二次函数压轴题之正方形存在性
二次函数背景下的特殊四边形存在性判定(解析版)

备战2020年中考数学压轴题之二次函数专题06 二次函数背景下的特殊四边形存在性判定【方法综述】知识准备:特殊四边形包括平行四边形、菱形、矩形和正方形。
它们的判定方法如下:平行四边形的判定方法:两组对边分别平行的四边形是平行四边形;两组对角分别相等的四边形是平行四边形两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形两条对角线互相平分的四边形是平行四边形;矩形判的定方法有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形有三个角是直角的四边形是矩形菱形判定方法有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形四条边相等的四边形是矩形正方形的判定方法平行四边形+矩形的特性;平行四边形+菱形的特性解答时常用的技巧:(1).根据平行四边形的对角线互相平分这条性质,应用中点坐标公式,可以采用如下方法:已知点A、B、C三点坐标已知,点P在某函数图像上,是否存在以点A、B、C、P为顶点的四边形为平行四边形,求点P的坐标。
如,当AP、BC为平行四边形对角线时,由中点坐标公式,可得a+m=c+e,n+b=d+f则m= c+e-a;n= d+f-b,点P坐标可知,将其带入到函数关系式进行验证,如果满足函数关系式,即为所求P点,同理,根据分类讨论可以得到其它情况的解答方法。
(2).菱形在折叠的情况下,可以看成是等腰三角形以底边所在直线折叠所得,因此,菱形的存在性讨论,亦可以看做等腰三角形的存在性讨论。
(3).矩形中的直角证明出来常规直角的探究外,还有主要是否由隐形圆的直径所对圆周角得到。
【典例示范】类型一平行四边形的存在性探究例1:如图,在平面直角坐标系中,已知抛物线经过A(-4,0),B(0,-4),C(2,0)三点.(1)求抛物线的解析式;(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S,求S关于m的函数关系式,并求出S的最大值;(3)若点P是抛物线上的动点,点Q是直线y=-x上的动点,判断有几个位置能使以点P,Q,B,O为顶点的四边形为平行四边形(要求PQ∥OB),直接写出相应的点Q的坐标.【答案】(1)y=12x2+x-4;(2)当m=-2时,S有最大值,S最大=4;(3)满足题意的Q点的坐标有三个,分别是(-2+2-,(-2-2+,(-4,4).【思路引导】(1)已知抛物线与x轴的两个交点的横坐标,一般选用两点式,利用待定系数法求解即可;(2)利用抛物线的解析式表示出点M 的纵坐标,从而得到点M 到x 轴的距离,然后根据三角形面积公式表示并整理即可得解,根据抛物线的性质求出第三象限内二次函数的最值,然后即可得解;(3)利用直线与抛物线的解析式表示出点P 、Q 的坐标,然后求出PQ 的长度,再根据平行四边形的对边相等列出算式,然后解关于x 的一元二次方程即可得解.【解析】(1)设抛物线的解析式为y=a (x+4)(x -2),把B (0,-4)代入得,-4=a×(0+4)(0-2),解得a=12, ∴抛物线的解析式为:y=12(x+4)(x -2),即y=12x 2+x -4; (2)过点M 作MD ⊥x 轴于点D ,设M 点的坐标为(m ,n ), 则AD=m+4,MD=-n ,n=12m 2+m -4, ∴S=S △AMD +S 梯形DMBO -S △ABO =111(4)()(4)()44222m n n m +-+-+--⨯⨯= -2n -2m -8=-2×(12m 2+m -4)-2m -8=-m 2-4m =-(m+2)2+4(-4<m <0);∴S 最大值=4.(3)设P (x ,12x 2+x -4). ①如图1,当OB 为边时,根据平行四边形的性质知PQ ∥OB ,∴Q 的横坐标等于P 的横坐标,又∵直线的解析式为y=-x ,则Q (x ,-x ).由PQ=OB ,得|-x -(12x 2+x -4)|=4,解得x=0,-4,-x=0不合题意,舍去.由此可得Q (-4,4)或(-2--2-;②如图2,当BO 为对角线时,知A 与P 应该重合,OP=4.四边形PBQO 为平行四边形则BQ=OP=4,Q 横坐标为4,代入y=-x 得出Q 为(4,-4).故满足题意的Q 点的坐标有四个,分别是(-4,4),(4,-4),(-,2-,(-2-.【方法总结】本题是二次函数综合题,交点式求解析式,二次函数与三角形面积最值问题的公共底的辅助线的做法要注意,二次函数中存在平行四边形的方法,要分别对已知边的分别为平行四边形的边或是对角线进行分类讨论.针对训练1.如图,二次函数的图象与x 轴交于A 、B 两点,与y 轴交于点C ,已知点A (﹣4,0).(1)求抛物线与直线AC 的函数解析式;(2)若点D (m ,n )是抛物线在第二象限的部分上的一动点,四边形OCDA 的面积为S ,求S 关于m 的函数关系式;(3)若点E 为抛物线上任意一点,点F 为x 轴上任意一点,当以A 、C 、E 、F 为顶点的四边形是平行四边形时,请求出满足条件的所有点E 的坐标.【答案】(1)(2)S=﹣m 2﹣4m+4(﹣4<m <0)(3)(﹣3,2)、(,﹣2)、(,﹣2)【解析】 (1)∵A (﹣4,0)在二次函数y=ax 2﹣x+2(a≠0)的图象上, ∴0=16a+6+2,解得a=﹣, ∴抛物线的函数解析式为y=﹣x 2﹣x+2; ∴点C 的坐标为(0,2),设直线AC 的解析式为y=kx+b ,则, 232(0)2y ax x a =-+≠122y x =+32--32-3212123204{2k b b=-+=解得,∴直线AC 的函数解析式为:;(2)∵点D (m ,n )是抛物线在第二象限的部分上的一动点,∴D (m ,﹣m 2﹣m+2),过点D 作DH ⊥x 轴于点H ,则DH=﹣m 2﹣m+2,AH=m+4,HO=﹣m ,∵四边形OCDA 的面积=△ADH 的面积+四边形OCDH 的面积,∴S=(m+4)×(﹣m 2﹣m+2)+(﹣m 2﹣m+2+2)×(﹣m ),化简,得S=﹣m 2﹣4m+4(﹣4<m <0);(3)①若AC 为平行四边形的一边,则C 、E 到AF 的距离相等,∴|y E |=|y C |=2,∴y E =±2.当y E =2时,解方程﹣x 2﹣x+2=2得,x 1=0,x 2=﹣3,∴点E 的坐标为(﹣3,2);当y E =﹣2时,解方程﹣x 2﹣x+2=﹣2得,x 1=,x 2=,∴点E 的坐标为(,﹣2)或(,﹣2);②若AC 为平行四边形的一条对角线,则CE ∥AF ,∴y E =y C =2,∴点E 的坐标为(﹣3,2).综上所述,满足条件的点E 的坐标为(﹣3,2)、(,﹣2)、(,﹣2).1{22k b ==122y x =+123212321212321212321232123232-32-+32-32-32--32-+2.(云南省弥勒市2019届九年级上学期期末考试数学试题)如图,抛物线y =x 2−2x −3与x 轴交A 、B 两点(A 点在B 点左侧),直线l 与抛物线交于A 、C 两点,其中C 点的横坐标为2.(1)求A 、B 两点的坐标及直线AC 的函数表达式;(2)P 是线段AC 上的一个动点,过P 点作y 轴的平行线交抛物线于E 点,求线段PE 长度的最大值;(3)点G 是抛物线上的动点,在x 轴上是否存在点F ,使A 、C 、F 、G 四个点为顶点的四边形是平行四边形?如果存在,写出所有满足条件的F 点坐标(请直接写出点的坐标,不要求写过程);如果不存在,请说明理由.【答案】(1)A(−1,0),B(3,0),y =−x −1。
(完整版)存在性问题压轴题

2017年中考备考专题复习:存在性问题一、综合题(共21题;共291分)1、(2016•金华)在平面直角坐标系中,点O为原点,点A的坐标为(﹣6,0).如图1,正方形OBCD 的顶点B在x轴的负半轴上,点C在第二象限.现将正方形OBCD绕点O顺时针旋转角α得到正方形OEFG.(1)如图2,若α=60°,OE=OA,求直线EF的函数表达式.(2)若α为锐角,tanα= ,当AE取得最小值时,求正方形OEFG的面积.(3)当正方形OEFG的顶点F落在y轴上时,直线AE与直线FG相交于点P,△OEP的其中两边之比能否为2:1?若能,求点P的坐标;若不能,试说明理由2、(2016•临沂)如图,在平面直角坐标系中,直线y=﹣2x+10与x轴,y轴相交于A,B两点,点C的坐标是(8,4),连接AC,BC.(1)求过O,A,C三点的抛物线的解析式,并判断△ABC的形状;(2)动点P从点O出发,沿OB以每秒2个单位长度的速度向点B运动;同时,动点Q从点B出发,沿BC以每秒1个单位长度的速度向点C运动.规定其中一个动点到达端点时,另一个动点也随之停止运动.设运动时间为t秒,当t为何值时,PA=QA?(3)在抛物线的对称轴上,是否存在点M,使以A,B,M为顶点的三角形是等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由.3、(2016•内江)已知抛物线C:y=x2﹣3x+m,直线l:y=kx(k>0),当k=1时,抛物线C与直线l只有一个公共点.(1)求m的值;(2)若直线l与抛物线C交于不同的两点A,B,直线l与直线l1:y=﹣3x+b交于点P,且+ = ,求b的值;(3)在(2)的条件下,设直线l1与y轴交于点Q,问:是否在实数k使S△APQ=S△BPQ?若存在,求k的值,若不存在,说明理由.4、(2016•新疆)如图,抛物线y=ax2+bx﹣3(a≠0)的顶点为E,该抛物线与x轴交于A、B两点,与y轴交于点C,且BO=OC=3AO,直线y=﹣x+1与y轴交于点D.(1)求抛物线的解析式;(2)证明:△DBO∽△EBC;(3)在抛物线的对称轴上是否存在点P,使△PBC是等腰三角形?若存在,请直接写出符合条件的P点坐标,若不存在,请说明理由.5、(2016•深圳)如图,抛物线y=ax2+2x﹣3与x轴交于A、B两点,且B(1,0)(1)求抛物线的解析式和点A的坐标;(2)如图1,点P是直线y=x上的动点,当直线y=x平分∠APB时,求点P的坐标;(3)如图2,已知直线y= x﹣分别与x轴、y轴交于C、F两点,点Q是直线CF下方的抛物线上的一个动点,过点Q作y轴的平行线,交直线CF于点D,点E在线段CD的延长线上,连接QE.问:以QD 为腰的等腰△QDE的面积是否存在最大值?若存在,请求出这个最大值;若不存在,请说明理由.6、(2016•南宁)如图,已知抛物线经过原点O,顶点为A(1,1),且与直线y=x﹣2交于B,C两点.(1)求抛物线的解析式及点C的坐标;(2)求证:△ABC是直角三角形;(3)若点N为x轴上的一个动点,过点N作MN⊥x轴与抛物线交于点M,则是否存在以O,M,N为顶点的三角形与△ABC相似?若存在,请求出点N的坐标;若不存在,请说明理由.7、(2016•眉山)已知如图,在平面直角坐标系xOy中,点A、B、C分别为坐标轴上上的三个点,且OA=1,OB=3,OC=4,(1)求经过A、B、C三点的抛物线的解析式;(2)在平面直角坐标系xOy中是否存在一点P,使得以以点A、B、C、P为顶点的四边形为菱形?若存在,请求出点P的坐标;若不存在,请说明理由;(3)若点M为该抛物线上一动点,在(2)的条件下,请求出当|PM﹣AM|的最大值时点M的坐标,并直接写出|PM﹣AM|的最大值.8、(2016•潍坊)如图,已知抛物线y= x2+bx+c经过△ABC的三个顶点,其中点A(0,1),点B(﹣9,10),AC∥x轴,点P是直线AC下方抛物线上的动点.(1)求抛物线的解析式;(2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标;(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与△ABC相似,若存在,求出点Q的坐标,若不存在,请说明理由.9、(2016•宁夏)在矩形ABCD中,AB=3,AD=4,动点Q从点A出发,以每秒1个单位的速度,沿AB 向点B移动;同时点P从点B出发,仍以每秒1个单位的速度,沿BC向点C移动,连接QP,QD,PD.若两个点同时运动的时间为x秒(0<x≤3),解答下列问题:(1)设△QPD的面积为S,用含x的函数关系式表示S;当x为何值时,S有最大值?并求出最小值;(2)是否存在x的值,使得QP⊥DP?试说明理由.10、(2016•泸州)如图,在平面直角坐标系中,点O为坐标原点,直线l与抛物线y=mx2+nx相交于A (1,3 ),B(4,0)两点.(1)求出抛物线的解析式;(2)在坐标轴上是否存在点D,使得△ABD是以线段AB为斜边的直角三角形?若存在,求出点D的坐标;若不存在,说明理由;(3)点P是线段AB上一动点,(点P不与点A、B重合),过点P作PM∥OA,交第一象限内的抛物线于点M,过点M作MC⊥x轴于点C,交AB于点N,若△BCN、△PMN的面积S△BCN、S△PMN满足S△BCN=2S△PMN,求出的值,并求出此时点M的坐标.11、(2016•攀枝花)如图,抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(3,0),与y轴交于点C(0,﹣3)(1)求抛物线的解析式;(2)点P在抛物线位于第四象限的部分上运动,当四边形ABPC的面积最大时,求点P的坐标和四边形ABPC 的最大面积.(3)直线l经过A、C两点,点Q在抛物线位于y轴左侧的部分上运动,直线m经过点B和点Q,是否存在直线m,使得直线l、m与x轴围成的三角形和直线l、m与y轴围成的三角形相似?若存在,求出直线m的解析式,若不存在,请说明理由.12、(2016•资阳)已知抛物线与x轴交于A(6,0)、B(﹣,0)两点,与y轴交于点C,过抛物线上点M(1,3)作MN⊥x轴于点N,连接OM.(1)求此抛物线的解析式;(2)如图1,将△OMN沿x轴向右平移t个单位(0≤t≤5)到△O′M′N′的位置,MN′、M′O′与直线AC分别交于点E、F.①当点F为M′O′的中点时,求t的值;②如图2,若直线M′N′与抛物线相交于点G,过点G作GH∥M′O′交AC于点H,试确定线段EH是否存在最大值?若存在,求出它的最大值及此时t的值;若不存在,请说明理由.13、(2016•梅州)如图,在平面直角坐标系中,已知抛物线y=x2+bx+c过A,B,C三点,点A的坐标是(3,0),点C的坐标是(0,﹣3),动点P在抛物线上.(1)b=________,c=________,点B的坐标为________;(直接填写结果)(2)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;(3)过动点P作PE垂直y轴于点E,交直线AC于点D,过点D作x轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标.14、(2016•昆明)如图1,对称轴为直线x= 的抛物线经过B(2,0)、C(0,4)两点,抛物线与x 轴的另一交点为A(1)求抛物线的解析式;(2)若点P为第一象限内抛物线上的一点,设四边形COBP的面积为S,求S的最大值;(3)如图2,若M是线段BC上一动点,在x轴是否存在这样的点Q,使△MQC为等腰三角形且△MQB为直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由.15、(2016•贵港)如图,抛物线y=ax2+bx﹣5(a≠0)与x轴交于点A(﹣5,0)和点B(3,0),与y 轴交于点C.(1)求该抛物线的解析式;(2)若点E为x轴下方抛物线上的一动点,当S△ABE=S△ABC时,求点E的坐标;(3)在(2)的条件下,抛物线上是否存在点P,使∠BAP=∠CAE?若存在,求出点P的横坐标;若不存在,请说明理由.16、(2016•雅安)已知Rt△ABC中,∠B=90°,AC=20,AB=10,P是边AC上一点(不包括端点A、C),过点P作PE⊥BC于点E,过点E作EF∥AC,交AB于点F.设PC=x,PE=y.(1)求y与x的函数关系式;(2)是否存在点P使△PEF是Rt△?若存在,求此时的x的值;若不存在,请说明理由.17、(2016•衢州)如图1,在直角坐标系xoy中,直线l:y=kx+b交x轴,y轴于点E,F,点B的坐标是(2,2),过点B分别作x轴、y轴的垂线,垂足为A、C,点D是线段CO上的动点,以BD为对称轴,作与△BCD或轴对称的△BC′D.(1)当∠CBD=15°时,求点C′的坐标.(2)当图1中的直线l经过点A,且k=﹣时(如图2),求点D由C到O的运动过程中,线段BC′扫过的图形与△OAF重叠部分的面积.(3)当图1中的直线l经过点D,C′时(如图3),以DE为对称轴,作于△DOE或轴对称的△DO′E,连结O′C,O′O,问是否存在点D,使得△DO′E与△CO′O相似?若存在,求出k、b的值;若不存在,请说明理由.18、(2016•杭州)在线段AB的同侧作射线AM和BN,若∠MAB与∠NBA的平分线分别交射线BN,AM于点E,F,AE和BF交于点P.如图,点点同学发现当射线AM,BN交于点C;且∠ACB=60°时,有以下两个结论:①∠APB=120°;②AF+BE=AB.那么,当AM∥BN时:(1)点点发现的结论还成立吗?若成立,请给予证明;若不成立,请求出∠APB的度数,写出AF,BE,AB长度之间的等量关系,并给予证明;(2)设点Q为线段AE上一点,QB=5,若AF+BE=16,四边形ABEF的面积为32 ,求AQ的长.19、(2016•梧州)如图,抛物线y=ax2+bx﹣4(a≠0)与x轴交于A(4,0)、B(﹣1,0)两点,过点A 的直线y=﹣x+4交抛物线于点C.(1)求此抛物线的解析式;(2)在直线AC上有一动点E,当点E在某个位置时,使△BDE的周长最小,求此时E点坐标;(3)当动点E在直线AC与抛物线围成的封闭线A→C→B→D→A上运动时,是否存在使△BDE为直角三角形的情况,若存在,请直接写出符合要求的E点的坐标;若不存在,请说明理由.20、(2016•玉林)如图,抛物线L:y=ax2+bx+c与x轴交于A、B(3,0)两点(A在B的左侧),与y 轴交于点C(0,3),已知对称轴x=1.(1)求抛物线L的解析式;(2)将抛物线L向下平移h个单位长度,使平移后所得抛物线的顶点落在△OBC内(包括△OBC的边界),求h的取值范围;(3)设点P是抛物线L上任一点,点Q在直线l:x=﹣3上,△PBQ能否成为以点P为直角顶点的等腰直角三角形?若能,求出符合条件的点P的坐标;若不能,请说明理由.21、(2016•曲靖)如图,在平面直角坐标系中,抛物线y=ax2+2ax+c交x轴于A,B两点,交y轴于点C (0,3),tan∠OAC= .(1)求抛物线的解析式;(2)点H是线段AC上任意一点,过H作直线HN⊥x轴于点N,交抛物线于点P,求线段PH的最大值;(3)点M是抛物线上任意一点,连接CM,以CM为边作正方形CMEF,是否存在点M使点E恰好落在对称轴上?若存在,请求出点M的坐标;若不存在,请说明理由.答案解析部分一、综合题【答案】(1)解:如图1,过点E作EH⊥OA于点H,EF与y轴的交点为M.∵OE=OA,α=60°,∴△AEO为正三角形,∴OH=3,EH= =3 .∴E(﹣3,3 ).∵∠AOM=90°,∴∠EOM=30°.在Rt△EOM中,∵cos∠EOM= ,即= ,∴OM=4 .∴M(0,4 ).设直线EF的函数表达式为y=kx+4 ,∵该直线过点E(﹣3,3 ),∴﹣3k+4 =3 ,解得k= ,所以,直线EF的函数表达式为y= x+4(2)解:如图2,射线OQ与OA的夹角为α(α为锐角,tanα).无论正方形边长为多少,绕点O旋转角α后得到正方形OEFG的顶点E在射线OQ上,∴当AE⊥OQ时,线段AE的长最小.在Rt△AOE中,设AE=a,则OE=2a,∴a2+(2a)2=62,解得a1= ,a2=﹣(舍去),∴OE=2a= ,∴S=OE2=正方形OEFG(3)解:设正方形边长为m.当点F落在y轴正半轴时.如图3,当P与F重合时,△PEO是等腰直角三角形,有= 或= .在Rt△AOP中,∠APO=45°,OP=OA=6,∴点P1的坐标为(0,6).在图3的基础上,当减小正方形边长时,点P在边FG 上,△OEP的其中两边之比不可能为:1;当增加正方形边长时,存在= (图4)和= (图5)两种情况.如图4,△EFP是等腰直角三角形,有= ,即= ,此时有AP∥OF.在Rt△AOE中,∠AOE=45°,∴OE= OA=6 ,∴PE= OE=12,PA=PE+AE=18,∴点P2的坐标为(﹣6,18).如图5,过P作PR⊥x轴于点R,延长PG交x轴于点H.设PF=n.在Rt△POG中,PO2=PG2+OG2=m2+(m+n)2=2m2+2mn+n2,在Rt△PEF中,PE2=PF2+EF2=m2+n2,当= 时,∴PO2=2PE2.∴2m2+2mn+n2=2(m2+n2),得n=2m.∵EO∥PH,∴△AOE∽△AHP,∴= ,∴AH=4OA=24,即OH=18,∴m=9 .在等腰Rt△PRH中,PR=HR= PH=36,∴OR=RH﹣OH=18,∴点P3的坐标为(﹣18,36).当点F落在y轴负半轴时,如图6,P与A重合时,在Rt△POG中,OP= OG,又∵正方形OGFE中,OG=OE,∴OP= OE.∴点P4的坐标为(﹣6,0).在图6的基础上,当正方形边长减小时,△OEP的其中两边之比不可能为:1;当正方形边长增加时,存在= (图7)这一种情况.如图7,过P作PR⊥x轴于点R,设PG=n.在Rt△OPG中,PO2=PG2+OG2=n2+m2,在Rt△PEF中,PE2=PF2+FE2=(m+n )2+m2=2m2+2mn+n2.当= 时,∴PE2=2PO2.∴2m2+2mn+n2=2n2+2m2,∴n=2m,由于NG=OG=m,则PN=NG=m,∵OE∥PN,∴△AOE∽△ANP,∴=1,即AN=OA=6.在等腰Rt△ONG中,ON= m,∴12= m,∴m=6 ,在等腰Rt△PRN中,RN=PR=6,∴点P5的坐标为(﹣18,6).所以,△OEP的其中两边的比能为:1,点P的坐标是:P1(0,6),P2(﹣6,18),P3(﹣18,36),P4(﹣6,0),P5(﹣18,6)【考点】待定系数法求一次函数解析式,正方形的性质【解析】【分析】(1)先判断出△AEO为正三角形,再根据锐角三角函数求出OM即可;(2)判断出当AE⊥OQ时,线段AE的长最小,用勾股定理计算即可;(3)由△OEP的其中两边之比为:1分三种情况进行计算即可.此题是正方形的性质题,主要考查了正方形的性质,等腰三角形的性质,勾股定理,解本题的关键是灵活运用勾股定理进行计算.【答案】(1)解:∵直线y=﹣2x+10与x轴,y轴相交于A,B两点,∴A(5,0),B(0,10),∵抛物线过原点,∴设抛物线解析式为y=ax2+bx,∵抛物线过点B(0,10),C(8,4),∴,∴,∴抛物线解析式为y= x2﹣x,∵A(5,0),B(0,10),C(8,4),∴AB2=52+102=125,BC2=82+(8﹣5)2=100,AC2=42+(8﹣5)2=25,∴AC2+BC2=AB2,∴△ABC是直角三角形(2)解:如图1,当P,Q运动t秒,即OP=2t,CQ=10﹣t时,由(1)得,AC=OA,∠ACQ=∠AOP=90°,在Rt△AOP和Rt△ACQ 中,,∴Rt△AOP≌Rt△ACQ,∴OP=CQ,∴2t=10﹣t,∴t= ,∴当运动时间为时,PA=QA(3)解:存在,∵y= x2﹣ x,∴抛物线的对称轴为x= ,∵A(5,0),B(0,10),∴AB=5 设点M(,m),①若BM=BA时,∴()2+(m﹣10)2=125,∴m1= ,m2= ,∴M1(,),M2(,),②若AM=AB时,∴()2+m2=125,∴m3= ,m4=﹣,∴M3(,),M4(,﹣),③若MA=MB时,∴(﹣5)2+m2=()2+(10﹣m)2,∴m=5,∴M(,5),此时点M恰好是线段AB的中点,构不成三角形,舍去,∴点M的坐标为:M1(,),M2(,),M3(,),M4(,﹣)【考点】待定系数法求二次函数解析式,全等三角形的判定与性质,等腰三角形的性质【解析】【分析】(1)先确定出点A,B坐标,再用待定系数法求出抛物线解析式;用勾股定理逆定理判断出△ABC是直角三角形;(2)根据运动表示出OP=2t,CQ=10﹣t,判断出Rt△AOP≌Rt△ACQ,得到OP=CQ即可;(3)分三种情况用平面坐标系内,两点间的距离公式计算即可,此题是二次函数综合题,主要考查了待定系数法求函数解析式,三角形的全等的性质和判定,等腰三角形的性质,解本题的关键是分情况讨论,也是本题的难点.【答案】(1)解:当k=1时,抛物线C与直线l只有一个公共点,∴直线l解析式为y=x,∵,∴x2﹣3x+m=x,∴x2﹣4x+m=0,∴△=16﹣4m=0,∴m=4(2)解:如图,分别过点A,P,B作y轴的垂线,垂足依次为C,D,E,则△OAC∽△OPD,∴.同理,.∵,∴=2.∴ =2.∴,即.解方程组,得x=x= ,即PD= .由方程组消去y,得x2﹣(k+3)x+4=0.∵AC,BE是以上一元二次方程的两根,∴AC+BE=k+3,AC×BE=4.∴.解得b=8.(3)解:不存在.理由如下:假设存在,当S△APQ=S△BPQ时,有AP=PB,于是PD﹣AC=PE﹣PD,即AC+BE=2PD.由(2)可知AC+BE=k+3,PD= ,∴k+3=2×,即(k+3)2=16.解得k=1(舍去k=﹣7).当k=1时,A,B两点重合,△BQA不存在.∴不存在实数k使S△APQ=S△BPQ 【考点】根与系数的关系,比例的性质,相似三角形的判定与性质【解析】【分析】(1)两图象有一个交点,则对应的方程组有一组解,即△=0,代入计算即可求出m的值;(2)作出辅助线,得到△OAC∽△OPD,+ =2,同理+ =2,AC,BE是x2﹣(k+3)x+4=0两根,即可;(3)由S△APQ=S△BPQ得到AC+BE=2PD,建立方程(k+3)2=16即可.此题是二次函数综合题,主要考查了相似三角形的性质和判定,比例的性质,一元二次方程的根与系数的关系,解本题的关键是灵活运用根与系数的关系.【答案】(1)解:∵抛物线y=ax2+bx﹣3,∴c=﹣3,∴C(0,﹣3),∴OC=3,∵BO=OC=3AO,∴BO=3,AO=1,∴B(3,0),A(﹣1,0),∵该抛物线与x轴交于A、B两点,∴,∴,∴抛物线解析式为y=x2﹣2x﹣3(2)证明:由(1)知,抛物线解析式为y=x2﹣2x﹣3=(x﹣1)2﹣4,∴E(1,﹣4),∵B(3,0),A(﹣1,0),C(0,﹣3),∴BC=3 ,BE=2 ,CE= ,∵直线y=﹣x+1与y轴交于点D,∴D(0,1),∵B(3,0),∴OD=1,OB=3,BD= ,∴,,,∴,∴△BCE∽△BDO(3)解:存在,理由:设P(1,m),∵B(3,0),C(0,﹣3),∴BC=3 ,PB= ,PC= ,∵△PBC是等腰三角形,①当PB=PC时,∴= ,∴m=﹣1,∴P(1,﹣1),②当PB=BC时,∴3 = ,∴m=±,∴P(1,)或P(1,﹣),③当PC=BC时,∴3 = ,∴m=﹣3±,∴P(1,﹣3+ )或P(1,﹣3﹣),∴符合条件的P点坐标为P(1,﹣1)或P(1,)或P(1,﹣)或P(1,﹣3+ )或P (1,﹣3﹣)【考点】二次函数的应用,二次函数与一次函数的交点问题【解析】【分析】(1)先求出点C的坐标,在由BO=OC=3AO,确定出点B,A的坐标,最后用待定系数法求出抛物线解析式;(2)先求出点A,B,C,D,E的坐标,从而求出BC=3 ,BE=2 ,CE= ,OD=1,OB=3,BD= ,求出比值,得到得出结论;(3)设出点P的坐标,表示出PB,PC,求出BC,分三种情况计算即可.此题是二次函数综合题,主要考查了点的坐标的确定方法,两点间的距离公式,待定系数法,等腰三角形的性质,相似三角形的判定,解本题的关键是判断△BCE∽△BDO.难点是分类.【答案】(1)解:把B(1,0)代入y=ax2+2x﹣3,可得a+2﹣3=0,解得a=1,∴抛物线解析式为y=x2+2x﹣3,令y=0,可得x2+2x﹣3=0,解得x=1或x=﹣3,∴A点坐标为(﹣3,0).(2)解:若y=x平分∠APB,则∠APO=∠BPO,如图1,若P点在x轴上方,PA与y轴交于点B′,由于点P在直线y=x上,可知∠POB=∠POB′=45°,在△BPO和△B′PO 中,∴△BPO≌△B′PO(ASA),∴BO=B′O=1,设直线AP解析式为y=kx+b,把A、B′两点坐标代入可得,解得,∴直线AP解析式为y= x+1,联立,解得,∴P点坐标为(,);若P点在x轴下方时,同理可得△BOP≌△B′OP,∴∠BPO=∠B′PO,又∠B′PO在∠APO的内部,∴∠APO≠∠BPO,即此时没有满足条件的P点,综上可知P点坐标为(,).(3)解:如图2,作QH⊥CF,交CF于点H,∵CF为y= x﹣,∴可求得C(,0),F(0,﹣),∴tan∠OFC= = ,∵DQ∥y轴,∴∠QDH=∠MFD=∠OFC,∴tan∠HDQ= ,不妨设DQ=t,DH= t,HQ= t,∵△QDE是以DQ为腰的等腰三角形,∴若DQ=DE,则S△DEQ = DE•HQ= ×t×t= t2,若DQ=QE,则S△DEQ = DE•HQ= ×2DH•HQ= ×t×t=t2,∵t2<t2,∴当DQ=QE时△DEQ的面积比DQ=DE时大.设Q点坐标为(x,x2+2x﹣3),则D(x,x﹣),∵Q点在直线CF的下方,∴DQ=t= x﹣﹣(x2+2x﹣3)=﹣x2﹣x+ ,当x=﹣时,t max=3,∴(S△DEQ)max= t2= ,即以QD为腰的等腰三角形的面积最大值为【考点】抛物线与x轴的交点【解析】【分析】(1)把B点坐标代入抛物线解析式可求得a的值,可求得抛物线解析式,再令y=0,可解得相应方程的根,可求得A点坐标;(2)当点P在x轴上方时,连接AP交y轴于点B′,可证△OBP≌△OB′P,可求得B′坐标,利用待定系数法可求得直线AP的解析式,联立直线y=x,可求得P点坐标;当点P在x轴下方时,同理可求得∠BPO=∠B′PO,又∠B′PO在∠APO的内部,可知此时没有满足条件的点P;(3)过Q作QH⊥DE于点H,由直线CF的解析式可求得点C、F的坐标,结合条件可求得tan∠QDH,可分别用DQ表示出QH和DH的长,分DQ=DE和DQ=QE两种情况,分别用DQ的长表示出△QDE的面积,再设出点Q的坐标,利用二次函数的性质可求得△QDE的面积的最大值.本题主要考查二次函数的综合应用,涉及知识点有待定系数法、角平分线的定义、全等三角形的判定和性质、三角形的面积、等腰三角形的性质、二次函数的性质及分类讨论等.在(2)中确定出直线AP的解析式是解题的关键,在(3)中利用DQ表示出△QDE的面积是解题的关键.本题考查知识点较多,综合性较强,计算量大,难度较大.【答案】(1)解:∵顶点坐标为(1,1),∴设抛物线解析式为y=a(x﹣1)2+1,又抛物线过原点,∴0=a(0﹣1)2+1,解得a=﹣1,∴抛物线解析式为y=﹣(x﹣1)2+1,即y=﹣x2+2x,联立抛物线和直线解析式可得,解得或,∴B(2,0),C(﹣1,﹣3)(2)证明:如图,分别过A、C两点作x轴的垂线,交x轴于点D、E两点,则AD=OD=BD=1,BE=OB+OE=2+1=3,EC=3,∴∠ABO=∠CBO=45°,即∠ABC=90°,∴△ABC是直角三角形;(3)解:假设存在满足条件的点N,设N(x,0),则M(x,﹣x2+2x),∴ON=|x|,MN=|﹣x2+2x|,由(2)在Rt△ABD和Rt△CEB中,可分别求得AB= ,BC=3 ,∵MN⊥x轴于点N∴∠ABC=∠MNO=90°,∴当△ABC和△MNO相似时有= 或= ,①当= 时,则有,即|x||﹣x+2|= |x|,∵当x=0时M、O、N不能构成三角形,∴x≠0,∴|﹣x+2|= ,即﹣x+2=±,解得x= 或x= ,此时N点坐标为(,0)或(,0);②当= 时,则有,即|x||﹣x+2|=3|x|,∴|﹣x+2|=3,即﹣x+2=±3,解得x=5或x=﹣1,此时N点坐标为(﹣1,0)或(5,0),综上可知存在满足条件的N点,其坐标为(,0)或(,0)或(﹣1,0)或(5,0)【考点】抛物线与x轴的交点,勾股定理【解析】【分析】(1)可设顶点式,把原点坐标代入可求得抛物线解析式,联立直线与抛物线解析式,可求得C点坐标;(2)分别过A、C两点作x轴的垂线,交x轴于点D、E两点,结合A、B、C三点的坐标可求得∠ABO=∠CBO=45°,可证得结论;(3)设出N点坐标,可表示出M点坐标,从而可表示出MN、ON的长度,当△MON和△ABC 相似时,利用三角形相似的性质可得= 或= ,可求得N点的坐标.本题为二次函数的综合应用,涉及知识点有待定系数法、图象的交点问题、直角三角形的判定、勾股定理、相似三角形的性质及分类讨论等.在(1)中注意顶点式的运用,在(3)中设出N、M的坐标,利用相似三角形的性质得到关于坐标的方程是解题的关键,注意相似三角形点的对应.本题考查知识点较多,综合性较强,难度适中.【答案】(1)解:设抛物线的解析式为y=ax2+bx+c,∵A(1,0)、B(0,3)、C(﹣4,0),∴,解得:a=﹣,b=﹣,c=3,∴经过A、B、C三点的抛物线的解析式为y=﹣x2﹣x+3(2)解:在平面直角坐标系xOy中存在一点P,使得以点A、B、C、P为顶点的四边形为菱形,理由为:∵OB=3,OC=4,OA=1,∴BC=AC=5,当BP平行且等于AC时,四边形ACBP为菱形,∴BP=AC=5,且点P到x轴的距离等于OB,∴点P的坐标为(5,3),当点P在第二、三象限时,以点A、B、C、P为顶点的四边形只能是平行四边形,不是菱形,则当点P的坐标为(5,3)时,以点A、B、C、P为顶点的四边形为菱形.(3)解:设直线PA的解析式为y=kx+b(k≠0),∵A(1,0),P(5,3),∴,解得:k= ,b=﹣,∴直线PA的解析式为y= x﹣,当点M与点P、A不在同一直线上时,根据三角形的三边关系|PM﹣AM|<PA,当点M与点P、A在同一直线上时,|PM﹣AM|=PA,∴当点M与点P、A在同一直线上时,|PM﹣AM|的值最大,即点M为直线PA与抛物线的交点,解方程组,得或,∴点M的坐标为(1,0)或(﹣5,﹣)时,|PM﹣AM|的值最大,此时|PM﹣AM|的最大值为5.【考点】二次函数的应用【解析】【分析】(1)设抛物线的解析式为y=ax2+bx+c,把A,B,C三点坐标代入求出a,b,c的值,即可确定出所求抛物线解析式;(2)在平面直角坐标系xOy中存在一点P,使得以点A、B、C、P为顶点的四边形为菱形,理由为:根据OA,OB,OC的长,利用勾股定理求出BC与AC的长相等,只有当BP与AC平行且相等时,四边形ACBP为菱形,可得出BP的长,由OB的长确定出P的纵坐标,确定出P坐标,当点P在第二、三象限时,以点A、B、C、P为顶点的四边形只能是平行四边形,不是菱形;(3)利用待定系数法确定出直线PA解析式,当点M与点P、A不在同一直线上时,根据三角形的三边关系|PM﹣AM|<PA,当点M与点P、A在同一直线上时,|PM﹣AM|=PA,当点M与点P、A在同一直线上时,|PM﹣AM|的值最大,即点M为直线PA与抛物线的交点,联立直线AP与抛物线解析式,求出当|PM﹣AM|的最大值时M坐标,确定出|PM﹣AM|的最大值即可.此题属于二次函数综合题,涉及的知识有:二次函数的性质,待定系数法确定抛物线解析式、一次函数解析式,菱形的判定,以及坐标与图形性质,熟练掌握待定系数法是解本题的关键.【答案】(1)解:∵点A(0,1).B(﹣9,10)在抛物线上,∴,∴,∴抛物线的解析式为y= x2+2x+1(2)解:∵AC∥x轴,A(0,1)∴x2+2x+1=1,∴x1=6,x2=0,∴点C的坐标(﹣6,1),∵点A(0,1).B(﹣9,10),∴直线AB的解析式为y=﹣x+1,设点P(m,m2+2m+1)∴E(m,﹣m+1)∴PE=﹣m+1﹣(m2+2m+1)=﹣m2﹣3m,∵AC⊥EP,AC=6,∴S四边形AECP=S△AEC+S△APC= AC×EF+ AC×PF= AC×(EF+PF)= AC×PE= ×6×(﹣m2﹣3m)=﹣m2﹣9m=﹣(m+ )2+ ,∵﹣6<m<0∴当m=﹣时,四边形AECP的面积的最大值是,此时点P(﹣,﹣).(3)解:∵y= x2+2x+1= (x+3)2﹣2,∴P(﹣3,﹣2),∴PF=y F﹣y P=3,CF=x F﹣x C=3,∴PF=CF,∴∠PCF=45°同理可得:∠EAF=45°,∴∠PCF=∠EAF,∴在直线AC上存在满足条件的Q,设Q(t,1)且AB=9 ,AC=6,CP=3 ∵以C、P、Q为顶点的三角形与△ABC相似,①当△CPQ∽△ABC时,∴,∴,∴t=﹣4,∴Q(﹣4,1)②当△CQP∽△ABC时,∴,∴,∴t=3,∴Q(3,1).【考点】二次函数的应用【解析】【分析】(1)用待定系数法求出抛物线解析式即可;(2)设点P(m,m2+2m+1),表示出PE=﹣m2﹣3m,再用S四边形AECP=S△AEC+S△APC= AC×PE,建立函数关系式,求出极值即可;(3)先判断出PF=CF,再得到∠PCF=∠EAF,以C、P、Q为顶点的三角形与△ABC相似,分两种情况计算即可.此题是二次函数综合题,主要考查了待定系数法,相似三角形的性质,几何图形面积的求法(用割补法),解本题的关键是求函数解析式.【答案】(1)解:∵四边形ABCD为矩形,∴BC=AD=4,CD=AB=3,当运动x秒时,则AQ=x,BP=x,∴BQ=AB﹣AQ=3﹣x,CP=BC﹣BP=4﹣x,∴S△ADQ= AD•AQ= ×4x=2x,S△BPQ= B Q•BP= (3﹣x)x= x﹣x2,S△PCD= PC•CD= •(4﹣x)•3=6﹣x,又S矩形ABCD=AB•BC=3×4=12,∴S=S矩形ABCD﹣S△ADQ﹣S△BPQ﹣S△PCD=12﹣2x﹣(x﹣x2)﹣(6﹣x)= x2﹣2x+6= (x﹣2)2+4,即S= (x﹣2)2+4,∴S为开口向上的二次函数,且对称轴为x=2,∴当0<x<2时,S随x的增大而减小,当2<x≤3时,S随x的增大而增大,又当x=0时,S=5,当S=3时,S= ,但x的范围内取不到x=0,∴S不存在最大值,当x=2时,S有最小值,最小值为4(2)解:存在,理由如下:由(1)可知BQ=3﹣x,BP=x,CP=4﹣x,当QP⊥DP时,则∠BPQ+∠DPC=∠DPC+∠PDC,∴∠BPQ=∠PDC,且∠B=∠C,∴△BPQ∽△PCD,∴,即,解得x= (舍去)或x= ,∴当x= 时QP⊥DP【考点】二次函数的最值,矩形的性质,相似三角形的判定与性质【解析】【分析】(1)可用x表示出AQ、BQ、BP、CP,从而可表示出S△ADQ、S△BPQ、S△PCD的面积,则可表示出S,再利用二次函数的增减性可求得是否有最大值,并能求得其最小值;(2)用x表示出BQ、BP、PC,当QP⊥DP时,可证明△BPQ∽△CDP,利用相似三角形的性质可得到关于x的方程,可求得x的值.本题为四边形的综合应用,涉及知识点有矩形的性质、二次函数的最值、相似三角形的判定和性质及方程思想等.在(1)中求得S关于x的关系式后,求S的最值时需要注意x的范围,在(2)中证明三角形相似是解题的关键.本题考查知识点较多,综合性较强,难度适中.【答案】(1)解:∵A(1,3 ),B(4,0)在抛物线y=mx2+nx的图象上,∴,解得,∴抛物线解析式为y=﹣x2+4 x(2)解:存在三个点满足题意,理由如下:当点D在x轴上时,如图1,过点A作AD⊥x轴于点D,∵A(1,3 ),∴D坐标为(1,0);当点D在y轴上时,设D(0,d),则AD2=1+(3 ﹣d)2,BD2=42+d2,且AB2=(4﹣1)2+(3 )2=36,∵△ABD是以AB为斜边的直角三角形,∴AD2+BD2=AB2,即1+(3 ﹣d)2+42+d2=36,解得d= ,∴D点坐标为(0,)或(0,);综上可知存在满足条件的D点,其坐标为(1,0)或(0,)或(0,);(3)解:如图2,过P作PF⊥CM于点F,∵PM∥OA,∴Rt△ADO∽Rt△MFP,∴=3 ,∴MF=3 PF,在Rt△ABD中,BD=3,AD=3 ,∴tan∠ABD= ,∴∠ABD=60°,设BC=a,则CN= a,在Rt△PFN中,∠PNF=∠BNC=30°,∴tan∠PNF= = ,∴FN= PF,∴MN=MF+FN=4 PF,∵S△BCN=2S△PMN,∴a2=2××4 PF2,∴a=2 PF,∴NC= a=2 PF,∴= ,∴MN= NC= ×a= a,∴MC=MN+NC=(+ )a,∴M点坐标为(4﹣a,(+ )a),又M点在抛物线上,代入可得﹣(4﹣a)2+4 (4﹣a)=(+ )a,解得a=3﹣或a=0(舍去),OC=4﹣a= +1,MC=2 + ,∴点M的坐标为(+1,2 + ).【考点】二次函数的应用【解析】【分析】(1)由A、B两点的坐标,利用待定系数法可求得抛物线解析式;(2)分D在x轴上和y轴上,当D在x轴上时,过A作AD⊥x轴,垂足D即为所求;当D点在y轴上时,设出D点坐标为(0,d),可分别表示出AD、BD,再利用勾股定理可得到关于d的方程,可求得d的值,从而可求得满足条件的D点坐标;(3)过P作PF⊥CM于点F,利用Rt△ADO∽Rt△MFP以及三角函数,可用PF分别表示出MF和NF,从而可表示出MN,设BC=a,则可用a表示出CN,再利用S△BCN=2S△PMN,可用PF表示出a的值,从而可用PF表示出CN,可求得的值;借助a可表示出M点的坐标,代入抛物线解析式可求得a的值,从而可求出M点的坐标.本题为二次函数的综合应用,涉及知识点有待定系数法、勾股定理、相似三角形的判定和性质、点与函数图象的关系及分类讨论等.在(2)中注意分点D在x轴和y轴上两种情况,在(3)中分别利用PF表示出MF和NC是解题的关键,注意构造三角形相似.本题涉及知识点较多,计算量较大,综合性较强,特别是第(3)问,难度很大.【答案】(1)解:把B、C两点坐标代入抛物线解析式可得,解得,∴抛物线解析式为y=x2﹣2x﹣3(2)解:如图1,连接BC,过Py轴的平行线,交BC于点M,交x轴于点H,在y=x2﹣2x﹣3中,令y=0可得0=x2﹣2x﹣3,解得x=﹣1或x=3,∴A点坐标为(﹣1,0),∴AB=3﹣(﹣1)=4,且OC=3,∴S△ABC= AB•OC= ×4×3=6,∵B(3,0),C(0,﹣3),∴直线BC解析式为y=x﹣3,设P点坐标为(x,x2﹣2x﹣3),则M点坐标为(x,x﹣3),∵P点在第四限,∴PM=x﹣3﹣(x2﹣2x﹣3)=﹣x2+3x,∴S△PBC= PM•OH+ PM•HB= PM•(OH+HB)=PM•OB= PM,∴当PM有最大值时,△PBC的面积最大,则四边形ABPC的面积最大,∵PM=﹣x2+3x=﹣(x﹣)2+ ,∴当x= 时,PM max= ,则S△PBC= ×= ,此时P点坐标为(,﹣),S四边形ABPC=S△ABC+S△PBC=6+ = ,即当P点坐标为(,﹣)时,四边形ABPC的面积最大,最大面积为;(3)解:如图2,设直线m交y轴于点N,交直线l于点G,则∠AGP=∠GNC+∠GCN,当△AGB和△NGC相似时,必有∠AGB=∠CGB,又∠AGB+∠CGB=180°,∴∠AGB=∠CGB=90°,∴∠ACO=∠OBN,在Rt△AON和Rt△NOB中∴Rt△AON≌Rt△NOB(ASA),∴ON=OA=1,∴N点坐标为(0,﹣1),设直线m解析式为y=kx+d,把B、N两点坐标代入可得,解得,∴直线m解析式为y= x﹣1,即存在满足条件的直线m,其解析式为y= x﹣1【考点】抛物线与x轴的交点,全等三角形的判定与性质,相似三角形的判定【解析】【分析】(1)由B、C两点的坐标,利用待定系数法可求得抛物线的解析式;(2)连接BC,则△ABC的面积是不变的,过P作PM∥y轴,交BC于点M,设出P点坐标,可表示出PM的长,可知当PM取最大值时△PBC的面积最大,利用二次函数的性质可求得P点的坐标及四边形ABPC的最大面积;(3)设直线m与y轴交于点N,交直线l于点G,由于∠AGP=∠GNC+∠GCN,所以当△AGB 和△NGC相似时,必有∠AGB=∠CGB=90°,则可证得△AOC≌△NOB,可求得ON的长,可求出N点坐标,利用B、N两的点坐标可求得直线m的解析式.本题为二次函数的综合应用,涉及知识点有待定系数法、二次函数的最值、相似三角形的判定、全等三角形的判定和性质等.在(2)中确定出PM的值最时四边形ABPC的面积最大是解题的关键,在(3)中确定出满足条件的直线m的位置是解题的关键.本题考查知识点较多,综合性较强,特别是第(2)问和第(3)问难度较大.【答案】(1)解:设抛物线解析式为y=a(x﹣6)(x+ ),把点M(1,3)代入得a=﹣,∴抛物线解析式为y=﹣(x﹣6)(x+ ),∴y=﹣x2+ x+2.(2)解:①如图1中,AC与OM交于点G.连接EO′.∵AO=6,OC=2,MN=3,ON=1,∴=3,∴,∵∠AOC=∠MON=90°,∴△AOC∽△MNO,∴∠OAC=∠NMO,∵∠NMO+∠MON=90°,∴∠MON+∠OAC=90°,∴∠AGO=90°,∴OM⊥AC,∵△M′N′O′是由△MNO平移所。
2020年中考数学压轴题突破专题4-二次函数与特殊图形的存在性问题

2020年中考数学大题狂练之压轴大题突破培优练专题04二次函数与特殊图形的存在性问题【真题再现】1.(2019年盐城27题)如图所示,二次函数y=k(x﹣1)2+2的图象与一次函数y=kx﹣k+2的图象交于A、B两点,点B在点A的右侧,直线AB分别与x、y轴交于C、D两点,其中k<0.(1)求A、B两点的横坐标;(2)若△OAB是以OA为腰的等腰三角形,求k的值;(3)二次函数图象的对称轴与x轴交于点E,是否存在实数k,使得∠ODC=2∠BEC,若存在,求出k 的值;若不存在,说明理由.2.(2019年连云港26题)如图,在平面直角坐标系xOy中,抛物线L1:y=x2+bx+c过点C(0,﹣3),与抛物线L2:y=﹣x2﹣x+2的一个交点为A,且点A的横坐标为2,点P、Q分别是抛物线L1、L2上的动点.(1)求抛物线L1对应的函数表达式;(2)若以点A、C、P、Q为顶点的四边形恰为平行四边形,求出点P的坐标;(3)设点R为抛物线L1上另一个动点,且CA平分∠PCR.若OQ∥PR,求出点Q的坐标.3.(2019年无锡27题)已知二次函数y=ax2﹣4ax+c(a<0)的图象与它的对称轴相交于点A,与y轴相交于点C(0,﹣2),其对称轴与x轴相交于点B(1)若直线BC与二次函数的图象的另一个交点D在第一象限内,且BD=,求这个二次函数的表达式;(2)已知P在y轴上,且△POA为等腰三角形,若符合条件的点P恰好有2个,试直接写出a的值.4.(2017年淮安28题)如图①,在平面直角坐标系中,二次函数y=﹣x2+bx+c的图象与坐标轴交于A,B,C三点,其中点A的坐标为(﹣3,0),点B的坐标为(4,0),连接AC,BC.动点P从点A出发,在线段AC上以每秒1个单位长度的速度向点C作匀速运动;同时,动点Q从点O出发,在线段OB上以每秒1个单位长度的速度向点B作匀速运动,当其中一点到达终点时,另一点随之停止运动,设运动时间为t秒.连接PQ.(1)填空:b=,c=;(2)在点P,Q运动过程中,△APQ可能是直角三角形吗请说明理由;(3)在x轴下方,该二次函数的图象上是否存在点M,使△PQM是以点P为直角顶点的等腰直角三角形若存在,请求出运动时间t;若不存在,请说明理由;(4)如图②,点N的坐标为(﹣,0),线段PQ的中点为H,连接NH,当点Q关于直线NH的对称点Q′恰好落在线段BC上时,请直接写出点Q′的坐标.5.(2017年宿迁25题)如图,在平面直角坐标系xOy中,抛物线y=x2﹣2x﹣3交x轴于A,B两点(点A 在点B的左侧),将该抛物线位于x轴上方曲线记作M,将该抛物线位于x轴下方部分沿x轴翻折,翻折后所得曲线记作N,曲线N交y轴于点C,连接AC、BC.(1)求曲线N所在抛物线相应的函数表达式;(2)求△ABC外接圆的半径;(3)点P为曲线M或曲线N上的一动点,点Q为x轴上的一个动点,若以点B,C,P,Q为顶点的四边形是平行四边形,求点Q的坐标.6.(2017年常州27题)如图,在平面直角坐标系xOy,已知二次函数y=﹣x2+bx的图象过点A(4,0),顶点为B,连接AB、BO.(1)求二次函数的表达式;(2)若C是BO的中点,点Q在线段AB上,设点B关于直线CQ的对称点为B',当△OCB'为等边三角形时,求BQ的长度;(3)若点D在线段BO上,OD=2DB,点E、F在△OAB的边上,且满足△DOF与△DEF全等,求点E 的坐标.【专项突破】【题组一】1.(2020•张家港市模拟)如图,二次函效y=x2+bx+c的图象与x轴交于A,B两点,B点坐标为(4,0),与y轴交于点C(0,4)点D为抛物线上一点.(1)求抛物线的解析式及A点坐标;(2)若△BCD是以BC为直角边的直角三角形时,求点D的坐标;(3)若△BCD是锐角三角形,请写出点D的横坐标m的取值范围.2.(2020•宝应县一模)如图1,矩形ABCD的一边BC在直角坐标系中x轴上,折叠边AD,使点D落在x 轴上点F处,折痕为AE,已知AB=8,AD=10,并设点B坐标为(m,0),其中m<0.(1)求点E、F的坐标(用含m的式子表示);(2)连接OA,若△OAF是等腰三角形,求m的值;(3)如图2,设抛物线y=a(x﹣m+6)2+h经过A、E两点,其顶点为M,连接AM,若∠OAM=90°,求a、h、m的值.3.(2019秋•邗江区校级期末)如图①抛物线y=ax2+bx+4(a≠0)与x轴,y轴分别交于点A(﹣1,0),B(4,0),点C三点.(1)试求抛物线解析式;(2)点D(3,m)在第一象限的抛物线上,连接BC,BD.试问,在对称轴左侧的抛物线上是否存在一点P,满足∠PBC=∠DBC如果存在,请求出点P的坐标;如果不存在,请说明理由;(3)点N在抛物线的对称轴上,点M在抛物线上,当以M、N、B、C为顶点的四边形是平行四边形时,请直接写出点M的坐标.4.(2019秋•亭湖区校级期末)如图,抛物线y=﹣x2+bx+3与x轴交于A,B两点,与y轴交于点C,其中点A(﹣1,0).过点A作直线y=x+c与抛物线交于点D,动点P在直线y=x+c上,从点A出发,以每秒个单位长度的速度向点D运动,过点P作直线PQ∥y轴,与抛物线交于点Q,设运动时间为t(s).(1)直接写出b,c的值及点D的坐标;(2)点E是抛物线上一动点,且位于第四象限,当△CBE的面积为6时,求出点E的坐标;(3)在线段PQ最长的条件下,点M在直线PQ上运动,点N在x轴上运动,当以点D、M、N为顶点的三角形为等腰直角三角形时,请求出此时点N的坐标.【题组二】5.(2019秋•崇川区期末)如图所示,在平面直角坐标系中,顶点为(4,﹣1)的抛物线交y轴于A点,交x轴于B,C两点(点B在点C的左侧),已知A点坐标为(0,3).(1)求此抛物线的解析式;(2)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴与⊙C有怎样的位置关系,并给出证明.6.(2019•徐州一模)如图,已知二次函数y=ax2+bx+3的图象与x轴交于点A(﹣1,0)、B(4,0),与y 的正半轴交于点C.(1)求二次函数y=ax2+bx+3的表达式.(2)点Q(m,0)是线段OB上一点,过点Q作y轴的平行线,与BC交于点M,与抛物线交于点N,连结CN,将△CMN沿CN翻折,M的对应点为D.探究:是否存在点Q,使得四边形MNDC是菱形若存在,请求出点Q的坐标;若不存在,请说明理由.(3)若点E在二次函数图象上,且以E为圆心的圆与直线BC相切与点F,且EF,请直接写出点E 的坐标.7.(2019•亭湖区二模)如图,在平面直角坐标系中,二次函数y x2+bx+c的图象与y轴交于点A(0,8),与x轴交于B、C两点,其中点C的坐标为(4,0).点P(m,n)为该二次函数在第二象限内图象上的动点,点D的坐标为(0,4),连接BD.(1)求该二次函数的表达式及点B的坐标;(2)连接OP,过点P作PQ⊥x轴于点Q,当以O、P、Q为顶点的三角形与△OBD相似时,求m的值;(3)连接BP,以BD、BP为邻边作▱BDEP,直线PE交y轴于点T.①当点E落在该二次函数图象上时,求点E的坐标;②在点P从点A到点B运动过程中(点P与点A不重合),直接写出点T运动的路径长.8.(2019秋•灌云县期末)在平面直角坐标系中,已知抛物线经过A(﹣2,0),B(0,﹣2),C(1,0)三点.(1)求抛物线的解析式;(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S,求S关于m的函数关系式,并求出S的最大值.(3)若点P是抛物线上的动点,点Q是直线y=﹣x上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.【题组三】9.(2019•清江浦区一模)如图,抛物线y=ax2+bx+4(a≠0)与x轴交于点B(﹣3,0)和C(4,0)与y轴交于点A.(1)a=,b=;(2)点M从点A出发以每秒1个单位长度的速度沿AB向B运动,同时,点N从点B出发以每秒1个单位长度的速度沿BC向C运动,当点M到达B点时,两点停止运动.t为何值时,以B、M、N为顶点的三角形是等腰三角形(3)点P是第一象限抛物线上的一点,若BP恰好平分∠ABC,请直接写出此时点P的坐标.10.(2019•灌南县二模)如图,在平面直角坐标系中,二次函数y=ax2+bx的图象经过点A(﹣1,0)、C(2,0),与y轴交于点B,其对称轴与x轴交于点D(1)求二次函数的表达式及其顶点坐标;(2)M(s,t)为抛物线对称轴上的一个动点,①若平面内存在点N,使得A、B、M、N为顶点的四边形为矩形,直接写出点M的坐标;②连接MA、MB,若∠AMB不小于60°,求t的取值范围.11.(2019秋•沭阳县期末)如图,抛物线y=ax2+bx﹣2的对称轴是直线x=1,与x轴交于A,B两点,与y轴交于点C,点A的坐标为(﹣2,0),点P为抛物线上的一个动点,过点P作PD⊥x轴于点D,交直线BC于点E.(1)求抛物线解析式;(2)若点P在第一象限内,当OD=4PE时:①求点D、P、E的坐标;②求四边形POBE的面积.(3)在(2)的条件下,若点M为直线BC上一点,点N为平面直角坐标系内一点,是否存在这样的点M和点N,使得以点B,D,M,N为顶点的四边形是菱形若存在,直接写出点N的坐标;若不存在,请说明理由.12.(2019秋•江都区期末)已知二次函数y bx+c(b、c为常数)的图象经过点(0,﹣1)和点A (4,1).(1)求b、c的值;(2)如图1,点C(10,m)在抛物线上,点M是y轴上的一个动点,过点M平行于x轴的直线l平分∠AMC,求点M的坐标;(3)如图2,在(2)的条件下,点P是抛物线上的一动点,以P为圆心、PM为半径的圆与x轴相交于E、F两点,若△PEF的面积为2,请直接写出点P的坐标.【题组四】13.(2019•宿豫区模拟)如图,在平面直角坐标系中,抛物线y=ax2+bx+c与x轴交于A(﹣1,0)、B(3,0)两点,且抛物线经过点D(2,3).(1)求这条抛物线的表达式;(2)将该抛物线向下平移,使得新抛物线的顶点G在x轴上.原抛物线上一点M平移后的对应点为点N,如果△AMN是以MN为底边的等腰三角形,求点N的坐标;(3)若点P为抛物线上第一象限内的动点,过点B作BE⊥OP,垂足为E,点Q为y轴上的一个动点,连接QE、QD,试求QE+QD的最小值.14.(2019•江西模拟)已知抛物线l1:y1=ax2﹣2的顶点为P,交x轴于A、B两点(A点在B点左侧),且sin∠ABP.(1)求抛物线l1的函数解析式;(2)过点A的直线交抛物线于点C,交y轴于点D,若△ABC的面积被y轴分为1:4两个部分,求直线AC的解析式;(3)在(2)的情况下,将抛物线l1绕点P逆时针旋转180°得到抛物线l2,点M为抛物线l2上一点,当点M的横坐标为何值时,△BDM为直角三角形15.(2019秋•锡山区期末)在平面直角坐标系中,二次函数y=ax2+bx+2的图象与x轴交于A(﹣3,0),B(1,0)两点,与y轴交于点C.(1)求这个二次函数的解析式,并直接写出当x满足什么值时y<0(2)点P是直线AC上方的抛物线上一动点,是否存在点P,使△ACP面积最大若存在,求出点P的坐标;若不存在,请说明理由;(3)点M为抛物线上一动点,在x轴上是否存在点Q,使以A、C、M、Q为顶点的四边形是平行四边形若存在,直接写出点Q的坐标;若不存在,请说明理由.16.(2019秋•徐州期末)如图,矩形OABC中,O为原点,点A在y轴上,点C在x轴上,点B的坐标为(4,3),抛物线y x2+bx+c与y轴交于点A,与直线AB交于点D,与x轴交于C,E两点.(1)求抛物线的表达式;(2)点P从点C出发,在线段CB上以每秒1个单位长度的速度向点B运动,与此同时,点Q从点A 出发,在线段AC上以每秒个单位长度的速度向点C运动,当其中一点到达终点时,另一点也停止运动.连接DP、DQ、PQ,设运动时间为t(秒).①当t为何值时,△DPQ的面积最小②是否存在某一时刻t,使△DPQ为直角三角形若存在,直接写出t的值;若不存在,请说明理由.【题组五】17.(2019秋•江都区期末)在平面直角坐标系中,已知抛物线y=﹣x2+4x.(1)我们把一条抛物线上横坐标与纵坐标相等的点叫做这条抛物线的“方点”.试求拋物线y=﹣x2+4x 的“方点”的坐标;(2)如图,若将该抛物线向左平移1个单位长度,新抛物线与x轴相交于A、B两点(A在B左侧),与y轴相交于点C,连接BC.若点P是直线BC上方抛物线上的一点,求△PBC的面积的最大值;(3)第(2)问中平移后的抛物线上是否存在点Q,使△QBC是以BC为直角边的直角三角形若存在,直接写出所有符合条件的点Q的坐标;若不存在,说明理由.18.(2019秋•兴化市期末)如图,Rt△FHG中,∠H=90°,FH∥x轴,,则称Rt△FHG为准黄金直角三角形(G在F的右上方).已知二次函数y1=ax2+bx+c的图象与x轴交于A、B两点,与y轴交于点E(0,﹣3),顶点为C(1,﹣4),点D为二次函数y2=a(x﹣1﹣m)2+﹣4(m>0)图象的顶点.(1)求二次函数y1的函数关系式;(2)若准黄金直角三角形的顶点F与点A重合、G落在二次函数y1的图象上,求点G的坐标及△FHG 的面积;(3)设一次函数y=mx+m与函数y1、y2的图象对称轴右侧曲线分别交于点P、Q.且P、Q两点分别与准黄金直角三角形的顶点F、G重合,求m的值,并判断以C、D、Q、P为顶点的四边形形状,请说明理由.19.(2019秋•赣榆区期末)如图,在平面直角坐标系中,已知抛物线y=ax2+bx+2(a≠0)与x轴交于A (﹣1,0),B(3,0)两点,与y轴交于点C,连接BC.(1)求该抛物线的函数表达式;(2)若点N为抛物线对称轴上一点,抛物线上是否存在点M,使得以B,C,M,N为顶点的四边形是平行四边形若存在,请直接写出所有满足条件的点M的坐标;若不存在,请说明理由;(3)点P是直线BC上方抛物线上的点,若∠PCB=∠BCO,求出P点的到y轴的距离.20.(2019•海陵区校级三模)如图①抛物线y=﹣x2+(m﹣1)x+m与直线y=kx+k交于点A、B,其中A点在x轴上,它们与y轴交点分别为C和D,P为抛物线的顶点,且点P纵坐标为4,抛物线的对称轴交直线于点Q.(1)试用含k的代数式表示点Q、点B的坐标.(2)连接PC,若四边形CDQP的内部(包括边界和顶点)只有4个横坐标、纵坐标均为整数的点,求k的取值范围.(3)如图②,四边形CDQP为平行四边形时,①求k的值;②E、F为线段DB上的点(含端点),横坐标分别为a,a+n(n为正整数),EG∥y轴交抛物线于点G.问是否存在正整数n,使满足tan∠EGF的点E有两个若存在,求出n;若不存在说明理由.【题组六】21.(2019•泉山区校级二模)如图,抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(3,0),与y 轴交于点C(0,3).(1)求抛物线对应函数的关系式,及A点坐标.(2)点D为抛物线对称轴上一点.①当△BCD是以BC为直角边的直角三角形时,求点D的坐标;②若△BCD是锐角三角形,求点D的纵坐标的取值范围.22.(2019•宿迁模拟)如图,抛物线y x2+bx+c与x轴交于A、B两点,直线y x经过点A,与抛物线的另一个交点为点C(3,m),线段PQ在线段AB上移动,PQ=1,分别过点P、Q作x轴的垂线,交抛物线于E、F,交直线于D、G.(1)求抛物线的解析式;(2)设四边形DEFG的面积为S,求S的最大值;(3)在线段PQ的移动过程中,以D,E,F,G为顶点的四边形是平行四边形时,求点P的坐标.23.(2019•东台市模拟)如图,抛物线y=ax2+bx+3的图象经过点A(1,0),B(3,0),交y轴于点C,顶点是D.(1)求抛物线的表达式和顶点D的坐标;(2)在x轴上取点F,在抛物线上取点E,使以点C、D、E、F为顶点的四边形是平行四边形,求点E 的坐标;(3)将此抛物线沿着过点(0,2)且垂直于y轴的直线翻折,E为所得新抛物线x轴上方一动点,过E 作x轴的垂线,交x轴于G,交直线l:y x﹣1于点F,以EF为直径作圆在直线l上截得弦MN,求弦MN长度的最大值.24.(2019•阜宁县一模)如图,已知抛物线y x2+bx+4与x轴相交于A、B两点,与y轴相交于点C,若已知A点的坐标为A(﹣2,0).(1)求抛物线的解析式及它的对称轴方程;(2)求点C的坐标,连接AC、BC并求线段BC所在直线的解析式;(3)证明:以AC为直径的圆与抛物线的对称轴相离;(4)在抛物线对称轴上是否存在点Q,使△ACQ的外心恰好在一条边上若存在,求出符合条件的Q点坐标;若不存在,请说明理由.参考答案【真题再现】1.(2019年盐城27题)如图所示,二次函数y=k(x﹣1)2+2的图象与一次函数y=kx﹣k+2的图象交于A、B两点,点B在点A的右侧,直线AB分别与x、y轴交于C、D两点,其中k<0.(1)求A、B两点的横坐标;(2)若△OAB是以OA为腰的等腰三角形,求k的值;(3)二次函数图象的对称轴与x轴交于点E,是否存在实数k,使得∠ODC=2∠BEC,若存在,求出k 的值;若不存在,说明理由.【分析】(1)将二次函数与一次函数联立得:k(x﹣1)2+2=kx﹣k+2,即可求解;(2)分OA=AB、OA=OB两种情况,求解即可;(3)求出m=﹣k2﹣k,在△AHM中,tanαk tan∠BEC k+2,即可求解.【解析】(1)将二次函数与一次函数联立得:k(x﹣1)2+2=kx﹣k+2,解得:x=1和2,故点A、B的坐标横坐标分别为1和2;(2)OA,①当OA=AB时,即:1+k2=5,解得:k=±2(舍去2);②当OA=OB时,4+(k+2)2=5,解得:k=﹣1或﹣3;故k的值为:﹣1或﹣2或﹣3;(3)存在,理由:①当点B在x轴上方时,过点B作BH⊥AE于点H,将△AHB的图形放大见右侧图形,过点A作∠HAB的角平分线交BH于点M,过点M作MN⊥AB于点N,过点B作BK⊥x轴于点K,图中:点A(1,2)、点B(2,k+2),则AH=﹣k,HB=1,设:HM=m=MN,则BM=1﹣m,则AN=AH=﹣k,AB,NB=AB﹣AN,由勾股定理得:MB2=NB2+MN2,即:(1﹣m)2=m2+(k)2,解得:m=﹣k2﹣k,在△AHM中,tanαk tan∠BEC k+2,解得:k,此时k+2>0,则﹣2<k<0,故:舍去正值,故k;②当点B在x轴下方时,同理可得:tanαk tan∠BEC(k+2),解得:k或,此时k+2<0,k<﹣2,故舍去,故k的值为:或.2.(2019年连云港26题)如图,在平面直角坐标系xOy中,抛物线L1:y=x2+bx+c过点C(0,﹣3),与抛物线L2:y x2x+2的一个交点为A,且点A的横坐标为2,点P、Q分别是抛物线L1、L2上的动点.(1)求抛物线L1对应的函数表达式;(2)若以点A、C、P、Q为顶点的四边形恰为平行四边形,求出点P的坐标;(3)设点R为抛物线L1上另一个动点,且CA平分∠PCR.若OQ∥PR,求出点Q的坐标.【分析】(1)先求出A点的坐标,再用待定系数法求出函数解析式便可;(2)设点P的坐标为(x,x2﹣2x﹣3),分两种情况讨论:AC为平行四边形的一条边,AC为平行四边形的一条对角线,用x表示出Q点坐标,再把Q点坐标代入抛物线L2:y x2x+2中,列出方程求得解便可;(3)当点P在y轴左侧时,抛物线L1不存在点R使得CA平分∠PCR,当点P在y轴右侧时,不妨设点P在CA的上方,点R在CA的下方,过点P、R分别作y轴的垂线,垂足分别为S、T,过点P作PH⊥TR于点H,设点P坐标为(x1,),点R坐标为(x2,),证明△PSC∽△RTC,由相似比得到x1+x2=4,进而得tan∠PRH的值,过点Q作QK⊥x轴于点K,设点Q坐标为(m,),由tan∠QOK=tan∠PRH,移出m的方程,求得m便可.【解析】(1)将x=2代入y x2x+2,得y=﹣3,故点A的坐标为(2,﹣3),将A(2,﹣3),C(0,﹣3)代入y=x2+bx+c,得,解得,∴抛物线L1:y=x2﹣2x﹣3;(2)如图,设点P的坐标为(x,x2﹣2x﹣3),第一种情况:AC为平行四边形的一条边,①当点Q在点P右侧时,则点Q的坐标为(x+2,x2﹣2x﹣3),将Q(x+2,x2﹣2x﹣3)代入y x2x+2,得x2﹣2x﹣3(x+2)2(x+2)+2,解得x=0或x=﹣1,因为x=0时,点P与C重合,不符合题意,所以舍去,此时点P的坐标为(﹣1,0);②当点Q在点P左侧时,则点Q的坐标为(x﹣2,x2﹣2x﹣3),将Q(x﹣2,x2﹣2x﹣3)代入y x2x+2,得y x2x+2,得x2﹣2x﹣3(x﹣2)2(x﹣2)+2,解得,x=3,或x,此时点P的坐标为(3,0)或(,);第二种情况:当AC为平行四边形的一条对角线时,由AC的中点坐标为(1,﹣3),得PQ的中点坐标为(1,﹣3),故点Q的坐标为(2﹣x,﹣x2+2x﹣3),将Q(2﹣x,﹣x2+2x﹣3)代入y x2x+2,得﹣x2+2x﹣3═(2﹣x)2(2﹣x)+2,解得,x=0或x=﹣3,因为x=0时,点P与点C重合,不符合题意,所以舍去,此时点P的坐标为(﹣3,12),综上所述,点P的坐标为(﹣1,0)或(3,0)或(,)或(﹣3,12);(3)当点P在y轴左侧时,抛物线L1不存在点R使得CA平分∠PCR,当点P在y轴右侧时,不妨设点P在CA的上方,点R在CA的下方,过点P、R分别作y轴的垂线,垂足分别为S、T,过点P作PH⊥TR于点H,则有∠PSC=∠RTC=90°,由CA平分∠PCR,得∠PCA=∠RCA,则∠PCS=∠RCT,∴△PSC∽△RTC,∴,设点P坐标为(x1,),点R坐标为(x2,),所以有,整理得,x1+x2=4,在Rt△PRH中,tan∠PRH过点Q作QK⊥x轴于点K,设点Q坐标为(m,),若OQ∥PR,则需∠QOK=∠PRH,所以tan∠QOK=tan∠PRH=2,所以2m,解得,m,所以点Q坐标为(,﹣7)或(,﹣7).3.(2019年无锡27题)已知二次函数y=ax2﹣4ax+c(a<0)的图象与它的对称轴相交于点A,与y轴相交于点C(0,﹣2),其对称轴与x轴相交于点B(1)若直线BC与二次函数的图象的另一个交点D在第一象限内,且BD,求这个二次函数的表达式;(2)已知P在y轴上,且△POA为等腰三角形,若符合条件的点P恰好有2个,试直接写出a的值.【分析】(1)先求得对称轴方程,进而得B点坐标,过D作DH⊥x轴于点H,由B,C的坐标得∠OBC =45°,进而求得DH,BH,便可得D点坐标,再由待定系数法求得解析式;(2)先求出A点的坐标,再分两种情况:A点在x轴上时,△OPA为等腰直角三角形,符合条件的点P 恰好有2个;A点不在x轴上,∠AOB=30°,△OPA为等边三角形或顶角为120°的等腰三角形,符合条件的点P恰好有2个.据此求得a.【解析】(1)过点D作DH⊥x轴于点H,如图1,∵二次函数y=ax2﹣4ax+c,∴对称轴为x,∴B(2,0),∵C(0,﹣2),∴OB=OC=2,∴∠OBC=∠DBH=45°,∵BH,∴BH=DH=1,∴OH=OB+BH=2+1=3,∴D(3,1),把C(0,﹣2),D(3,1)代入y=ax2﹣4ax+c中得,,∴,∴二次函数的解析式为y=﹣x2+4x﹣2;(2)∵y=ax2﹣4ax+c过C(0,﹣2),∴c=﹣2,∴y=ax2﹣4ax+c=a(x﹣2)2﹣4a﹣2,∴A(2,﹣4a﹣2),∵P在y轴上,且△POA为等腰三角形,若符合条件的点P恰好有2个,∴①当抛物线的顶点A在x轴上时,∠POA=90°,则OP=OA,这样的P点只有2个,正、负半轴各一个,如图2,此时A(﹣2,0),∴﹣4a﹣2=0,解得a;②当抛物线的顶点A不在x轴上时,∠AOB=30°时,则△OPA为等边三角形或∠AOP=120°的等腰三角形,这样的P点也只有两个,如图3,∴AB=OB•tan30°=2,∴|﹣4a﹣2|,∴或.综上,a或或.4.(2017年淮安28题)如图①,在平面直角坐标系中,二次函数y x2+bx+c的图象与坐标轴交于A,B,C三点,其中点A的坐标为(﹣3,0),点B的坐标为(4,0),连接AC,BC.动点P从点A出发,在线段AC上以每秒1个单位长度的速度向点C作匀速运动;同时,动点Q从点O出发,在线段OB上以每秒1个单位长度的速度向点B作匀速运动,当其中一点到达终点时,另一点随之停止运动,设运动时间为t秒.连接PQ.(1)填空:b=,c=4;(2)在点P,Q运动过程中,△APQ可能是直角三角形吗请说明理由;(3)在x轴下方,该二次函数的图象上是否存在点M,使△PQM是以点P为直角顶点的等腰直角三角形若存在,请求出运动时间t;若不存在,请说明理由;(4)如图②,点N的坐标为(,0),线段PQ的中点为H,连接NH,当点Q关于直线NH的对称点Q′恰好落在线段BC上时,请直接写出点Q′的坐标.【分析】(1)设抛物线的解析式为y=a(x+3)(x﹣4).将a代入可得到抛物线的解析式,从而可确定出b、c的值;(2)连结QC.先求得点C的坐标,则PC=5﹣t,依据勾股定理可求得AC=5,CQ2=t2+16,接下来,依据CQ2﹣CP2=AQ2﹣AP2列方程求解即可;(3)过点P作DE∥x轴,分别过点M、Q作MD⊥DE、QE⊥DE,垂足分别为D、E,MD交x轴与点F,过点P作PG⊥x轴,垂足为点G,首先证明△PAG∽△ACO,依据相似三角形的性质可得到PG t,AG t,然后可求得PE、DF的长,然后再证明△MDP≌PEQ,从而得到PD=EQ t,MD=PE=3t,然后可求得FM和OF的长,从而可得到点M的坐标,然后将点M的坐标代入抛物线的解析式求解即可;(4)连结:OP,取OP的中点R,连结RH,NR,延长NR交线段BC与点Q′.首先依据三角形的中位线定理得到RH QO t,RH∥OQ,NR AP t,则RH=NR,接下来,依据等腰三角形的性质和平行线的性质证明NH是∠QNQ′的平分线,然后求得直线NR和BC的解析式,最后求得直线NR和BC的交点坐标即可.【解析】(1)设抛物线的解析式为y=a(x+3)(x﹣4).将a代入得:y x2x+4,∴b,c=4.(2)在点P、Q运动过程中,△APQ不可能是直角三角形.理由如下:连结QC.∵在点P、Q运动过程中,∠PAQ、∠PQA始终为锐角,∴当△APQ是直角三角形时,则∠APQ=90°.将x=0代入抛物线的解析式得:y=4,∴C(0,4).∵AP=OQ=t,∴PC=5﹣t,∵在Rt△AOC中,依据勾股定理得:AC=5,在Rt△COQ中,依据勾股定理可知:CQ2=t2+16,在Rt△CPQ中依据勾股定理可知:PQ2=CQ2﹣CP2,在Rt△APQ中,AQ2﹣AP2=PQ2,∴CQ2﹣CP2=AQ2﹣AP2,即(3+t)2﹣t2=t2+16﹣(5﹣t)2,解得:t=.∵由题意可知:0≤t≤4,∴t=不合题意,即△APQ不可能是直角三角形.(3)如图所示:过点P作DE∥x轴,分别过点M、Q作MD⊥DE、QE⊥DE,垂足分别为D、E,MD交x轴与点F,过点P作PG⊥x轴,垂足为点G,则PG∥y轴,∠E=∠D=90°.∵PG∥y轴,∴△PAG∽△ACO,∴,即,∴PG t,AG t,∴PE=GQ=GO+OQ=AO﹣AG+OQ=3t+t=3t,DF=GP t.∵∠MPQ=90°,∠D=90°,∴∠DMP+∠DPM=∠EPQ+∠DPM=90°,∴∠DMP=∠EPQ.又∵∠D=∠E,PM=PQ,∴△MDP≌△PEQ,∴PD=EQ t,MD=PE=3t,∴FM=MD﹣DF=3t t=3t,OF=FG+GO=PD+OA﹣AG=3t t=3t,∴M(﹣3t,﹣3t).∵点M在x轴下方的抛物线上,∴﹣3t(﹣3t)2(﹣3t)+4,解得:t.∵0≤t≤4,∴t.(4)如图所示:连结OP,取OP的中点R,连结RH,NR,延长NR交线段BC于点Q′.∵点H为PQ的中点,点R为OP的中点,∴RH QO t,RH∥OQ.∵A(﹣3,0),N(,0),∴点N为OA的中点.又∵R为OP的中点,∴NR AP t,∴RH=NR,∴∠RNH=∠RHN.∵RH∥OQ,∴∠RHN=∠HNO,∴∠RNH=∠HNO,即NH是∠QNQ′的平分线.设直线AC的解析式为y=mx+n,把点A(﹣3,0)、C(0,4)代入得:,解得:m,n=4,∴直线AC的表示为y x+4.同理可得直线BC的表达式为y=﹣x+4.设直线NR的函数表达式为y x+s,将点N的坐标代入得:()+s=0,解得:s=2,∴直线NR的表述表达式为y x+2.将直线NR和直线BC的表达式联立得:,解得:x,y,∴Q′(,).5.(2017年宿迁25题)如图,在平面直角坐标系xOy中,抛物线y=x2﹣2x﹣3交x轴于A,B两点(点A在点B的左侧),将该抛物线位于x轴上方曲线记作M,将该抛物线位于x轴下方部分沿x轴翻折,翻折后所得曲线记作N,曲线N交y轴于点C,连接AC、BC.(1)求曲线N所在抛物线相应的函数表达式;(2)求△ABC外接圆的半径;(3)点P为曲线M或曲线N上的一动点,点Q为x轴上的一个动点,若以点B,C,P,Q为顶点的四边形是平行四边形,求点Q的坐标.【分析】(1)由已知抛物线可求得A、B坐标及顶点坐标,利用对称性可求得C的坐标,利用待定系数法可求得曲线N的解析式;(2)由外接圆的定义可知圆心即为线段BC与AB的垂直平分线的交点,即直线y=x与抛物线对称轴的交点,可求得外接圆的圆心,再利用勾股定理可求得半径的长;(3)设Q(x,0),当BC为平行四边形的边时,则有BQ∥PC且BQ=PC,从而可用x表示出P点的坐标,代入抛物线解析式可得到x的方程,可求得Q点坐标,当BC为平行四边形的对角线时,由B、C 的坐标可求得平行四边形的对称中心的坐标,从而可表示出P点坐标,代入抛物线解析式可得到关于x的方程,可求得P点坐标.【解析】(1)在y=x2﹣2x﹣3中,令y=0可得x2﹣2x﹣3=0,解得x=﹣1或x=3,∴A(﹣1,0),B(3,0),令x=0可得y=﹣3,又抛物线位于x轴下方部分沿x轴翻折后得到曲线N,∴C(0,3),设曲线N的解析式为y=ax2+bx+c,把A、B、C的坐标代入可得,解得,∴曲线N所在抛物线相应的函数表达式为y=﹣x2+2x+3;(2)设△ABC外接圆的圆心为M,则点M为线段BC、线段AB垂直平分线的交点,∵B(3,0),C(0,3),∴线段BC的垂直平分线的解析式为y=x,又线段AB的垂直平分线为曲线N的对称轴,即x=1,∴M(1,1),∴MB,即△ABC外接圆的半径为;(3)设Q(t,0),则BQ=|t﹣3|①当BC为平行四边形的边时,如图1,则有BQ∥PC,∴P点纵坐标为3,即过C点与x轴平行的直线与曲线M和曲线N的交点即为点P,x轴上对应的即为点Q,当点P在曲线M上时,在y=x2﹣2x﹣3中,令y=3可解得x=1或x=1,∴PC=1或PC1,当x=1时,可知点Q在点B的右侧,可得BQ=t﹣3,∴t﹣3=1,解得t=4,当x=1时,可知点Q在点B的左侧,可得BQ=3﹣t,∴3﹣t1,解得t=4,∴Q点坐标为(4,0)或(4,0);当点P在曲线N上时,在y=﹣x2+2x+3中,令y=3可求得x=0(舍去)或x=2,∴PC=2,此时Q点在B点的右侧,则BQ=t﹣3,∴t﹣3=2,解得t=5,∴Q点坐标为(5,0);②当BC为平行四边形的对角线时,∵B(3,0),C(0,3),∴线段BC的中点为(,),设P(x,y),∴x+t=3,y+0=3,解得x=3﹣t,y=3,∴P(3﹣t,3),当点P在曲线M上时,则有3=(3﹣t)2﹣2(3﹣t)﹣3,解得t=2或t=2,∴Q点坐标为(2,0)或(2,0);当点P在曲线N上时,则有3=﹣(3﹣t)2+2(3﹣t)+3,解得t=3(Q、B重合,舍去)或t=1,∴Q点坐标为(1,0);综上可知Q点的坐标为(4,0)或(4,0)或(5,0)或(2,0)或(2,0)或(1,0).6.(2017年常州27题)如图,在平面直角坐标系xOy,已知二次函数y x2+bx的图象过点A(4,0),顶点为B,连接AB、BO.(1)求二次函数的表达式;(2)若C是BO的中点,点Q在线段AB上,设点B关于直线CQ的对称点为B',当△OCB'为等边三角形时,求BQ的长度;(3)若点D在线段BO上,OD=2DB,点E、F在△OAB的边上,且满足△DOF与△DEF全等,求点E 的坐标.【分析】(1)利用待定系数法求二次函数的表达式;。
2022年中考数学复习之二次函数压轴题40个问题

中考复习之二次函数压轴40个问题主要题型:1.二次函数之面积问题2.二次函数之特殊三角形的存在性问题3.二次函数之特殊四边形的存在性问题4.二次函数之线段最值问题5.二次函数之角度问题题目:如图,抛物线与x轴交于A、B两点,与y轴交于点C,OB=OC=3,OA=1,顶点为D第1问.如图,抛物线与x轴交于A、B两点,与y轴交于点C,OB=OC=3,OA=1,顶点为D.求二次函数的解析式;解:设:设二次函数解为y=a(x+1)(x-3)将(0,3)代入得a=-1,故二次函数解析式为y=-x2+2x +3第2问.如图,抛物线与x轴交于A、B两点,与y轴交于点C,OB=OC=3,OA=1.顶点为D1.判断∆BCD的形状;解:D(1,4),B(3,0),C(0,3),方法一:BC=32,CD=2,BD=25,BC2+CD2=BD2,故∆BCD是直角三角形;方法二:KCD =1,KBC=-1,KCD∙KBC=-1,故CD⊥CB,所以∆BCD是直角三角形;yxBCAODyxBCAODyxBCAODyxBCAOD第3问:如图,抛物线与x 轴交于A 、B 两点,与y 轴交于点C,OB=OC=3,OA=1.顶点为D, 2. 四边形ABDC 的面积解:BC:y =-x +3,铅垂法:E(1,2)DE=2,S BCD ∆=21∙2∙3=3 S ABDC 四=21∙4∙3+3=9第4问:如图,抛物线与x 轴交于A 、B 两点,与y 交于点C,OB=OC=3,OA=1,顶点为D, 1. P 为直线BC 上方抛物线上一点,求∆PBC 面积最大值及P 点坐标;解:方法一:设P(m,-m+2m+3)S PBC ∆=21∙3∙[-m 2+2m+3-(m+3)] =23(-m 2+3m),当m=23时,S 有最大值,此时P(23,415)S m ax =827 方法二:平移BC 至抛物线相切时,面积可取最大值设切线为y =-x +n,与抛物线y =-x 2+2x+3联立得x2-3x +n -3=0,∆=0,n=23,y =415,故P(23,415)S m ax =827y xBCAODy xBCAODEy xBCAOD第5问:如图,抛物线与x 轴交于A 、B 两点,与y 轴交于C,OB=OC=3,OA=1,顶点为D5点M 为BC 上方抛物线上一点,过点M 作y 轴的平行线交BC 于点N,求MN 的最大值;解:设点M(m,-m 2+2m+3),BC:y =-x +3,则点N(m,-m+3)MN=-m 2+2m+3-(-m+3)=-m 2+3m 当m=23时,MN m ax =49第6问:如图,抛物线与x 轴交于A 、B 两点,与y 轴交于点C,OC=3,OA=1,顶点为D, 6. 在对称轴上找一点P,使∆ACP 的周长最小,并求出最小值解:点A 、B 关于对称轴对称,连接BP,则BP=AP,PA+PC=PB+PC,当点B 、P 、C 三点共线时,可取最小值,此时P(1,2),∆ACP 周长的最小值为10+32第7问:如图,抛物线与x 轴交于A 、B 两点,与y 轴交于点C,OB=OC=3,OA=1,顶点为D 1. 在y 轴上找一点E,使∆BDE 为直角三角形,求出E 点坐标, 方法一:y xBCAOPDy xBCAODy xNBCAODMy xBCAOD P1.DE ⊥BE 时,设E(0,m)易知∆DEF~∆EBO,OE DF =BO EF ,即m 1=34m-,m=3或1,故E 1(0,1)、E 2(0,3)2. DE ⊥DB 时,设E(0,m)易知∆DEN~∆BDM,BM DN =DM EN ,即m 1=34m -,m=27故E ;(0,27)3. DB ⊥BE 时,设E(0,m),易知∆DBF~∆BEG,BG DF =EG BF ,即m -2=34,m=-23,故E 4(0,-23)第8问:如图,抛物线与x 轴交于A 、B 两点,与y 轴交于C,OB=OC=3,OA=1,顶点为D 1. 在y 轴上找一点F,使∆BDF 为等腰三角形,求出F 点坐标;2. BD=DF,设F(0,m),22)4()01(m -+-=25,m=4+9 或4-19,F 1(0,4+19);F 2(0,4-19)yxFBCAODExyN MBCAODExy GFEBCAODxy BCAODF2.BD=BF,设F(0,m),22)0()03(m -+-=25,m=±11,F 1(0,11),F 2(0,-11)3.DF=BF,设F(0,m),22)0()03(m -+-=22)4()01(m -+-,m=1,F 4(0,1)第9问:如图,抛物线与x 轴交于A 、B 两点,与y 轴交于点C,OB=OC=3,OA=1,顶点为D 1. 求抛物线上一点N,使S ABN ∆=S ABC ∆;解:设N 点的坐标(m,n),则∆ABC 与∆ABN 底相同,故n=±3,-m 2+2m+3=3或者-m 2+2m+3=3得m 1=0,m 2=2,m 3=1-7,m 4=1+7,N(0,3),(2,3),(1-7,-3),(1+7,-3)第10问:如图,抛物线与x 轴交于A 、B 两点,与y 轴交于点C,OB=OC=3,OA=1,顶点为D, 1. 在抛物线上找一点Q,使S BDQ ∆=S AOC ∆解:设Q(m,-m 2+2m+3),S AOC ∆=23,BD :y =-2x +6,铅垂高QS=|-m 2+2m+3-(-2m+6)| S BDQ ∆=|-m 2+2m+3-(-2m+6)|∙21∙1=23得m=0或4Q(0,3),(4,-5),xBCAODFBCAOD FBCAODFBCAODN第11问:如图,抛物线与x 轴交于A 、B 两点,与y 轴交于C,OB=OC=3,OA=1,顶点为D 1.在抛物线上找一点E,使BE 平分∆ABC 的面积; 解:BE 平分∆ABC 的面积,故BE 经过AC 的中点,AC 中点(-21,23),BE:y =-73x +79; 与抛物线联立得-x 2+2x +3=-73+79x =-74或722,E(-74;4919)或(722;491849)第12问:如图,抛物线与x 轴交于A 、B 两点,与y 轴交于C,OB=OC=3,OA =1,顶点为D 1.在对称轴上找一点M,使|MB -MC|取最大值,并求出最大值;解:点B 关于对称轴对称的点A,连接MA,则MB=MA,MA -MC<AC, 当点A 、C 、M 共线时,|MB -MA|m ax =AC=10, AC:y =3x x +3,M(1,6)第13问:如图,抛物线与x 轴交于A 、B 两点,与y 轴交于C,OB=OC=3,OA=1,顶点为D 1.M 、N 为对称轴上的两点(M 在N 点上方),且MN=1,求四边形ACNM 周长的最小值; 解:A 关于对称轴对称的点B,连接BN,则BN=AN,将点向下平移1个单位得C’、N,则C’N=CM, 故CM+BN=C’N+BN,当C’、N 、B 共线时,取最小值(CM+BN)m in =13,故ACNM 周长得最小值为1+10+13BCAODQABCODEABCODM第14问:如图,抛物线与x 轴交于A 、B 两点,与y 轴交于C,OB=OC=3,OA=1,顶点为D 1.E 在抛物线对称轴上,在抛物线上找一点F,使得点四边形ACFE 为平行四边形; 解:设E(1,m)F(n,-n 2+2n+3),A(-1,0),C(0,3),A 平行至点C 与E 平移至点F, n=1+1=2,m+3=-n 2+2n+3,m=0,故E(1,0)F(2,3)第15问:如图,抛物线与x 轴交于A 、B 两点,与y 轴交于C,OB=OC=3,OA=1,顶点为D 1.M 为y 轴上一点,在坐标平面内找一点N,使A 、C 、M 、N 为顶点的四边形为菱形; 解:当 ACM 为等腰三角形时,问题转化为等腰三角形问题 1.ACNM 为菱形时,M(0,3),N(1,0),2.AMCN 为菱形时,M(0,34),N(-1,35),3.ACMN 为菱形时,M(0,3+10),N(-1,10)ABCODMNABCODM NC'ABCODEFABCODMN ABCONDM4.ACMN 为菱形时,M(0,3-10),N(-1,-10)第16问:如图,抛物线与x 轴交于A 、B 两点,与y 轴交于C,OB=OC=3,OA=1,顶点为D 1.E 为x 轴上一点,以BE 为边的正方形BEFG ; 另一点G 在抛物线上,求点F 坐标;设E(m,0)则EF=|-m 2+2m+3|由EF=EB 得3-m=|-m 2+2m+3|,m=0或m=-2故F(0,3)或F(-2,-5)第17问:如图,抛物线与x 轴交于A 、B 两点,与y 轴交于C,OB=OC=3,OA=1,顶点为D 1.P 是抛物线上任意一点,过点P 作PE ⊥y 轴于点E,交直线BC 于点G ;过点G 作GF ⊥x 轴,连接EF,求EF 的最小值;连接OG,则OG=EF,当OG ⊥BC 时,OG 最小,即EF 最小,故EF m in =233x C,OB=OC=3,OA=1,顶点为D1.M 在抛物线上CB 上方一点过点M 作y 轴的平行线,交BC 于点E,则ME 的最大值是多少? 解:设M(m,-m 2+2m+3),BC :y =-x +3,E(m,3-m),ME=-m 2+2m+3-(3-m)=-m 2+3m,当m=23ABCONDMABCNODMGCABO EFF CABOE GFEGCABOPFEGCABOP时,ME m ax =49第19问:如图,抛物线与x 轴交于A 、B 两点,与y 轴交于C,OB=OC=3,OA=1,顶点为D 1.求一点P,使∠POC=∠PCO ; 解:点P 在OC 得垂直平分线上,-x2+2x +3=23,x =1±210P 1(1-210,23)P 2(1+210,23)第20问:如图,抛物线与x 轴交于A 、B 两点,与y 轴交于C,OB=OC=3,OA=1,顶点为D1.E(2,-2),M 为x 轴上一点,且∠EMO=∠CMO ; 1.M 在右侧时,易知∆CMO~∆EMG,设M(m,0)则有2-m m =23,m=6 2.M 在左侧时,同理易知∆CMO~∆EMG ,m m --2=23,m=6(舍) 第21问:如图,抛物线与x 轴交于A 、B 两点,与y 轴交于C,OB=OC=3,OA=1,顶点为D 1.P 是直线y =x 上的动点,当直接y =x 平分∠APB 时,求点P 的坐标; 如图,∆PAO ≅∆PEO,此时OE=OA=1,故E(0,-1),EB :y =31x -1,与y =x 得x =-23,P(-23,-23) ECABOMPPCABOCABOEMG第22问:如图,抛物线与x 轴交于A 、B 两点,与y 轴交于C,OB=OC=3,OA=1,顶点为D 1.点P 在抛物线上,且∠ABP=∠CBD,求P 坐标;解:C(0,3)D(1,4)B(3,0)tan ∠CBD=31,故tan ∠PBO=31,OE=1或者OF=1,PB :y =-31x +1或y 且=31x -1,联立可得P 1(-32,911)P 2(-23,-23)第23问:如图,抛物线与x 轴交于A 、B 两点,与y 轴交于C,OB=OC=3,OA=1,顶点为D1.在抛物线上找一点P,使∠ACP=450;方法1:∠OCB=∠ACP=450,得∠ACO=∠ECB,故tan ∠ECB=31,作EH ⊥BC,设BH=m,则EH=m;CH=3m,故4m=32,m=423,E(23,0)故CE:y =-2x +3,联立得P(4,-5) 方法2:由12345模型得tan ∠ECO=21得E(23,0)第24问:如图,抛物线与x 轴交于A 、B 两点,与y 轴交于C,OB=OC=3,OA=1,顶点为D 1.P 在抛物线上,∠DBP=450; 由tan ∠CBD=31,∠CBD+∠CBP=450,而∠PBO+∠CBP=450,故tan ∠PBO=31,BP:y =-31x +1,P(-32,911) ECABOPPEFCABODPPHECABOPDP第25问:如图,抛物线与x 轴交于A 、B 两点,与y 轴交于C,OB=OC=3,OA=1,顶点为D 1.点P 在抛物线上,∠PCB=150,求点P 的坐标;解:由∠BCO=450得∠PCO=30或∠PCO=600,故PC:y =-3x +3或y =-33x +3联立得P(2+3,-23)P(2+33,3328-)第26问:如图,抛物线与x 轴交于A 、B 两点,与y 轴交于C,OB=OC=3,OA=1,顶点为D1.直线y =31x -1与y 轴交于点E,求∠EBC -∠CBD ; 由tan ∠DBC=tan ∠EBO=31,故∠EBC -∠CBD=450第27问:如图,抛物线与x 轴交于A 、B 两点,与y 轴交于C,OB=OC=3,OA=1,顶点为D 1.过点P(3,0)作直线与抛物线交于F 、G 、FM 、GN 分别垂直于x 轴,求PM,PN ;设F(1x ,1y )G(2x ,2y ),直线y =k (x +3)与抛物线y =-2x +2x +3联立得2x +(k -2)x +3k -3=0;1x +2x =2-k ,1x •2x =3k -3,PM •PN=(1x +3)(2x +3)=1x •2x +3(1x +2x )+9=12CABOPDPPF CABODPEECABODENMGFCABOPD第28问:如图,抛物线与x 轴交于A 、B 两点,与y 轴交于C,OB=OC=3,OA=1,顶点为DP 是第一象限抛物线上,PE ⊥AB,求BEAE的值,若PE 2=AE •BE,求P 点坐标 设P(m,-m 2+2m+3),AE=m+1,BE=3-m,BE AE =mm -+31,(m+1)(3-m)=(-m 2+2m+3)2得m=1+3,P(1+3,1)第29问:如图,抛物线与x 轴交于A 、B 两点,与y 轴交于C,OB=OC=3,OA=1,顶点为D M 为直线y =33x 3上的点,N(0,-1),求23BM+MN 的最小值, 过点B 作I ⊥x 轴,MH ⊥I,∠MBH=600,MH=23BM,23BM+MN=MH+MN,当N 、M 、H 共线且垂直于I 时取最值(23BM+MN)min=3第30问:如图,抛物线与x 轴交于A 、B 两点,与y 轴交于C,OB=OC=3,OA=1,顶点为D M 为直线y =33x 3上的点,求21BM+OM 的最小值 过点B 作I:y =3x -33,MH ⊥I,∠MBH=300,MH=21BH,21BH+OM=MH+OM,当Q 、M 、H共线且垂直于I 时取最值(21BM+MN )min=233xy EBCAOPxy BCA O MN H第31问:如图,抛物线与x 轴交于A 、B 两点,与y 轴交于C,OB=OC=3,OA=1,顶点为D M 为直线y =33x 3上的点,求22BM+OM 的最小值 过点B 作I,I 与直线MN 夹角450,MH ⊥I,∠MBH=450,MH=22BM,22BM+OM=MH+OM,当Q 、M 、H 共线且垂直于I 时取最值两着色三角形相似,得cos150=426,(21BM +MN)min=423-63第32问:如图,抛物线与x 轴交于A 、B 两点,与y 轴交于C,OB=OC=3,OA=1,顶点为D在AB 上是否存在点M,使CM+21BM 取最小值. 过点B 作I,I 与x 轴夹角为300,MH=21BM,21BM+CM=MH+CM,当C 、M 、H 共线且垂直于I 时取最值(21BM+CM)min=2333+第33问:如图,抛物线与x 轴交于A 、B 两点,与y 轴交于C,OB=OC=3,OA=1,顶点为Dxy BCAMO Hxy BCAMOHxy BCAO M EHM 是抛物线上一点,作MH ⊥x 轴,交BC 于点E,当ME:EH=3:2时,求M 点的横坐标, 设M(m,-m 2+2m+3),则E(m,3-m),ME=-m 2+2m+3-(3-m),EH=3-m,ME:EH=3:2 即有-m 2+2m+3-(3-m)=23(3-m) m=23第34问:如图,抛物线与x 轴交于A 、B 两点,与y 轴交于顶点为D P 是抛物线上一点,且∠PAB=2CBD,求P 点坐标. tan ∠CBD=31,tan ∠PAB=tan2∠CBD=43(12345模型) 设P(m,-m 2+2m+3)(1)tan ∠PAB=1322+++-m m m =43,m=49,P(49,1639)(2)tan ∠PAB=1322+--m m m =43,m=415,P(415,1657)第35问:如图,抛物线与x 轴交于A 、B 两点,与y 轴交于C,OB=OC=3,OA=1,顶点为DF(1,415)直线y =417,(1)证明:M 上任意一点到直线y =417距离等于到F 点的距离, M(m,-m 2+2m+3),MH=417-(-m 2+2m+3)=m 2-2m+45MF=222)41532()1(-++-+-m m m =m 2-2m+45,故MH=MF xyEBCAOMHxy BCAODPP第36问:如图,抛物线与x 轴交于、B 两点,与y 轴交于C,OB=OC=3,OA=1,顶点为DF(1,415)直线y =417,(2)证明:N(2,-1)M 为抛物线上一点,求NM+MF 的最小值 由(1)可知MF=MH,故NM+MF=MN+MH,(NM+MF)min=421第37问:如图,抛物线与x 轴交于A 、B 两点,与y 轴交于C,OB=OC=3,OA=1,顶点为D ∠BAC 的角平分线交y 轴于点M,绕点M 作直线I,与x 轴交于点E,与A 交于点F,求证:AE 1+AF 1为定值 过点M 、F 、C 作x 轴的平行线,交AC 于点G,交AM 于点H 、I ,易知:∆AEM~∆HFM,∆AFH~∆ACI,AO GM =AC CG ,CI GM =AC AG ,相加得AO GM +CI GM =AC CG +ACAG=1 即有AO 1+AC 1=GM 1,同理可得AE 1+AF 1=GM1=1+1010第38问:如图,抛物线与x 轴交于A 、B 两点,与y 轴交于C,OB=OC=3,OA=1,顶点为D P 为第四象限抛物线上一点,且tan ∠APC=21,求出点P 的坐标; 过点C 作CE ⊥AC,取一点E 使CE=2AC,过点C 作MN||x 轴,作A M ⊥MN 、EN ⊥MN,易知∆ACM~∆CEN,CN=6,EN=2,E(6,1),P 为以AE 为直径的圆与抛物线的交点AE 的中点F,F(25,21) xy BCOFMHxy BCNOFMHA过点易知AE HF AFACGM AO =CG AC ,GM CI =AGAC,GM AO +GM CI =CG AC +AGAC =1即有1AO +1AC =1GM,同1AE +1AF =1GM =11010xy H G FEMBCOIPF=225,设P(m,-m 2+2m+3),PF 2=(m -25)2+(-m 2+2m+325)2=225m=255,y =2531--,P(255,2531--)第39问:如图,抛物线与x 轴交于A 、B 两点,与y 轴交于C,OB=OC=3,OA=1,顶点为D 直线y =x -3与抛物线交于点P,在x 轴正半轴上找一点E,使tan(∠PBO+∠PEO)=25 在x 轴上找一点F,使tan ∠HPF=25,∠HPF=450+∠BPH=∠PBO+∠PEO=450+∠PEO, 故∠BPF=∠PEO,故∆BEP~∆BPF,BP BE =BF BP ,即253-m =21525,m -3=320,m=329故E(329,0)第40问:如图,抛物线与x 轴交于A 、B 两点,与y 轴交于C,OB=OC=3,OA=1,顶点为D 对称轴与BC 交于点E,在直线BC 上找一点P,使∆ABP 与∆DEB 相似,∠BED=1350=∠ABP,故P 在CB 的延长线上,DE=2,BE=22,AB=3,1.当∆EDB~∆BAP,AB DE =BP EB ,即42=BP22,BP=42,P(7,-4) 2.∆EDB~∆BPA 时,BP=22,P(5,-2)AxyN MPFEBCOAH PE FAxyIHEBCODP 1P 2。
中考数学解答题压轴题突破 重难点突破七 二次函数综合题 类型四:二次函数与特殊四边形问题

Ⅰ)如答图①,连接AC,分别过点A,B作对边的平行线交于 点F. 在▱ ACBF中,∵C(0,-5)向右平移1个单位长度,再向上平 移5个单位长度得到A(1,0), ∴B(5,0)按照相同的平移方式得到F(6,5);
解:设点Q的坐标为(a,b),过点Q作QM∥x轴,过点B作BM∥y轴,交QM 于点M,过点F作FN∥y轴交QM于点N,过点E作EK∥x轴交BM于点K, ∴△BMQ≌△QNF≌△EKB, ∴NF=KB=MQ=|a+2|,QN=EK=BM=|b|, ∴点F的坐标为 (a-b,a+b+2), 点E的坐标为 (-2-b,a+2),
Ⅱ)如答图②,分别过点A,C作BC,AB的平行线交于点 F,在▱ ABCF中,∵B(5,0)向左平移5个单位长度,再向 下平移5个单位长度得到C(0,-5), ∴A(1,0)按照相同的平移方式得到F(-4,-5);
Ⅲ)如答图③,连接AC,分别过点B,C作对边的平行线交 于点F.在▱ ACFB中,∵A(1,0)向左平移1个单位长度,再 向下平移5个单位长度得到C(0,-5), ∴B(5,0)按照相同的平移方式得到F(4,-5); 综上所述,满足条件的点F分别为(6,5),(-4,-5)或 (4,-5).
(1)求抛物线的函数解析式; (2)把抛物线 y=x2+bx+c 平移,使得新抛物线的顶点 为点 P(2,-4).M 是新抛物线上一点,N 是新抛物线对 称轴上一点,直接写出所有使得以点 A,B,M,N 为顶点 的四边形是平行四边形的点 M 的坐标,并把求其中一个 点 M 的坐标的过程写出来.
解:(1)该抛物线的函数解析式为y=x2-72x-1. (2)满足条件的点M的坐标为 (2,-4),(6,12),(-2,12). 由题意可知,平移后抛物线的函数解析式为 y=x2-4x, 对称轴为直线x=2,如答图.
二次函数压轴题分类精选---正方形

二次函数压轴题分类精选---正方形二次函数作为高中数学中的重要内容之一,经常被用于解决各种实际问题。
在考试中,常常会出现一些经典的“压轴题”,此文档将为大家分类精选一些关于正方形的二次函数题目。
一、求解二次函数的顶点坐标在解决与正方形相关的二次函数题目时,我们经常需要求解二次函数的顶点坐标。
顶点坐标表示平面上的一个特殊点,它对应二次函数的最值。
通过求解顶点坐标,我们可以得到函数的最大值或最小值。
例如:已知二次函数 $y = ax^2 + bx + c$,其中 $a, b, c$ 是已知的实数,求该函数的顶点坐标。
这类题目要求我们利用二次函数的顶点公式 $x = -\frac{b}{2a}$ 求解顶点的 $x$ 坐标,然后代入函数表达式中求解$y$ 坐标。
二、求解二次函数与坐标轴的交点正方形的特点之一是它的四个顶点恰好落在坐标轴上。
因此,在解决与正方形相关的二次函数题目时,我们常常需要求解函数与坐标轴的交点。
例如:已知二次函数 $y = ax^2 + bx + c$,其中 $a, b, c$ 是已知的实数,求该函数与 $x$ 轴和 $y$ 轴的交点坐标。
这类题目要求我们将 $y$ 设为零,然后解方程求解 $x$ 坐标,或者将 $x$ 设为零,解方程求解 $y$ 坐标。
三、求解二次函数的解集当解决与正方形相关的二次函数题目时,有时需要求解函数的解集。
解集表示函数在坐标系中与坐标轴或者其他函数相交的点的集合。
例如:已知二次函数 $y = ax^2 + bx + c$,其中 $a, b, c$ 是已知的实数,求该函数与直线 $y = k$ 的交点坐标。
这类题目要求我们将函数表达式与直线的方程相等,然后解方程求解交点坐标。
四、求解二次函数的参数有时,我们需要根据已知条件来求解二次函数的参数。
这些已知条件可以是函数与其他函数或者直线的关系,也可以是函数图像上的特定点。
例如:已知二次函数顶点坐标为 $(h, k)$,已知过顶点的直线方程为$y = mx + n$,求解函数参数 $a, b, c$。
中考专题4二次函数存在性问题教师版

特殊三角形、四边形存在性: A
1. 等腰三角形:
① 表示出点的坐标;
② 表示出线段平方;
B
③ 分类讨论:按照腰分类;
2. 直角三角形:
① 表示出点的坐标;
② 表示出线段平方;
③ 分类讨论:按照斜边分类,利用勾股定理列方程;
3. 平行四边形:
A
按照边或者对角形分类 B
C
D C
1
本专题的例题分为 A、B 两组.A 组中,我们重点讲解一下铅垂法的相关练习;B 组中, 我们分析了“直角三角形、等腰三角形、平行四边形”存在性问题的解题思路,依次展开,需 要同学们自己加以练习.将计算过程,踏实算一遍,再核对.
8
3.如图,直线 AB 和抛物线的交点是 A(0,﹣3),B(5,12),已知抛物线的顶点 D 的横 坐标是 1. (1)求抛物线的解析式及顶点坐标; (2)在直线 AB 的下方抛物线上找一点 P,连接 PA,PB 使得△PAB 的面积最大,并求出 这个最大值.
4.如图,抛物线 y=ax2+bx+2 交 x 轴于 A,B 两点,交 y 轴于点 C,抛物线的对称轴交 x 轴 于点 D,直线 BC 经过 B,C 两点,已知 A(﹣1,0),B(4,0) (1)求抛物线和直线 BC 的函数解析式; (2)点 F 是线段 BC 上方抛物线上一个动点,过点 F 作 x 轴的垂线与直线 BC 相交于点 E,交 x 轴于点 M. ①当点 F 运动到什么位置时,线段 FE 有最大值,请求出线段 FE 的最大值及 F 点坐标; ②当点 F 运动到什么位置时,四边形 CDBF 有最大面积?求出四边形 CDBF 的最大面积 及此时 E 点的坐标;
yF
=
yP
=3. 4
二次函数中的存在性问题

二次函数中特殊四边形的存在性问题(三)——与正方形的结合一、教材分析:结合最近几年的中考真题,不难发现,第28题压轴题一定是二次函数的综合性题目,在这道题的第3问中,大致可以分为以下几类:1、存在性问题:(1)二次函数中的特殊三角形存在性问题(这里的三角形可以是等腰三角形、等边三角形、等腰直角三角形);(2)二次函数中与已知三角形相似的三角形存在性问题;话(3)二次函数中与已知三角形面积产生联系的三角形存在性问题;(4)二次函数中特殊四边形存在性问题(这里的特殊四边形可以是平行四边形、矩形、菱形、正方形)。
2、最值问题。
3、动点问题(路径)。
由此可见,将存在性问题分为多个小专题来授课是非常必要的。
二、学情分析:在八年级学过一次函数后,我们已经在该背景下研究过特殊三角形的存在性问题,其中不乏等腰三角形等,也研究过在已知三角形的前提下,是否有点存在,构成全等三角形。
对处理存在性问题有了一定的感悟,往往是:假设存在——尝试画图,在该过程中分析是否具有多种可能性——选择合适的分类标准,进行讨论——结合题意推理计算。
在此背景下,经历了九年级的反比例函数、二次函数和相似三角形、特殊平行四边形的学习后,便可以将存在性问题放到反比例函数和二次函数中来研究,学生也有了一定的方向和研究策略,可以进一步体会存在性问题的本质。
三、教学目标:1、能根据题中给出的条件,选择恰当的表达式(一般式、顶点式、交点式),用待定系数法求出抛物线解析式2、在二次函数的综合性题目中,能结合图象,在题意中抽取出有用的信息,并能用数学语言表达(若没有图形则可自己尝试画图),找出符合题意的点,尝试解答3、在学习的过程中,经历独自思考、小组讨论的过程,增强自信心,树立健全人格四、教学重、难点:教学重点:在二次函数的综合性题目中,能结合图象,在题意中抽取出有用的信息,并能用数学语言表达(若没有图形则可自己尝试画图),尝试解答教学难点:归纳总结怎么处理二次函数中的存在性问题,存在性问题的本质是什么。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正方形存在性问题作为特殊四边形中最特殊的一位,正方形拥有更多的性质,因此坐标系中的正方形存在性问题变化更加多样,从判定的角度来说,可以有如下:(1)有一个角为直角的菱形;(2)有一组邻边相等的矩形;(3)对角线互相垂直平分且相等的四边形.依据题目给定的已知条件选择恰当的判定方法,即可确定所求的点坐标.从未知量的角度来说,正方形可以有4个“未知量”,因其点坐标满足4个等量关系,考虑对角线性质,互相平分(2个)垂直(1个)且相等(1个).比如在平面中若已知两个定点,可以在平面中确定另外两个点使得它们构成正方形,而如果要求在某条线上确定点,则可能会出现不存在的情况,即我们所说的未知量小于方程个数,可能无解.从动点角度来说,关于正方形存在性问题可分为:(1)2个定点+2个全动点;(2)1个定点+2个半动点+1个全动点;甚至可以有:(3)4个半动点.不管是哪一种类型,要明确的是一点,我们肯定不会列一个四元一次方程组求点坐标!常用处理方法:思路1:从判定出发若已知菱形,则加有一个角为直角或对角线相等;若已知矩形,则加有一组邻边相等或对角线互相垂直;若已知对角线互相垂直或平分或相等,则加上其他条件.思路2:构造三垂直全等若条件并未给关于四边形及对角线的特殊性,则考虑在构成正方形的4个顶点中任取3个,必是等腰直角三角形,若已知两定点,则可通过构造三垂直全等来求得第3个点,再求第4个点.总结:构造三垂直全等的思路仅适合已知两定点的情形,若题目给了4个动点,则考虑从矩形的判定出发,观察该四边形是否已为某特殊四边形,考证还需满足的其他关系.正方形的存在性问题在中考中出现得并不多,正方形多以小题压轴为主.例:在平面直角坐标系中,A (1,1),B (4,3),在平面中求C 、D 使得以A 、B 、C 、D 为顶点的四边形是正方形.如图,一共6个这样的点C 使得以A 、B 、C 为顶点的三角形是等腰直角三角形. 至于具体求点坐标,以1C 为例,构造△AMB ≌△1C NA ,即可求得1C 坐标.至于像5C 、6C 这两个点的坐标,不难发现,5C 是3AC 或1BC 的中点,6C 是2BC 或4AC 的中点.题无定法,具体问题还需具体分析,如上仅仅是大致思路.两动点:构造等腰直角定第3点(2015·毕节)如图,抛物线2y x bx c =++与x 轴交于A (-1,0),B (3,0)两点. (1)求抛物线的解析式;(2)是否存在过A 、B 两点的抛物线,其顶点P 关于x 轴的对称点为Q ,使得四边形APBQ 为正方形?若存在,求出此抛物线的解析式;若不存在,请说明理由.【分析】(1)抛物线:223y x x =--;(2)已知A (-1,0)、B (3,0),故构造以AB 为斜边的等腰直角△APB ,如下:若四边形APBQ 是正方形,易得P 点坐标为(1,2)或(1,-2), 当P 点坐标为(1,2)时,易得抛物线解析式为()21122y x =--+; 当P 点坐标为(1,-2)时,易得抛物线解析式为()21122y x =--. 综上所述,抛物线解析式为()21122y x =--+或()21122y x =--. 【小结】看到两个定点,不管题目如何描述第3个点的位置,均可通过构造等腰直角三角形确定第3个点,再求得第4个点.两定两动:抛物线+抛物线(2012·通辽)如图,在平面直角坐标系中,将一个正方形ABCD 放在第一象限斜靠在两坐标轴上,且点A (0,2)、点B (1,0),抛物线22y ax ax =--经过点C . (1)求点C 的坐标; (2)求抛物线的解析式;(3)在抛物线上是否存在点P 与点Q (点C 、D 除外)使四边形ABPQ 为正方形?若存在求出点P 、Q 两点坐标,若不存在说明理由.【分析】 (1)C (3,1); (2)抛物线:211222y x x =--; (3)考虑A 、B 、P 构成等腰直角三角形且∠B 为直角,故可作出点P 如下:构造三垂直全等:△AMB ≌△BNP ,即可求得P 点坐标为(-1,-1),将点P 代入抛物线解析式,成立, 即点P 在抛物线上.根据点P 构造点Q ,通过点的平移易得点Q 坐标为(-2,1), 代入抛物线解析式,成立,即点Q 也在抛物线上, 故存在,点P 坐标为(-1,-1),点Q 坐标为(-2,1).【小结】本题数据设计得巧妙,由A、B确定的点P恰好在抛物线上,由A、B、P确定的点D恰好也在抛物线上,故存在这样的一组P、Q,当然若适当调整数据,则答案完全可以变成不存在.4动点:已知矩形构造邻边相等(2017·雅安)如图,已知抛物线2y x bx c =++的图象经过点A (1,0),B (-3,0),与y 轴交于点C ,抛物线的顶点为D ,对称轴与x 轴相交于点E ,连接BD . (1)求抛物线的解析式.(2)若点P 在直线BD 上,当PE=PC 时,求点P 的坐标.(3)在(2)的条件下,作PF ⊥x 轴于F ,点M 为x 轴上一动点,点N 为直线PF 上一动点,G 为抛物线上一动点,当以点F 、N 、G 、M 四点为顶点的四边形为正方形时,求点M 的坐标.【分析】(1)抛物线:223y x x =+-;(2)求CE 的直线解析式或设P 点坐标表示PE=PC , 可得P 点坐标为()2,2--.(3)考虑FN ⊥FM ,故四边形为MFNG ,若要成为正方形,则GN ∥FM ,GM ⊥x 轴,即四边形MFNG 为矩形. 设FN 长度为m ,则NG=FN=m ,故G 点横坐标为m-2, 代入解析式得:()22,23G m m m ---, 故223GM m m m =--=, 解得:1m =2m =,3m =,4m (舍).则M 点坐标为⎫⎪⎪⎝⎭或⎫⎪⎪⎝⎭.【小结】根据题目描述可知四边形是矩形,考虑四边形的边均与坐标轴平行或垂直,故构造一组邻边相等求得点坐标.四动点:考虑对角线垂直平分且相等(2017·枣庄)如图,抛物线212y x bx c =-++与x 轴交于点A 和点B ,与y 轴交于点C ,点B 坐标为(6,0),点C 坐标为(0,6),点D 是抛物线的顶点,过点D 作x 轴的垂线,垂足为E ,连接BD .(1)求抛物线的解析式及点D 的坐标;(2)若点M 是抛物线上的动点,过点M 作MN ∥x 轴与抛物线交于点N ,点P 在x 轴上,点Q 在坐标平面内,以线段MN 为对角线作正方形MPNQ ,请写出点Q 的坐标. 【分析】(1)抛物线:21262y x x =-++;(2)考虑MN ∥x 轴且MN 为对角线,故MN 与PQ 互相垂直平分且相等,根据垂直可知:PQ ⊥x 轴; 根据平分可知:22M NP x x x +==; 根据相等可知:设MN 与PQ 交于H 点,则MN=2PH .设M 点坐标为21,262m m m ⎛⎫-++ ⎪⎝⎭,则N 点坐标为214,262m m m ⎛⎫--++ ⎪⎝⎭,42MN m =-,21262PH m m =-++,由MN=2PH ,可得21422262m m m -=-++,解得:1m =±3m =±当1m =3-1M y ,此时Q 点坐标为()2;当1m =3+1M y =,此时Q 点坐标为()2,2-.综上所述,Q 点坐标为()2或()2,2-.【小结】考虑到本题对角线是与坐标轴平行或垂直,故构造对角线垂直平分且相等,4动点:已知矩形:构造对角线互相垂直或有一组邻边相等(2018·南充删减)如图,抛物线顶点P (1,4),与y 轴交于点C (0,3),与x 轴交于点A ,B .(1)求抛物线的解析式.(2)若M 、N 为抛物线上两个动点,分别过点M 、N 作直线BC 的垂线段,垂足分别为D 、E .是否存在点M 、N 使四边形MNED 为正方形?如果存在,求正方形MNED 的边长;如果不存在,请说明理由.【分析】(1)抛物线:223y x x =-++;(2)由题意可得:MN ∥BC ,四边形MNED 是矩形,若要变为正方形,可考虑①对角线互相垂直;②有一组邻边相等. 思路1:考虑对角线连接ME ,则△MDN 为等腰直角三角形,∠MED=45°, 即ME ⊥x 轴,设M 点坐标为()2,23m m m -++, 则E 点坐标为(),3m m -+,①当M 点在E 点上方时,可推得N 点坐标为2256,22m m m m ⎛⎫-+-++ ⎪⎝⎭,将点N 坐标代入抛物线:()()13y x x =-+-, 得:22252566222m m m m m m ⎛⎫⎛⎫-++-+--++-= ⎪⎪⎝⎭⎝⎭, 化简得:()()()()()215223322m m m m m m ----=-+ ()32178422m m m m -++=+, 解得:11m =,26m =(舍)此时ME=2②当M 点在E 点下方时,同理可解:m=6.此时ME=18,正方形边长为思路2:考虑邻边相等考虑M 、N 两点均未知,但MN ∥BC ,故可设直线MN 解析式为y=-x+b ,联立方程:223x x x b -++=-+,化简为:()2330x x b -+-=,12x -=3MD ==- ∵MN=MD ,3=- 解得:15b =,215b =-或【小结】其实只要能将计算进行下去,在已知矩形的前提下,无论选边还是选对角线,都能解决问题.。