ 三倍频YAG激光器 ▪ Alexandrite(紫翠玉)激光器
❖ FBG写入技术分类
▪ 内部写入法 ▪ 双光束干涉法 ▪ 掩模法 ▪ 模板+双光束干涉法 ▪ 逐点写入法 ▪ 其它写入法
FBG写入技术
(铕), Cerium(铈)
❖ 影响光纤光敏性的因素
▪ 掺杂种类与掺杂浓度 ▪ 预制棒:缩棒后光敏性高于缩棒前 ▪ 拉纤速度影响光纤光敏性 ▪ 光纤光敏性与曝光时所施加的应力有关
❖ 增加光纤光敏性的方法 ▪ 低温载氢处理
• 压力:20—750atm(典型150atm),温 度:20—75℃,时间:数十小时至数 天
❖ ⅡA(Ⅲ)类光栅
▪ 掺杂浓度较高(eg >25mol% GeO2)的光纤内形成 ▪ 较高UV曝光量( > 500J/cm2), ▪ 结构重构引起折射率变化 ▪ 折射率变化⊿n<0 ▪ 温度稳定性较好(500℃) ▪ 可使脉冲或连续激光
❖ Ⅱ类光栅
▪ 极高UV曝光量,瞬间局部温度达上千度 ▪ 物理破坏引起折射率变化 ▪ 折射率变化⊿n可达10-2 ▪ 温度稳定性好(800℃) ▪ 只能使用脉冲激光
光电子技术精品课程
光致折射率变化的特性
❖ 光致折射率变化的各向异性
▪ 光纤光栅双折射~10-6 ▪ 侧向写入制成的光纤光栅双折射要
大2个数量级 ▪ 双折射与UV激光的偏振方向有关:P
方向小,S方向大,可相差10倍 ▪ 双折射与UV激光的波长有关:193nm
较240nm UV激光产生更大的双折射
❖ 光致折射率变化的阈值特性(右上图)
设光纤纤芯折射率为 n(z) n0 n cos(2z / )
由耦合模理论得到光栅的反射光谱为
R(l,
)
k
2
2 sinh 2 (sl) sinh 2 (sl) s2 cosh
2
(sl)
k k / k 2n0 /
s2 2 k 2 M p 1V 2
n
M
p
V (2a / )(nc2o nc2l )1/ 2
• 形成Ge-H,Si-H,Ge-OH,Si-OH • 有效增加标准单模光纤的光敏性 • 标准单模光纤损耗增大 • 光敏性变化大 • 退火及老化处理
▪ 高温载氢处理
• 在含氢1mol%环境下,使用CO2激光将 光纤加温至600℃
• 短时间(10秒)内增加光纤的光敏性
▪ 火焰热处理
• 氢气火焰+少量氧气将光纤加热至1700℃ • 持续20分钟 • 光纤的光敏性增加10倍,折射率变化>10-3 • 高温对光纤造成损伤,引起可靠性等方面问
• Source lasers (CW, DML)
• Lithium niobate optical assemblies and modulators
• Wavelockers • Tx/Rx
modules
WDM Mux/Demux
WDM Amplifiers
WDM
Switching
• Thin film filters • Fibre gratings • Waveguides • Diffr. gratings • Circulators • Interleavers • Mux/Demux
光电子技术精品课程
FBG原理与特性
FBG是在光纤纤芯内形成的空间相位光栅,通过光栅前向传输的纤芯模式与后 向传输的纤芯模式之间发生耦合,而使前向传输的纤芯模式的能量传递给后向 传输的纤芯模式,形成对入射波的反射。其反射波长即布拉格波长为λB=2neffΛ, 其中,Λ为光栅周期,neff为纤芯等效折射率。
光电子技术 精品课程
第5讲:光纤布拉格光栅(FBG) --基础与应用
电子科学与技术 精密仪器与光电子工程学院
李恩邦
FBG的发现与发展
光纤布拉格光栅(简称FBG)是在 单模光纤的纤芯内通过某种方式 对其折射率产生周期性的调制而 形成的一种全光纤器件 (如右图 所示)。
1978年,加拿大Hill 等人使用如左图 所示的实验装置将488nm的氩离子激光 注入到掺锗光纤中,首次观察到入射 光与反射光在光纤纤芯内形成的干涉 条纹场而导致的纤芯折射率沿光纤轴 向的周期性调制,从而发现了光纤的 光敏特性,并制成了世界上第一个光 纤布拉格光栅。
❖ 双光束干涉法
❖ 掩模法
UV beam Phase Mask
光电子技术精品课程
❖ 波分复用与解 复用
❖ 波长锁定 ❖ 光纤放大器增
益平坦
❖ 色散补偿 ❖ 上下路复用与
解复用
❖ 光CDMA
FBG在光通信中的应用
Components and Modules in DWDM Networks
WDM Transmitters
• SPCVD过程中,加入0.1%氮气可使光敏性加 倍
• 折射率变化~2.8×10-3
光电子技术精品课程
光纤光栅分类
❖ Ⅰ类光栅
▪ 掺杂浓度较低的光纤内形成 ▪ 较低UV曝光量 ▪ 局部缺陷引起折射率变化 ▪ 折射率变化⊿n~10-5—10-3>0
▪ 温度稳定性较差(300℃) ▪ 可使脉冲或连续激光,前者更有效
❖ 折射率变化的温度稳定性(右下图)
▪ 光致折射率变化使光纤处于一种亚 稳态
▪ 在一定温度下,折射率变化变小甚 至完全消失
光电子技术精品课程
❖ FBG制作对UV激光器的要求
▪ 输出波长及其稳定性 ▪ 空间及时间相干性 ▪ 输出功率或脉冲能量及重复率 ▪ 光斑质量 ▪ 偏振特性 ▪ 光束指向稳定性
❖ 用于FBG制作的UV激光器

❖ 混合掺杂 ▪ 掺Boron(硼)
• 降低折射率,可提高Ge掺杂浓度 • 光纤的光敏性增加3倍 • 30min @400℃退火可使折射率变化减半 • 1500nm窗口付加损耗~0.1dB/m • 双折射效应
▪ 掺Tin(锡)
• 较B-Ge光纤的光敏性增加3倍 • 热稳定性优于B-Ge光纤
▪ 掺N2(氮气)
相关文档
最新文档