2013年普通高等学校招生统一考试--四川省数学(理) 文档版(有答案)
2013年普通高等学校招生全国统一考试(四川卷)理科数学真题试卷

2013年普通高等学校招生全国统一考试(四川卷)数学(理工类)本试题卷分第I卷(选择题)和第II卷(非选择题)。
第I卷1至2页,第II卷2至5页考生作答是,须将答案答在答题卡上,在本试题作答,答题无效。
满分:150分,考试时间150分钟。
考试结束后,将本试题卷和答题卡一并交回。
第I卷(选择题共50分)注意事项:必须使用2B铅笔在答题卡上将所选答案对应的标号涂黑。
一、选择题:本答题共有10小题,每小题5分。
在每小题给出的四个选项中,只有一个是符合题目要求的。
1、设集合,集合,则=()A、B、C、D、2、如图,在复平面内,点A表示复数z的共轭复数的点是()A、AB、BC、CD、D3、一个几何体的三视图如图所示,则该集合体的直视图可以是()主视图侧视图俯视图A、B、C、D、4、设,集合是奇数集,集合是偶数集,若命题,则()A、B、C、D、5、函数的部分图象如图所示,则的值分别是()A、B、C、D、6、抛物线的焦点到双曲线的渐近线的距离是()A、B、C、1 D、7、函数的图象大致是()A、B、C、D、8、从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为,共可得到的不同值的个数是()A、9B、10C、18D、209、节日前夕,小李在家门前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯以4秒为间隔闪亮,那么这两串彩灯同时同时通电后,它们第一次闪亮的时候相差不超过2秒的概率是()A、B、C、D、10、设函数若曲线上存在点使得,则的取值范围是()A、B、C、D、第II卷(非选择题共100分)注意事项:必须使用0.5毫米黑色墨迹签字笔在答题卡上题目所指示的大体区域内作答。
作图题可先用铅笔绘出,确认后再用0.5毫米黑色墨迹签字笔描清楚。
答在试题卷上无效。
二、填空题:本大题共5小题,每小题5分,共25分。
11、二项式的展开式中,含的项的系数是__________(用数字作答).12、在平行四边形中,对角线与交于点,,则______.13、设,则的值是_________.14、已知是定义域为的偶函数,当时,,那么,不等式的解集是_____.15、设为平面内的个点,在平面内的所有点中,若点到点的距离之和最小,则称点为的一个“中位点”,例如,线段上的任意点都是端点的中位点,现有下列命题:①若三个点共线,C在线段AB上,则C是A,B,C的中位点;②直角三角形斜边的中点是该直角三角形三个顶点的中位点;③若四个点共线,则它们的中位点存在且唯一;④梯形对角线的交点是该梯形四个顶点的唯一中位点。
2013高考理科数学(四川卷)

2013年普通高等学校招生全国统一考试(四川卷)数 学(理科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.设集合{|20}A x x =+=,集合2{|40}B x x =-=,则A B = ( ) (A ){2}- (B ){2} (C ){2,2}- (D )∅ 2.如图,在复平面内,点A 表示复数z ,则图中表示z 的共轭复数的点是( ) (A )A (B )B (C )C (D )D 3.一个几何体的三视图如图所示,则该几何体的直观图可以是( )4.设x Z ∈,集合A 是奇数集,集合B 是偶数集.若命题:,2p x A x B ∀∈∈,则( ) (A ):,2p x A x B ⌝∃∈∉ (B ):,2p x A x B ⌝∀∉∉ (C ):,2p x A x B ⌝∃∉∈ (D ):,2p x A x B ⌝∃∈∈ 5.函数()2sin(),(0,)22f x x ππωϕωϕ=+>-<<的部分图象如图所示,则,ωϕ的值分别是( ) (A )2,3π-(B )2,6π-(C )4,6π-(D )4,3π6.抛物线24y x =的焦点到双曲线2213yx -=的渐近线的距离是( ) (A )12 (B(C )1 (D7.函数231x x y =-的图象大致是( )8.从1,3,5,7,9这五个数中,每次取出两个不同的数分别为,a b ,共可得到lg lg a b -的不同值的个数是( )(A )9 (B )10 (C )18 (D )20 9.节日里某家前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,若接通电后的4秒内任一时刻等可能发生,然后每串彩灯在内4秒为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是( ) (A )14 (B )12 (C )34 (D )7810.设函数()x f x e x a =+-a R ∈,e 为自然对数的底数).若曲线sin y x =上存在00(,)x y 使得00(())f f y y =,则a 的取值范围是( )(A )[1,]e (B )1[,1]e - (C )[1,1]e + (D )1[,1]e e -+ 二、填空题:本大题共5小题,每小题5分,共25分.11.二项式5()x y +的展开式中,含23x y 的项的系数是_________.(用数字作答)12.在平行四边形ABCD 中,对角线AC 与BD 交于点O ,AB AD AO λ+=,则λ=_________.13.设sin 2sin αα=-,(,)2παπ∈,则tan 2α的值是_________.14.已知()f x 是定义域为R 的偶函数,当x ≥0时,2()4f x x x =-,那么,不等式(2)5f x +<的解集是________ .15.设12,,,n P P P 为平面α内的n 个点,在平面α内的所有点中,若点P 到12,,,n P P P 点的距离之和最小,则称点P 为12,,,n P P P 点的一个“中位点”.例如,线段AB 上的任意点都是端点,A B 的中位点.则有下列命题:①若,,A B C 三个点共线,C 在线段上,则C 是,,A B C 的中位点; ②直角三角形斜边的点是该直角三角形三个顶点的中位点; ③若四个点,,,A B C D 共线,则它们的中位点存在且唯一; ④梯形对角线的交点是该梯形四个顶点的唯一中位点.其中的真命题是____________.(写出所有真命题的序号数学社区)三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤. 16.(本小题满分12分) 在等差数列{}n a 中,218a a -=,且4a 为2a 和3a 的等比中项,求数列{}n a 的首项、公差及前n 项和.17.(本小题满分12分) 在ABC ∆中,角,,A B C 的对边分别为,,a b c ,且232cos cos sin()sin cos()25A B B A B B A C ---++=-. (Ⅰ)求cos A 的值;35-(Ⅱ)若a =5b =,求向量BA 在BC方向上的18.(本小题满分12分)某算法的程序框图如图所示,其中输入的变量x 在1,2,3,,24⋅⋅⋅这24个整数中等可能随机产生.(Ⅰ)分别求出按程序框图正确编程运行时输出y 的值为i 的概率(1,2,3)i P i =; (Ⅱ)甲、乙两同学依据自己对程序框图的理解,各自编写程序重复运行n 次后,统计记录了输出y 的值为(1,2,3)i i =的频数.以下是甲、乙所作频数统计表的部分数据.甲的频数统计表(部分) 乙的频数统计表(部分)当2100n =时,根据表中的数据,分别写出甲、乙所编程序各自输出y 的值为(1,2,3)i i =的频率(用分数表示),并判断两位同学中哪一位所编写程序符合算法要求的可能性较大; (Ⅲ)按程序框图正确编写的程序运行3次,求输出y 的值为2的次数ξ的分布列及数学期望.19.(本小题满分12分) 如图,在三棱柱11ABC A B C -中,侧棱1AA ⊥底面ABC ,12AB AC AA ==,120BAC ∠= ,1,D D 分别是线段11,BC B C 的中点,P 是线段AD 的中点.(Ⅰ)在平面ABC 内,试作出过点P 与平面1A BC 平行的直线l ,说明理由,并证明直线l ⊥平面11ADD A ;(Ⅱ)设(Ⅰ)中的直线l 交AB 于点M ,交AC 于点N ,求二面角1A A M N --的余弦值.20.(本小题满分13分) 已知椭圆C :22221,(0)x y a b a b +=>>的两个焦点分别为12(1,0),(1,0)F F -,且椭圆C 经过点41(,)33P .(Ⅰ)求椭圆C 的离心率; (Ⅱ)设过点(0,2)A 的直线l 与椭圆C 交于M 、N 两点,点Q 是线段MN 上的点,且222211||||||AQ AM AN =+,求点Q 的轨迹方程.21.(本小题满分14分)已知函数22,0()ln ,0x x a x f x x x ⎧++<=⎨>⎩,其中a 是实数.设11(,())A x f x ,22(,())B x f x 为该函数图象上的两点,且12x x <.(Ⅰ)指出函数()f x 的单调区间;(Ⅱ)若函数()f x 的图象在点,A B 处的切线互相垂直,且20x <,求21x x -的最小值; (Ⅲ)若函数()f x 的图象在点,A B 处的切线重合,求a 的取值范围.1C。
2013四川高考数学理科答案及解析

2013年普通高等学校招生全国统一考试数学理工农医类(四川卷)第Ⅰ卷(选择题共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.2ABxxAxxB=( )∩|.-41.(2013四川,理1)设集合=={|0}+2=0},集合,则={A.{-2} B.{2}?..{-2,2} DC zAz的共轭复数表示复数如图,在复平面内,点,则图中表示2.(2013四川,理2) ).的点是(B A B.A.DC D.C. ).一个几何体的三视图如图所示,则该几何体的直观图可以是( 3.(2013四川,理3)?xpA,xAxB2:是奇数集,集合∈4.(2013四川,理4)设,集合∈Z是偶数集.若命题B.( ∈),则???????B p:A.A,2xp:xx∈A,2x.B B??????B ∈p:p:xA,2xA,2x∈B D.C.x ππ???????0,?xxf的部分图象如图所示,.5(2013四川,理5)函数φ()=2sin(ω)+??22??.( )则ω,φ的值分别是π?3 A.2,π?6B.2,π?6,.4Cπ34,D.2y22xyx )抛物线.=4( 的焦点到双曲线=-1的渐近线的距离是6)(20136.四川,理331 322.1 D. C. B.A.3xy?的图象大致是( ). 7.(2013四川,理7)函数x3?1ab,共,从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为8.(2013四川,理8)ab 的不同值的个数是( ).可得到lg -lgA.9 B.10 C.18 D.209.(2013四川,理9)节日前夕,小李在家门前的树上挂了两串彩灯.这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯以4秒为间隔闪亮.那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是( ).11378424. D C.A.. B x?x e?a ayfx,若曲线设函数)(,)e=(为自然对数的底数∈R四川,理10.(201310)xxyffyya的取值范围是( )()),=)使得.(,则(=sin 上存在点0000A.[1,e] B.[e-1-1,1]C.[1,e+1] D.[e-1-1,e+1]第Ⅱ卷(非选择题共100分)二、填空题:本大题共5小题,每小题5分,共25分.523xyxy的项的系数是__________的展开式中,含.((2013四川,理11)二项式(用+)11.数字作答)AOABAD,12.(2013四川,理12)在平行四边形ABCD中,对角线AC与BD+λ=交于点O,则λ=__________.π??,π,则tan 2α的值是__________.sin 四川,理13)设2α=-sin α,α∈ 13.(2013??2??2fxxfxxx,那么,(-)(=)是定义域为R的偶函数,当4≥0时,(201314.四川,理14)已知fx+2)<5(的解集是__________.不等式PPPn个点,在平面α内的所有点中,为平面α15.(2013四川,理15)设内的,,…,n21PPPPPPPP 的一个“中到点,为点,…,,…,的距离之和最小,则称点若点,nn2211ABAB的中位点,现有下列命题:上的任意点都是端点位点”,例如,线段,ABCCABCABC的中位点;上,则①若三个点,是,共线,,在线段,②直角三角形斜边的中点是该直角三角形三个顶点的中位点;ABCD共线,则它们的中位点存在且唯一;,,,③若四个点④梯形对角线的交点是该梯形四个顶点的唯一中位点.其中的真命题是__________.(写出所有真命题的序号)三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.aaaaaa和为{}中,+=8,且在等差数列分本小题满分四川,理.16(201316)(12)n92134an项和.的等比中项,求数列{的首项、公差及前}nABCABCabc,,,,,的对边分别为17.(2013四川,理17)(本小题满分12分)在△中,角A?B32?cos CAABBB, cos(+cos )-sin(+-且2=)sin 25A的值;求cos (1)a?42BCBA b方向上的投影.(2)在若=5,求向量,x某算法的程序框图如图所示,其中输入的变量)分18)(本小题满分1218.(2013四川,理在1,2,3,…,24这24个整数中等可能随机产生.yiPi=1,2,3)的值为;的概率 ((1)分别求出按程序框图正确编程运行时输出i n次后,统计记录了甲、乙两同学依据自己对程序框图的理解,各自编写程序重复运行(2)yii=1,2,3)的值为的频数,以下是甲、乙所作频数统计表的部分数据.(输出甲的频数统计表(部分)yyy的值的值输出的值输出输出运行n 为3的频数为2的频数次数1为的频数10 14630 (697)3761 0272 100.乙的频数统计表(部分)yyy的值的值的值输出输出运行输出n 为3的频数为2的频数次数1为的频数7 301112 (353)1 0516962 100nyii=乙所编程序各自输出(的值为1,2,3)分别写出甲、当2 =100时,根据表中的数据,的频率(用分数表示),并判断两位同学中哪一位所编程序符合算法要求的可能性较大;y的值为2的次数求输出ξ的分布列及数学期次,将按程序框图正确编写的程序运行(3)3望.ABCABCAA⊥底面12分)如图,在三棱柱中,侧棱-19.(2013四川,理19)(本小题满分1111ABCABACAABACDDBCBCPAD的,∠=120°,是线段,的中点,分别是线段,,=2=1111中点.ABCPABCll⊥平内,试作出过点与平面平行的直线,说明理由,并证明直线 (1)在平面1ADDA;面11lABMACNAAMN的余弦值.中的直线设(2)(1)交于点,交于点,求二面角--122yx??1aCb>:0)>的两个(本小题满分20.(2013四川,理20)(13分)已知椭圆22ab41??,PFFC.(1,0),且椭圆经过点焦点分别为1,0)(-,??2133??C的离心率; (1)求椭圆AlCMNQMN上的点,且,是线段(2)设过点的直线(0,2)两点,点与椭圆交于211??Q的轨迹方程.,求点222|AN||AM||AQ|2??2x?a,xx?0,fxa是实其中)14分)已知函数=(理21.(2013四川,21)(本小题满分?ln x,x?0,?AxfxBxfxxx. <()),))(为该函数图象上的两点,且,数.设(,(212121fx)的单调区间;( (1)指出函数fxABxxx的最小值;,求 ()的图象在点,-处的切线互相垂直,且<0(2)若函数122fxABa的取值范围.处的切线重合,求,的图象在点)(若函数(3).2013年普通高等学校夏季招生全国统一考试数学理工农医类(四川卷)第Ⅰ卷(选择题共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.答案:AAB={-2,2}-2},,解析:由题意可得,={AB={-2}∩.故选A.∴2.答案:Bz表示的点与其共轭复数表示的点关于实轴对称.解析:复数3.答案:D解析:由三视图可知该几何体为一个上部为圆台、下部为圆柱的组合体,故选D.4.答案:D5.答案:A3T5ππ3π??????,解析:由图象可得,??43412??π2π55π?????1,2??sin Txfxωφ)中得,==2,再将点,∴=π代入,(2sin(2)=则+????π612????ππ5kk,∈Z令+φ=2π+,26πkk∈Z解得,φ=2π-,,3ππ??,?k又∵0,则取,φ∈=??22??π?∴φ=..故选A36.答案:B?3x??3y x,即(1,0),双曲线的渐近线方程为解析:由题意可得,抛物线的焦点为y=0-,由点到直线的距离公式可得抛物线的焦点到双曲线的渐近线的距离|?3?0|3?d?. 227.答案:Cx=-1,(0,+∞),故排除A;取解析:由函数解析式可得,该函数定义域为(-∞,0)∪?13x3xxy 的值且都为正,故1远远大于;当→+∞时,=3-,故再排除=>0B121?33x→0且大于0,故排除D,选C.x3?18.C答案:ab),则基本事件空间Ω={(1,3),(1,5),(1,7),解析:记基本事件为((1,9),,(3,1),(3,5),(3,7),(3,9),(5,1),(5,3),(5,7),(5,9),(7,1),(7,3),(7,5),(7,9),a lg ba,其中基本=20个基本事件,而lg lg -(9,1),(9,3),(9,5),(9,7)}共有ba lg的值相等,则不同值的个数为20-2和(3,1),(9,3)使=18(个),事件(1,3),(3,9)b故选C.9.答案:Cxyxy≤4;而所设两串彩灯第一次闪亮的时刻分别为,则由题意可得,0≤,≤4,0≤解析:xyxy|≤2},{()||,-求事件“两串彩灯同时通电后,第一次闪亮相差不超过2秒”=S16?43阴影??P?. 由图示得,该事件概率S164正方形10.答案:Ayx∈[-sin 1,1],解析:由题意可得,=00x?x?e a yfx∈[0,1],=而由可知( )0x?x e xfa为增函数,) 时,(当==0e?1yfy].)∈[1∴时,∈[0,1] (,00e?1yff>1.(∴))≥(0yffyy成立,故B,D))∴不存在∈[0,1]使=(错;( 000x?x?e?1e yyfaxfx)(时)=才有意义,而(1时,∈[0,1]时,只有=1,当当+=e00f(1)=0,fff(0),显然无意义,故C错.故选(1))=A.∴(第Ⅱ卷(非选择题共100分)注意事项:必须使用0.5毫米黑色墨迹签字笔在答题卡上题目所指示的答题区域内作答.作图题可先用铅笔绘出,确认后再用0.5毫米黑色墨迹签字笔描清楚,答在试题卷上无效.二、填空题:本大题共5小题,每小题5分,共25分.11.答案:1032CC32yx10.由二项式展开系数可得,解析:==的系数为5512.答案:2ACAOABAD ABCD 2=如图所示,在平行四边形解析:中,+=,∴λ=2.3 13.答案:解析:∵sin 2α=-sin α,∴2sin αcos α=-sin α.π1??,π?.=cos α又∵α∈,∴??22??32???cos1. =∴sin α231??2. ==-1α=2cosα,∴sin 2αcos 222?sin23.==∴tan 2α?cos214.答案:(-7,3)2xxxx<,解得,0≤45.解析:当<≥0时,令5-fxfxxx<,即-72<<5等价于-5又因为<(5)为定义域为R的偶函数,则不等式(++2)<3;故解集为(-7,3).15.答案:①④CABABC也不上,则线段解析:由“中位点”可知,若上任一点都为“中位点”,在线段例外,故①正确;ABCACBPAB中点,设腰长为为斜边2=90°,如图所示,点Rt对于②假设在等腰△,中,∠33232CACBCPAPBPCAB,|=而若4为“中位点”,则|则|+|+||||=<|||=+|,2故②错;BCADABBCCDBABCBDCA|+4=|+|||=|,则|=1|||+对于③,若|,三等分=,若设||=|CBCD|,故③错;|| |+ABCDACBDOABCDO的一的交点为内任取不同于点对于④,在梯形中,对角线,在梯形与MMACMAMCACOAOC|,=|||点,则在△|中,||+||>+|MBDMBMDBDOBOD|,|||||同理在△中,|+|>|=|+则得,MAMBMCMDOAOBOCOD|, |+|+|||||+|+||+|+|||>|O为梯形内唯一中位点是正确的.故三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.dnS.解:设该数列公差为项和为,前16.n2adadadad). )=(+由已知,可得2++28=8,()(+31111adddaadada}{的首项为=,或3=1-3=)0,解得,=4所以,,+,即数列=4,=(0n11114,公差为0,或首项为1,公差为3.2?n3n nSnS=4所以,数列的前.项和或=nn217.A?B32cos?BCABABBA2(1)由-+cos(解:+))=+cos ,得-sin(-[cos()sin 1]cos 523?BBBBA )sin -cos -sin(,-=53?BBABBA.)sin )cos --sin(即cos(=-533??ABAB.=+,即)则cos(=-cos 5543?AAA=sin ,<<(2)由cos π=,得,055ba?由正弦定理,有,B sin A sin2sin Ab?B. =所以,sin 2aπ?B BabA.由题知,故>>,则43??2?2)(422cccc-2×5舍去×),解得.=1或=-根据余弦定理,有7(=5+??5??2BCBABA B.|cos 方向上的投影为|故向量=在218.x是在1,2,3,…,24这24个整数中随机产生的一个数,共有24解:(1)变量种可能.1Pxy ;=1,故从1,3,5,7,9,11,13,15,17,19,21,23这12个数中产生时,输出 当的值为121Pyx ;的值为2,故= 当2,4,8,10,14,16,20,22从这8个数中产生时,输出231Pxy . 从6,12,18,24的值为3当,故=这4个数中产生时,输出3611yyy 的值为3的概率的概率为所以,输出的值为12的概率为,输出,输出的值为 231. 为 6nyii =1,2,3)的值为的频率如下:( (2)当2 100=时,甲、乙所编程序各自输出yyy 的值输出 输出输出的值 的值 的频率3为的频率2为的频率1为1027376697甲2100210021003531051696 乙210021002100比较频率趋势与概率,可得乙同学所编程序符合算法要求的可能性较大. (3)随机变量ξ可能的取值为0,1,2,3.03218????0?C ??P =,ξ=0)(???? 32733????12412????1???C P ,=1)=(ξ????3933????21122????2???C P2)=,ξ(=???? 3933????30211????3??C ?P ,(ξ=3)=???? 32733???? ξ的分布列为故320ξ18421 P 2727991284E 1.+3×+2×所以,=ξ=0×+1×2799271.即ξ的数学期望为 19.BCABCPl 内,过点∥如图,在平面作直线,(1)解:.BCBClAAlBCBCA 内,因为在平面在平面由直线与平面平行的判定定理可知,外,∥平面111BCDABAC 由已知,是=的中点,,.ADBCADl ⊥所以,,则直线⊥ABCAA ⊥平面因为,1lAA . ⊥直线所以1AAADADDAADAA 相交,又因为内,且,与在平面1111AlADD . ⊥平面所以直线11(2)解法一:AFFEFEAMAPAAEAPE . ⊥,过于作⊥,过连接作于,连接111AEAMN ⊥平面,由(1)知,1MNAAEA . 所以平面⊥平面11AEAMMNAEA . ⊥所以,则⊥平面11AFMAAMAEF .,则⊥平面所以⊥11NMAFEAA ).的平面角(故∠为二面角设为-θ-1ADABBACAAABAAACBAD 1. =,则由=设1==2,2==60°,=120°,有∠,∠11.PAD 的中点,为又1AMMABAP = 所以中点,且,为=1, 25 2MAAMAAAPAP .=;在所以,在Rt △Rt △中,中,=11112AP ?AA 11?AE ? ,从而PA 51AM ?AA 11?AF ?.MA21AE2?. θ=所以sin AF52122??1sin??1?. =所以cos θ????55??15NAAM. --故二面角的余弦值为15AEAD ACAAAEBA,=1.如图,过解法二:设,以作,为坐标原点,分别以平行于111111111AA xOAyzOxyz 轴,的方向为重合轴,)轴的正方向,建立空间直角坐标系.(点与点11AA.则(0,0,1)(0,0,0),1ADP为因为的中点,ACABMN,,分别为所以的中点.????1133,1,,,1?MN故,. ????????2222??????133NM AAMA,1,(,0,0).所以===(0,0,1),,????1122??zyM n xAA,=(,设平面,)的一个法向量为11111??0,?AMAM,n?n???1111即则??0,A??A,nAn?A????1111???130,,1?z??,,?x,y?????11122故有????0,?0,0,1?,x,yz?????111?130,z??x?y?111从而?22?0.z??13?yx=1,则,=取11 3?n.,0)所以=(1,1zyx n AMN,(设平面的一个法向量为=,,)22221.??,AM n?0,M?n?A??1212则即??0,NM?n?,?NM n????22???130,,1?,z??,?x,y?????22222故有????0,??z???3,0,0?x,y,?222?130,z??y?x?22222从而??0.x?3?2n yz.1)=,则(0,2=-1,所以取,-=2222NMAA设二面角,-的平面角为θ-1为锐角,又θn?n21θ=则cos|n|?|n|21?1,?3,0???0,2,?1?15?.=52?515NMAA的余弦值为. 故二面角--1520.解:(1)由椭圆定义知,22221414????????21??2?1???PFPFa |=,=||+2|????????213333????????2?a.所以c1.又由已知,=2c1e???C的离心率所以椭圆. 2a22x2yC1.的方程为+=(2)由(1)知,椭圆2Qxy).( 设点,的坐标为lxlCQ的坐标为两点,此时点(0,-与椭圆1)交于(1)当直线(0,1)与,轴垂直时,直线??530,2?. ????5??lxlykx+与2.轴不垂直时,设直线=(2)当直线的方程为MNlMNxkxxkx+2)(,,的坐标分别为(,因为+,在直线2)上,可设点,,2121222222AMkxANkx.(1+,|)|则|=|=(1+)2122222AQxykx. )(1-2)又|=|=+(+211??,得由222|AQ||AM||AN|211??,222222x??k1k1???x???x1k?21.2?2?xx?x?x1212121???.①即22222xxxxx22112x2ykxy=1中,得+2代入将+=222kxkx 0.8②+(26+1)=+3222kkk. 由Δ=(8,得)-4×(2>+1)×6>02?8k6xxxx=由②可知,,+,=2121222k?12k?1182x?.③代入①中并化简,得2?310k Qykx+2上,在直线=因为点y?222k?xy所以=2)-3,代入③中并化简,得10(18. -x????3366,0?220,xxk. ∈<∪<由③及,即>,可知0????????2222??????53220,2?yx=18,-3 满足10(-2)又???? 5????66?,x.∈故????22??QxyC内,在椭圆,由题意, ()y≤1.所以-1≤99??,222yyyx≤1,-2)=18+3且-1≤有(-2)又由10(∈??54????513,2?y. 则∈???25??????51663,2,??22yQyxx.∈,3=18所以,点,其中的轨迹方程为10(∈-2)-???????5222????21.fx)的单调递减区间为(-∞,-1),单调递增区间为[(1)函数-(1,0),(0,+∞).解:AfxBfx),处的切线斜率为(2)由导数的几何意义可知,点处的切线斜率为′(′(),点21ABfxfx)=-故当点)处的切线与点1. 处的切线垂直时,有′(′(21xfxfxx+22. ())求导,得=当′(<0时,对函数xx<0,<因为21xx+2)2)(2=-1. 所以,(2+21xx+20,2>所以20. +2<211[??2x?2?]?2x?2?xxxxx+-(2=[-(2++2)因此22),当且仅当-+2]≥=11112221231x??x??x时等号成立.1+2=,即且=222122fxABxx的最小值为处的切线互相垂直时,)的图象在点1.,所以,函数-(12xxxxfxfxxx. <时,,故′()≠<′(0)(3)当<<0或>>021*******xaxxyxxxfxfx2)(=2处的切线方程为,的图象在点时,<当0函数()(())-(++)(2+111111.2axxxxy.+-2)),即+=(2-1111xxxyxyfxxxf,即处的切线方程为(-当>0时,函数ln ())的图象在点(=,-())222222x1xx-ln ·=1. +22x两切线重合的充要条件是1??2x?2,①?12x??2ln x?1??x?a.②?12xxx<0. 知,-1<0<<由①及1121ln22xaxx+2)由①②得,-=1+=1.-ln(2-1112x?212hxxxx<0),1<-ln(21(+2)设-(-)=11111xhx<20. 则-′(=)11 x?11hxx<0)是减函数. ()(-1所以,<11hxh(0)=-ln 2-1,则 ()>1a>-ln 2-所以1.xhx)无限增大,(且趋近于--1,0)1时,又当∈(11a的取值范围是(-ln 2-1,+∞).所以fxABa的取值范围是(-ln 2-故当函数()的图象在点,处的切线重合时,1,+∞).。
2013年高考理科数学四川卷试题与答案word解析版

2013年普通高等学校夏季招生全国统一考试数学理工农医类(四川卷)第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(2013四川,理1)设集合A ={x |x +2=0},集合B ={x |x 2-4=0},则A ∩B =( ).A .{-2}B .{2}C .{-2,2}D .∅2.(2013四川,理2)如图,在复平面内,点A 表示复数z ,则图中表示z 的共轭复数的点是( ).A .AB .BC .CD .D3.(2013四川,理3)一个几何体的三视图如图所示,则该几何体的直观图可以是( ).4.(2013四川,理4)设x ∈Z ,集合A 是奇数集,集合B 是偶数集.若命题p :∀x ∈A,2x ∈B ,则( ).A .⌝p :∀x ∈A,2x ∉B B .⌝p :∀x ∉A,2x ∉BC .⌝p :∃x ∉A,2x ∈BD .⌝p :∃x ∈A,2x ∉B 5.(2013四川,理5)函数f (x )=2sin(ωx +φ)ππ0,22ωϕ⎛⎫>-<< ⎪⎝⎭的部分图象如图所示,则ω,φ的值分别是( ).A .2,π3-B .2,π6-C .4,π6-D .4,π36.(2013四川,理6)抛物线y 2=4x 的焦点到双曲线x 2-23y =1的渐近线的距离是( ).A .12 B. C .1 D7.(2013四川,理7)函数331x x y =-的图象大致是( ).8.(2013四川,理8)从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a,b,共可得到lg a-lg b的不同值的个数是( ).A.9 B.10 C.18 D.209.(2013四川,理9)节日前夕,小李在家门前的树上挂了两串彩灯.这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯以4秒为间隔闪亮.那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是( ).A.14 B.12 C.34 D.7810.(2013四川,理10)设函数f(x)(a∈R,e为自然对数的底数),若曲线y=sin x上存在点(x0,y0)使得f(f(y0))=y0,则a的取值范围是( ).A.[1,e] B.[e-1-1,1]C.[1,e+1] D.[e-1-1,e+1]第Ⅱ卷(非选择题共100分)二、填空题:本大题共5小题,每小题5分,共25分.11.(2013四川,理11)二项式(x+y)5的展开式中,含x2y3的项的系数是__________.(用数字作答) 12.(2013四川,理12)在平行四边形ABCD中,对角线AC与BD交于点O,AB+AD=λAO,则λ=__________.13.(2013四川,理13)设sin 2α=-sin α,α∈π,π2⎛⎫⎪⎝⎭,则tan 2α的值是__________.14.(2013四川,理14)已知f(x)是定义域为R的偶函数,当x≥0时,f(x)=x2-4x,那么,不等式f(x+2)<5的解集是__________.15.(2013四川,理15)设P1,P2,…,P n为平面α内的n个点,在平面α内的所有点中,若点P到点P1,P2,…,P n的距离之和最小,则称点P为点P1,P2,…,P n的一个“中位点”,例如,线段AB上的任意点都是端点A,B的中位点,现有下列命题:①若三个点A,B,C共线,C在线段AB上,则C是A,B,C的中位点;②直角三角形斜边的中点是该直角三角形三个顶点的中位点;③若四个点A,B,C,D共线,则它们的中位点存在且唯一;④梯形对角线的交点是该梯形四个顶点的唯一中位点.其中的真命题是__________.(写出所有真命题的序号)三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.16.(2013四川,理16)(本小题满分12分)在等差数列{a n}中,a1+a3=8,且a4为a2和a9的等比中项,求数列{a n}的首项、公差及前n项和.17.(2013四川,理17)(本小题满分12分)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且22cos 2A B-cos B -sin(A -B )sin B +cos(A +C )=35-,(1)求cos A 的值;(2)若a =b =5,求向量BA 在BC 方向上的投影.18.(2013四川,理18)(本小题满分12分)某算法的程序框图如图所示,其中输入的变量x 在1,2,3,…,24这24个整数中等可能随机产生.(1)分别求出按程序框图正确编程运行时输出y 的值为i 的概率P i (i =1,2,3);(2)甲、乙两同学依据自己对程序框图的理解,各自编写程序重复运行n 次后,统计记录了输出y 的值为i (i =1,2,3)的频数,以下是甲、乙所作频数统计表的部分数据.当n=2 100的频率(用分数表示),并判断两位同学中哪一位所编程序符合算法要求的可能性较大;(3)将按程序框图正确编写的程序运行3次,求输出y的值为2的次数ξ的分布列及数学期望.19.(2013四川,理19)(本小题满分12分)如图,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,AB=AC =2AA1,∠BAC=120°,D,D1分别是线段BC,B1C1的中点,P是线段AD的中点.(1)在平面ABC内,试作出过点P与平面A1BC平行的直线l,说明理由,并证明直线l⊥平面ADD1A1;(2)设(1)中的直线l交AB于点M,交AC于点N,求二面角A-A1M-N的余弦值.20.(2013四川,理20)(本小题满分13分)已知椭圆C :22221x y a b+=(a >b >0)的两个焦点分别为F 1(-1,0),F 2(1,0),且椭圆C 经过点P 41,33⎛⎫⎪⎝⎭.(1)求椭圆C 的离心率;(2)设过点A (0,2)的直线l 与椭圆C 交于M ,N 两点,点Q 是线段MN 上的点,且222211||||||AQ AM AN =+,求点Q 的轨迹方程.21.(2013四川,理21)(本小题满分14分)已知函数f(x)=22,0,ln,0,x x a xx x⎧++<⎨>⎩其中a是实数.设A(x1,f(x1)),B(x2,f(x2))为该函数图象上的两点,且x1<x2.(1)指出函数f(x)的单调区间;(2)若函数f(x)的图象在点A,B处的切线互相垂直,且x2<0,求x2-x1的最小值;(3)若函数f(x)的图象在点A,B处的切线重合,求a的取值范围.2013年普通高等学校夏季招生全国统一考试数学理工农医类(四川卷)第Ⅰ卷(选择题共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.答案:A解析:由题意可得,A={-2},B={-2,2},∴A∩B={-2}.故选A.2.答案:B解析:复数z表示的点与其共轭复数表示的点关于实轴对称.3.答案:D解析:由三视图可知该几何体为一个上部为圆台、下部为圆柱的组合体,故选D.4.答案:D5.答案:A解析:由图象可得,35ππ3π41234T⎛⎫=--=⎪⎝⎭,∴T=π,则ω=2ππ=2,再将点5π,212⎛⎫⎪⎝⎭代入f(x)=2sin(2x+φ)中得,5πsin16ϕ⎛⎫+=⎪⎝⎭,令5π6+φ=2kπ+π2,k∈Z,解得,φ=2kπ-π3,k∈Z,又∵φ∈ππ,22⎛⎫- ⎪⎝⎭,则取k=0,∴φ=π3-.故选A.6.答案:B解析:由题意可得,抛物线的焦点为(1,0),双曲线的渐近线方程为y=,即-y=0,由点到直线的距离公式可得抛物线的焦点到双曲线的渐近线的距离d==.7.答案:C解析:由函数解析式可得,该函数定义域为(-∞,0)∪(0,+∞),故排除A;取x=-1,y=1113--=32>0,故再排除B;当x→+∞时,3x-1远远大于x3的值且都为正,故331xx-→0且大于0,故排除D,选C.8.答案:C解析:记基本事件为(a,b),则基本事件空间Ω={(1,3),(1,5),(1,7),(1,9),(3,1),(3,5),(3,7),(3,9),(5,1),(5,3),(5,7),(5,9),(7,1),(7,3),(7,5),(7,9),(9,1),(9,3),(9,5),(9,7)}共有20个基本事件,而lg a -lg b =lga b ,其中基本事件(1,3),(3,9)和(3,1),(9,3)使lg ab的值相等,则不同值的个数为20-2=18(个),故选C .9. 答案:C解析:设两串彩灯第一次闪亮的时刻分别为x ,y ,则由题意可得,0≤x ≤4,0≤y ≤4;而所求事件“两串彩灯同时通电后,第一次闪亮相差不超过2秒”={(x ,y )||x -y |≤2},由图示得,该事件概率1643164S P S -===阴影正方形.10. 答案:A解析:由题意可得,y 0=sin x 0∈[-1,1],而由f (x )可知y 0∈[0,1],当a =0时,f (x )∴y 0∈[0,1]时,f (y 0)∈[1.∴f (f (y 0 1.∴不存在y 0∈[0,1]使f (f (y 0))=y 0成立,故B ,D 错;当a =e +1时,f (x )y 0∈[0,1]时,只有y 0=1时f (x )才有意义,而f (1)=0, ∴f (f (1))=f (0),显然无意义,故C 错.故选A .第Ⅱ卷(非选择题 共100分)注意事项:必须使用0.5毫米黑色墨迹签字笔在答题卡上题目所指示的答题区域内作答.作图题可先用铅笔绘出,确认后再用0.5毫米黑色墨迹签字笔描清楚,答在试题卷上无效. 二、填空题:本大题共5小题,每小题5分,共25分. 11.答案:10解析:由二项式展开系数可得,x 2y 3的系数为35C =25C =10.12.答案:2解析:如图所示,在平行四边形ABCD 中,AB +AD =AC =2AO ,∴λ=2.13.解析:∵sin 2α=-sin α, ∴2sin αcos α=-sin α.又∵α∈π,π2⎛⎫⎪⎝⎭,∴cos α=12-.∴sin α2=.∴sin 2α=2-,cos 2α=2cos 2α-1=12-.∴tan 2α=sin2cos2αα14.答案:(-7,3)解析:当x ≥0时,令x 2-4x <5,解得,0≤x <5.又因为f (x )为定义域为R 的偶函数,则不等式f (x +2)<5等价于-5<x +2<5,即-7<x <3;故解集为(-7,3). 15.答案:①④解析:由“中位点”可知,若C 在线段AB 上,则线段AB 上任一点都为“中位点”,C 也不例外,故①正确;对于②假设在等腰Rt △ABC 中,∠ACB =90°,如图所示,点P 为斜边AB 中点,设腰长为2,则|PA |+|PB |+|PC |=32|AB |=C 为“中位点”,则|CB |+|CA |=4< 对于③,若B ,C 三等分AD ,若设|AB |=|BC |=|CD |=1,则|BA |+|BC |+|BD |=4=|CA |+|CB |+|CD |,故③错;对于④,在梯形ABCD 中,对角线AC 与BD 的交点为O ,在梯形ABCD 内任取不同于点O 的一点M ,则在△MAC 中,|MA |+|MC |>|AC |=|OA |+|OC |,同理在△MBD 中,|MB |+|MD |>|BD |=|OB |+|OD |, 则得,|MA |+|MB |+|MC |+|MD |>|OA |+|OB |+|OC |+|OD |, 故O 为梯形内唯一中位点是正确的.三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤. 16.解:设该数列公差为d ,前n 项和为S n .由已知,可得2a 1+2d =8,(a 1+3d )2=(a 1+d )(a 1+8d ).所以,a 1+d =4,d (d -3a 1)=0,解得a 1=4,d =0,或a 1=1,d =3,即数列{a n }的首项为4,公差为0,或首项为1,公差为3.所以,数列的前n 项和S n =4n 或S n =232n n-.17.解:(1)由22cos 2A B -cos B -sin(A -B )sin B +cos(A +C )=35-,得[cos(A -B )+1]cos B -sin(A -B )sin B -cos B =35-,即cos(A -B )cos B -sin(A -B )sin B =35-.则cos(A -B +B )=35-,即cos A =35-.(2)由cos A =35-,0<A <π,得sin A =45,由正弦定理,有sin a bA =,所以,sin B =sin 2b A a =由题知a >b ,则A >B ,故π4B =.根据余弦定理,有2=52+c 2-2×5c ×35⎛⎫- ⎪⎝⎭,解得c =1或c =-7(舍去).故向量BA 在BC 方向上的投影为|BA |cos B .18.解:(1)变量x 是在1,2,3,…,24这24个整数中随机产生的一个数,共有24种可能. 当x 从1,3,5,7,9,11,13,15,17,19,21,23这12个数中产生时,输出y 的值为1,故P 1=12; 当x 从2,4,8,10,14,16,20,22这8个数中产生时,输出y 的值为2,故P 2=13; 当x 从6,12,18,24这4个数中产生时,输出y 的值为3,故P 3=16. 所以,输出y 的值为1的概率为12,输出y 的值为2的概率为13,输出y 的值为3的概率为16. (2)当n =2 100(3)随机变量ξ可能的取值为0,1,2,3.P (ξ=0)=0303128C 3327⎛⎫⎛⎫⨯⨯= ⎪ ⎪⎝⎭⎝⎭,P (ξ=1)=1213124C 339⎛⎫⎛⎫⨯⨯= ⎪ ⎪⎝⎭⎝⎭,P (ξ=2)=2123122C 339⎛⎫⎛⎫⨯⨯= ⎪ ⎪⎝⎭⎝⎭,P (ξ=3)=3033121C 3327⎛⎫⎛⎫⨯⨯= ⎪ ⎪⎝⎭⎝⎭,故ξ的分布列为所以,E ξ=0×827+1×49+2×9+3×27=1.即ξ的数学期望为1.19.解:(1)如图,在平面ABC 内,过点P 作直线l ∥BC ,因为l 在平面A 1BC 外,BC 在平面A 1BC 内,由直线与平面平行的判定定理可知,l ∥平面A 1BC . 由已知,AB =AC ,D 是BC 的中点, 所以,BC ⊥AD ,则直线l ⊥AD . 因为AA 1⊥平面ABC , 所以AA 1⊥直线l .又因为AD ,AA 1在平面ADD 1A 1内,且AD 与AA 1相交, 所以直线l ⊥平面ADD 1A 1. (2)解法一:连接A 1P ,过A 作AE ⊥A 1P 于E ,过E 作EF ⊥A 1M 于F ,连接AF . 由(1)知,MN ⊥平面AEA 1, 所以平面AEA 1⊥平面A 1MN .所以AE ⊥平面A 1MN ,则A 1M ⊥AE . 所以A 1M ⊥平面AEF ,则A 1M ⊥AF .故∠AFE 为二面角A -A 1M -N 的平面角(设为θ).设AA 1=1,则由AB =AC =2AA 1,∠BAC =120°,有∠BAD =60°,AB =2,AD =1. 又P 为AD 的中点,所以M 为AB 中点,且AP=12,AM =1, 所以,在Rt △AA 1P 中,A 1PRt △A 1AM 中,A 1M.从而11AAAP AE A P ⋅==, 11AA AM AF A M ⋅==.所以sin θ=AE AF =所以cos θ5==.解法二:设A 1A =1.如图,过A 1作A 1E 平行于B 1C 1,以A 1为坐标原点,分别以1A E ,11A D ,1A A 的方向为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系Oxyz (点O 与点A 1重合).则A 1(0,0,0),A (0,0,1). 因为P 为AD 的中点,所以M ,N 分别为AB ,AC 的中点.故M 1,,122⎛⎫⎪ ⎪⎝⎭,N 1,122⎛⎫- ⎪ ⎪⎝⎭.所以1AM=1,122⎛⎫⎪ ⎪⎝⎭,1A A =(0,0,1),NM =0,0). 设平面AA 1M 的一个法向量为n 1=(x 1,y 1,z 1),则1111,,A M A A ⎧⊥⎪⎨⊥⎪⎩n n 即11110,0,A M A A ⎧⋅=⎪⎨⋅=⎪⎩n n故有1111111,,,10,22,,0,0,10,x y z x y z ⎧⎛⎫()⋅=⎪ ⎪ ⎪⎨⎝⎭⎪()⋅()=⎩从而111110,20.x y z z ++=⎪=⎩ 取x 1=1,则y 1= 所以n 1=(1,,0).设平面A 1MN 的一个法向量为n 2=(x 2,y 2,z 2),则212,,A M NM ⎧⊥⎪⎨⊥⎪⎩n n 即2120,0,A M NM ⎧⋅=⎪⎨⋅=⎪⎩n n故有2222221,,,10,2,,0,x y z x y z ⎧⎫()⋅=⎪⎪⎪⎨⎝⎭⎪()=⎩从而222210,220.x y z ++=⎪= 取y 2=2,则z 2=-1,所以n 2=(0,2,-1). 设二面角A -A 1M -N 的平面角为θ, 又θ为锐角, 则cos θ=1212||||⋅⋅n n n n5=20.解:(1)由椭圆定义知,2a =|PF 1|+|PF 2|=所以a =又由已知,c =1.所以椭圆C的离心率2c e a ===. (2)由(1)知,椭圆C 的方程为22x +y 2=1.设点Q 的坐标为(x ,y ).(1)当直线l 与x 轴垂直时,直线l 与椭圆C 交于(0,1),(0,-1)两点,此时点Q的坐标为0,2⎛ ⎝⎭. (2)当直线l 与x 轴不垂直时,设直线l 的方程为y =kx +2.因为M ,N 在直线l 上,可设点M ,N 的坐标分别为(x 1,kx 1+2),(x 2,kx 2+2),则|AM |2=(1+k 2)x 12,|AN |2=(1+k 2)x 22.又|AQ |2=x 2+(y -2)2=(1+k 2)x 2. 由222211||||||AQ AM AN =+,得22222212211111k x k x k x =+(+)(+)(+), 即212122222212122211x x x x x x x x x (+)-=+=.① 将y =kx +2代入22x +y 2=1中,得(2k 2+1)x 2+8kx +6=0.②由Δ=(8k )2-4×(2k 2+1)×6>0,得k 2>32. 由②可知,x 1+x 2=2821k k -+,x 1x 2=2621k +, 代入①中并化简,得2218103x k =-.③ 因为点Q 在直线y =kx +2上,所以2y k x-=,代入③中并化简,得10(y -2)2-3x 2=18. 由③及k 2>32,可知0<x 2<32,即x∈2⎛⎫- ⎪ ⎪⎝⎭∪0,2⎛ ⎝⎭.又0,25⎛- ⎝⎭满足10(y -2)2-3x 2=18, 故x∈,22⎛- ⎝⎭.由题意,Q (x ,y )在椭圆C 内, 所以-1≤y ≤1.又由10(y -2)2=18+3x 2有(y -2)2∈99,54⎡⎫⎪⎢⎣⎭且-1≤y ≤1, 则y∈1,22⎛⎝⎦. 所以,点Q 的轨迹方程为10(y -2)2-3x 2=18,其中x∈⎛⎝⎭,y∈1,22⎛- ⎝⎦. 21.解:(1)函数f (x )的单调递减区间为(-∞,-1),单调递增区间为[-1,0),(0,+∞). (2)由导数的几何意义可知,点A 处的切线斜率为f ′(x 1),点B 处的切线斜率为f ′(x 2), 故当点A 处的切线与点B 处的切线垂直时,有f ′(x 1)f ′(x 2)=-1. 当x <0时,对函数f (x )求导,得f ′(x )=2x +2. 因为x 1<x 2<0,所以,(2x 1+2)(2x 2+2)=-1. 所以2x 1+2<0,2x 2+2>0.因此x 2-x 1=12[-(2x 1+2)+2x 2=1,当且仅当-(2x 1+2)=2x 2+2=1,即132x =-且212x =-时等号成立.所以,函数f (x )的图象在点A ,B 处的切线互相垂直时,x 2-x 1的最小值为1.(3)当x 1<x 2<0或x 2>x 1>0时,f ′(x 1)≠f ′(x 2),故x 1<0<x 2.当x 1<0时,函数f (x )的图象在点(x 1,f (x 1))处的切线方程为y -(x 12+2x 1+a )=(2x 1+2)(x -x 1),即y=(2x 1+2)x -x 12+a .当x 2>0时,函数f (x )的图象在点(x 2,f (x 2))处的切线方程为y -ln x 2=21x (x -x 2),即y =21x·x +ln x 2-1.两切线重合的充要条件是12221122,ln 1.x xx x a ⎧=+⎪⎨⎪-=-+⎩①②由①及x 1<0<x 2知,-1<x 1<0. 由①②得,a =x 12+11ln22x +-1=x 12-ln(2x 1+2)-1.设h (x 1)=x 12-ln(2x 1+2)-1(-1<x 1<0), 则h ′(x 1)=2x 1-111x +<0. 所以,h (x 1)(-1<x 1<0)是减函数. 则h (x 1)>h (0)=-ln 2-1, 所以a >-ln 2-1.又当x 1∈(-1,0)且趋近于-1时,h (x 1)无限增大, 所以a 的取值范围是(-ln 2-1,+∞).故当函数f (x )的图象在点A ,B 处的切线重合时,a 的取值范围是(-ln 2-1,+∞).。
2013年全国普通高等学校招生统一考试理科数学(四川卷带解析)试题

2013年全国普通高等学校招生统一考试理科(四川卷)数学试题1、【题文】(5分)设集合A={x|x+2=0},集合B={x|x2﹣4=0},则A∩B=()A.{﹣2} B.{2} C.{﹣2,2} D.?2、【题文】(5分)如图,在复平面内,点A表示复数z的共轭复数,则复数z对应的点是()A.A B.B C.C D.D3、【题文】(5分)一个几何体的三视图如图所示,则该集合体的直观图可以是()A.B.C.D.4、【题文】(5分)设x∈Z,集合A是奇数集,集合B是偶数集.若命题p:?x∈A,2x∈B,则()A.¬p:?x∈A,2x?B B.¬p:?x?A,2x?B C.¬p:?x?A,2x∈B D.¬p:?x∈A,2x?B5、【题文】(5分)函数的部分图象如图所示,则ω,φ的值分别是()A.B.C.D.6、【题文】(5分)抛物线y2=4x的焦点到双曲线的渐近线的距离是()C.1 D.A.B.7、【题文】(5分)函数的图象大致是()A.B.C.D.8、【题文】(5分)从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a,b,共可得到lga﹣lgb的不同值的个数是()A.9 B.10 C.18 D.209、【题文】(5分)节日前夕,小李在家门前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯以4秒为间隔闪亮,那么这两串彩灯同时同时通电后,它们第一次闪亮的时候相差不超过2秒的概率是()A.B.C.D.10、【题文】(5分)设函数(a∈R,e为自然对数的底数),若曲线y=sinx上存在点(x0,y0)使得f(f(y0))=y0,则a的取值范围是()A.[1,e] B.[e﹣1﹣1,1] C.[1,e+1] D.[e﹣1﹣1,e+1]11、【题文】(5分)二项式(x+y)5的展开式中,含x2y3的项的系数是(用数字作答).12、【题文】(5分)在平行四边形ABCD中,对角线AC与BD交于点O,,则λ=.13、【题文】(5分)设sin2α=﹣sinα,,则tan2α的值是.14、【题文】(5分)已知f(x)是定义域为R的偶函数,当x≥0时,f(x)=x2﹣4x,那么,不等式f(x+2)<5的解集是.15、【题文】(5分)设P1,P2,…P n为平面α内的n个点,在平面α内的所有点中,若点P到点P1,P2,…P n的距离之和最小,则称点P为P1,P2,…P n的一个“中位点”,例如,线段AB上的任意点都是端点A,B的中位点,现有下列命题:①若三个点A、B、C共线,C在线段AB上,则C是A,B,C的中位点;②直角三角形斜边的中点是该直角三角形三个顶点的中位点;③若四个点A、B、C、D共线,则它们的中位点存在且唯一;④梯形对角线的交点是该梯形四个顶点的唯一中位点.其中的真命题是(写出所有真命题的序号).16、【题文】(12分)在等差数列{a n}中,a1+a3=8,且a4为a2和a9的等比中项,求数列{a n}的首项,公差及前n项和.17、【题文】(12分)在△ABC中,角A、B、C的对边分别a、b、c,且(1)求cosA的值;(2)若,求向量在方向上的投影.18、【题文】(12分)某算法的程序框图如图所示,其中输入的变量x在1,2,3,…,24这24个整数中等可能随机产生(I)分别求出按程序框图正确编程运行时输出y的值为i的概率p i(i=1,2,3);(II)甲乙两同学依据自己对程序框图的理解,各自编程写出程序重复运行n次后,统计记录输出y的值为i(i=1,2,3)的频数,以下是甲乙所作频数统计表的部分数据.甲的频数统计图(部分)运行次数n 输出y的值为1的频数输出y的值为2的频数输出y的值为3的频数30 14 6 10…………2100 1027 376 697乙的频数统计图(部分)运行次数n 输出y的值为1的频数输出y的值为2的频数输出y的值为3的频数30 12 11 7…………2100 1051 696 353当n=2100时,根据表中的数据,分别写出甲、乙所编程序各自输出y的值为i(i=1,2,3)的频率(用分数表示),并判断两位同学中哪一位所编程序符合要求的可能系较大;(III)将按程序摆图正确编写的程序运行3次,求输出y的值为2的次数ξ的分布列及数学期望.19、【题文】(12分)如图,在三棱柱ABC﹣A1B1C1中,侧棱AA1⊥底面ABC,AB=AC=2AA1,∠BAC=120°,D,D1分别是线段BC,B1C1的中点,P是线段AD的中点.(I)在平面ABC内,试做出过点P与平面A1BC平行的直线l,说明理由,并证明直线l⊥平面ADD1A1;(II)设(I)中的直线l交AB于点M,交AC于点N,求二面角A﹣A1M﹣N的余弦值.20、【题文】(13分)已知椭圆C:(a>b>0)的两个焦点分别为F1(﹣1,0),F2(1,0),且椭圆C经过点.(I)求椭圆C的离心率:(II)设过点A(0,2)的直线l与椭圆C交于M,N两点,点Q是线段MN上的点,且,求点Q的轨迹方程.21、【题文】(14分)已知函数,其中a是实数,设A(x1,f(x1)),B(x2,f(x2))为该函数图象上的点,且x1<x2.(I)指出函数f(x)的单调区间;(II)若函数f(x)的图象在点A,B处的切线互相垂直,且x2<0,求x2﹣x1的最小值;(III)若函数f(x)的图象在点A,B处的切线重合,求a的取值范围.。
2013年全国普通高等学校招生统一考试理科数学(四川卷带解析)答案解析

2013年全国普通高等学校招生统一考试理科(四川卷)数学答案解析1、【答案】A【解析】由A中的方程x+2=0,解得x=﹣2,即A={﹣2};由B中的方程x2﹣4=0,解得x=2或﹣2,即B={﹣2,2},则A∩B={﹣2}.2、【答案】B【解析】两个复数是共轭复数,两个复数的实部相同,下部相反,对应的点关于x轴对称.所以点A表示复数z的共轭复数的点是B.3、【答案】D【解析】由俯视图可知,原几何体的上底面应该是圆面,由此排除选项A和选项C.而俯视图内部只有一个虚圆,所以排除B.故选D.4、【答案】D【解析】因为全称命题的否定是特称命题,所以设x∈Z,集合A是奇数集,集合B是偶数集.若命题p:?x∈A,2x∈B,则¬p:?x∈A,2x?B.【答案】A【解析】∵在同一周期内,函数在x=时取得最大值,x=时取得最小值,∴函数的周期T满足=﹣=,由此可得T==π,解得ω=2,得函数表达式为f(x)=2sin(2x+φ)又∵当x=时取得最大值2,∴2sin(2?+φ)=2,可得+φ=+2kπ(k∈Z)∵,∴取k=0,得φ=﹣6、【答案】B【解析】∵抛物线方程为y2=4x∴2p=4,可得=1,抛物线的焦点F(1,0)又∵双曲线的方程为∴a2=1且b2=3,可得a=1且b=,双曲线的渐近线方程为y=±,即y=±x,化成一般式得:.因此,抛物线y2=4x的焦点到双曲线渐近线的距离为d==【答案】A【解析】当x<0时,x3<0,3x﹣1<0,∴,故排除B;对于C,由于函数值不可能为0,故可以排除C;∵y=3x﹣1与y=x3相比,指数函数比幂函数,随着x的增大,增长速度越大,∴x→+∞,→0,∴D不正确,A正确,8、【答案】C【解析】首先从1,3,5,7,9这五个数中任取两个不同的数排列,共有种排法,因为,,所以从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a,b,共可得到lga﹣lgb的不同值的个数是:20﹣2=18.9、【答案】C【解析】设两串彩灯第一次闪亮的时刻分别为x,y,由题意可得0≤x≤4,0≤y≤4,它们第一次闪亮的时候相差不超过2秒,则|x﹣y|≤2,由几何概型可得所求概率为上述两平面区域的面积之比,由图可知所求的概率为:=10、【答案】A【解析】曲线y=sinx上存在点(x0,y0)使得f(f(y0))=y0,则y0∈[﹣1,1]考查四个选项,B,D两个选项中参数值都可取0,C,D两个选项中参数都可取e+1,A,B,C,D四个选项参数都可取1,由此可先验证参数为0与e+1时是否符合题意,即可得出正确选项当a=0时,,此是一个增函数,且函数值恒非负,故只研究y0∈[0,1]时f(f(y0))=y0是否成立由于是一个增函数,可得出f(y0)≥f(0)=1,而f(1)=>1,故a=0不合题意,由此知B,D两个选项不正确当a=e+1时,此函数是一个增函数,=0,而f(0)没有意义,故a=e+1不合题意,故C,D两个选项不正确综上讨论知,可确定B,C,D三个选项不正确,故A选项正确11、【答案】10【解析】设二项式(x+y)5的展开式的通项公式为T r+1,则T r+1=x5﹣r?y r,令r=3,则含x2y3的项的系数是=10.12、【答案】2【解析】∵四边形ABCD为平行四边形,对角线AC与BD交于点O,∴+=,又O为AC的中点,∴=2,∴+=2,∵+=λ,∴λ=2.13、【答案】【解析】∵sin2α=2sinαcosα=﹣sinα,α∈(,π),∴cosα=﹣,sinα==,∴tanα=﹣,则tan2α===.14、【答案】(﹣7,3)【解析】因为f(x)为偶函数,所以f(|x+2|)=f(x+2),则f(x+2)<5可化为f(|x+2|)<5,即|x+2|2﹣4|x+2|<5,(|x+2|+1)(|x+2|﹣5)<0,所以|x+2|<5,解得﹣7<x<3,所以不等式f(x+2)<5的解集是(﹣7,3).15、【答案】①④【解析】①若三个点A、B、C共线,C在线段AB上,根据两点之间线段最短,则C是A,B,C的中位点,正确;②举一个反例,如边长为3,4,5的直角三角形ABC,此直角三角形的斜边的中点到三个顶点的距离之和为5+2.5=7.5,而直角顶点到三个顶点的距离之和为7,∴直角三角形斜边的中点不是该直角三角形三个顶点的中位点;故错误;③若四个点A、B、C、D共线,则它们的中位点是中间两点连线段上的任意一个点,故它们的中位点存在但不唯一;故错误;④如图,在梯形ABCD中,对角线的交点O,P是任意一点,则根据三角形两边之和大于第三边得PA+PB+PC+PD≥AC+BD=OA+OB+OC+OD,∴梯形对角线的交点是该梯形四个顶点的唯一中位点.正确.故答案为:①④.16、【答案】S n=【解析】设该数列的公差为d,前n项和为S n,则∵a1+a3=8,且a4为a2和a9的等比中项,∴2a1+2d=8,(a1+3d)2=(a1+d)(a1+8d)解得a1=4,d=0或a1=1,d=3∴前n项和为S n=4n或S n=.17、【答案】(1)(2)=ccosB=【解析】(Ⅰ)由,可得,即,即,(Ⅱ)由正弦定理,,所以=,由题意可知a>b,即A>B,所以B=,由余弦定理可知.解得c=1,c=﹣7(舍去).向量在方向上的投影:=ccosB=.18、【答案】(I)输出的y值为1的概率为,输出的y值为2的概率为,输出的y值为3的概率为(II)乙同学所编程序符合算法要求的可能性较大(III)1【解析】(I)变量x是在1,2,3,…,24这24个整数中随机产生的一个数,共有24种可能,当x从1,3,5,7,9,11,13,15,17,19,21,23这12个数中产生时,输出的y 值为1,故P1==;当x从2,4,8,10,14,16,20,22这8个数中产生时,输出的y值为2,故P2==;当x从6,12,18,24这4个数中产生时,输出的y值为3,故P3==;故输出的y值为1的概率为,输出的y值为2的概率为,输出的y值为3的概率为;(II)当n=2100时,甲、乙所编程序各自输出的y值为i(i=1,2,3)的频率如下:输出y值为1的频率输出y值为2的频率输出y值为3的频率甲乙比较频率趋势与概率,可得乙同学所编程序符合算法要求的可能性较大;(III)随机变量ξ的可能取值为:0,1,2,3,P(ξ=0)==,P(ξ=1)==P(ξ=2)==,P(ξ=3)==,故ξ的分布列为:ξ 0 1 2 3P所以所求的数学期望Eξ==119、【答案】(I)见解析(II)【解析】(I)在平面ABC内,过点P作直线l∥BC∵直线l?平面A1BC,BC?平面A1BC,∴直线l∥平面A1BC,∵△ABC中,AB=AC,D是BC的中点,∴AD⊥BC,结合l∥BC得AD⊥l∵AA1⊥平面ABC,l?平面ABC,∴AA1⊥l∵AD、AA1是平面ADD1A1内的相交直线∴直线l⊥平面ADD1A1;(II)连接A1P,过点A作AE⊥A1P于E,过E点作EF⊥A1M于F,连接AF由(I)知MN⊥平面A1AE,结合MN?平面A1MN得平面A1MN⊥平面A1AE,∵平面A1MN∩平面A1AE=A1P,AE⊥A1P,∴AE⊥平面A1MN,∵EF⊥A1M,EF是AF在平面A1MN内的射影,∴AF⊥A1M,可得∠AFE就是二面角A﹣A1M﹣N的平面角设AA1=1,则由AB=AC=2AA1,∠BAC=120°,可得∠BAD=60°,AB=2且AD=1又∵P为AD的中点,∴M是AB的中点,得AP=,AM=1Rt△A1AP中,A1P==;Rt△A1AM中,A1M=∴AE==,AF==∴Rt△AEF中,sin∠AFE==,可得cos∠AFE==即二面角A﹣A1M﹣N的余弦值等于.20、【答案】(I)(II)点Q的轨迹方程为10(y﹣2)2﹣3x2=18,其中x∈(﹣,),y∈(,2﹣)【解析】(I)∵椭圆C:(a>b>0)的两个焦点分别为F1(﹣1,0),F2(1,0),且椭圆C经过点.∴c=1,2a=PF1+PF2==2,即a=∴椭圆的离心率e===…4分(II)由(I)知,椭圆C的方程为,设点Q的坐标为(x,y)(1)当直线l与x轴垂直时,直线l与椭圆C交于(0,1)、(0,﹣1)两点,此时点Q 的坐标为(0,2﹣)(2)当直线l与x轴不垂直时,可设其方程为y=kx+2,因为M,N在直线l上,可设点M,N的坐标分别为(x1,kx1+2),(x2,kx2+2),则,,又|AQ|2=(1+k2)x2,∴,即=…①将y=kx+2代入中,得(2k2+1)x2+8kx+6=0…②由△=(8k)2﹣24(2k2+1)>0,得k2>由②知x1+x2=,x1x2=,代入①中化简得x2=…③因为点Q在直线y=kx+2上,所以k=,代入③中并化简得10(y﹣2)2﹣3x2=18由③及k2>可知0<x<,即x∈(﹣,0)∪(0,)由题意,Q(x,y)在椭圆C内,所以﹣1≤y≤1,又由10(y﹣2)2﹣3x2=18得(y﹣2)2∈[,)且﹣1≤y≤1,则y∈(,2﹣)所以,点Q的轨迹方程为10(y﹣2)2﹣3x2=18,其中x∈(﹣,),y∈(,2﹣)…13分21、【答案】(I)f(x)在(﹣∞,﹣1)上单调递减,在(﹣1,0)上单调递增(II)1(III)(﹣1﹣ln2,+∞)【解析】(I)当x<0时,f(x)=(x+1)2+a,∴f(x)在(﹣∞,﹣1)上单调递减,在(﹣1,0)上单调递增;当x>0时,f(x)=lnx,在(0,+∞)单调递增.(II)∵x1<x2<0,∴f(x)=x2+2x+a,∴f′(x)=2x+2,∴函数f(x)在点A,B处的切线的斜率分别为f′(x1),f′(x2),∵函数f(x)的图象在点A,B处的切线互相垂直,∴,∴(2x1+2)(2x2+2)=﹣1.∴2x1+2<0,2x2+2>0,∴=1,当且仅当﹣(2x1+2)=2x2+2=1,即,时等号成立.∴函数f(x)的图象在点A,B处的切线互相垂直,且x2<0,求x2﹣x1的最小值为1.(III)当x1<x2<0或0<x1<x2时,∵,故不成立,∴x1<0<x2.当x1<0时,函数f(x)在点A(x1,f(x1)),处的切线方程为,即.当x2>0时,函数f(x)在点B(x2,f(x2))处的切线方程为,即.函数f(x)的图象在点A,B处的切线重合的充要条件是,由①及x1<0<x2可得﹣1<x1<0,由①②得=.∵函数,y=﹣ln(2x1+2)在区间(﹣1,0)上单调递减,∴a(x1)=在(﹣1,0)上单调递减,且x1→﹣1时,ln(2x1+2)→﹣∞,即﹣ln(2x1+2)→+∞,也即a(x1)→+∞.x1→0,a(x1)→﹣1﹣ln2.∴a的取值范围是(﹣1﹣ln2,+∞).。
2013年普通高等学校招生全国统一考试数学理试题(四川卷)
2013年普通高等学校招生全国统一考试(四川卷)数 学(理科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.设集合{|20}A x x =+=,集合2{|40}B x x =-=,则AB =( )(A ){2}- (B ){2} (C ){2,2}- (D )∅2.如图,在复平面内,点A 表示复数z ,则图中表示z 的共轭复数的点是( )yxDBA OC(A )A (B )B (C )C (D )D3.一个几何体的三视图如图所示,则该几何体的直观图可以是( )4.设x Z ∈,集合A 是奇数集,集合B 是偶数集.若命题:,2p x A x B ∀∈∈,则( )(A ):,2p x A x B ⌝∀∃∈∉ (B ):,2p x A x B ⌝∀∉∉(C ):,2p x A x B ⌝∃∉∈ (D ):,2p x A x B ⌝∃∈∈5.函数()2sin(),(0,)22f x x ππωϕωϕ=+>-<<的部分图象如图所示,则,ωϕ的值分别是( )(A )2,3π-(B )2,6π-(C )4,6π-(D )4,3π6.抛物线24y x =的焦点到双曲线2213yx -=的渐近线的距离是( ) (A )12(B 3 (C )1 (D 37.函数231x x y =-的图象大致是( )8.从1,3,5,7,9这五个数中,每次取出两个不同的数分别为,a b ,共可得到lg lg a b -的不同值的个数是( )(A )9 (B )10 (C )18 (D )209.节日里某家前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,若接通电后的4秒内任一时刻等可能发生,然后每串彩灯在内4秒为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是( )(A )14 (B )12 (C )34 (D )7810.设函数()x f x e x a =+-a R ∈,e 为自然对数的底数).若曲线sin y x =上存在00(,)x y 使得00(())f f y y =,则a 的取值范围是( )(A )[1,]e (B )1[,-11]e -, (C )[1,1]e + (D )1[-1,1]e e -+ 二、填空题:本大题共5小题,每小题5分,共25分.11.二项式5()x y +的展开式中,含23x y 的项的系数是_________.(用数字作答)12.在平行四边形ABCD 中,对角线AC 与BD 交于点O ,AB AD AO λ+=,则λ=_________.13.设sin 2sin αα=-,(,)2παπ∈,则tan 2α的值是_________.14.已知()f x 是定义域为R 的偶函数,当x ≥0时,2()4f x x x =-,那么,不等式(2)5f x +<的解集是________ .15.设12,,,n P P P 为平面α内的n 个点,在平面α内的所有点中,若点P 到12,,,nP P P 点的距离之和最小,则称点P 为12,,,n P P P 点的一个“中位点”.例如,线段AB 上的任意点都是端点,A B 的中位点.则有下列命题:①若,,A B C 三个点共线,C 在线AB 上,则C 是,,A B C 的中位点;②直角三角形斜边的点是该直角三角形三个顶点的中位点;③若四个点,,,A B C D 共线,则它们的中位点存在且唯一;④梯形对角线的交点是该梯形四个顶点的唯一中位点.其中的真命题是____________.(写出所有真命题的序号数学社区)三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.16.(本小题满分12分) 在等差数列{}n a 中,218a a -=,且4a 为2a 和3a 的等比中项,求数列{}n a 的首项、公差及前n 项和.17.(本小题满分12分) 在ABC ∆中,角,,A B C 的对边分别为,,a b c ,且232cos cos sin()sin cos()25A B B A B B A C ---++=-. (Ⅰ)求cos A 的值;(Ⅱ)若a =5b =,求向量BA 在BC 方向上的投影.18.(本小题满分12分)某算法的程序框图如图所示,其中输入的变量x 在1,2,3,,24⋅⋅⋅这24个整数中等可能随机产生.(Ⅰ)分别求出按程序框图正确编程运行时输出y 的值为i 的概率(1,2,3)i P i =;(Ⅱ)甲、乙两同学依据自己对程序框图的理解,各自编写程序重复运行n 次后,统计记录了输出y 的值为(1,2,3)i i =的频数.以下是甲、乙所作频数统计表的部分数据.甲的频数统计表(部分)乙的频数统计表(部分)当2100i i=的频率(用分数表示),并判断两位写出甲、乙所编程序各自输出y的值为(1,2,3)同学中哪一位所编写程序符合算法要求的可能性较大;(Ⅲ)按程序框图正确编写的程序运行3次,求输出y的值为2的次数ξ的分布列及数学期望.19.(本小题满分12分) 如图,在三棱柱11ABC A B C -中,侧棱1AA ⊥底面ABC ,12AB AC AA ==,120BAC ∠=,1,D D 分别是线段11,BC B C 的中点,P 是线段AD 的中点.(Ⅰ)在平面ABC 内,试作出过点P 与平面1A BC 平行的直线l ,说明理由,并证明直线l ⊥平面11ADD A ;(Ⅱ)设(Ⅰ)中的直线l 交AB 于点M ,交AC 于点N ,求二面角1A A M N --的余弦值.1C20.(本小题满分13分) 已知椭圆C :22221,(0)x y a b a b+=>>的两个焦点分别为12(1,0),(1,0)F F -,且椭圆C 经过点41(,)33P .(Ⅰ)求椭圆C 的离心率;(Ⅱ)设过点(0,2)A 的直线l 与椭圆C 交于M 、N 两点,点Q 是线段MN 上的点,且222211||||||AQ AM AN =+,求点Q 的轨迹方程.21.(本小题满分14分)已知函数22,0()ln ,0x x a x f x x x ⎧++<=⎨>⎩,其中a 是实数.设11(,())A x f x ,22(,())B x f x 为该函数图象上的两点,且12x x <.(Ⅰ)指出函数()f x 的单调区间;(Ⅱ)若函数()f x 的图象在点,A B 处的切线互相垂直,且20x <,求21x x -的最小值;(Ⅲ)若函数()f x 的图象在点,A B 处的切线重合,求a 的取值范围.参考答案一、 选择题:本题考查基本概念和基本运算.每小题5分,满分50分.1.A2.B3.D4.D5.A6.B7.C8.C9.C 10.A二、填空题:本题考查基础知识和基本运算.每小题5分,满分25分.11.10 12.2 14.(7,3)- 15.①④三、解答题:共6小题,共75分.16.解:设该数列公差为d ,前n 项和为n s .由已知,可得()()()21111228,38a d a d a d a d +=+=++.所以()114,30a d d d a +=-=,解得14,0a d ==,或11,3a d ==,即数列{}n a 的首相为4,公差为0,或首相为1,公差为3.所以数列的前n 项和4n s n =或232n n ns -=. ………….12分17.解:()I 由()()232cos cos sin sin cos 25A B B A B B A C ---++=-,得 ()()3cos 1cos sin sin cos 5A B B A B B B -+---=-⎡⎤⎣⎦, 即()()3cos cos sin sin 5A B B A B B ---=-,则()3cos 5A B B -+=-,即3cos 5A =-. ………….. 5分()II 由3cos ,05A A π=-<<,得4sin 5A =,由正弦定理,有sin sin a bA B=,所以,sin sin b A B a ==. 由题知a b >,则A B >,故4B π=.根据余弦定理,有(22235255c c ⎛⎫=+-⨯⨯- ⎪⎝⎭,解得1c =或7c =-(舍去).故向量BA 在BC 方向上的投影为cos 2BA B =. ………….12分 18. 解:()I .变量x 是在1,2,3,……24这24个整数中随机产生的一个数,共有24种可能.当x 从1,3,5,7,9,11,13,15,17,19,21,23这12个数中产生时,输出y 的值为1,故112p =; 当x 从2,4,8,10,14,16,20,22这8个数中产生时,输出y 的值为2,故213p =; 当x 从6,12,18,24这4个数中产生时,输出y 的值为3,故316p =. ……………3分 ()II 当n=2100时,甲、乙所编程序各自输出y 的值为i(i=1,2,3)的频率如下:比较频率趋势与概率,可得乙同学所编程序符合算法要求的可能性较大. ………7分(3)随机变量ξ可能饿取值为0,1,2,3.0303128(0)3327p C ξ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭ 1213124(1)339p C ξ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭ 2123122(2)339p C ξ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭ 333121(3)3327p C ξ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭故ξ的分布列为842101231279927E ξ=⨯+⨯+⨯+⨯= 所以即ξ的数学期望为1. ………12分19.解:()I 如图,在平面ABC 内,过点P 做直线l //BC ,因为l 在平面1A BC 外,BC 在平面1A BC 内,由直线与平面平行的判定定理可知, l //平面1A BC .由已知,AB AC =,D 是BC 的中点,所以,BC AD ⊥,则直线l AD ⊥.因为1AA ⊥平面ABC ,所以1AA ⊥直线l .又因为1,AD AA 在平面11ADD A 内,且AD 与1AA 相交,所以直线平面11ADD A . …………………………………………………………………………….6分()II 解法一:连接1A P ,过A 作1AE A P ⊥于E ,过E 作1EF A M ⊥于F ,连接AF . 由()I 知,MN ⊥平面1AEA ,所以平面1AEA ⊥平面1A MN .所以AE ⊥平面1A MN ,则1A M AE ⊥.所以1A M ⊥平面AEF ,则1A M ⊥AF .故AFE ∠为二面角1A A M N --的平面角(设为θ).设11AA =,则由12AB AC AA ==,120BAC ∠=,有60BAD ∠=,2,1AB AD ==.又P 为AD 的中点,所以M 为AB 的中点,且1,12AP AM ==,在1Rt AA P 中, 152A P =;在1Rt A AM 中, 12AM =. 从而,115AA AP AE A P •==,112AA AM AF A M •==,所以2sin 5AE AF θ==. 所以22215cos 1sin 15θθ⎛⎫=-=-= ⎪ ⎪⎝⎭. 故二面角1A A M N --的余弦值为155. ………………12分 解法二:设11AA =.如图,过1A 作1A E 平行于11B C ,以1A 为坐标原点,分别以111,AE AD ,1AA 的方向为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系Oxyz (点O 与点1A 重合).则()10,0,0A ,()0,0,1A .因为P 为AD 的中点,所以,M N 分别为,AB AC 的中点,故11,,1,,12222M N ⎛⎫⎛⎫-⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭, 所以131,12A M ⎛⎫= ⎪ ⎪⎝⎭,()10,0,1A A =,()3,0,0NM =.设平面1AA M 的一个法向量为()1111,,n x y z =,则1111,,n A M n A A ⎧⊥⎪⎨⊥⎪⎩即11110,0,n A M n A A ⎧•=⎪⎨•=⎪⎩故有 ()()()1111111,,,10,22,,0,0,10,x y z x y z ⎧⎛⎫•=⎪⎪ ⎪⎨⎝⎭⎪•=⎩ 从而111110,220.x y z z ++=⎨⎪=⎩取11x =,则1y =,所以()11,n =.设平面1A MN 的一个法向量为()2222,,n x y z =,则212,,n A M n NM ⎧⊥⎪⎨⊥⎪⎩即2120,0,n A M n NM ⎧•=⎪⎨•=⎪⎩故有()())2222221,,,10,2,,0,x y z x y z ⎧⎫•=⎪⎪⎪⎪⎝⎭⎨⎪•=⎪⎩ 从而222210,20.x y z ++=⎨⎪=⎩取22y =,则21z =-,所以()20,2,1n =-.设二面角1A A M N --的平面角为θ,又θ为锐角,则1212cos 5n n n n θ•===•.故二面角1AA M N --. ………………12分 20.解:122a PF PF =+==所以,a =又由已知,1c =,所以椭圆C的离心率c e a ===…………4分 ()II 由()I 知椭圆C 的方程为2212x y +=.设点Q 的坐标为(x,y).(1)当直线l 与x 轴垂直时,直线l 与椭圆C 交于()()0,1,0,1-两点,此时Q 点坐标为0,25⎛- ⎝⎭(2) 当直线l 与x 轴不垂直时,设直线l 的方程为2y kx =+.因为,M N 在直线l 上,可设点,M N 的坐标分别为1122(,2),(,2)x kx x kx ++,则22222212(1),(1)AM k x AN k x =+=+. 又()222222(1).AQ x y k x =+-=+由222211AQAMAN=+,得()()()22222212211111k x k x k x =++++,即 ()212122222212122211x x x x x x x x x +-=+= ① 将2y kx =+代入2212x y +=中,得()2221860kx kx +++= ②由()()22842160,k k ∆=-⨯+⨯>得232k >. 由②可知12122286,,2121k x x x x k k +=-=++ 代入①中并化简,得2218103x k =- ③因为点Q 在直线2y kx =+上,所以2y k x-=,代入③中并化简,得()22102318y x --=.由③及232k >,可知2302x <<,即60,22x ⎛⎫⎛⎫∈- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭.又0,25⎛⎫-⎪ ⎪⎝⎭满足()22102318y x --=,故22x ⎛∈- ⎝⎭. 由题意,(),Q x y 在椭圆C 内部,所以11y -≤≤, 又由()22102183y x -=+有()2992,54y ⎡⎫-∈⎪⎢⎣⎭且11y -≤≤,则1,22y ⎛∈ ⎝⎦.所以点Q 的轨迹方程是()22102318y x --=,其中,22x ⎛∈ ⎝⎭,1,225y ⎛∈- ⎝⎦………..13分 21.解:()I 函数()f x 的单调递减区间为(),1-∞-,单调递增区间为[)1,0-,()0,+∞()II 由导数的几何意义可知,点A 处的切线斜率为()1f x ',点B 处的切线斜率为()2f x ',故当点A 处的切线与点B 处的切垂直时,有()()121f x f x ''=-. 当0x <时,对函数()f x 求导,得()22f x x '=+.因为120x x <<,所以()()1222221x x ++=-, 所以()()12220,220x x +<+>.因此()()21121222212x x x x -=-+++≥=⎡⎤⎣⎦当且仅当()122x -+=()222x +=1,即123122x x =-=且时等号成立. 所以函数()f x 的图象在点,A B 处的切线互相垂直时,21x x -的最小值为1 (7)分()III 当120x x <<或210x x >>时,()()12f x f x ''≠,故120x x <<.当10x <时,函数()f x 的图象在点()()11,x f x 处的切线方程为()()()21111222y x x a x x x -++=+-,即()21122y x x x a =+-+当20x >时,函数()f x 的图象在点()()22,x f x 处的切线方程为()2221ln y x x x x -=-,即221ln 1y x x x =•+-. 两切线重合的充要条件是1222112 2 ln 1 x x x x a ⎧=+⎪⎨⎪-=-+⎩①②由①及120x x <<知,110x -<<.由①②得,()2211111ln1ln 22122a x x x x =+-=-+-+.设()()21111ln 221(10)h x x x x =-+--<<,则()1111201h x x x '=-<+.所以()()1110h x x -<<是减函数. 则()()10ln21h x h >=--,所以ln21a >--.又当1(1,0)x ∈-且趋近于1-时,()1h x 无限增大,所以a 的取值范围是()ln21,--+∞. 故当函数()f x 的图像在点,A B 处的切线重合时,a 的取值范围是()ln21,--+∞.14分。
2013年普通高等学校招生全国统一考试数学理试题(四川卷)
2013年普通高等学校招生全国统一考试(四川卷)数 学(理科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.设集合{|20}A x x =+=,集合2{|40}B x x =-=,则AB =( )(A ){2}- (B ){2} (C ){2,2}- (D )∅2.如图,在复平面内,点A 表示复数z ,则图中表示z 的共轭复数的点是( )(A )A (B )B (C )C(D )D 3.一个几何体的三视图如图所示,则该几何体的直观图可以是( )4.设x Z ∈,集合A 是奇数集,集合B 是偶数集.若命题:,2p x A x B ∀∈∈,则( ) (A ):,2p x A x B ⌝∀∃∈∉ (B ):,2p x A x B ⌝∀∉∉ (C ):,2p x A x B ⌝∃∉∈ (D ):,2p x A x B ⌝∃∈∈ 5.函数()2sin(),(0,)22f x x ππωϕωϕ=+>-<<的部分图象如图所示,则,ωϕ的值分别是( )(A )2,3π-(B )2,6π-(C )4,6π-(D )4,3π6.抛物线24y x =的焦点到双曲线2213yx -=的渐近线的距离是( )(A )12(B (C )1 (D 7.函数231x x y =-的图象大致是( )8.从1,3,5,7,9这五个数中,每次取出两个不同的数分别为,a b ,共可得到lg lg a b -的不同值的个数是( )(A )9 (B )10 (C )18 (D )20 9.节日里某家前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,若接通电后的4秒内任一时刻等可能发生,然后每串彩灯在内4秒为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是( ) (A )14 (B )12 (C )34 (D )7810.设函数()f x =a R ∈,e 为自然对数的底数).若曲线sin y x =上存在00(,)x y 使得00(())f f y y =,则a 的取值范围是( )(A )[1,]e (B )1[,-11]e -, (C )[1,1]e + (D )1[-1,1]e e -+ 二、填空题:本大题共5小题,每小题5分,共25分.11.二项式5()x y +的展开式中,含23x y 的项的系数是_________.(用数字作答) 12.在平行四边形ABCD 中,对角线AC 与BD 交于点O ,AB AD AO λ+=,则λ=_________.13.设sin 2sin αα=-,(,)2παπ∈,则tan 2α的值是_________.14.已知()f x 是定义域为R 的偶函数,当x ≥0时,2()4f x x x =-,那么,不等式(2)5f x +<的解集是________ .15.设12,,,n P P P 为平面α内的n 个点,在平面α内的所有点中,若点P 到12,,,n P P P 点的距离之和最小,则称点P 为12,,,n P P P 点的一个“中位点”.例如,线段AB 上的任意点都是端点,A B 的中位点.则有下列命题:①若,,A B C 三个点共线,C 在线AB 上,则C 是,,A B C 的中位点; ②直角三角形斜边的点是该直角三角形三个顶点的中位点; ③若四个点,,,A B C D 共线,则它们的中位点存在且唯一; ④梯形对角线的交点是该梯形四个顶点的唯一中位点.其中的真命题是____________.(写出所有真命题的序号数学社区)三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤. 16.(本小题满分12分) 在等差数列{}n a 中,218a a -=,且4a 为2a 和3a 的等比中项,求数列{}n a 的首项、公差及前n 项和.17.(本小题满分12分) 在ABC ∆中,角,,A B C 的对边分别为,,a b c ,且232cos cos sin()sin cos()25A B B A B B A C ---++=-. (Ⅰ)求cos A 的值;(Ⅱ)若a =5b =,求向量BA 在BC 方向上的投影.18.(本小题满分12分)某算法的程序框图如图所示,其中输入的变量x 在1,2,3,,24⋅⋅⋅这24个整数中等可能随机产生.(Ⅰ)分别求出按程序框图正确编程运行时输出y 的值为i 的概率(1,2,3)i P i =; (Ⅱ)甲、乙两同学依据自己对程序框图的理解,各自编写程序重复运行n 次后,统计记录了输出y 的值为(1,2,3)i i =的频数.以下是甲、乙所作频数统计表的部分数据.甲的频数统计表(部分) 乙的频数统计表(部分)当2100n =时,根据表中的数据,分别写出甲、乙所编程序各自输出y 的值为(1,2,3)i i =的频率(用分数表示),并判断两位同学中哪一位所编写程序符合算法要求的可能性较大; (Ⅲ)按程序框图正确编写的程序运行3次,求输出y 的值为2的次数ξ的分布列及数学期望.19.(本小题满分12分) 如图,在三棱柱11ABC A B C -中,侧棱1AA ⊥底面ABC ,12AB AC AA ==,120BAC ∠=,1,D D 分别是线段11,BC B C 的中点,P 是线段AD 的中点.(Ⅰ)在平面ABC 内,试作出过点P 与平面1A BC 平行的直线l ,说明理由,并证明直线l ⊥平面11ADD A ;(Ⅱ)设(Ⅰ)中的直线l 交AB 于点M ,交AC 于点N ,求二面角1A A M N --的余弦值.1C20.(本小题满分13分) 已知椭圆C :22221,(0)x y a b a b +=>>的两个焦点分别为12(1,0),(1,0)F F -,且椭圆C 经过点41(,)33P .(Ⅰ)求椭圆C 的离心率;(Ⅱ)设过点(0,2)A 的直线l 与椭圆C 交于M 、N 两点,点Q 是线段MN 上的点,且222211||||||AQ AM AN =+,求点Q 的轨迹方程.21.(本小题满分14分)已知函数22,0()ln ,0x x a x f x x x ⎧++<=⎨>⎩,其中a 是实数.设11(,())A x f x ,22(,())B x f x 为该函数图象上的两点,且12x x <.(Ⅰ)指出函数()f x 的单调区间;(Ⅱ)若函数()f x 的图象在点,A B 处的切线互相垂直,且20x <,求21x x -的最小值; (Ⅲ)若函数()f x 的图象在点,A B 处的切线重合,求a 的取值范围.参考答案一、 选择题:本题考查基本概念和基本运算.每小题5分,满分50分. 1.A 2.B 3.D 4.D 5.A 6.B 7.C 8.C 9.C 10.A二、填空题:本题考查基础知识和基本运算.每小题5分,满分25分.11.10 12.2 14.(7,3)- 15.①④ 三、解答题:共6小题,共75分.16.解:设该数列公差为d ,前n 项和为n s .由已知,可得()()()21111228,38a d a d a d a d +=+=++.所以()114,30a d d d a +=-=,解得14,0a d ==,或11,3a d ==,即数列{}n a 的首相为4,公差为0,或首相为1,公差为3.所以数列的前n 项和4n s n =或232n n ns -=. ………….12分17.解:()I 由()()232cos cos sin sin cos 25A B B A B B A C ---++=-,得()()3cos 1cos sin sin cos 5A B B A B B B -+---=-⎡⎤⎣⎦, 即()()3cos cos sin sin 5A B B A B B ---=-,则()3cos 5A B B -+=-,即3cos 5A =-. ………….. 5分()II 由3cos ,05A A π=-<<,得4sin 5A =,由正弦定理,有sin sin a bA B=,所以,sin sin b A B a ==由题知a b >,则A B >,故4B π=.根据余弦定理,有(22235255c c ⎛⎫=+-⨯⨯- ⎪⎝⎭,解得1c =或7c =-(舍去).故向量BA 在BC 方向上的投影为cos 2BA B =. ………….12分 18. 解:()I .变量x 是在1,2,3,……24这24个整数中随机产生的一个数,共有24种可能. 当x 从1,3,5,7,9,11,13,15,17,19,21,23这12个数中产生时,输出y 的值为1,故112p =; 当x 从2,4,8,10,14,16,20,22这8个数中产生时,输出y 的值为2,故213p =; 当x 从6,12,18,24这4个数中产生时,输出y 的值为3,故316p =. ……………3分 ()II 当n=2100时,甲、乙所编程序各自输出y 的值为i(i=1,2,3)的频率如下:比较频率趋势与概率,可得乙同学所编程序符合算法要求的可能性较大. ………7分 (3)随机变量ξ可能饿取值为0,1,2,3.0303128(0)3327p C ξ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭ 1213124(1)339p C ξ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭ 2123122(2)339p C ξ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭ 333121(3)3327p C ξ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭故ξ的分布列为所以842101231279927E ξ=⨯+⨯+⨯+⨯= 即ξ的数学期望为1. ………12分19.解:()I 如图,在平面ABC 内,过点P 做直线l //BC ,因为l 在平面1A BC 外,BC 在平面1A BC 内,由直线与平面平行的判定定理可知, l //平面1A BC .由已知,AB AC =,D 是BC 的中点,所以,BC AD ⊥,则直线l AD ⊥. 因为1AA ⊥平面ABC ,所以1AA ⊥直线l .又因为1,AD AA 在平面11ADD A 内,且AD 与1AA 相交,所以直线平面11ADD A . …………………………………………………………………………….6分()II 解法一:连接1A P ,过A 作1AE A P ⊥于E ,过E 作1EF A M ⊥于F ,连接AF . 由()I 知,MN ⊥平面1AEA ,所以平面1AEA ⊥平面1A MN . 所以AE ⊥平面1A MN ,则1A M AE ⊥. 所以1A M ⊥平面AEF ,则1A M ⊥AF .故AFE ∠为二面角1A A M N --的平面角(设为θ).设11AA =,则由12AB AC AA ==,120BAC ∠=,有60BAD ∠=,2,1AB AD ==. 又P 为AD 的中点,所以M 为AB 的中点,且1,12AP AM ==, 在1Rt AA P 中, 12A P =;在1Rt A AM 中, 1AM 从而,11AA AP AE A P ∙==,11AA AM AF A M ∙==,所以sin AE AF θ==.所以cos θ===. 故二面角1A A M N --的余弦值为5. ………………12分 解法二:设11AA =.如图,过1A 作1A E 平行于11B C ,以1A 为坐标原点,分别以111,AE AD ,1AA 的方向为x 轴,y 轴,z 轴的正方向,建立空间直角坐标系Oxyz (点O 与点1A 重合).则()10,0,0A ,()0,0,1A .因为P 为AD 的中点,所以,M N 分别为,AB AC 的中点,故11,1,,12222M N ⎛⎫⎛⎫-⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭, 所以131,12A M ⎛⎫= ⎪⎪⎝⎭,()10,0,1A A =,()3,0,0NM =.设平面1AA M 的一个法向量为()1111,,n x y z =,则1111,,n A M n A A ⎧⊥⎪⎨⊥⎪⎩即11110,0,n A M n A A ⎧∙=⎪⎨∙=⎪⎩故有 ()()()1111111,,,10,22,,0,0,10,x y z x y z ⎧⎛⎫∙=⎪ ⎪ ⎪⎨⎝⎭⎪∙=⎩从而111110,20.y z z ++=⎪=⎩取11x =,则1y =所以()11,n =. 设平面1A MN 的一个法向量为()2222,,n x y z =,则212,,n A M n NM ⎧⊥⎪⎨⊥⎪⎩即2120,0,n A M n NM ⎧∙=⎪⎨∙=⎪⎩故有()())2222221,,,10,2,,0,x y z x y z ⎧⎫∙=⎪⎪⎪⎪⎝⎭⎨⎪∙=⎪⎩从而222210,220.x y z ++=⎪⎨⎪=⎩取22y =,则21z =-,所以()20,2,1n =-. 设二面角1A A M N --的平面角为θ,又θ为锐角,则1212cos n n n n θ∙===∙.故二面角1A A M N --的余弦值为5. ………………12分 20.解:122a PF PF =+==所以,a =又由已知,1c =, 所以椭圆C的离心率2c e a ===……………4分 ()II 由()I 知椭圆C 的方程为2212x y +=.设点Q 的坐标为(x,y).(1)当直线l 与x 轴垂直时,直线l 与椭圆C 交于()()0,1,0,1-两点,此时Q 点坐标为0,25⎛- ⎝⎭ (2) 当直线l 与x 轴不垂直时,设直线l 的方程为2y kx =+.因为,M N 在直线l 上,可设点,M N 的坐标分别为1122(,2),(,2)x kx x kx ++,则22222212(1),(1)AM k x AN k x =+=+. 又()222222(1).AQ x y k x =+-=+由222211AQ AM AN =+,得()()()22222212211111k x k x k x =++++,即()212122222212122211x x x x x x x x x +-=+= ① 将2y kx =+代入2212x y +=中,得 ()2221860k x kx +++= ②由()()22842160,k k ∆=-⨯+⨯>得232k >. 由②可知12122286,,2121k x x x x k k +=-=++ 代入①中并化简,得2218103x k =- ③因为点Q 在直线2y kx =+上,所以2y k x -=,代入③中并化简,得()22102318y x --=.由③及232k >,可知2302x <<,即60,22x ⎛⎫⎛⎫∈- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. 又0,2⎛-⎝⎭满足()22102318y x --=,故x ⎛∈ ⎝⎭. 由题意,(),Q x y 在椭圆C 内部,所以11y -≤≤,又由()22102183y x -=+有()2992,54y ⎡⎫-∈⎪⎢⎣⎭且11y -≤≤,则1,225y ⎛∈- ⎝⎦. 所以点Q 的轨迹方程是()22102318y x --=,其中,22x ⎛∈-⎝⎭,1,22y ⎛∈ ⎝⎦………..13分 21.解:()I 函数()f x 的单调递减区间为(),1-∞-,单调递增区间为[)1,0-,()0,+∞()II 由导数的几何意义可知,点A 处的切线斜率为()1f x ',点B 处的切线斜率为()2f x ',故当点A 处的切线与点B 处的切垂直时,有()()121f x f x ''=-. 当0x <时,对函数()f x 求导,得()22f x x '=+. 因为120x x <<,所以()()1222221x x ++=-, 所以()()12220,220x x +<+>.因此()()21121222212x x x x -=-+++≥=⎡⎤⎣⎦ 当且仅当()122x -+=()222x +=1,即123122x x =-=且时等号成立.所以函数()f x 的图象在点,A B 处的切线互相垂直时,21x x -的最小值为1…………7分()III 当120x x <<或210x x >>时,()()12f x f x ''≠,故120x x <<.当10x <时,函数()f x 的图象在点()()11,x f x 处的切线方程为 ()()()21111222y x x a x x x -++=+-,即()21122y x x x a =+-+ 当20x >时,函数()f x 的图象在点()()22,x f x 处的切线方程为 ()2221ln y x x x x -=-,即221ln 1y x x x =∙+-. 两切线重合的充要条件是1222112 2 ln 1 x x x x a ⎧=+⎪⎨⎪-=-+⎩①② 由①及120x x <<知,110x -<<. 由①②得,()2211111ln 1ln 22122a x x x x =+-=-+-+. 设()()21111ln 221(10)h x x x x =-+--<<, 则()1111201h x x x '=-<+. 所以()()1110h x x -<<是减函数. 则()()10ln21h x h >=--, 所以ln21a >--.又当1(1,0)x ∈-且趋近于1-时,()1h x 无限增大,所以a 的取值范围是()ln21,--+∞. 故当函数()f x 的图像在点,A B 处的切线重合时,a 的取值范围是()ln21,--+∞.14分。
da2013年高考数学试卷答案 四川理
2013年普通高等学校招生全国统一考试(四川卷)数学(理工类)1.A2.B3. D4. D5. A6. B7.C8. C9. C 10.A 11.10 12.214. {}73x x -<< 15.①④16.解:由题意可知,1329428,,a a a a a ⎧⎪⎨=+=⎪⎩ 即1214,30,a d a d d +=⎧⎨-=⎩解得1=4,0,a d ⎧⎨=⎩或1=1,3,a d ⎧⎨=⎩ (1)当1=4,0a d=时,4n S n =;(2)当11,3a d ==时,232n n nS -=.17.解:(1)由题意可知2()cos sin()sin cos()22cosA B B A B B A C ---++ [1cos()]cos sin()sin()cos A B B A B A C B=+---+- 3cos()cos sin()sin cos(+)cos 5A B B A B B A B B A =---=-==-,所以3cos 5A =-;(2)由正弦定理,得sin sin b A B a ==,则cos B =,又由余弦定理有2cos 2B ==,解得 1c =或7c =-(舍去),故向量BA 在BC 方向上的投影cos 2cos BA BC BBA BC c B BCBC====.18.解:(1)当1i =时,即输出的数为奇数,奇数有12个,则112P =; 当3i =时,即输出的数为能整除3的偶数,有4个,则316P =; 当2i =时,即输出的数为剩下的8个,则213P =, 所以112P =,213P =,316P =; (2)甲:1231027376697===210021002100P P P ,,;乙:1231051696353===210021002100P P P ,,,根据频率的趋势与概率可知,乙编写的程序更符合算法要求. (3)设输出y 的值为2为事件A ,且1()3P A =,则该实验为独立重复事件,次数ξ的分布列为303128(0)3327P C ξ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭, 1213124(1)339P C ξ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭, 2123122(2)339P C ξ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭, 333121(3)3327P C ξ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭, 8421()01231279927E ξ=⨯+⨯+⨯+⨯=. 19.解:(1)由题意可知,直线l //BC ,又AB AC =,D 是BC 的中点,则BC AD ⊥, 又在三棱柱11ABC A B C -中,1BC DD ⊥,且111,A DD ADD D A ⊂,则11AD B D C A ⊥, 所以直线l ⊥平面11ADD A(2)连接1A P ,过A 作1AE A P ⊥于E ,过E 作1EF A M ⊥于F ,连接AF .由(1)知,MN ⊥平面1AEA ,所以平面1AEA ⊥平面1A MN ,所以AE ⊥平面1A MN ,则1A M AE ⊥.所以1A M ⊥平面AEF ,则1A M AF ⊥.故AFE ∠为二面角1A A M N -- 的平面角(设为θ).设11AA =,则由12AB AC AA ==,120BAC∠=,有60BAD ∠=,2AB =,1AD =,又P 为AD 的中点,所以M 为AB 中点, 且12AP =,1AM =,所以,在1Rt AA P ∆,1A P =在在1Rt A MP ∆,1A M =从而1111AA AP AA AM AE AF A P A M ⋅⋅====所以sin AE AF θθ====20.解:(1)椭圆过焦点1F ,故1c =,221a b ∴=+。
普通高等学校招生全国统一考试数学理试题(四川卷)
2013年普通高等学校招生全国统一考试(四川卷)数学(理科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出嘚四个选项中,只有一个是符合题目要求嘚.1.设集合{|20}A x x=+=,集合2{|40}B x x=-=,则A B=()(A){2}-(B){2}(C){2,2}-(D)∅2.如图,在复平面内,点A表示复数z,则图中表示z嘚共轭复数嘚点是()yxDBAOC(A)A(B)B(C)C(D)D3.一个几何体嘚三视图如图所示,则该几何体嘚直观图可以是()4.设x Z∈,集合A是奇数集,集合B是偶数集.若命题:,2p x A x B∀∈∈,则()(A):,2p x A x B⌝∀∃∈∉(B):,2p x A x B⌝∀∉∉(C):,2p x A x B⌝∃∉∈(D):,2p x A x B⌝∃∈∈5.函数()2sin(),(0,)22f x xππωϕωϕ=+>-<<嘚部分图象如图所示,则,ωϕ嘚值分别是( )(A )2,3π-(B )2,6π-(C )4,6π-(D )4,3π6.抛物线24y x =嘚焦点到双曲线2213yx -=嘚渐近线嘚距离是( ) (A )12(B )32 (C )1 (D )37.函数231x x y =-嘚图象大致是( )8.从1,3,5,7,9这五个数中,每次取出两个不同嘚数分别为,a b ,共可得到lg lg a b -嘚不同值嘚个数是( )(A )9 (B )10 (C )18 (D )209.节日里某家前嘚树上挂了两串彩灯,这两串彩灯嘚第一次闪亮相互独立,若接通电后嘚4秒内任一时刻等可能发生,然后每串彩灯在内4秒为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮嘚时刻相差不超过2秒嘚概率是( ) (A )14 (B )12 (C )34 (D )7810.设函数()x f x e x a =+-(a R ∈,e 为自然对数嘚底数).若曲线sin y x =上存在00(,)x y 使得00(())f f y y =,则a 嘚取值范围是( )(A )[1,]e (B )1[,-11]e -, (C )[1,1]e + (D )1[-1,1]e e -+ 二、填空题:本大题共5小题,每小题5分,共25分.11.二项式5()x y +嘚展开式中,含23x y 嘚项嘚系数是_________.(用数字作答)12.在平行四边形ABCD 中,对角线AC 与BD 交于点O ,AB AD AO λ+=,则λ=_________. 13.设sin 2sin αα=-,(,)2παπ∈,则tan 2α嘚值是_________.14.已知()f x 是定义域为R 嘚偶函数,当x ≥0时,2()4f x x x =-,那么,不等式(2)5f x +<嘚解集是________ . 15.设12,,,n P P P 为平面α内嘚n 个点,在平面α内嘚所有点中,若点P 到12,,,n P P P 点嘚距离之和最小,则称点P 为12,,,n P P P 点嘚一个“中位点”.例如,线段AB 上嘚任意点都是端点,A B嘚中位点.则有下列命题:①若,,A B C 三个点共线,C 在线AB 上,则C 是,,A B C 嘚中位点; ②直角三角形斜边嘚点是该直角三角形三个顶点嘚中位点; ③若四个点,,,A B C D 共线,则它们嘚中位点存在且唯一; ④梯形对角线嘚交点是该梯形四个顶点嘚唯一中位点. 其中嘚真命题是____________.(写出所有真命题嘚序号数学社区)三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.16.(本小题满分12分) 在等差数列{}n a 中,218a a -=,且4a 为2a 和3a 嘚等比中项,求数列{}n a 嘚首项、公差及前n 项和.17.(本小题满分12分) 在ABC ∆中,角,,A B C 嘚对边分别为,,a b c ,且232cos cos sin()sin cos()25A B B A B B A C ---++=-. (Ⅰ)求cos A 嘚值; (Ⅱ)若42a =,5b =,求向量BA 在BC 方向上嘚投影.18.(本小题满分12分)某算法嘚程序框图如图所示,其中输入嘚变量x 在1,2,3,,24⋅⋅⋅这24个整数中等可能随机产生.(Ⅰ)分别求出按程序框图正确编程运行时输出y 嘚值为i 嘚概率(1,2,3)i P i =;(Ⅱ)甲、乙两同学依据自己对程序框图嘚理解,各自编写程序重复运行n 次后,统计记录了输出y 嘚值为(1,2,3)i i =嘚频数.以下是甲、乙所作频数统计表嘚部分数据.甲嘚频数统计表(部分) 乙嘚频数统计表(部分)当2100n =时,根据表中嘚数据,分别写出甲、乙所编程序各自输出y 嘚值为(1,2,3)i i =嘚频率(用分数表示),并判断两位同学中哪一位所编写程序符合算法要求嘚可能性较大;运行次数n 输出y 嘚值 为1嘚频数输出y 嘚值 为2嘚频数 输出y 嘚值为3嘚频数3014610…………2100 1027 376 697运行次数n 输出y 嘚值 为1嘚频数输出y 嘚值 为2嘚频数 输出y 嘚值为3嘚频数3012117…………21001051 696 353(Ⅲ)按程序框图正确编写嘚程序运行3次,求输出y 嘚值为2嘚次数ξ嘚分布列及数学期望.19.(本小题满分12分) 如图,在三棱柱11ABC A B C -中,侧棱1AA ⊥底面ABC ,12AB AC AA ==,120BAC ∠=,1,D D 分别是线段11,BC B C 嘚中点,P 是线段AD 嘚中点.(Ⅰ)在平面ABC 内,试作出过点P 与平面1A BC 平行嘚直线l ,说明理由,并证明直线l ⊥平面11ADD A ;(Ⅱ)设(Ⅰ)中嘚直线l 交AB 于点M ,交AC 于点N ,求二面角1A A M N --嘚余弦值.D 1D CB A 1B 1C 1A P20.(本小题满分13分) 已知椭圆C :22221,(0)x y a b a b+=>>嘚两个焦点分别为12(1,0),(1,0)F F -,且椭圆C 经过点41(,)33P .(Ⅰ)求椭圆C 嘚离心率;(Ⅱ)设过点(0,2)A 嘚直线l 与椭圆C 交于M 、N 两点,点Q 是线段MN 上嘚点,且222211||||||AQ AM AN =+,求点Q 嘚轨迹方程.21.(本小题满分14分)已知函数22,0()ln ,0x x a x f x x x ⎧++<=⎨>⎩,其中a 是实数.设11(,())A x f x ,22(,())B x f x 为该函数图象上嘚两点,且12x x <.(Ⅰ)指出函数()f x 嘚单调区间;(Ⅱ)若函数()f x 嘚图象在点,A B 处嘚切线互相垂直,且20x <,求21x x -嘚最小值; (Ⅲ)若函数()f x 嘚图象在点,A B 处嘚切线重合,求a 嘚取值范围.参考答案一、 选择题:本题考查基本概念和基本运算.每小题5分,满分50分. 1.A 2.B 3.D 4.D 5.A 6.B 7.C 8.C 9.C 10.A二、填空题:本题考查基础知识和基本运算.每小题5分,满分25分. 11.10 12.2 13.3 14.(7,3)- 15.①④ 三、解答题:共6小题,共75分.16.解:设该数列公差为d ,前n 项和为n s .由已知,可得()()()21111228,38a d a d a d a d +=+=++.所以()114,30a d d d a +=-=,解得14,0a d ==,或11,3a d ==,即数列{}n a 嘚首相为4,公差为0,或首相为1,公差为3.所以数列嘚前n 项和4n s n =或232n n ns -=. ………….12分17.解:()I 由()()232cos cos sin sin cos 25A B B A B B A C ---++=-,得()()3cos 1cos sin sin cos 5A B B A B B B -+---=-⎡⎤⎣⎦, 即()()3cos cos sin sin 5A B B A B B ---=-,则()3cos 5A B B -+=-,即3cos 5A =-. ………….. 5分()II 由3cos ,05A A π=-<<,得4sin 5A =,由正弦定理,有sin sin a bA B=,所以,sin 2sin 2b A B a ==. 由题知a b >,则A B >,故4B π=.根据余弦定理,有()2223425255c c ⎛⎫=+-⨯⨯- ⎪⎝⎭,解得1c =或7c =-(舍去).故向量BA 在BC 方向上嘚投影为2cos 2BA B =. ………….12分 18. 解:()I .变量x 是在1,2,3,……24这24个整数中随机产生嘚一个数,共有24种可能. 当x 从1,3,5,7,9,11,13,15,17,19,21,23这12个数中产生时,输出y 嘚值为1,故112p =; 当x 从2,4,8,10,14,16,20,22这8个数中产生时,输出y 嘚值为2,故213p =; 当x 从6,12,18,24这4个数中产生时,输出y 嘚值为3,故316p =. ……………3分 ()II 当n=2100时,甲、乙所编程序各自输出y 嘚值为i(i=1,2,3)嘚频率如下:比较频率趋势与概率,可得乙同学所编程序符合算法要求嘚可能性较大. ………7分 (3)随机变量ξ可能饿取值为0,1,2,3.0303128(0)3327p C ξ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭ 1213124(1)339p C ξ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭2123122(2)339p C ξ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭ 3033121(3)3327p C ξ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭故ξ嘚分布列为842101231279927E ξ=⨯+⨯+⨯+⨯= 所以即ξ嘚数学期望为1. ………12分19.解:()I 如图,在平面ABC 内,过点P 做直线l //BC ,因为l 在平面1A BC 外,BC 在平面1A BC 内,由直线与平面平行嘚判定定理可知, l //平面1A BC . 由已知,AB AC =,D 是BC 嘚中点,所以,BC AD ⊥,则直线l AD ⊥.因为1AA ⊥平面ABC ,所以1AA ⊥直线l .又因为1,AD AA 在平面11ADD A 内,且AD 与1AA 相交,所以直线平面11ADD A . …………………………………………………………………………….6分()II 解法一:连接1A P ,过A 作1AE A P ⊥于E ,过E 作1EF A M ⊥于F ,连接AF . 由()I 知,MN ⊥平面1AEA ,所以平面1AEA ⊥平面1A MN . 所以AE ⊥平面1A MN ,则1A M AE ⊥. 所以1A M ⊥平面AEF ,则1A M ⊥AF .故AFE ∠为二面角1A A M N --嘚平面角(设为θ).设11AA =,则由12AB AC AA ==,120BAC ∠=,有60BAD ∠=,2,1AB AD ==. 又P 为AD 嘚中点,所以M 为AB 嘚中点,且1,12AP AM ==, 输出y 嘚值 为1嘚频率输出y 嘚值 为2嘚频率输出y 嘚值 为3嘚频率甲 102721003762100 6972100 乙105121006962100 3532100ξ 0 1 2 3p8274929127在1Rt AA P 中, 152A P =;在1Rt A AM 中, 12AM =. 从而,1115AA AP AE A P •==,1112AA AM AF A M •==,所以2sin 5AE AF θ==. 所以22215cos 1sin 155θθ⎛⎫=-=-= ⎪ ⎪⎝⎭. 故二面角1A A M N --嘚余弦值为155. ………………12分 解法二:设11AA =.如图,过1A 作1A E 平行于11B C ,以1A 为坐标原点,分别以111,AE AD ,1AA 嘚方向为x 轴,y轴,z 轴嘚正方向,建立空间直角坐标系Oxyz (点O 与点1A 重合).则()10,0,0A ,()0,0,1A .因为P 为AD 嘚中点,所以,M N 分别为,AB AC 嘚中点,故3131,,1,,,12222M N ⎛⎫⎛⎫-⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭, 所以131,,122A M ⎛⎫= ⎪ ⎪⎝⎭,()10,0,1A A =,()3,0,0NM =.设平面1AA M 嘚一个法向量为()1111,,n x y z =,则1111,,n A M n A A ⎧⊥⎪⎨⊥⎪⎩即11110,0,n A M n A A ⎧•=⎪⎨•=⎪⎩故有 ()()()11111131,,,,10,22,,0,0,10,x y z x y z ⎧⎛⎫•=⎪ ⎪ ⎪⎨⎝⎭⎪•=⎩ 从而1111310,220.x y z z ⎧++=⎪⎨⎪=⎩取11x =,则13y =-,所以()11,3,0n =-. 设平面1A MN 嘚一个法向量为()2222,,n x y z =,则212,,n A M n NM ⎧⊥⎪⎨⊥⎪⎩即2120,0,n A M n NM ⎧•=⎪⎨•=⎪⎩故有()()()22222231,,,,10,22,,3,0,00,x y z x y z ⎧⎛⎫•=⎪⎪ ⎪⎪⎝⎭⎨⎪•=⎪⎩ 从而2222310,2230.x y z x ⎧++=⎪⎨⎪=⎩取22y =,则21z =-,所以()20,2,1n =-. 设二面角1A A M N --嘚平面角为θ,又θ为锐角,则()()12121,3,00,2,115cos 525n n n n θ-•-•===••.故二面角1A A M N --嘚余弦值为155. ………………12分 20.解:2222124141*********a PF PF ⎛⎫⎛⎫⎛⎫⎛⎫=+=+++-+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭所以,2a =.又由已知,1c =, 所以椭圆C 嘚离心率1222c e a ===……………4分 ()II 由()I 知椭圆C 嘚方程为2212x y +=.设点Q 嘚坐标为(x,y).(1)当直线l 与x 轴垂直时,直线l 与椭圆C 交于()()0,1,0,1-两点,此时Q 点坐标为350,25⎛⎫- ⎪ ⎪⎝⎭ (2) 当直线l 与x 轴不垂直时,设直线l 嘚方程为2y kx =+.因为,M N 在直线l 上,可设点,M N 嘚坐标分别为1122(,2),(,2)x kx x kx ++,则22222212(1),(1)AM k x AN k x =+=+. 又()222222(1).AQ x y k x =+-=+由222211AQ AM AN =+,得()()()22222212211111k x k x k x =++++,即 ()212122222212122211x x x x x x x x x +-=+= ① 将2y kx =+代入2212x y +=中,得 ()2221860k x kx +++= ②由()()22842160,k k ∆=-⨯+⨯>得232k >. 由②可知12122286,,2121k x x x x k k +=-=++代入①中并化简,得2218103x k =- ③因为点Q 在直线2y kx =+上,所以2y k x -=,代入③中并化简,得()22102318y x --=.由③及232k >,可知2302x <<,即66,00,22x ⎛⎫⎛⎫∈- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. 又350,25⎛⎫- ⎪ ⎪⎝⎭满足()22102318y x --=,故66,22x ⎛⎫∈- ⎪ ⎪⎝⎭. 由题意,(),Q x y 在椭圆C 内部,所以11y -≤≤,又由()22102183y x -=+有()2992,54y ⎡⎫-∈⎪⎢⎣⎭且11y -≤≤,则135,225y ⎛⎤∈- ⎥ ⎝⎦. 所以点Q 嘚轨迹方程是()22102318y x --=,其中,66,22x ⎛⎫∈-⎪ ⎪⎝⎭,135,225y ⎛⎤∈- ⎥ ⎝⎦………..13分21.解:()I 函数()f x 嘚单调递减区间为(),1-∞-,单调递增区间为[)1,0-,()0,+∞()II 由导数嘚几何意义可知,点A 处嘚切线斜率为()1f x ',点B 处嘚切线斜率为()2f x ',故当点A 处嘚切线与点B 处嘚切垂直时,有()()121f x f x ''=-. 当0x <时,对函数()f x 求导,得()22f x x '=+. 因为120x x <<,所以()()1222221x x ++=-, 所以()()12220,220x x +<+>.因此()()()()21121212222222212x x x x x x -=-+++≥-++=⎡⎤⎣⎦ 当且仅当()122x -+=()222x +=1,即123122x x =-=且时等号成立.所以函数()f x 嘚图象在点,A B 处嘚切线互相垂直时,21x x -嘚最小值为1…………7分()III 当120x x <<或210x x >>时,()()12f x f x ''≠,故120x x <<. 当10x <时,函数()f x 嘚图象在点()()11,x f x 处嘚切线方程为 ()()()21111222y x x a x x x -++=+-,即()21122y x x x a =+-+ 当20x >时,函数()f x 嘚图象在点()()22,x f x 处嘚切线方程为()2221ln y x x x x -=-,即221ln 1y x x x =•+-. 两切线重合嘚充要条件是1222112 2 ln 1 x x x x a ⎧=+⎪⎨⎪-=-+⎩①②由①及120x x <<知,110x -<<.由①②得,()2211111ln1ln 22122a x x x x =+-=-+-+. 设()()21111ln 221(10)h x x x x =-+--<<,则()1111201h x x x '=-<+. 所以()()1110h x x -<<是减函数. 则()()10ln21h x h >=--, 所以ln21a >--. 又当1(1,0)x ∈-且趋近于1-时,()1h x 无限增大,所以a 嘚取值范围是()ln21,--+∞. 故当函数()f x 嘚图像在点,A B 处嘚切线重合时,a 嘚取值范围是()ln21,--+∞.14分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年普通高等学校招生全国统一考试(四川卷)
数 学(理科)
一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.
1.设集合{|20}A x x =+=,集合2{|40}B x x =-=,则A B = ( ) (A ){2}- (B ){2} (C ){2,2}- (D )∅ 2.如图,在复平面内,点A 表示复数z ,则图中表示z 的共轭复数的点是( ) (A )A (B )B (C )C (D )D 3.一个几何体的三视图如图所示,则该几何体的直观图可以是( )
4.设x Z ∈,集合A 是奇数集,集合B 是偶数集.若命题:,2p x A x B ∀∈∈,则( ) (A ):,2p x A x B ⌝∃∈∉ (B ):,2p x A x B ⌝∀∉∉ (C ):,2p x A x B ⌝∃∉∈ (D ):,2p x A x B ⌝∃∈∈ 5.函数()2sin(),(0,)2
2
f x x π
π
ωϕωϕ=+>-<<
的部分图象如图所示,
则,ωϕ的值分别是( ) (A )2,3
π
-
(B )2,6
π
-
(C )4,6
π
-
(D )4,
3
π
6.抛物线2
4y x =的焦点到双曲线2
2
13
y
x -=的渐近线的距离是( ) (A )
12 (B
(C )1 (D
7.函数2
31
x x y =-的图象大致是( )
8.从1,3,5,7,9这五个数中,每次取出两个不同的数分别为,a b ,共可得到lg lg a b -的不同值的个数是( )
(A )9 (B )10 (C )18 (D )20 9.节日里某家前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,若接通电后的4秒内任一时刻等可能发生,然后每串彩灯在内4秒为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是( ) (A )
14 (B )12 (C )34 (D )78
10.设函数()f x =a R ∈,e 为自然对数的底数).若曲线sin y x =上存在
00(,)x y 使得00(())f f y y =,则a 的取值范围是( )
(A )[1,]e (B )1
[,1]e - (C )[1,1]e + (D )1
[,1]e e -+ 二、填空题:本大题共5小题,每小题5分,共25分.
11.二项式5
()x y +的展开式中,含2
3
x y 的项的系数是_________.(用数字作答)
12.在平行四边形ABCD 中,对角线AC 与BD 交于点O ,AB AD AO λ+=
,则λ=_________.
13.设sin 2sin αα=-,(,)2
π
απ∈,则tan 2α的值是_________.
14.已知()f x 是定义域为R 的偶函数,当x ≥0时,2
()4f x x x =-,那么,不等式
(2)5f x +<的解集是________ .
15.设12,,,n P P P 为平面α内的n 个点,在平面α内的所有点中,若点P 到12,,,n P P P 点的距离之和最小,则称点P 为12,,,n P P P 点的一个“中位点”.例如,线段AB 上的任意点都是端点,A B 的中位点.则有下列命题:
①若,,A B C 三个点共线,C 在线段上,则C 是,,A B C 的中位点; ②直角三角形斜边的点是该直角三角形三个顶点的中位点; ③若四个点,,,A B C D 共线,则它们的中位点存在且唯一; ④梯形对角线的交点是该梯形四个顶点的唯一中位点.
其中的真命题是____________.(写出所有真命题的序号数学社区)
三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤. 16.(本小题满分12分) 在等差数列{}n a 中,218a a -=,且4a 为2a 和3a 的等比中项,求数列{}n a 的首项、公差及前n 项和.
17.(本小题满分12分) 在ABC ∆中,角,,A B C 的对边分别为,,a b c ,且
2
3
2cos cos sin()sin cos()25
A B B A B B A C ---++=-. (Ⅰ)求cos A 的值;3
5
-
(Ⅱ)
若a =5b =,求向量BA 在BC
方向上的
投影.
2
18.(本小题满分12分)某算法的程序框图如图所示,其中输入的变量x 在1,2,3,,24⋅⋅⋅这24个整数中等可能随机产生.
(Ⅰ)分别求出按程序框图正确编程运行时输出y 的值为i 的概率(1
,2,3)i P i =;
(Ⅱ)甲、乙两同学依据自己对程序框图的理解,各自编写程序重复运行n 次后,统计记录了输出y 的值为
(1,2,3)i i =的频数.以下是甲、乙所作频数统计表的部
分数据.
甲的频数统计表(部分) 乙的频数统计表(部分)
当2100n =时,根据表中的数据,分别写出甲、乙所编程序各自输出y 的值为(1,2,3)i i =的频率(用分数表示),并判断两位同学中哪一位所编写程序符合算法要求的可能性较大; (Ⅲ)按程序框图正确编写的程序运行3次,求输出y 的值为2的次数ξ的分布列及数学期望.
19.(本小题满分12分) 如图,在三棱柱11ABC A B C -中,侧棱1AA ⊥底面ABC ,
12AB AC AA ==,120BAC ∠= ,1,D D 分别是线段11,BC B C 的中点,P 是线段AD 的
中点.
(Ⅰ)在平面ABC 内,试作出过点P 与平面1A BC 平行的直线l ,说明理由,并证明直线l ⊥平面11ADD A ;
(Ⅱ)设(Ⅰ)中的直线l 交AB 于点M ,交AC 于点N ,求二面角1A A M N --的余弦值.
20.(本小题满分13分) 已知椭圆C :22
221,(0)x y a b a b +=>>的两个焦点分别为
12(1,0),(1,0)F F -,且椭圆C 经过点41
(,)33
P .
(Ⅰ)求椭圆C 的离心率;
(Ⅱ)设过点(0,2)A 的直线l 与椭圆C 交于M 、N 两点,点Q 是线段MN 上的点,且222
211
||||||AQ AM AN =+,求点Q 的轨迹方程.
21.(本小题满分14分)已知函数22,0
()ln ,0
x x a x f x x x ⎧++<=⎨>⎩,其中a 是实数.设11(,())A x f x ,
22(,())B x f x 为该函数图象上的两点,且12x x <.
(Ⅰ)指出函数()f x 的单调区间;
(Ⅱ)若函数()f x 的图象在点,A B 处的切线互相垂直,且20x <,求21x x -的最小值; (Ⅲ)若函数()f x 的图象在点,A B 处的切线重合,求a 的取值范围.
1
C。