光纤布拉格光栅温度应力传感器要点

合集下载

光纤光栅的应变和温度传感特性研究

光纤光栅的应变和温度传感特性研究

光纤光栅的应力和温度传感特性研究 (1)一 光纤光栅传感器理论基础 (1)1 光纤光栅应力测量 (1)2 光纤光栅温度测量 (2)3 光纤光栅压力测量 (3)二 光纤光栅传感器增敏与封装 (3)1 光纤光栅的应力增敏 (4)2 光纤光栅的温度增敏 (4)3 光纤光栅的温度减敏 (5)4 嵌入式敏化与封装 (5)5 粘敷式敏化与封装 (7)三 光纤光栅传感器交叉敏感问题及其解决方法 (9)1 参考光纤光栅法 (10)2 双光栅矩阵运算法 (10)3 FBG 与LPFG 混合法 (11)4 不同包层直径熔接法 (12)5 啁啾光栅法 (12)光纤光栅的应力和温度传感特性研究一 光纤光栅传感器理论基础1 光纤光栅应力测量由耦合模理论可知,光纤布拉格光栅(FBG)的中心反射波长为:2B eff n λ=Λ (1)式中:eff n 为导模的有效折射率,Λ为光栅的固有周期。

当波长满足布拉格条件式(1)时,入射光将被光纤光栅反射回去。

由公式(1)可知,光纤光栅的中心反射波长B λ随eff n 和Λ的改变而改变。

FBG 对于应力和温度都是很敏感的,应力通过弹光效应和光纤光栅周期Λ的变化来影响B λ,温度则是通过热光效应和热胀效应来影响B λ。

当光纤光栅仅受应力作用时,光纤光栅的折射率和周期发生变化,引起中心反射波长B λ移动,因此有:eff BB effn n λλ∆∆∆Λ=+Λ (2) 式中:eff n ∆为折射率的变化,∆Λ为光栅周期的变化。

光栅产生应力时的折射率变化:()21211112effeff e effn n P P P n μμεε∆=---=-⎡⎤⎣⎦ (3) 式中: ()21211112e eff P n P P μμ=--⎡⎤⎣⎦ (4) ε是轴向应力,μ是纤芯材料的泊松比,11P 、12P 是弹光系数,e P 是有效弹光系数。

假设光纤光栅是绝对均匀的,也就是说,光栅的周期相对变化率和光栅段的物理长度的相对变化率是一致的。

光纤布拉格光栅金属化保护及温度传感特性

光纤布拉格光栅金属化保护及温度传感特性

南昌大学硕士学位论文光纤布拉格光栅金属化保护及温度传感特性姓名:***申请学位级别:硕士专业:机械电子工程指导教师:***20070601第二章光纤传感及光纤光栅现代信息技术是由信息的采集、传输和处理技术组成,因此传感器技术、通信技术和计算机技术成为信息技术的三大支柱。

特别是当今社会己进入了以光纤通信技术为主要特性的信息时代,光纤传感技术代表了新一代传感器的发展趋势。

光纤传感器产业已被国内外公认为最具有发展前途的高新技术产业,它以其技术含量高、经济效益好、渗透能力强、市场前景广等特点为世人瞩目。

2.1光纤及光纤传感技术我国光纤传感器的研究于70年代末开始[40l。

目前,研究工作主要集中在大学和研究所。

清华大学、武汉理工大学、华中理工大学、重庆大学、西安石油大学、哈尔滨工业大学、南京大学以及南京航空航大大学等高校以及核工业总公司九院、电子工业部1426所等研究院所都在从事光纤传感器的研究。

研究内容覆盖面也较广,包括用于测量应变、振动、电流、电压、磁场、温度、水声、转动等许多物理量的光纤传感器,以及利用光纤传感系统对材料和结构的健康状况进行监测。

2.1.1光纤结构光纤是光导纤维的简称,光纤结构通常如图2.1所示同轴圆柱体,从外层到内层依次为涂覆层(coating)、包层(cladding)和纤芯(core)。

光波在纤芯内沿轴向传播,包层对纤芯中传输的光波起约束作用,同时对纤芯起保护作用,涂覆层则对包层和纤芯起保护作用。

图2.1光纤结构图便于形成规模生产。

光纤光栅由于具有上述诸多优点,因而具有广泛的应用【4”。

光纤光栅工作原理是:当宽带光源从光纤光栅一端输入时,由于光栅折射率的周期性变化,使纤芯中的正向和反向传输的电磁波相互耦合。

如电磁场满足布拉格(Bragg)条件,则功率全部耦合到反向传输波中,形成全反射。

即入射宽带光,遇到Bragg光栅的时候,只有与光栅常数匹配的特定频率的光才能被反射回来。

检测反射光谱峰值或传输光谱凹陷中心的位置,就可检测到由外界引起的光栅参数的变化,从而测出外界的扰动。

光纤布拉格光栅传感器测量温度和应变的原理

光纤布拉格光栅传感器测量温度和应变的原理

光纤布拉格光栅传感器测量温度和应变的原理光纤布拉格光栅传感器,简称FBG传感器,这可是个神奇的东西哦!它不仅可以测量温度,还能测量应变,简直就是个万能的小助手。

今天,我就来给大家聊聊这个神奇的小家伙是怎么工作的,让我们一起揭开它的神秘面纱吧!我们来了解一下FBG传感器的基本结构。

它是由一系列周期性折射率不同的光纤组成的,这些光纤就像一根根细细的琴弦,当光线通过它们时,会发生折射现象。

而这种折射现象正是FBG传感器测量温度和应变的关键所在。

FBG传感器是如何测量温度的呢?其实,这就要靠那些神奇的光纤了。

当阳光或者光源照射到光纤上时,光纤中的原子会吸收一部分光线,使得光线在光纤内部发生反射。

而反射回来的光线经过多次反射后,最终到达了FBG传感器的检测器。

检测器会根据反射光线的强度和时间变化来计算出光纤的温度。

是不是很厉害啊!我们再来聊聊FBG传感器是如何测量应变的。

其实,这也是利用了光纤的折射现象。

当FBG传感器受到外力作用时,光纤会发生形变,从而导致折射光线的变化。

而这种变化又被检测器捕捉到,从而计算出了应变的大小。

是不是感觉FBG传感器就像一个神奇的变形金刚一样,可以感知到周围的变化呢!FBG传感器有哪些应用呢?其实,它的应用范围非常广泛。

在建筑行业中,它可以用来检测混凝土的结构变化;在医疗行业中,它可以用来监测人体的生理指标;在汽车制造行业中,它可以用来检测车身的变形情况。

只要有需要测量温度和应变的地方,FBG传感器都可以派上用场哦!当然啦,虽然FBG传感器非常神奇,但它也有一些局限性。

比如说,它的灵敏度有限,不能用来检测非常微小的应变;而且,它的精度也有一定的误差。

随着科技的发展,相信这些问题都会得到解决的。

今天关于光纤布拉格光栅传感器测量温度和应变的原理就给大家介绍到这里了。

希望对大家有所帮助哦!下次再见啦!。

实验11 基于光纤布拉格光栅的应变和温度传感器实验

实验11 基于光纤布拉格光栅的应变和温度传感器实验

实验11基于光纤布拉格光栅的应变和温度传感器实验物光1201 朱学军201121051一、FBG反射光谱特性测量从原始数据中我们看到纵坐标最大值为559.552,且为单峰,由于数据过多,我们舍去纵坐标小于1的项,绘出图表如下从图中可以读出最大值560,对应中心波长值1544.616nm。

其一半为280,其与右边交于一点(1544.694,280),左边数据有误差,根据曲线走势,取最右边的一点(1544.556,280),得其3dB带宽|1544.694-1544.556|=0.138nm。

二、光纤FBG温度传感器的标定将原始数据进行线性拟合,得b=0.010649,a=1540.2141544.520 26.01544.682 41.01544.837 56.01545.029 75.01545.204 90.41545.373 105.0标定后,我们又测了两组数据真实值108.6 95测量值108.2 93.20可以看出,拟合还是比较标准的,但还是存在一定的误差。

三、光纤FBG应变传感器的——光纤称重传感器1564.404 01564.696 5001564.885 10001565.077 15001565.270 20001565.467 25001565.667 3000将原始数据进行线性拟合,得b=0.0000985,a=1544.615标定后,我们又测了三组数据真实值1000 2000 2500测量值1003.4082022.676 2478.746可以看出,在误差允许的范围内,拟合还是比较标准的。

四、思考题1、影响光纤FBG温度传感器的测量精度的因素有哪些?答:有操作失误、温度没有稳定就读值、光纤有损坏、系统误差等。

2、如何提高光纤FBG中心波长的计算精度?答:在最高点附近多测几组数值、整体多测几次求平均、读数时根据曲线的对称性在最高点附近两边取纵坐标相同的值再求中点。

五、心得体会通过本次实验,我了解了基于光纤布拉格光栅的应变和温度传感器的工作原理和特性,同时对传感器也有了更多的了解,测量是否精确也在一定程度上取决于标定的情况。

光纤Bragg光栅温度传感器温敏实验

光纤Bragg光栅温度传感器温敏实验

光纤Bragg光栅温度传感器温敏实验【摘要】油气田生产测井一个重要任务是测量温度参数。

而由于光纤bragg光栅温度传感器的固有优点,是最热门的油气井下常规温度传感器的潜力替换产品。

将光纤光栅用少量环氧树脂胶粘贴于膨胀系数和光纤相等的特殊材料上,制成温敏元件。

根据油气井下温度的范围,设计了35-105℃裸光纤bragg光栅温度传感特性实验,采用精度±1℃的温控箱进行加热,每隔10℃测量一点,每点温度间隔至少15分钟,无论是温度上升还是下降,温度和中心波长的线性关系都很好,上升时r2=0.9999,下降时r2=1;另外,上升时光栅灵敏度为10pm/℃,下降时光栅灵敏度为9.8 pm/℃,与理论相差很小,说明所封装的温度传感器在35~105℃的工作温度范围内性质稳定,可用于实际油气井动态温度监测。

【关键词】光纤光栅温度传感特性封装1 前言光纤bragg光栅由于其在温度参数测量方面固有的优点,越来越受到业内专家的重视[1-4]。

本文设计了一种光纤bragg光栅温度传感器,对其在35~105℃温度条件下的进行温敏实验。

2 光栅结构及传感原理利用紫外激光的干涉条纹在一定范围内照射具有光敏性的光纤,可使该段光纤纤芯的折射率发生永久周期性的改变,形成光纤bragg光栅。

bragg光纤光栅从本质上来说相当于一个窄带滤波器,当具有一定波谱范围的入射光传输到光纤bragg光栅时,光栅就会把满足bragg条件的、且被外界环境参量(如温度、压力、应力、流量等)调制过的入射光反射回来,通过对反射光谱进行解调,即可获得所需(压力、温度)信息,其结构如图1所示。

3 温度传感器封装结构本次实验选用的基底为圆形,材质采用膨胀系数和光纤相等的特殊材料,长度10cm,直径3cm。

为了使裸光栅能更好地和基底接触,受热均匀,可在圆形基底上划一个3mm深,1mm宽的小槽,裸光纤bragg光栅用少量环氧树脂胶均匀粘贴在凹槽内。

在对温度传感器封装过程中,应对裸光纤光栅施加适当的预应力,并适当加热,防止光纤光栅因胶凝固使中心波长减小。

大范围光纤布拉格光栅温度传感器增敏实验研究

大范围光纤布拉格光栅温度传感器增敏实验研究

万方数据光学学报栅对温度和压力有较高的灵敏度,很多有机聚合物无法达到这些要求。

此外,有些聚合物虽然可较大幅度提高光纤光栅温度响应灵敏度,但受到材料本身不耐高温以及光纤光栅反射峰中心波长最大漂移范围限制,大多只能进行100℃范围内温度的测量。

本文采用某种耐高温聚合物对光纤光栅封装,然后通过特殊工艺作进一步改善,可以实现20~180℃内对温度的测量,可满足很多诸如油气井下等高温恶劣环境的要求。

2原理温度对光纤材料的影响主要有两方面:一是热膨胀导致材料尺度变化,另一方面是热致折射率改变;当采用聚合物封装时,光纤布拉格光栅(FBG)反射峰中心波长变化为口]猷B/aB一[长+(1一P。

)口。

b]AT,(1)式中P。

为光纤光栅弹光系数,△丁为温度变化,妥为光纤材料的热光比系数,‰。

为粘贴光栅基底材料的热膨胀系数,根据温度范围的不同而改变。

对于掺锗石英光纤来说,妥大约为8.3×10一,P。

为0.22。

采用某种高热膨胀系数有机聚合物对光纤光栅封装,封装结构图如图1所示。

Fig.1StructureofpolymerpackagedFBGtemperature将光纤光栅两端固定在金属套管内,先将套管一端封闭,然后取液体聚合物材料,添加热稳定剂以及抗老化剂后,对光纤光栅进行灌封,在另一端留有一定的空间裕度,使聚合物材料的热膨胀性能不受影响。

最后将封装好的光纤光栅高温固化5h。

3实验及结果分析封装光纤光栅的温度响应测试实验装置如图2。

将封装光纤光栅放入可控温箱中,宽带光源BBS发出的光经3dB耦合器入射到光纤光栅中,被反射后又经3dB耦合器送到光谱分析仪OSA,通过光谱分析仪观察光纤光栅反射峰中心波长的变化。

掺铒光纤激光器的工作电流为15mA,峰值波Fig.2ExperimentalsetupfortheproposedtemperaturemeasurementofcoatedFBG长为A一1532nrn,带宽40nm。

光栅布拉格光栅及其传感特研究

光栅布拉格光栅及其传感特研究

光栅布拉格光栅及其传感特研究光栅布拉格光栅是一种利用光栅原理实现布拉格散射的光学元件,可以用于光谱分析、光纤传感、催化表征等领域。

近年来,光栅布拉格光栅的传感特性研究日益受到关注,本文将对其传感特性研究进行整理。

光栅布拉格光栅的基本原理是利用布拉格散射原理,通过空间周期性的光栅结构,将入射光束分为不同的衍射光束,使得具有特定波长的光发生相互干涉,从而产生干涉光谱。

其中,布拉格条件是指入射角和衍射角满足一定关系的条件,通常表示为nλ = 2d sinθ,其中n为衍射级次,λ为入射光波长,d为光栅常数,θ为入射角。

光栅布拉格光栅的传感特性主要有以下几个方面:1.光谱分辨率:光栅布拉格光栅可以通过调整光栅周期或入射角来实现不同光谱分辨率的要求。

传感应用中,高光谱分辨率可以实现对目标物质的精确检测和定量分析。

2.灵敏度:光栅布拉格光栅具有很高的灵敏度,可以实现微量物质的检测。

当目标物质与敏感层相互作用时,会导致光栅常数的改变,从而改变入射角,进而改变光谱分布。

通过对光谱分布的测量,可以获得目标物质的浓度信息。

3.实时监测:光栅布拉格光栅可以实现快速、实时的监测。

传统的分析方法通常需要时间较长的化学反应或显微分析,而光栅布拉格光栅可以通过光束的干涉模式来实现即时反馈。

4.多参数测量:光栅布拉格光栅可以通过调整光栅的几何尺寸、材料和敏感层来实现多参数测量。

例如,通过改变光栅常数,可以实现对不同物质的浓度、温度、压力等参数的测量。

5.光纤传感:光栅布拉格光栅可以与光纤结合,实现远程传感。

通过将光栅布拉格光栅集成到光纤中,可以在光纤中传播的光束进行传感,并将传感信号返回到远程检测设备中进行分析。

总之,光栅布拉格光栅具有高分辨率、高灵敏度、实时监测、多参数测量和光纤传感等特点,适用于光谱分析、光纤传感和催化表征等领域。

随着对其传感特性研究的深入,光栅布拉格光栅在传感技术领域的应用前景将更加广阔。

FBG光纤光栅的应变和温度传感特性研究与实验验证讲解

FBG光纤光栅的应变和温度传感特性研究与实验验证讲解

光纤光栅的应力和温度传感特性研究 (1)一光纤光栅传感器理论基础 (1)1 光纤光栅应力测量 (1)2 光纤光栅温度测量 (2)3 光纤光栅压力测量 (3)二光纤光栅传感器增敏与封装 (4)1 光纤光栅的应力增敏 (4)2 光纤光栅的温度增敏 (5)3 光纤光栅的温度减敏 (5)4 嵌入式敏化与封装 (6)5 粘敷式敏化与封装 (7)三光纤光栅传感器交叉敏感问题及其解决方法 (9)1 参考光纤光栅法 (10)2 双光栅矩阵运算法 (10)3 FBG与LPFG混合法 (11)4 不同包层直径熔接法 (12)5 啁啾光栅法 (12)光纤光栅的应力和温度传感特性研究一光纤光栅传感器理论基础1 光纤光栅应力测量由耦合模理论可知,光纤布拉格光栅(FBG)的中心反射波长为:2B eff n λ=Λ (1)式中:eff n 为导模的有效折射率,Λ为光栅的固有周期。

当波长满足布拉格条件式(1)时,入射光将被光纤光栅反射回去。

由公式(1)可知,光纤光栅的中心反射波长B λ随eff n 和Λ的改变而改变。

FBG 对于应力和温度都是很敏感的,应力通过弹光效应和光纤光栅周期Λ的变化来影响B λ,温度则是通过热光效应和热胀效应来影响B λ。

当光纤光栅仅受应力作用时,光纤光栅的折射率和周期发生变化,引起中心反射波长B λ移动,因此有:effBBeffn n λλ∆∆∆Λ=+Λ (2) 式中:eff n ∆为折射率的变化,∆Λ为光栅周期的变化。

光栅产生应力时的折射率变化:()21211112eff eff e effn n P P P n μμεε∆=---=-⎡⎤⎣⎦ (3) 式中:()21211112e eff P n P P μμ=--⎡⎤⎣⎦ (4) ε是轴向应力,μ是纤芯材料的泊松比,11P 、12P 是弹光系数,e P 是有效弹光系数。

假设光纤光栅是绝对均匀的,也就是说,光栅的周期相对变化率和光栅段的物理长度的相对变化率是一致的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光纤布拉格光栅温度应力传感器崔丽10401067摘要:光纤光栅传感器是一种新型的波长编码传感器,与传统的“光强型”和“干涉型”光纤传感器相比,具有很强的抗干扰能力,为温度、应力、应变等物理量的精确测量提供了很好的方法。

本文在对光纤布拉格光栅温度和应力传感原理分析的基础上,讨论了多种解决交叉敏感问题的方法,归纳出建立“复用”传感器的一般方法。

文章同时给出了基于悬臂梁结构的传感器,其位移与Bragg波长的关系,进而提出了光纤光栅位移和温度“复用”传感器的基本结构和原理。

关键词:光纤布拉格光栅;温度;应力;传感器1. 引言光纤光栅是近几年发展最快的光纤无源器件之一。

自从1978年加拿大渥太华通信研究中心的K. O. Hill等人首次在掺锗石英光纤中发现光纤的光敏效应,并采用驻波写入法制成世界上第一只光纤光栅[1,2]开始,直到1989年,美国联合技术研究中心的G. Meltz等人实现了光纤Bragg光栅(FBG)的UV激光侧面写入技术[3],才使得光纤光栅的制作技术实现了突破性的进展。

其后,1993年,K. O. Hill等人提出了相位掩膜制造法,光纤光栅的制造技术得到了更进一步地发展[4],使它灵活的大批量制造成为可能,之后,光纤光栅器件逐步走向实用化。

光纤传感技术是伴随着光导纤维及光纤通信技术发展而迅速发展起来的,一种以光为载体、光纤为媒质、感知和传输外界信号(被测量)的新型传感技术。

光纤光栅传感器是一种用光纤布拉格光栅(FBG)作敏感元件的功能型光纤传感器。

自1989年Morey报道[5]将其用于传感技术以来,光纤光栅在传感领域的理论和应用研究引起了人们的极大兴趣[6-9]。

光纤光栅通常是通过外界参量对布拉格中心反射波长的调制来获取传感信息的。

作为一种波长调制型的光纤传感器,它除了具有普通光纤传感器抗电磁、抗腐蚀、耐高温、重量轻、体积小等优点外,与传统的“光强型”[10]和“干涉型”[11]光纤传感器相比,还具有自身独特的优点[12-14]:探头结构简单,尺寸小,易于与光纤耦合,耦合损耗小;与光源强度、光源起伏、光纤弯曲损耗、光纤连接损耗、光波偏振态无关,因此它具有很强的抗干扰能力;并且易于采用波分复用、时分复用和空间复用技术构成光纤光栅智能传感网络,实现分布式多点实时在线传感;同时测量对象广泛,易于实现多参数传感测量,所以广泛用于温度、应力、应变等物理量的测量[15-16]。

并且随着光纤光栅的发展,又出现了一些利用崭新原理来实现传感的方法,比如利用反射带宽展宽的方法[17]等,这样进一步扩展了其在传感领域的发展空间。

正是由于这些独特的优点,使得光纤光栅已成为目前最具有发展前途,最具有代表性的光纤无源器件之一,其应用领域也日渐扩展。

图1给出了显微镜下的嵌入式光纤Bragg光栅的合成结构图[18]。

但是,当光纤Bragg光栅传感器所受应力和温度发生改变时,光栅中心反射波长都会产生相应的移动。

当温度或应力恒定时,可以确定波长的移动由应力或温度的改变引起。

但当两参量都不固定的情况下,则无法确定波长的移动是由什么参量的改变所引起,更无法确定参量改变量的大小。

因此,解决光纤Bragg光栅传感器温度和应力的交叉敏感问题,至关重要[19-21]。

图1. 嵌入式光纤Bragg光栅的合成结构图本文首先简单介绍了光纤光栅的分类和制造方法,从而理论上分析了光纤Bragg 光栅传感交叉敏感的物理机制,并基于此,比较分析了可以实现温度和应力双参量同时测量的诸多方法,同时将结果推广到其它参量的复合测量中,验证了归纳出的一般情况下解决交叉敏感问题的方法,有利于实现光纤Bragg光栅传感器的实用化,具有一定的研究意义。

2. 制造方法和基本分类光纤光栅的形成基于光纤光栅的光敏性。

不同的曝光条件、不同类型的光纤可产生多种不同折射率分布的光纤光栅。

而其制作方法主要可分为内部书写法与外部书写法两大类。

其中Hill 光栅采用内部书写法,而外部书写法包括横向全息法、单脉冲曝光法、相位掩膜法及光纤制作时直接书写法等[22-23]。

与内部书写法相比,外部书写法书写效率增加了几百万倍,并增加了光栅书写的自由度。

用这种方法可以制作不同周期、不同长度、不同形状的光栅,也可以制作在光纤的不同位置上。

利用紫外光侧面曝光使掺杂石英光纤的纤芯折射率产生周期性或非周期性的变化,可形成各种类型的光纤光栅。

现已成型的有:均匀Bragg 光纤光栅(FBG)、变迹光栅(apodized fiber grating)、啁啾光栅(chirped fiber grating)、渐变光栅(tapered fiber grating)、闪耀光栅(blazed fiber grating)、摩尔光栅(moiré fiber grating)、相移光栅(phase shifted fiber grating)、超结构光纤光栅(superstructure fiber grating)、长周期光纤光栅(long period fiber grating)等[24-25]。

在光纤光栅中折射率的分布反映了光纤光栅的周期、折射率调制深度等结构参量,这些参量又决定了光纤光栅的反射光波长(或透射光波长)、带宽和反射率等特性,从而使不同折射率及不同结构的光纤光栅具有了不同的功能,形成了多种多样的光纤光栅器件。

下面简单的介绍一下几种传感技术中经常应用的光纤光栅,及其折射率分布和反射谱特点。

光纤光栅的沿轴线的折射率分布可以写为:式中,Λ为光栅周期的长度;core n 为纤芯折射率;()g n z ∆为包络函数,如果()g n z ∆是常数,则是均匀周期性光纤光栅,否则是非均匀周期性光纤光栅;()z ϕ为光纤啁啾,均匀光栅的()z ϕ=0。

2.1 均匀周期性光纤光栅均匀周期性光纤光栅沿轴线的折射率分布可以写为:式中,0n 为纤芯的折射率值;n δ为纤芯折射率的平均增加值;max n ∆为纤芯的最大折射率变化量;υ为折射率的调制幅度;Λ为均匀光栅周期长度。

其折射率分布以2()()[1cos(()]core g n z n n z z z πϕ=+∆++Λ0max 2()cos()n n z n n z πδυ=++∆Λ及光谱特性如下:图 2 均匀光纤光栅的折射率分布 图3 均匀光纤光栅的发射谱示意2.2 线性啁啾光栅所谓啁啾光栅是指光栅的折射率调制幅度不变,而周期沿光栅轴变化的光栅,其()z Λ为:()(1)z cz Λ=Λ+,式中,Λ为光栅周期;c 为周期的线性变化斜率。

其折射率分布可以表示为:线性啁啾光纤的折射率变化及光谱特性如下:图4 线性啁啾光栅的折射率分布 图5 线性啁啾光栅的反射谱示意2.3 Taper 型光栅Taper 型光栅是一种切趾光栅,它的周期是均匀的,折射率按一定的函数关系变化,其折射率分布可以表示为:02()()[1cos(()]n z n n z z z πϕ=+∆++Λ2022()(0)cos ()cos()n z n n z ππ=+∆ΛΛ()22l l z -≤≤反射谱的旁瓣被有效地抑制了,可以提高边模抑制比,其折射率分布及发射谱如下:图6 Taper 型光栅的折射率分布 图7 Taper 型光栅的反射谱示意2.4 Moire 光纤光栅Moire 光纤光栅是一种相移光栅,其折射率可以表示为:图8 Moire 光栅的折射率分布以及反射谱示意 图中可以看出,这种光纤光栅可以产生两个形状相同且相互独立的窄反射峰,它们的中心波长分别位于写入的单个光栅的中心波长上,可以实现双波长光纤光栅的测量。

2.5 长周期光栅LPG 光纤光栅折射率可以表示为:02()[1cos()n z n n z π=+∆+Λ长周期光栅在光纤通信和光纤传感中有着广泛的应用,它是基于单模光纤中的前向传输基模01LP 和前向传输高阶模02LP 之间耦合的周期结构,也称为传输型光栅。

它比FBG 有高得多的温度和应力灵敏,它的多个损耗峰不仅可以同时进行多轴应力和温度测量,而且也可以将级联的LPG 作为传感器阵列进行多参数分布式测量。

2022()(0)sin ()cos()n z n n z l ππ=+∆Λ()22l l z -≤≤图9 LPG 光栅的折射率分布以及反射谱示意2.6 可调谐超结构光纤光栅SFBG 光纤光栅其折射率可以表示为:202()cos ()[1cos()]zn z n n z d ππ=+∆+Λ这种结构的光纤光栅在纤芯内和包层上都有褶皱结构。

在纤芯内使用常规的UV 曝光法形成不可见的均匀光纤Bragg 光栅,然后在光纤的包层半径上使用腐蚀的方法形成可见的褶皱结构。

这种结构的特点就是可以在外界张应力的作用下产生光栅周期调制和折射率变化,可以用于温度-应力双参量的测量。

图10 SFBG 光栅的折射率分布以及反射谱示意3. 光纤光栅传感机制和复用方法光纤光栅是一种参数周期变化的光波导,其纵向折射率的变化将引起不同光波模式之间的耦合,并且可以通过将一个光纤模式的功率部分地或者是完全地转移给另一个光纤模式中,来改变入射光的频谱。

在一根单模光纤中,纤芯的入射基模既可以被耦合成前向传输模式,也可以被耦合成后向传输模式,这主要依赖于光栅以及不同传播常数决定的相位条件,即:式中,Λ是光栅周期;1β和2β分别是模式1和模式2 的传播常数。

为了将一个前向传输的模式耦合成一个后向传输的模式,应该满足下面的条件: 122πββ-=Λ120102012()2πβββββ=-=--=Λ式中,01β是单模光纤中传输模式的传播常数。

在这种情况下,得到的光纤周期比较小(1)m μΛ<,把这种短周期的光栅称为Bragg 光栅,其基本特征表现为一个反射式的光学滤波器,反射峰值波长成为Bragg 波长,记为B λ。

2B eff n λ=Λ (1)式中,eff n 是光纤有效折射率。

光栅的反射率及反射峰的宽度由光栅长度和芯区光致折射率变化的大小等光栅参数决定。

因此,均匀FBG 光栅的基本特性是以共振波长(即Bragg 波长B λ)为中心的窄带光学滤波器。

一个光纤折射率周期变化的光栅可以反射以Bragg 波长为中心,带宽之内的一切波长,根据需要,它既可以做成小于0.1nm 的窄带滤波器,也可以做成几十纳米的宽带滤波器。

其带宽的计算表达式如下式(2)所示[26-27]:而峰值反射率的计算如式(3):其中,δλ是反射波长的半幅全宽度;N 为光栅周期数;δ为光栅长度;n 1为光栅调制深度,n 0即为n eff 。

均匀Bragg 光栅的传感原理如下图11所示。

图11. 均匀Bragg 光栅的传感原理01121616b b n N λδλλδδΛ====221()(/)b R th k th n δπδλ==当宽谱光源入射到光纤中,光栅将反射其中以布拉格波长B λ为中心波长的窄谱分量;在透射谱中,这一部分分量将消失。

相关文档
最新文档