光纤布拉格光栅传感器.ppt

合集下载

Bragg光栅传感器

Bragg光栅传感器

16
总结与展望
fff形Bragg光纤光栅是近年来研究的一种新型的技术, 由于结构的非圆对称性,纤芯离包层一侧较普通光栅近, 于是外界与光栅的作用更强,使得fff形Bragg光纤光栅具 有一些独特的性质,如对外部折射率敏感特性,对弯曲的 敏感特性等。因此,fff形Bragg光纤光栅为传感领域的应 用提出了新思路,但由于它与常规单模光纤熔接困难,耦 合损耗较大,而且设备昂贵,制造困难,一定程度上限制 了它的应用范围和发展。
图7 Bragg波长相对漂移量与温度的关系曲线 Tyson L.Lowfffer et
12
fff形Bragg光纤光栅传感器
弯曲及相关传感测量
弯曲敏感—本征特性;不需要任何的附加结构或者封装,传感头尺寸 小,非常适合应用在智能材料中。
图 光 栅 波 长 漂 移 与 温 度 、 曲 率 关 系 曲 线 8
Bragg波长相对漂移量为:
S B 1 kz K ' B
9
fff形Bragg光纤光栅
• fff形Bragg光纤光栅特性
– 弯曲敏感特性
图4 Bragg波长相对漂移量与曲率的关系曲线
10
fff形Bragg光纤光栅传感器
气体、液体浓度传感器
对外界折射率的敏感特性,可直接作为气体、液体等浓度的传感元件。
Institute of Lightwave Technology Xiamen University
Bragg光栅传感器
1
目录
引言 光纤 Bragg光纤光栅 Bragg光纤光栅传感器 总结与展望

2
引言
光纤光栅技术发展概况
3
ห้องสมุดไป่ตู้ 光纤
• 横截面像英文大写字母fff的光纤 • 制作方法 –直接研磨常规单模光纤; –研磨常规单模光纤预制棒再拉丝。

光纤光栅感温火灾探测器培训资料.ppt

光纤光栅感温火灾探测器培训资料.ppt

定温、85℃ -20℃~120℃(取决于传感器)
±2℃ ≤20s 0.1℃ 4个(同步扫描) 最多16只传感器/通道
≤6Km 预警70℃、报警85℃(用户可现场修改)
光纤光栅感温火灾探测器
报警输出 通讯接口 显示器类型 连接方式
电源 工作环境温度
相对湿度 机箱尺寸
重量 颜色 执行标准
6个继电器干触点输出(1个故障,5个报警)(可扩展继电器箱) RS485
机载LCD彩色液晶屏(5.6’’, 图形化操作界面) FC/APC
DC24V,≤700mA 0℃~40℃
≤90%(40℃) 482×132.5×291mm (WxHxD)标准3U
10Kg 黑色 线型光纤感温火灾探测器GB/T 21197-2007
线型光纤光栅感温火灾探测器
系统设计、容量扩展
单探测器系统应用
轻的纤维); 6-聚乙烯护套。
一个普通光纤的结构
光纤光栅
1978年,加拿大渥太华通信研究中心的K.O.Hill等人首次在掺锗石英光 纤中发现光纤的光敏效应,并采用驻波写入法制成世界上第一只光纤 光栅。 光纤光栅是利用光纤材料的光敏性(外界入射光子和纤芯内锗离子相 互作用引起折射率永久性变化),在纤芯内形成空间相位光栅,其实 质上是在纤芯内形成一个窄带的(透射或反射)滤波或反射镜。
交通
关键发热点
电缆沟
石油、石化
柱形罐
球形罐
电力
电缆桥架
开关柜
变压器
工业
生产线 控温场所 安全监控
建筑
建筑物 结构监测 安全监控
光纤光栅感温火灾探测器
工程应用技术方案
隧道 技术方案
储罐/油库 技术方案
电力开关柜 技术方案

(完整版)第5讲光纤布拉格光栅(FBG)解读

(完整版)第5讲光纤布拉格光栅(FBG)解读

最大反射率为 R(l, ) tanh2 (l)
反射谱带宽为
Bs
(
n 2 n0
)
2
(
1 N
)2
光电子技术精品课程
光纤的光敏特性

❖ 掺杂光纤光敏性机理
▪ 掺杂物质与SiO2混合时形成的结构缺陷 ▪ 外界光场作用下通过单光子或双光子吸收
过程使错位键破裂形成色心 ▪ 标准光纤:GeOx ▪ 其它掺杂物质:Erbium(铒), Europium
▪ 倍频氩离子激光器 ▪ 准分子激光器 ▪ 倍频铜蒸气激光器 ▪ 倍频可调谐染料激光器 ▪ 倍频可调谐OPO ▪ 三倍频YAG激光器 ▪ Alexandrite(紫翠玉)激光器
❖ FBG写入技术分类
▪ 内部写入法 ▪ 双光束干涉法 ▪ 掩模法 ▪ 模板+双光束干涉法 ▪ 逐点写入法 ▪ 其它写入法
FBG写入技术
(铕), Cerium(铈)
❖ 影响光纤光敏性的因素
▪ 掺杂种类与掺杂浓度 ▪ 预制棒:缩棒后光敏性高于缩棒前 ▪ 拉纤速度影响光纤光敏性 ▪ 光纤光敏性与曝光时所施加的应力有关
❖ 增加光纤光敏性的方法 ▪ 低温载氢处理
• 压力:20—750atm(典型150atm),温 度:20—75℃,时间:数十小时至数 天
❖ ⅡA(Ⅲ)类光栅
▪ 掺杂浓度较高(eg >25mol% GeO2)的光纤内形成 ▪ 较高UV曝光量( > 500J/cm2), ▪ 结构重构引起折射率变化 ▪ 折射率变化⊿n<0 ▪ 温度稳定性较好(500℃) ▪ 可使脉冲或连续激光
❖ Ⅱ类光栅
▪ 极高UV曝光量,瞬间局部温度达上千度 ▪ 物理破坏引起折射率变化 ▪ 折射率变化⊿n可达10-2 ▪ 温度稳定性好(800℃) ▪ 只能使用脉冲激光

光纤光栅传感器

光纤光栅传感器

光纤光栅监测报警系统结构示意图
使

FBG探头
连接光缆


光连接器
控 显示仪表 制 室 内
计算机
调制解调器
传输光缆
3 、光纤布喇格光栅解调原理
光纤布喇格光栅的解调有多种方法,下面介绍匹 配光纤光栅解调法。匹配光纤光栅检测信号的 基本原理如下图所示,其中左图为传感光栅与 解调光栅的配置,右图为两光栅的反射谱及检 测到的信号.
当两光栅反射谱重叠面积较大时,探测器探测到 的光信号较大,反之则较小,即检测器检测到 的光强是检测光纤光栅 FBG1和匹配光纤光栅 FBG2两个光谱函数的卷积。随着 FBG1上的微 扰,在 FBG2的反射谱中可检测到相对应的一定 光强度的光信号。
F-P腔波长滤波解调原理
法布里—珀罗腔(F-P腔)的光学原理是多光束干
* 光纤光栅传感器
• 光纤光栅传感器(FBG)是利用 Bragg波长 对温度、应力的敏感特性而制成的一种 新型的光纤传感器。
光纤光栅工作原理
感光折射率 n 包层折射率 n2
包层
芯层折射率 n1
λ1 λ2 …λn
λ2 …λn
Λ
λ1
芯层
相位掩模板
紫外掩模写入法
+1级
-1级
包层 芯层
1 、光纤布喇格光栅原理
对包含有φ(z)的非正弦分布也进行了类似于周期 函数的傅里叶展开可以得到光栅区的实际折射 率分布为
该式即为光纤布喇格光栅的折射率调制函数,它 给出了光纤光栅的理论模型,是分析光纤光栅 特性的基础。
2 、光纤布喇格光栅传感原理 光纤光栅纤芯中的折射率调制周期由下式
给出:
这里λUV是紫外光源波长, θ是两相干光束之间的 夹角。

传感器与检测技术光栅PPT课件

传感器与检测技术光栅PPT课件
通常a=b=W/2,也可刻成a∶b = 1.1∶0.9。
目前常用的光栅每毫米刻成10、25、 50、 100、250条线条。
第3页/共43页
1.长光栅位移传感器的工作原理
固定
运动
第4页/共43页
1.长光栅位移传感器的工作原理
光栅位移传感器主要由标尺光栅、指示光栅、光路系统和光电元 件等组成。
3 2 1
第37页/共43页
3、四倍细分式光栅式位移传感检测系统,当用4个光电 元件接收莫尔条纹的移动信号时,分辨力为 0.004/mm脉冲,则光栅的栅距为( )
用四倍细分,则分辨力是光栅栅距的1/4,则光栅栅距为分 辨力的4倍。4*0.004=0.016mm
第38页/共43页
4、四倍细分光栅式位移传感检测系统,如果栅线为50 线/mm,当用4个光电元件接收莫尔条纹的移动信号时, 则分辨率为( ) 分辨率是一个光栅栅距,即1/50=0.02mm,若用四个光电元 件,即经过四倍细分后,则光栅栅距为分辨力的4倍。分辨 力为0.02/4=0.005mm
• 其条纹间距为
BH
WR r1 r2
第23页/共43页
环形莫尔条纹
播放播中放…动…画
单击准备演示
第24页/共43页
4. 圆光栅
• 用两块刻线数目相同的径向圆光栅偏心放置,偏心量为e,这时形成不同曲率半 径的圆弧形莫尔条纹如图所示
• 其条纹间距为
BH
WR
e
• 动光栅固定在转轴上,因此,可将轴旋转的角度量变换成 莫尔条纹信号。通过光电转换元件,将莫尔条纹的变化转 换成近似于正弦波形的电信号。测角精度可达0.15”,分 辨力可达0.1”,甚至更高。
第11页/共43页
莫尔条纹的特点

光纤传感器ppt讲解可修改文字

光纤传感器ppt讲解可修改文字
NA n12 n22
n n 1为纤芯折射率 , 2 为包层折射率
arcsinNA是一个临界角,
θ> arcsinNA,光线进入光纤后都不能传播而在包层消失;
θ< arcsinNA,光线才可以进入光纤被全反射传播。
数值孔径的意义是无论光源发射功率有多大,只有2 张角之内的光被
光纤接受传播。一般希望光纤有大的数值孔径,这样有利于耦合效率的提高。 但数值孔径越大,光信号将产生大的“模色散”,入射光能分布在多个模式 中,各模式速度不同,因此到达光纤远端的时间不同,信号将发生严重的畸
非功能型光纤传感器
传光型光纤传感器的 光纤只当作传播光的媒介, 待测对象的调制功能是由其它光电转换元件实现的, 光纤的状态是不连续的,光纤只起传光作用。
三 介绍几种光纤传感器
1,光纤压力传感器
Y形光纤束的膜片反射型光纤压力传感器如 图。在Y形光纤束前端放置一感压膜片,当膜片 受压变形时,使光纤束与膜片间的距离发生变化, 从而使输出光强受到调制。
6 光纤传感器的类型
光纤传感器按其作用方式一般分为两种类型: 一 功能型光纤传感器, 二 非功能型光纤传感器。
功能型光纤传感器
这类传感器利用光纤本身对外界被测对象具有敏 感能力和检测功能,光纤不仅起到传光作用,而且 在被测对象作用下,如光强、相位、偏振态等光学 特性得到调制,调制后 的信号携带了被测信息。
(3)传输损耗
由于光纤纤芯材料的吸收、散射、光纤弯曲处的辐射损耗等 的影响,光信号在光纤中的传播不可避免地要有损耗,光纤的传输 损耗A可用下式表示
-10 lg I0
A=
I
L
式中 L ——光纤的长度 I0——光纤入射端的光强 I——光纤输出端的光强

实验11 基于光纤布拉格光栅的应变和温度传感器实验

实验11 基于光纤布拉格光栅的应变和温度传感器实验

实验11基于光纤布拉格光栅的应变和温度传感器实验物光1201 朱学军201121051一、FBG反射光谱特性测量从原始数据中我们看到纵坐标最大值为559.552,且为单峰,由于数据过多,我们舍去纵坐标小于1的项,绘出图表如下从图中可以读出最大值560,对应中心波长值1544.616nm。

其一半为280,其与右边交于一点(1544.694,280),左边数据有误差,根据曲线走势,取最右边的一点(1544.556,280),得其3dB带宽|1544.694-1544.556|=0.138nm。

二、光纤FBG温度传感器的标定将原始数据进行线性拟合,得b=0.010649,a=1540.2141544.520 26.01544.682 41.01544.837 56.01545.029 75.01545.204 90.41545.373 105.0标定后,我们又测了两组数据真实值108.6 95测量值108.2 93.20可以看出,拟合还是比较标准的,但还是存在一定的误差。

三、光纤FBG应变传感器的——光纤称重传感器1564.404 01564.696 5001564.885 10001565.077 15001565.270 20001565.467 25001565.667 3000将原始数据进行线性拟合,得b=0.0000985,a=1544.615标定后,我们又测了三组数据真实值1000 2000 2500测量值1003.4082022.676 2478.746可以看出,在误差允许的范围内,拟合还是比较标准的。

四、思考题1、影响光纤FBG温度传感器的测量精度的因素有哪些?答:有操作失误、温度没有稳定就读值、光纤有损坏、系统误差等。

2、如何提高光纤FBG中心波长的计算精度?答:在最高点附近多测几组数值、整体多测几次求平均、读数时根据曲线的对称性在最高点附近两边取纵坐标相同的值再求中点。

五、心得体会通过本次实验,我了解了基于光纤布拉格光栅的应变和温度传感器的工作原理和特性,同时对传感器也有了更多的了解,测量是否精确也在一定程度上取决于标定的情况。

光纤布拉格光栅温度传感器响应

光纤布拉格光栅温度传感器响应

1 绪论 (1)1.1 研究目的及意义 (1)1.2光纤光栅发展历史 (2)1.3光纤光栅传感的优点 (3)1.4光纤光栅传感的发展和应用情况 (4)1.5 存在的问题 (6)1.6 论文的主要内容及工作 (7)2. 光纤光栅的简介 (8)2.1光纤光栅的分类 (8)2.2光纤光栅高温传感器的圭寸装工艺研究 (10)2.2.1 现有封装工艺分析 (10)2.2.2光纤光栅高温传感器的封装工艺 (12)2.3光纤光栅制作技术 (13)2.3.1 干涉写入法 (13)2.3.2逐点写入法 (14)2.3.3组合写入法 (14)3. 光纤布拉格光栅传感原理 (16)3.1 光纤光栅传感原理 (16)3.2光纤布拉格光栅耦合模理论 (17)3.2.1 光纤布拉格光栅特性 (17)3.2.2耦合模理论[26] (19)3.3光纤布拉格光栅温度传感原理[28] (24)3.4 FBG温度传感器的响应时间 (26)3.4光纤布拉格光栅解调技术 (29)3.4.1 非平衡M-Z光纤干涉仪法 (29)3.4.2可调谐光纤F-P滤波法 (30)3.4.3 匹配光栅法 (31)4. 系统的设计 (33)第I页共n页4.1 光纤光栅温度传感系统 (33)4.2高温测试的分析 (33)4.3 FBG温度传感器响应时间的测试 (34)4.4 实验仿真 (35)5 结论 (42)参考文献 (43)致谢 (45)第II 页共n页1 绪论1.1研究目的及意义光纤传感技术是伴随着光导纤维及光纤通信技术发展而迅速发展起来的一种以光为载体、光纤为媒质、感知和传输外界信号(被测量)的新型传感技术。

光纤布拉格光栅是用光纤布拉格光栅(FBG)作敏感元件的功能型光纤传感器,以其抗电磁干扰、灵敏度高、体积小等优点,越来越广泛应用于传感器领域。

将其埋入材料或者结构,以通过光纤布拉格光栅传感器的传感特性监测内部的物理变化如应变、温度、压力,进行全面有效的在线实时监测,增加对材料制造过程中以及工作期间的状态透明度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档