高考数学复习知识与能力测试题(五)
河北省衡水市2024高三冲刺(高考数学)人教版能力评测(强化卷)完整试卷

河北省衡水市2024高三冲刺(高考数学)人教版能力评测(强化卷)完整试卷一、单选题:本题共8小题,每小题5分,共40分 (共8题)第(1)题为了解学生每天的体育活动时间,某市教育部门对全市高中学生进行调查,随机抽取1000名学生每天进行体育运动的时间,按照时长(单位:分钟)分成6组:第一组,第二组,第三组,第四组,第五组,第六组.对统计数据整理得到如图所示的频率分布直方图,则可以估计该市高中学生每天体育活动时间的第25百分位数约为()A.43.5分钟B.45.5分钟C.47.5分钟D.49.5分钟第(2)题设集合,,则()A.B.C.D.第(3)题为了解某中学学生假期中每天自主学习的时间,采用样本量比例分配的分层随机抽样,现抽取高一学生40人,其每天学习时间均值为8小时,方差为0.5,抽取高二学生60人,其每天学习时间均值为9小时,方差为0.8,抽取高三学生100人,其每天学习时间均值为10小时,方差为1,则估计该校学生每天学习时间的方差为()A.1.4B.1.45C.1.5D.1.55第(4)题0-1周期序列在通信技术中有着重要应用.若序列满足,且存在正整数,使得成立,则称其为0-1周期序列,并称满足的最小正整数为这个序列的周期.对于周期为的0-1序列,是描述其性质的重要指标,下列周期为5的0-1序列中,满足的序列是()A.B.C.D.第(5)题在棱长为1的正方体ABCD﹣A1B1C1D1中,点E,F分别是棱C1D1,B1C1的中点,P是上底面A1B1C1D1内一点,若AP∥平面BDEF,则线段AP长度的取值范围是()A.[,]B.[,]C.[,]D.[,]第(6)题设双曲线的左、右焦点分别为点,过坐标原点的直线与C交于A,B两点,,的面积为,且,若双曲线C的实轴长为4,则双曲线C的方程为()A.B.C.D.第(7)题若实数,满足,且,则下列选项正确的是()A.B.C.D.第(8)题设等比数列的前n项和为,首项,且,已知,若存在正整数,使得、、成等差数列,则的最小值为()A.16B.12C.8D.6二、多选题:本题共3小题,每小题6分,共18分 (共3题)第(1)题已知随机变量,且,则()A.B.C.D.第(2)题下列说法正确的是()A.命题“”的否定是“”B .“”是“”的充分不必要条件C.若函数的定义域为,则函数的定义域为D.记为函数图象上的任意两点,则第(3)题年中国经济在疫情阻击战的基础上实现了正增长,国内生产总值首次突破百万亿大关.根据中国统计局官网提供的数据,年年中国国内生产总值(单位:亿元)的条形图和国内生产总值年增长率()的折线图如图,根据该图,下列结论正确的是()A.年国内生产总值年增长率最大B.年国内生产总值年增长率最大C.这年国内生产总值年增长率不断减小D.这年国内生产总值逐年增长三、填空题:本题共3小题,每小题5分,共15分 (共3题)第(1)题正三棱柱的底面边长为6,侧棱长为6.,分别为棱,上靠近,的三等分点,则三棱锥的体积为______,其外接球的表面积为______.第(2)题已知函数是上的奇函数,则实数______.第(3)题若m,,,,则_____________.(请用一个排列数来表示)四、解答题:本题共5小题,每小题15分,最后一题17分,共77分 (共5题)第(1)题在平面直角坐标系中,曲线的参数方程为(参数),以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,其中.(1)求曲线与曲线的交点的极坐标;(2)直线与曲线,分别交于M,N两点(异于极点O),P为上的动点,求面积的最大值.第(2)题已知函数,若的解集为.(1)求实数的值;(2)已知均为正数,且满足,求证:.第(3)题已知椭圆的长轴长为4,A,B是其左、右顶点,M是椭圆上异于A,B的动点,且.(1)求椭圆C的方程;(2)若P为直线上一点,PA,PB分别与椭圆交于C,D两点.①证明:直线CD过椭圆右焦点;②椭圆的左焦点为,求的内切圆的最大面积.第(4)题在中,角A、B、C所对的边分别为,已知,,,角A为锐角.(1)求与的值;(2)求的值及三角形面积.第(5)题如图,在几何体中,平面底面,四边形是正方形,,是的中点,且,.(1)证明:;(2)若,求几何体的体积.。
2007年高考数学知识与能力测试题及答案(6套)(文科)

2007年高考数学知识与能力测试题(一)(文 科)第一部分 选择题(共50分)一、选择题:(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的).1、设集合{}{}4|N 0)1(|2<<-=x x x x x M =,,则( ). A 、φ=⋂N M B 、M N M =⋂ C 、M N M =⋃ D 、R N M =⋃ 2、化简ii +-13=( ).A 、i 21+-B 、i 21-C 、i 21+D 、i 21--3、等差数列{}为则中,593,19,7a a a a n ==( ). A 、13 B 、12 C 、11 D 、104、原命题:“设2,,ac b a R c b a 则若、、>∈>bc 2”以及它的逆命题,否命题、逆否命题中,真命题共有( )个.A 、0B 、1C 、2D 、45、设,)cos 21,31(),43,(sin x b x a ==→-→-且→-→-b a //,则锐角α为( )A 、6π B 、4π C 、3πD 、π1256、如图1,该程序运行后输出的结果为( )A 、1B 、2C 、4D 、16(图1)7、一个正方体的体积是8,则这个正方体的内切球的表面积是( )A 、π8B 、π6C 、π4D 、π8、若焦点在x 轴上的椭圆 1222=+m y x 的离心率为21,则m=( ). A 、23 B 、3 C 、38 D 、329、不等式组⎩⎨⎧≤≤-≥+--+210)1)(1(x y x y x 所表示的平面区域是( )A 、一个三角形B 、一个梯形C 、直角三角形D 、等腰直角三角形10、已知 则实数 时均有 当 且a x f x a x x f a a x ,21)()1,1(,)(,102<-∈-=≠>的取值范围是( )A 、[)∞+⎥⎦⎤ ⎝⎛,,221 0B 、(]4,11,41 ⎪⎭⎫⎢⎣⎡ C 、(]2 11,21, ⎪⎭⎫⎢⎣⎡ D 、[)∞+⎥⎦⎤ ⎝⎛, 441,0第二部分 非选择题(共100分)二、填空题:(本大题共4小题,每小题5分,共20分) 11、函数)0(1ln >+=x x y 的反函数为 12、定义运算=⊕--=⊕6cos6sin,22ππ则b ab a b a13、设n m 、是两条不同的直线,βα、是两个不同的平面,下面给出四个命题;①若n m n m //,////,// 则 且 βαβα; ②若n m n m ⊥⊥⊥⊥ 则 且 ,,βαβα ③若n m n m ⊥⊥ 则 且 ,////,βαβα ④若ββαβα⊥⊥=⊥n m n m 则 且 ,, 其中真命题的序号是14、▲选做题:在下面两道题中选做一题,两道题都选的只计算前一题的得分。
高中数学拓展模块综合测试卷5及答案

高中数学拓展模块综合测试卷5及答案一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(本大题共10个小题,每小题4分,共40分)。
1.下列说法正确的是( )A .平面α和平面β只有一个公共点B .两两相交的三条直线必共面C .不共面的四点中,任何三点不共线D .有三个公共点的两平面必重合2.在正方体上任选3个顶点连成三角形,则所得的三角形是直角非等腰三角形的概率为 ( )A .17 B .27 C .37 D .473.某人5次上班途中所花的时间(单位:分钟)分别为x ,y ,10,11,9.已知这组数据的平均数为10,方差为2,则|x -y |的值为( )A .1B .2C .3D .44.为了解某校高三学生的视力情况,随机地抽查了该校100名高三学生的视力情况,得 到频率分布直方图,如右,由于不慎将部分数据丢失,但知道前4组的频数成等比数列,后6组的频数成等差数列,设最大频率为a ,视力在4.6到5.0之间的学生数为b ,则a , b 的值分别( )A .0.27,78 B.0.27,83 C .2.7,78 D .2.7,835.从数字1,2,3,4,5,中,随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于9的概率为( )A .12513B .12516 C .12518 D .125196.在一个口袋中装有5个白球和3个黑球,这些球除颜色外完全相同,从中摸出3个球,至少摸到2个黑球的概率等于( )A .72B .83 C .73D .2897.在正方体ABCD -A 1B 1C 1D 1中,下列四对截面中彼此平行的一对截面是 ( )A .平面A 1BC 1和平面ACD 1B .平面BDC 1和平面B 1D 1C C .平面B 1D 1D 和平面BDA 1 D .平面ADC 1和平面AD 1C8.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )A .0.8B .0.75C .0.6D .0.459.甲、乙两人进行围棋比赛,比赛采取五局三胜制,无论哪一方先胜三局则比赛结束,假定甲每局比赛获胜的概率均为23,则甲以3:1的比分获胜的概率为( )A .827B .6481C .49D .8910.如图所示2×2方格,在每一个方格中填入一个数字,数字可以是1,2,3,4中的任何一个,允许重复,则填入A 方格的数字大于B 方格的数字的概率为( )ABA.12B.14C.34D.38二、填空题:请把答案填在题中横线上(本大题共10个小题,每小题3分,共30分)。
高考数学复习考点知识与结论专题讲解5 函数的单调性

高考数学复习考点知识与结论专题讲解第5讲函数的单调性通关一、函数单调性的定义及几何意义图像描述自左向右看,图像是下降的自左向右看,图像是上升的要点诠释(1)函数单调性的实质是函数值的变化与自变量的变化是否一致,一致则为增函数,不一致则为减函数.(2)函数单调性“数”的表现是函数值的增大与减小,“形”的表现是函数图像的上升与下降⊆.(3)“函数的单调区间是M”与“函数在区间N上单调”是两个不同的概念,显然N M(4)一个函数在不同的区间可以有不同的单调性,同一种单调区间用“和”或“,”连接,不能用“”连接.(5)增(减)函数定义中,x x的三个特征:12①任意性;②有大小,即12x x <或12x x >; ③同属于一个单调区间.通关二、函数的最值结论一、定义法证明函数单调性【例1】已知函数()f x 对任意实数,x y 均有()()()f x y f x f y +=+,且当0x >时()0f x >.试判断()f x 的单调性,并说明理由.【解析】设12,x x R ∈且12x x <,则210x x ->,故()210f x x ->.所以()()()()()()()212111211210f x f x f x x x f x f x x f x f x x -=-+-=-+=->⎡⎤⎣⎦.所以()()12f x f x <.故()f x 在(),-∞+∞上为增函数.【变式】已知给定函数()f x 对于任意正数,x y 都有()()()f xy f x f y =⋅,且()0f x ≠,当1x >时()1f x <.试判断()f x 在()0,+∞上的单调性,并说明理由.【解析】对于()0,x ∈+∞有()20f x ff⎡⎤==≥⎣⎦,又()0f x ≠,所以()0f x >.设()12,0,x x ∈+∞,且12x x <,则()()()()()2211211211111x x f x f f x f x x x x f f x f x f x x ⎛⎫⎛⎫⋅ ⎪ ⎪⎛⎫⎝⎭⎝⎭===< ⎪⎝⎭,所以 ()()12f x f x >. 故()f x 在(0,)+∞上为减函数.结论二、函数单调性的正向与逆向理解1. 正向结论:若 ()y f x = 在给定区间上是增函数,则当 12x x < 时, ()()12f x f x <; 当 12x x > 时, ()()12f x f x >;2. 逆向结论:若 ()y f x = 在给定区间上是增函数,则当 ()()12f x f x < 时, 12x x <; 当 ()()12f x f x > 时, 12x x >.【例2】已知()f x 在区间(,)-∞+∞上是增函数, ,a b ∈R 且0a b +…,则下列表达正确的是(). A. ()()[()()]f a f b f a f b +-+… B.()()()()f a f b f a f b +-+-…C. ()()[()()]f a f b f a f b +-+…D.()()()()f a f b f a f b +-+-…【答案】B【解析】0a b +…可转化为a b -…和b a -…,因为()f x 在区间(,)-∞+∞上是增函数, 所以()()f a f b -…且()()f b f a -…,根据同向不等式相加性质得()()f a f b +…()()f a f b -+-. 故选B.【变式】已知()y f x =是定义在(2,2)-上的增函数,若(1)(12)f m f m -<-,则m 的取值范围是_________. 【答案】12,23I ⎛⎫-⎪⎝⎭【解析】由已知可得122112223m m m -<-<-<⇒-<<,故m 的取值范围是12,23⎛⎫- ⎪⎝⎭.结论三、单调性结论设 1212,[,],x x a b x x ∈≠ 那么 ()()()()()1212121200f x f x x x f x f x x x -⎡⎤-->⇔>⇔⎣⎦-()f x 在[,]a b 上是增函数; ()()()()()1212121200()f x f x x x f x f x f x x x -⎡⎤--<⇔<⇔⎣⎦- 在[,]a b 上是减函数.【例3】定义在R 上的函数()f x 满足:对任意的()1212,[0,)x x x x ∈+∞≠, 有()()21210f x f x x x -<-,则(). A.(3)(2)(4)f f f << B.(1)(2)(3)f f f <<C. (2)(1)(3)f f f -<<D. (3)(1)(0)f f f <<【答案】D【解析】因为对任意的()1212,[0,)x x x x ∈+∞≠,有()()21210f x f x x x -<-, 所以函数()f x 在[0,)+∞上是减函数, 因为013<<, 所以(3)(1)(0)f f f <<. 故选 D.【变式】已知函数32()2f x x x mx =-++,若对任意12,x x ∈R , 均满足()()121x x f x⎡--⎣()20f x ⎤>⎦,则实数m 的取值范围是__________.【答案】1,3⎡⎫+∞⎪⎢⎣⎭【解析】由()()()12120x x f x f x ⎡⎤-->⎣⎦可知()f x 在R 上为增函数, 所以()0f x '…在R 上恒成立,而2()32f x x x m '=-+, 所以4120m ∆=-…, 即13m …. 故m 的取值范围是1,3⎡⎫+∞⎪⎢⎣⎭.结论四、单调性性质若函数()f x 在区间I 上具有单词性,则在区间I 上具有以下性质:1. ()f x 与()(f x c c +为常数 )具有相同的单调性.2. 当()f x 非负时, ()f x具有相同的单调性.3. ()f x 与()a f x ⋅在0a > 时具有相同的单调性,在0a <时具有相反的单调性.4. 当()f x 恒不为0时,函数()f x 与1()f x 单调性相反. 【例4】已知函数1()33xxf x ⎛⎫=- ⎪⎝⎭, 则()f x ().A. 是偶函数,且在R 上是增函数B. 是奇函数,且在R 上是增函数C. 是偶函数,且在R 上是减函数D. 是奇函数,且在R 上是减函数【答案】B【解析】1()3333xxx x f x -⎛⎫=-=- ⎪⎝⎭, 所以()33()x xf x f x --=-=-, 即函数()f x 为奇函数,以函数3xy =为增函数, 13x y ⎛⎫= ⎪⎝⎭为减函数,故函数1()33xx f x ⎛⎫=- ⎪⎝⎭为增函数. 故选 B.【变式】若函数1()2ax f x x +=+在(2,)-+∞上为增函数,则实数a 的取值范围为__________. 【答案】1,2⎛⎫+∞⎪⎝⎭【解析】解法一:112()22ax af x a x x +-==+++. 任取122x x -<<, 则()()12f x f x a -=+()()21121212121212121211(12)(12)22222222x x a a a a a a a x x x x x x x x ⎛⎫⎛⎫------+=-=--=- ⎪ ⎪++++++++⎝⎭⎝⎭因为122x x -<<, 所以122120,20,0x x x x +>+>->, 以()()2112022x x x x ->++. 已知函数在(2,)-+∞上单调递增, 故()()120f x f x -<, 所以120a -<, 解得12a >.所以a 的取值范围是1,2⎛⎫+∞ ⎪⎝⎭.解法二:112()22ax a f x a x x +-==+++, 因为12x +在(2,)-+∞上单调递减, 1()2ax f x x +=+在(2,)-+∞上单调递增, 所以120a -<, 解得12a >.所以a 的取值范围是1,2⎛⎫+∞ ⎪⎝⎭. 结论五、单调性求最值1. 若函数在闭区间[,]a b 上是增函数,则()f x 在[,]a b 上的最小值为()f a , 最大值为()f b ;2. 若函数在闭区间[,]a b 上是减函数,则()f x 在[,]a b 上的最小值为()f b ,最大值为()f a . 【例5】函数()2()log 31x f x =+的值域为().A.(0,)+∞B.[0,)+∞C.(1,)+∞D. [1,)+∞【答案】 A【解析】根据对数函数的定义可知, 310x +>恒成立,解得x ∈R . 因此, 该函数的定义域为R , 原函数()2()log 31x f x =+是由对数函数2log y t =和31x t =+组合成的复合函数. 由复合函数的单调性定义(同增异减) 知道,原函数在定义域R 上是单调递增的. 根据指数函数的性质可知,30x >, 所以,311x +>,所以()22()log 31log 10x f x =+>=. 故选A.【变式】已知函数3()2sin (0,0)x f x ax b x a b =++>>, 若[0,1]x ∈时,()f x 的最大值为3 ,则[1,0)x ∈-时,()f x 的最小值是__________.【答案】12-【解析】因为32,,sin xy y x y x ===在区间[1,1]-上均为单调递增函数, 又0,a b >> 0 , 所以3()2sin x f x ax b x =++在区间[1,1]-上为单调递增函数. 当[0,1]x ∈时, ()f x 的最大值为3(1)21sin13,sin11f a b a b =+⋅+=+=; 当[1,0)x ∈-时,()f x 的最小值为1311(1)2(1)sin(1)(sin1)22f a b a b --=+⋅-+-=-+=-.。
微专题(五) 情境下的数列问题--2025年高考数学复习讲义及练习解析

数学,不仅是运算和推理的工具,还是表达和交流的语言,因此基于问题情境下的数列问题在高考中正逐步成为热点,通过具体的问题背景或新的定义,考查数列在问题情境中的应用,以此来检验学生的核心价值、学科素养、关键能力、必备知识.常用的解题思路是审题、建立数列模型、研究模型、解决实际问题,即一是理解题意,分清条件和结论,理清数量关系;二是把文字语言、新情景转化为熟悉的数学语言;三是构建相应的数学模型,利用已学的数列知识、解题的方法和技巧求解.类型一数学文化中的数列问题数学文化题一般是从中华优秀传统文化中挖掘素材,将传统文化与高中数学知识有机结合,有效考查阅读理解能力、抽象概括能力、转化与化归能力.解题时要对试题所提供的数学文化信息进行整理和分析,从中构建等差数列或等比数列模型.例1(1)(2023·湖南永州第一次高考适应性考试)如图所示,九连环是中国传统民间智力玩具,以金属丝制成9个圆环,解开九连环共需要256步,解下或套上一个环算一步,且九连环的解下和套上是一对逆过程.九连环把玩时按照一定的程序反复操作,可以将九个环全部从框架上解下或者全部套上.将第n个圆环解下最少需要移动的次数记为a n(n≤9,n∈N*),已知a1=1,a2=1,按规则有a n=a n-1+2a n-2+1(n≥3,n∈N*),则解下第4个圆环最少需要移动的次数为()A.4B.7C.16D.31答案B解析由题意,a1=1,a2=1,a n=a n-1+2a n-2+1(n≥3,n∈N*),解下第4个圆环,则n=4,即a4=a3+2a2+1,而a3=a2+2a1+1=1+2+1=4,则a4=4+2+1=7.故选B.(2)(2024·湖北鄂州模拟)天干地支纪年法,源于中国.中国自古便有十天干与十二地支.十天干即甲、乙、丙、丁、戊、己、庚、辛、壬、癸,十二地支即子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥.天干地支纪年法是按顺序以一个天干和一个地支相配,排列起来,天干在前,地支在后,天干由“甲”起,地支由“子”起,比如说第一年为“甲子”,第二年为“乙丑”,第三年为“丙寅”,……,依此类推,排列到“癸酉”后,天干回到“甲”重新开始,即“甲戌”“乙亥”,之后地支回到“子”重新开始,即“丙子”,……,依此类推.1911年中国爆发推翻清朝专制帝制、建立共和政体的全国性革命,这一年是辛亥年,史称“辛亥革命”.1949年新中国成立,请推算新中国成立的年份为()A .己丑年B .己酉年C .丙寅年D .甲寅年答案A解析根据题意可得,天干是以10为公差的等差数列,地支是以12为公差的等差数列,从1911年到1949年经过38年,且1911年为“辛亥”年,以1911年的天干和地支分别为首项,则38=3×10+8,则1949年的天干为己,38=12×3+2,则1949年的地支为丑,所以1949年为己丑年.故选A.运用所学的等差数列、等比数列知识去求解古代著名的数学问题,解答时准确理解用古文语言给出的数学问题的含义是解答好本类试题的关键,熟练掌握等差数列、等比数列的通项公式及求和公式,既是基础又是有力保障.1.(2023·江西南昌莲塘第一中学高三二模)大衍数列来源于《乾坤谱》中对易传“大衍之数五十”的推论,主要用于解释中国传统文化中的太极衍生原理,数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和,是中华传统文化中隐藏的世界数学史上第一道数列题.已知该数列{a n }的前10项依次是0,2,4,8,12,18,24,32,40,50,记b n =(-1)n ·a n ,n ∈N *,则数列{b n }的前20项和是()A .110B .100C .90D .80答案A解析观察此数列可知,当n 为偶数时,a n =n 22,当n 为奇数时,a n =n 2-12,因为b n =(-1)n ·a nn 为奇数,,所以数列{b n }的前20项和为(0+2)+(-4+8)+(-12+18)+…+-192-12+2+4+6+…+20=10×(2+20)2=110.故选A.类型二实际生活中的数列问题数列知识可以用来解决实际生活中较为普遍的很多问题,在解决一些关于利息计算、产值增长、银行存款等问题时常常会用到等比数列的相关知识.例2(1)某人从2015年起,每年1月1日到银行新存入5万元(一年定期),若年利率为2.5%保持不变,且每年到期存款均自动转为新的一年定期,到2025年1月1日将之前所有存款及利息全部取回,他可取回的钱数约为(单位:万元.参考数据:1.0259≈1.25,1.02510≈1.28,1.02511≈1.31)()A .51B .57C .6.4D .6.55答案B解析由题意,2015年存的5万元共存了10年,本息和为5(1+0.025)10万元,2016年存的5万元共存了9年,本息和为5(1+0.025)9万元,…,2024年存的5万元共存了1年,本息和为5(1+0.025)万元,所以到2025年1月1日将之前所有存款及利息全部取回,他可取回的钱数为5(1+0.025)10+5(1+0.025)9+…+5(1+0.025)=5×1.025×(1.02510-1)1.025-1≈5×1.025×(1.28-1)0.025=57.4≈57万元.(2)(2022·新高考Ⅱ卷)图1是中国古代建筑中的举架结构,AA ′,BB ′,CC ′,DD ′是桁,相邻桁的水平距离称为步,垂直距离称为举.图2是某古代建筑屋顶截面的示意图.其中DD 1,CC 1,BB 1,AA 1是举,OD 1,DC 1,CB 1,BA 1是相等的步,相邻桁的举步之比分别为DD 1OD 1=0.5,CC1DC 1=k 1,BB 1CB 1=k 2,AA1BA 1=k 3.已知k 1,k 2,k 3成公差为0.1的等差数列,且直线OA 的斜率为0.725,则k 3=()A .0.75B .0.8C .0.85D .0.9答案D解析设OD 1=DC 1=CB 1=BA 1=1,则DD 1=0.5,CC 1=k 1,BB 1=k 2,AA 1=k 3,依题意,有k 3-0.2=k 1,k 3-0.1=k 2,且DD 1+CC 1+BB 1+AA 1OD 1+DC 1+CB 1+BA 1=0.725,所以0.5+3k 3-0.34=0.725,故k 3=0.9.故选D.(3)(2022·全国乙卷)嫦娥二号卫星在完成探月任务后,继续进行深空探测,成为我国第一颗环绕太阳飞行的人造卫星.为研究嫦娥二号绕日周期与地球绕日周期的比值,用到数列{b n }:b 1=1+1a 1,b 2=1+1a 1+1a 2,b 3=1+1a 1+1a 2+1a 3,…,以此类推,其中a k ∈N *(k =1,2,…),则()A .b 1<b 5B .b 3<b 8C .b 6<b 2D .b 4<b 7答案D解析解法一:当n 取奇数时,由已知b 1=1+1a 1,b 3=1+1a 1+1a 2+1a 3,因为1a 1>1a 1+1a 2+1a 3,所以b 1>b 3,同理可得b 3>b 5,b 5>b 7,…,于是可得b 1>b 3>b 5>b 7>…,故A 不正确.当n 取偶数时,由已知b 2=1+1a 1+1a 2,b 4=1+1a 1+1a 2+1a 3+1a 4,因为1a 2>1a 2+1a 3+1a 4,所以b 2<b 4,同理可得b 4<b 6,b 6<b 8,…,于是可得b 2<b 4<b 6<b 8<…,故C 不正确.因为1a 1>1a 1+1a 2,所以b 1>b 2,同理可得b 3>b 4,b 5>b 6,b 7>b 8,又b 3>b 7,所以b 3>b 8,故B 不正确.故选D.解法二(取特殊值):取a k =1,于是有b 1=2,b 2=32,b 3=53,b 4=85,b 5=138,b 6=2113,b 7=3421,b 8=5534.于是得b 1>b 5,b 3>b 8,b 6>b 2.故选D.求解数列实际问题的注意事项(1)审题、抓住数量关系、建立数学模型,注意问题是求什么(n ,a n ,S n ).(2)解答数列应用题要注意步骤的规范性:设数列,判断数列,解题完毕要作答.(3)在归纳或求通项公式时,一定要将项数n 计算准确.(4)在数列类型不易分辨时,要注意归纳递推关系.2.(2024·焦作模拟)直播带货是一种直播和电商相结合的销售手段,目前受到了广大消费者的追捧,针对这种现状,某传媒公司决定逐年加大直播带货的资金投入,若该公司今年投入的资金为2000万元,并在此基础上,以后每年的资金投入均比上一年增长12%,则该公司需经过________年其年投入资金开始超过7000万元.(参考数据:lg 1.12≈0.049,lg 2≈0.301,lg 7≈0.845)()A .14B .13C .12D .11答案C解析设该公司经过n 年投入的资金为a n 万元,则a 1=2000×1.12,由题意可知,数列{a n }是以2000×1.12为首项,1.12为公比的等比数列,所以a n =2000×1.12n ,由a n =2000×1.12n >7000可得n >log 1.1272=lg 7-lg 2lg 1.12≈11.1,因此该公司需经过12年其年投入资金开始超过7000万元.故选C.3.(2023·北京高考)我国度量衡的发展有着悠久的历史,战国时期就已经出现了类似于砝码的、用来测量物体质量的“环权”.已知9枚环权的质量(单位:铢)从小到大构成项数为9的数列{a n },该数列的前3项成等差数列,后7项成等比数列,且a 1=1,a 5=12,a 9=192,则a 7=________;数列{a n }所有项的和为________.答案48384解析解法一:设前3项的公差为d ,后7项的公比为q (q >0),则q 4=a 9a 5=19212=16,且q >0,可得q =2,则a 3=a5q 2=3,即1+2d =3,可得d =1,a 7=a 3q 4=48,a 1+a 2+…+a 9=1+2+3+3×2+…+3×26=3+3×(1-27)1-2=384.解法二:因为当3≤n ≤7时,{a n }为等比数列,则a 27=a 5a 9=12×192=482,且a n >0,所以a 7=48.又a 25=a 3a 7,则a 3=a 25a 7=3.设后7项的公比为q (q >0),则q 2=a5a 3=4,解得q =2,可得a 1+a 2+a 3=3(a 1+a 3)2=6,a 3+a 4+a 5+a 6+a 7+a 8+a 9=a 3-a 9q 1-q =3-192×21-2=381,所以a 1+a 2+…+a 9=6+381-a 3=384.4.(2021·新高考Ⅰ卷)某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折,规格为20dm×12dm 的长方形纸,对折1次共可以得到10dm×12dm ,20dm×6dm两种规格的图形,它们的面积之和S 1=240dm 2,对折2次共可以得到5dm×12dm ,10dm×6dm ,20dm×3dm 三种规格的图形,它们的面积之和S 2=180dm 2,以此类推.则对折4次共可以得到不同规格图形的种数为________;如果对折n 次,那么∑nk =1S k =________dm 2.答案5解析对折3次可以得到52dm×12dm ,5dm×6dm ,10dm×3dm ,20dm×32dm ,共四种规格的图形,它们的面积之和为S 3=4×30=120dm 2.对折4次可以得到54dm×12dm ,52dm×6dm ,5dm×3dm ,10dm×32dm ,20dm×34dm ,共五种规格的图形,它们的面积之和为S 4=5×15=75dm 2.对折n 次有n +1种规格的图形,且S n =2402n (n +1),因此∑nk =1S k =240·+322+….12∑n k =1S k =240·+323+…+n 2n +,因此12∑n k =1S k =+122+123+…+12n -所以∑n k =1S k =dm 2.类型三数列中的新定义问题新定义主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新定义,这样有助于对新定义的透彻理解.若新定义是运算法则,直接按照运算法则计算即可;若新定义是性质,要判断性质的适用性,能否利用定义外延,也可用特殊值排除等方法.例3(1)(多选)(2023·广东佛山调研)“提丢斯数列”是18世纪由德国物理学家提丢斯给出的,具体如下:取0,3,6,12,24,48,96,…,这样一组数,容易发现,这组数从第3项开始,每一项是前一项的2倍,将这组数的每一项加上4,再除以10,就得到“提丢斯数列”:0.4,0.7,1,1.6,2.8,5.2,10,…,则下列说法中正确的是()A .“提丢斯数列”是等比数列B .“提丢斯数列”的第99项为3×297+410C .“提丢斯数列”的前31项和为3×23010+12110D .“提丢斯数列”中,不超过300的有11项答案BCD解析对于A ,0.70.4≠10.7,所以“提丢斯数列”不是等比数列,故A 错误;对于B ,设“提丢斯数列”为数列{a n },当n ≥2时,a n =3×2n -2+410,所以a 99=3×297+410,故B 正确;对于C ,“提丢斯数列”的前31项和为0.4+310×(1+21+22+…+229)+410×30=3×23010+12110,故C 正确;对于D ,由a n =3×2n -2+410≤300,得n ≤11,所以“提丢斯数列”中,不超过300的有11项,故D正确.故选BCD.(2)(多选)(2024·雅礼中学月考)记〈x 〉表示与实数x 最接近的整数x =a +12,a ∈Z ,则取〈x 〉={a n }的通项公式为a n =1〈n 〉(n ∈N *),其前n 项和为S n ,设k =〈n 〉,则下列结论正确的是()A .n =k -12B .n <k +12C .n ≥k 2-k +1D .S 2024<90答案BCD解析由题意,〈x 〉表示与实数x 最接近的整数且k =〈n 〉,当n =1时,可得n =1,则k=〈n 〉=1,k -12=12≠1,A 不正确;易得|n -〈n 〉|<12即|n -k |<12,所以-12<n -k <12,故n <k +12成立,B 正确;由B 项分析知k -12<n <k +12,易知k ≥1,故对k -12<n <k +12两边平方得k 2-k +14<n <k 2+k +14,因为n ∈N *且k 2-k +14不是整数,且k 2-k +1是大于k 2-k+14的最小整数,所以n ≥k 2-k +1成立,C 正确;当n =1,2时,〈n 〉=1,此时a 1=a 2=1;当n =3,4,5,6时,〈n 〉=2,此时a 3=a 4=a 5=a 6=12;当n =7,8,9,10,11,12时,〈n 〉=3,此时a 7=a 8=…=a 12=13;当n =13,14,…,20时,〈n 〉=4,此时a 13=a 14=…=a 20=14;…,所以数列{a n }中有2个1,4个12,6个13,8个14,…,又2,4,6,8,…构成首项为2,公差为2的等差数列{b n },其前n 项和T n =n (2+2n )2=n (n +1),而2024=44×(44+1)+44,所以S 2024=1×2+12×4+13×6+…+144×88+145×44=2×44+4445=88+4445<90,D 正确.故选BCD.数列新定义问题的解题策略策略一读懂定义,理解新定义数列的含义策略二特殊分析,比如先对n =1,2,3,…的情况进行讨论策略三通过特殊情况寻找新定义的数列的规律及性质,以及新定义数列与已知数列(如等差与等比数列)的关系,仔细观察,探求规律,注重转化,合理设计解题方案策略四联系等差数列与等比数列知识,将新定义数列问题转化为熟悉的知识进行求解5.(多选)(2023·山东日照模拟)若正整数m ,n 只有1为公约数,则称m ,n 互质.对于正整数k ,φ(k )是不大于k 的正整数中与k 互质的数的个数,函数φ(k )以其首名研究者欧拉命名,称为欧拉函数.例如:φ(2)=1,φ(3)=2,φ(6)=2,φ(8)=4.已知欧拉函数是积性函数,即如果m ,n 互质,那么φ(mn )=φ(m )φ(n ),例如:φ(6)=φ(2)φ(3),则()A .φ(5)=φ(8)B .数列{φ(2n )}是等比数列C .数列{φ(6n )}不是递增数列D n 项和小于1825答案ABD解析φ(5)=4,φ(8)=4,∴φ(5)=φ(8),A 正确;∵2为质数,∴在不超过2n 的正整数中,所有偶数的个数为2n -1,∴φ(2n )=2n -2n -1=2n -1,为等比数列,B 正确;∵与3n 互质的数为1,2,4,5,7,8,10,11,…,3n -2,3n -1,共有(3-1)·3n -1=2·3n -1个,∴φ(3n )=2·3n-1,又φ(6n )=φ(2n )φ(3n )=2·6n -1,∴数列{φ(6n )}是递增数列,C 错误;φ(6n )=2·6n -1,的前n 项和为S n ,则S n =12×60+22×61+…+n 2×6n -1,16S n =12×61+22×62+…+n2×6n ,两式相减得56S n =12×60+12×61+12×62+…+12×6n -1-n 2×6n =12×1-16-n 2×6n =35-35×6n -n 2×6n ,∴S n =1825-1825×6n -3n 5×6n <1825,∴n 项和小于1825,D 正确.故选ABD.。
2020高考数学二轮复习专题五解析几何第3讲圆锥曲线中的综合问题专题强化训练[浙江]
![2020高考数学二轮复习专题五解析几何第3讲圆锥曲线中的综合问题专题强化训练[浙江]](https://img.taocdn.com/s3/m/011b87248e9951e79b8927bf.png)
第3讲 圆锥曲线中的综合问题专题强化训练1.已知方程x 22-k +y 22k -1=1表示焦点在y 轴上的椭圆,则实数k 的取值范围是( )A.⎝ ⎛⎭⎪⎫12,2 B .(1,+∞)C .(1,2)D.⎝ ⎛⎭⎪⎫12,1 解析:选C.由题意可得,2k -1>2-k >0,即⎩⎪⎨⎪⎧2k -1>2-k ,2-k >0,解得1<k <2,故选C. 2.(2019·浙江高考冲刺卷)已知F 为抛物线4y 2=x 的焦点,点A ,B 都是抛物线上的点且位于x 轴的两侧,若OA →·OB →=15(O 为原点),则△ABO 和△AFO 的面积之和的最小值为( )A.18B.52C.54D.652 解析:选D.设直线AB 的方程为:x =ty +m ,A (x 1,y 1),B (x 2,y 2),直线AB 与x 轴的交点为M (m ,0),⎩⎪⎨⎪⎧4y 2=x x =ty +m ,可得4y 2-ty -m =0, 根据根与系数的关系有y 1·y 2=-m4,因为OA →·OB →=15,所以x 1·x 2+y 1·y 2=15,从而16(y 1·y 2)2+y 1·y 2-15=0, 因为点A ,B 位于x 轴的两侧, 所以y 1·y 2=-1,故m =4.不妨令点A 在x 轴上方,则y 1>0,如图所示.又F (116,0), 所以S △ABO +S △AFO =12×4×(y 1-y 2)+12×116y 1=6532y 1+2y 1≥265y 132×2y 1=652, 当且仅当6532y 1=2y 1,即y 1=86565时,取“=”号,所以△ABO 与△AFO 面积之和的最小值是652,故选D.3.(2019·绍兴市柯桥区高考数学二模)已知l 是经过双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的焦点F 且与实轴垂直的直线,A ,B 是双曲线C 的两个顶点,若在l 上存在一点P ,使∠APB =60°,则双曲线的离心率的最大值为( )A.233B. 3 C .2 D .3 解析:选A.设双曲线的焦点F (c ,0),直线l :x =c , 可设点P (c ,n ),A (-a ,0),B (a ,0), 由两直线的夹角公式可得tan ∠APB =⎪⎪⎪⎪⎪⎪k PA-k PB1+k PA ·k PB=⎪⎪⎪⎪⎪⎪n c +a -n c -a 1+n 2c 2-a 2=2a |n |n 2+(c 2-a 2)=2a|n |+c 2-a 2|n |=tan 60°=3,由|n |+c 2-a 2|n |≥2|n |·c 2-a 2|n |=2c 2-a 2,可得3≤a c 2-a2,化简可得3c 2≤4a 2,即c ≤233a ,即有e =c a ≤233.当且仅当n =±c 2-a 2,即P (c ,±c 2-a 2),离心率取得最大值233.故选A.4.(2019·福州质量检测)已知抛物线C :y 2=4x 的焦点为F ,准线为l .若射线y =2(x -1)(x ≤1)与C ,l 分别交于P ,Q 两点,则|PQ ||PF |=( )A. 2 B .2 C. 5 D .5解析:选C.由题意知,抛物线C :y 2=4x 的焦点F (1,0),准线l :x =-1与x 轴的交点为F 1.过点P 作直线l 的垂线,垂足为P 1,由⎩⎪⎨⎪⎧x =-1y =2(x -1),x ≤1,得点Q 的坐标为(-1,-4),所以|FQ |=2 5.又|PF |=|PP 1|,所以|PQ ||PF |=|PQ ||PP 1|=|QF ||FF 1|=252=5,故选C.5.(2019·鄞州中学期中)已知椭圆C 1:x 2a 21+y 2b 21=1(a 1>b 1>0)与双曲线C 2:x 2a 22-y 2b 22=1(a 2>0,b 2>0)有相同的焦点F 1,F 2,点P 是两曲线的一个公共点,且PF 1⊥PF 2,e 1,e 2分别是两曲线C 1,C 2的离心率,则9e 21+e 22的最小值是( )A .4B .6C .8D .16解析:选C.设焦距为2c ,椭圆长轴长为2a 1,双曲线实轴长为2a 2,取椭圆与双曲线在一象限内的交点为P ,由椭圆和双曲线的定义分别有|PF 1|+|PF 2|=2a 1①,|PF 1|-|PF 2|=2a 2②,因为PF 1⊥PF 2,所以|PF 1|2+|PF 2|2=4c 2③,①2+②2,得|PF 1|2+|PF 2|2=2a 21+2a 22④,将④代入③得a 21+a 22=2c 2,则9e 21+e 22=9c 2a 21+c 2a 22=5+9a 222a 21+a 212a 22≥8,故9e 21+e 22的最小值为8.6.(2019·金华十校二模)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的实轴长为42,虚轴的一个端点与抛物线x 2=2py (p >0)的焦点重合,直线y =kx -1与抛物线相切且与双曲线的一条渐近线平行,则p =( )A .4B .3C .2D .1解析:选A.抛物线x 2=2py 的焦点为⎝ ⎛⎭⎪⎫0,p 2,所以可得b =p2,因为2a =42⇒a =22,所以双曲线的方程为x 28-4y 2p 2=1,可求得渐近线方程为y =±p 42x ,不妨设y =kx -1与y =p42x 平行,则有k =p 42.联立⎩⎪⎨⎪⎧y =p 42x -1x 2=2py⇒x 2-p 222x +2p =0,所以Δ=⎝ ⎛⎭⎪⎫-p 2222-8p =0,解得p =4.7.(2019·浙江“七彩阳光”联盟高三联考)已知椭圆的方程为x 29+y 24=1,过椭圆中心的直线交椭圆于A ,B 两点,F 2是椭圆右焦点,则△ABF 2的周长的最小值为________,△ABF 2的面积的最大值为________.解析:连接AF 1,BF 1,则由椭圆的中心对称性可得C △ABF 2=AF 2+BF 2+AB =AF 1+AF 2+AB =6+AB ≥6+4=10,S △ABF 2=S △AF 1F 2≤12·25·2=2 5.答案:10 2 58.(2019·东阳二中改编)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右顶点为A ,经过原点的直线l 交椭圆C 于P ,Q 两点,若|PQ |=a ,AP ⊥PQ ,则椭圆C 的离心率为________.解析:不妨设点P 在第一象限,O 为坐标原点,由对称性可得|OP |=|PQ |2=a2,因为AP ⊥PQ ,所以在Rt △POA 中,cos ∠POA =|OP ||OA |=12,故∠POA =60°,易得P ⎝ ⎛⎭⎪⎫a4,3a 4,代入椭圆方程得116+3a 216b 2=1,故a 2=5b 2=5(a 2-c 2),所以椭圆C 的离心率e =255. 答案:2559.已知中心在坐标原点的椭圆与双曲线有公共焦点,且左、右焦点分别为F 1,F 2,这两条曲线在第一象限的交点为P ,△PF 1F 2是以PF 1为底边的等腰三角形.若|PF 1|=10,椭圆与双曲线的离心率分别为e 1,e 2,则e 1e 2的取值范围是________.解析:设椭圆的长轴长为2a ,双曲线的实轴长为2m ,则2c =|PF 2|=2a -10,2m =10-2c ,所以a =c +5,m =5-c ,所以e 1e 2=c c +5×c 5-c =c 225-c 2=125c2-1,又由三角形的性质知2c +2c >10,由已知2c <10,c <5,所以52<c <5,1<25c 2<4,0<25c 2-1<3,所以e 1e 2=125c2-1>13.答案:⎝ ⎛⎭⎪⎫13,+∞ 10.(2019·杭州市高考数学二模)抛物线y 2=2px (p >0)的焦点为F ,点A ,B 在抛物线上,且∠AFB =120°,过弦AB 中点M 作准线l 的垂线,垂足为M 1,则|MM 1||AB |的最大值为________.解析:设|AF |=a ,|BF |=b ,连接AF 、BF , 由抛物线定义,得|AF |=|AQ |,|BF |=|BP |, 在梯形ABPQ 中,2|MM 1|=|AQ |+|BP |=a +b . 由余弦定理得,|AB |2=a 2+b 2-2ab cos 120°=a 2+b 2+ab , 配方得,|AB |2=(a +b )2-ab ,又因为ab ≤⎝ ⎛⎭⎪⎫a +b 22,所以(a +b )2-ab ≥(a +b )2-14(a +b )2=34(a +b )2,得到|AB |≥32(a +b ). 所以|MM 1||AB |≤12(a +b )32(a +b )=33,即|MM 1||AB |的最大值为33. 答案:3311.(2019·衢州市教学质量检测)已知椭圆G :x 2a 2+y 2b2=1(a >b >0)的长轴长为22,左焦点F (-1,0),若过点B (-2b ,0)的直线与椭圆交于M ,N 两点.(1)求椭圆G 的标准方程; (2)求证:∠MFB +∠NFB =π; (3)求△FMN 面积S 的最大值.解:(1)因为椭圆x 2a 2+y 2b2=1(a >b >0)的长轴长为22,焦距为2,即2a =22,2c =2,所以2b =2,所以椭圆的标准方程为x 22+y 2=1.(2)证明:∠MFB +∠NFB =π,即证:k MF +k NF =0, 设直线方程MN 为y =k (x +2),代入椭圆方程得: (1+2k 2)x 2+8k 2x +8k 2-2=0, 其中Δ>0,所以k 2<12.设M (x 1,y 1),N (x 2,y 2),则x 1+x 2= -8k 21+2k 2,x 1x 2=8k 2-21+2k2, k MF +k NF =y 1x 1+1+y 2x 2+1=k (x 1+2)x 1+1+k (x 2+2)x 2+1=k [2+x 1+x 2+2(x 1+1)(x 2+1)]=0.故∠MFB +∠NFB =π.(3)S =12·FB |y 1-y 2|=12|k ||x 1-x 2|=128(1-2k 2)k2(1+2k 2)2.令t =1+2k 2, 则S =2-t 2+3t -22t2=-2⎝ ⎛⎭⎪⎫1t -342+18,当k 2=16(满足k 2<12)时,S 的最大值为24.12.(2019·浙江金华十校第二期调研)已知抛物线C :y =x 2,点P (0,2),A ,B 是抛物线上两个动点,点P 到直线AB 的距离为1.(1)若直线AB 的倾斜角为π3,求直线AB 的方程;(2)求|AB |的最小值.解:(1)设直线AB 的方程:y =3x +m ,则|m -2|1+()32=1,所以m =0或m =4,所以直线AB 的方程为y =3x 或y =3x +4. (2)设直线AB 的方程为y =kx +m ,则|m -2|1+k2=1,所以k 2+1=(m -2)2.由⎩⎪⎨⎪⎧y =kx +m y =x 2,得x 2-kx -m =0,所以x 1+x 2=k ,x 1x 2=-m , 所以|AB |2=()1+k 2[()x 1+x 22-4x 1x 2]=()1+k 2()k 2+4m =()m -22()m 2+3,记f (m )=()m -22(m 2+3),所以f ′(m )=2(m -2)(2m 2-2m +3),又k 2+1=()m -22≥1,所以m ≤1或m ≥3,当m ∈(]-∞,1时,f ′(m )<0,f (m )单调递减,当m ∈[)3,+∞时,f ′(m )>0,f (m )单调递增,f (m )min =f (1)=4,所以|AB |min =2.13.(2019·宁波市高考模拟)已知椭圆方程为x 24+y 2=1,圆C :(x -1)2+y 2=r 2.(1)求椭圆上动点P 与圆心C 距离的最小值;(2)如图,直线l 与椭圆相交于A 、B 两点,且与圆C 相切于点M ,若满足M 为线段AB 中点的直线l 有4条,求半径r 的取值范围.解:(1)设P (x ,y ),|PC |=(x -1)2+y 2=34x 2-2x +2=34(x -43)2+23, 由-2≤x ≤2,当x =43时,|PC |min =63.(2)当直线AB 斜率不存在且与圆C 相切时,M 在x 轴上,故满足条件的直线有2条; 当直线AB 斜率存在时,设A (x 1,y 1),B (x 2,y 2),M (x 0,y 0),由⎩⎪⎨⎪⎧x 214+y 21=1x224+y 22=1,整理得:y 1-y 2x 1-x 2=-14×x 1+x 2y 1+y 2,则k AB =-x 04y 0,k MC =y 0x 0-1,k MC ×k AB =-1,则k MC ×k AB =-x 04y 0×y 0x 0-1=-1,解得:x 0=43,由M 在椭圆内部,则x 204+y 20<1,解得:y 20<59,由:r 2=(x 0-1)2+y 20=19+y 20,所以19<r 2<23,解得:13<r <63.所以半径r 的取值范围为(13,63) .14.(2019·严州中学月考改编)椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为35,P (m ,0)为C 的长轴上的一个动点,过P 点且斜率为45的直线l 交C 于A ,B 两点.当m =0时,PA →·PB →=-412.(1)求椭圆C 的方程;(2)证明:|PA |2+|PB |2为定值. 解:(1)因为离心率为35,所以b a =45.当m =0时,l 的方程为y =45x ,代入x 2a 2+y 2b 2=1并整理得x 2=a 22.设A (x 0,y 0),则B (-x 0,-y 0), PA →·PB →=-x 20-y 20=-4125x 20=-4125·a 22. 又因为PA →·PB →=-412,所以a 2=25,b 2=16,椭圆C 的方程为x 225+y 216=1.(2)证明:将l 的方程为x =54y +m ,代入x 225+y216=1,并整理得25y 2+20my +8(m 2-25)=0. 设A (x 1,y 1),B (x 2,y 2), 则|PA |2=(x 1-m )2+y 21=4116y 21,同理|PB |2=4116y 22.则|PA |2+|PB |2=4116(y 21+y 22)=4116[(y 1+y 2)2-2y 1y 2]=4116·⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-4m 52-16(m 2-25)25=41.所以|PA |2+|PB |2为定值.15.(2019·温州十五校联合体联考)如图,已知抛物线C 1:y 2=2px (p >0),直线l 与抛物线C 1相交于A 、B 两点,且当倾斜角为60°的直线l 经过抛物线C 1的焦点F 时,有|AB |=13.(1)求抛物线C 1的方程; (2)已知圆C 2:(x -1)2+y 2=116,是否存在倾斜角不为90°的直线l ,使得线段AB 被圆C 2截成三等分?若存在,求出直线l 的方程;若不存在,请说明理由.解:(1)当倾斜角为60°的直线l 经过抛物线C 1的焦点F 时,直线l 的方程为y =3(x-p2),联立方程组⎩⎪⎨⎪⎧y =3(x -p 2)y 2=2px ,即3x 2-5px +34p 2=0, 所以|AB |=5p 3+p =13,即p =18,所以抛物线C 1的方程是y 2=14x .(2)假设存在直线l ,使得线段AB 被圆C 2截成三等分,令直线l 交圆C 2于C ,D ,设直线l 的方程为x =my +b ,A (x 1,y 1),B (x 2,y 2),由题意知,线段AB 与线段CD 的中点重合且有|AB |=3|CD |,联立方程组⎩⎪⎨⎪⎧4y 2=x x =my +b ,即4y 2-my -b =0,所以y 1+y 2=m 4,y 1y 2=-b 4,x 1+x 2=m 24+2b ,所以线段AB 中点的坐标M 为(m 28+b ,m 8),即线段CD 的中点为(m 28+b ,m8),又圆C 2的圆心为C 2(1,0),所以k MC 2=m8m 28+b -1=-m ,所以m 2+8b -7=0,即b =78-m28,又因为|AB |=1+m 2·m 216+b =141+m 2·14-m 2,因为圆心C 2(1,0)到直线l 的距离d =|1-b |1+m 2,圆C 2的半径为14, 所以3|CD |=6116-(1-b )21+m 2=343-m 2(m 2<3), 所以m 4-22m 2+13=0,即m 2=11±63, 所以m =±11-63,b =33-24,以下内容为“高中数学该怎么有效学习?”首先要做到以下两点:1、先把教材上的知识点、理论看明白。
高考数学复习考点知识与题型专题讲解52---空间几何体的直观图与三视图

1.斜二测画法 斜二测画法的主要步骤如下: (1)建立直角坐标系. 在已知水平放置的平面图形中取互相垂直的 Ox, Oy ,建立直 角坐标系. (2)画出斜坐标系. 在画直观图的纸上(平面上)画出对应图形. 在已知图形平行于 x 轴的线段, 在直观图中画成平行于 O ' x ',O ' y ', 使 ∠x 'O ' y ' = 45o (或135o ), 它们确 定的平面表示水平平面. (3)画出对应图形. 在已知图形平行于 x 轴的线段, 在直观图中画成平行于 x ' 轴 的线段, 且长度保持不变; 在已知图形平行于 y 轴的线段, 在直观图中画成平行于 y ' 轴, 且长度变为原来的一般. 可简化为 “横不变, 纵减半”. (4)擦去辅助线. 图画好后, 要擦去 x ' 轴、 y ' 轴及为画图添加的辅助线(虚线). 被挡住的棱画虚线. 注: 直观图和平面图形的面积比为 2 : 4 . 2.平行投影与中心投影 平行投影的投影线是互相平行的, 中心投影的投影线相交于一点. 二、空间几何体的三视图 1.三视图的概念 将几何体由前至后、由左至右、由上至下分别作正投影得到的三个投影图依次叫做 该几何体的正(主)视图、左(侧)视图、俯视图, 统称三视图. 它们依次反应了几何体 的高度与长度、高度与宽度、长度与宽度. 2.作、看三视图的三原则 (1)位置原则:
2 / 27
度量原则长对正、高平齐、宽相等即正俯同长、正侧同高、俯侧同宽 虚实原则轮廓线、现则实、隐则虚 俯视图 几何体上下方向投影所得到的投影图反映几何体的长度和宽度 口诀 正侧同高正府同长府侧同宽或长对正、高平齐、宽相等 三、常见几何体的直观图与三视图 常见几何体的直观图与三视图如表 8-3 所示.
高考数学复习各地数列模拟测试题及解析

高考数学复习各地数列模拟测试题及解析一、有关通项问题1、利用11(1)(2)n nn S n a S S n -=⎧=⎨-≥⎩求通项.(北师大版第23页习题5)数列{}n a 的前n 项和21n S n =+.(1)试写出数列的前5项;(2)数列{}n a 是等差数列吗?(3)你能写出数列{}n a 的通项公式吗?变式题1、(2005湖北卷)设数列}{n a 的前n 项和为S n =2n 2,求数列}{n a 的通项公式; 解:(1):当;2,111===S a n 时,24)1(22,2221-=--=-=≥-n n n S S a n n n n 时当故{a n }的通项公式为4,2}{,241==-=d a a n a n n 公差是即的等差数列. 变式题2、(2005北京卷)数列{a n }的前n 项和为S n ,且a 1=1,113n n a S +=,n =1,2,3,……,求a 2,a 3,a 4的值及数列{a n }的通项公式.解:(I )由a 1=1,113n n a S +=,n=1,2,3,……,得 211111333a S a ===,3212114()339a S a a ==+=,431231116()3327a S a a a ==++=, 由1111()33n n n n n a a S S a +--=-=(n ≥2),得143n n a a +=(n ≥2),又a 2=31,所以a n =214()33n -(n ≥2),∴ 数列{a n }的通项公式为21114()233n n n a n -=⎧⎪=⎨⎪⎩≥变式题3、(2005山东卷)已知数列{}n a 的首项15,a =前n 项和为n S ,且*15()n n S S n n N +=++∈,证明数列{}1n a +是等比数列.解:由已知*15()n n S S n n N +=++∈可得12,24n n n S S n -≥=++两式相减得()1121n n n n S S S S +--=-+即121n n a a +=+从而()1121n n a a ++=+当1n =时21215S S =++所以21126a a a +=+又15a =所以211a =从而()21121a a +=+ 故总有112(1)n n a a ++=+,*n N ∈又115,10a a =+≠从而1121n n a a ++=+即数列{}1n a +是等比数列;2、解方程求通项:(北师大版第19页习题3)在等差数列{}n a 中,(1)已知812148,168,S S a d ==求和;(2)已知658810,5,a S a S ==求和;(3)已知3151740,a a S +=求.变式题1、{}n a 是首项11a =,公差3d =的等差数列,如果2005n a =,则序号n 等于(A )667 (B )668 (C )669 (D )670 分析:本题考查等差数列的通项公式,运用公式直接求出. 解:1(1)13(1)2005n a a n d n =+-=+-=,解得669n =,选C点评:等差等比数列的通项公式和前n 项和的公式是数列中的基础知识,必须牢固掌握.而这些公式也可视作方程,利用方程思想解决问题.3、待定系数求通项:(人教版第38页习题4)写出下列数列{}n a 的前5项:(1)111,41(1).2n n a a a n -==+>变式题1、(2006年福建卷)已知数列{}n a 满足*111,21().n n a a a n N +==+∈ 求数列{}n a 的通项公式; 解:*121(),n n a a n N +=+∈112(1),n n a a +∴+=+{}1n a ∴+是以112a +=为首项,2为公比的等比数列.12.n n a ∴+=即 *21().n n a n N =-∈4、由前几项猜想通项:(北师大版第10页习题1)根据下面的图形及相应的点数,在空格及括号中分别填上适当的图形和数,写出点数的通项公式.(1) (4)(7)( ) ( )变式题1、(深圳理科一模).如下图,第(1)个多边形是由正三角形“扩展“而来,第(2)个多边形是由正方形“扩展”而来,……,如此类推.设由正n 边形“扩展”而来的多边形的边数为n a ,则6a = ;345991111a a a a +++⋅⋅⋅+= .解:由图可得:22(1)n a n n n n n =+-=+,所以642a =;又211111(1)1n a n n n n n n ===-+++ 所以345991111a a a a +++⋅⋅⋅+=1111111197()()()3445991003100300-+-++-=-=变式题2、(北师大版第11页习题2)观察下列各图,并阅读下面的文字,像这样,10条直线相交,交点的个数最多是( ),其通项公式为 . A .40个 B .45个 C .50个 D .55个解:由题意可得:设{}n a 为n 条直线的交点个数,则21a =,1(1),(3)n n a a n n -=+-≥,因为11n n a a n --=-,由累加法可求得:(1)12(1)2n n n a n -=+++-=,所以10109452a ⨯==,选B.2条直线相交,最多有1个交点3条直线相交,最多有3个交点4条直线相交,最多有6个交点二、有关等差、等比数列性质问题1、(北师大版第35页习题3)一个等比数列前n 项的和为48,前2n 项的和为60,则前3n 项的和为( )A .83B .108C .75D .63变式题1、一个等差数列前n 项的和为48,前2n 项的和为60,则前3n 项的和为 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学复习知识与能力测试题(五)
(文科)
第一部分选择题(共50分)
A. B C D
5.已知实数x,y 满足条件
=
,则点(),P x y 的运动轨迹是
( )
A.抛物线
B.双曲线
C.椭圆
D.圆
6.已知函数()[]1
,2,41
x f x x x +=
∈-,则函数)(x f ( ) A.最大值为3,最小值为5
3 B.最大值为3,没有最小值
最大值为4,最小值为2
7.l 斜交,则( ) b 垂直,也可能//a b b 平行
,但可能a b ⊥ 8.}21a
≤,若M 不是N 的真子
]1 D.[-2,0]
9.时,此类椭
黄金双曲线”的离心率e 等于( )
1
1
10.一个人以6米/秒的速度去追停在交通灯前的汽车,当他离汽车25米时,交通灯由
红变绿,汽车以1米2/秒的加速度匀加速开走,那么( ) A.人可在7秒内追上汽车 B.人可在10秒内追上汽车 C.人追不上汽车,其间距离最近为5米 D.人追不上汽车,其间距离最近为7米
第二部分 非选择题(共100分)
二.填空题(本大题共4小题,每小题5分,共20分,把答案填在题中的横线上)
11.正三棱锥P ABC -的底面边长为1,,,,E F G H 分别是,,,PA AC BC PB 的中点,四边
形EFGH 的面积为S,则S 的取值范围是 .
12.从集合A ={1,2,3,…,10}中任取三个数,使其和能被3整除,则共有取法的
种数
为 (用数字作答).
13.下面给出一个程序框图,请说出它的作用: .
P
E
C
F
H G
B
A
14
三.解答题( 本大题共6小题,共80分,解答应写出文字说明,证明过程或演算步骤)
15.(本小题满分12分)
已知函数()()()sin 0,0f x x ωϕωϕπ=+>≤≤为偶函数,且其最小正周期为2π
(1)求函数()f x 的表达式;
(2)若(
)2124sin ,31tan f παααα⎛
⎫-+ ⎪⎝⎭+=+求的值.
16.(本小题满分12分)
一项”过关游戏”规则规定:在第n 关要抛掷一颗骰子n 次,如果这n 次抛掷所出现的点数之和大于2n 就算过关.问:
(1)某人在这项游戏中最多能连过几关? (2)他连过前2关的概率是多少?
17.(本小题满分14分)
直三棱柱111ABC A B C -中,90,1,BAC AB AC ∠===
111
,,M N A B B C 分别是棱上的点,且12,2,BM A M C N B N MN A B ==⊥. (1) 求直三棱柱111ABC A B C -中的高a 及MN 的长(2) 动点P 在11B C 上移动,问P 在何位置时,1PA B ∆
A
B
1A
18.(本小题满分14分)
某厂生产某种产品的年固定成本为250万元,每生产x 千件,需另投入成本为
21
万元);当年产量不小于80千件
若每件售价为500元时,该厂. ?
A B。
,求,a b 的值.
(2) 设12,x x 是函数)(x f 的两个极值点,且122x x +=,证明:9
b ≤.
(五)
一.选择题
)
7.C 如图,在l 上任取一点P ,过P 分别在α、β内作'
'
//,//a a b b ,在'
a 上任取一点A ,过
A 作AC 垂直l ,垂足为C ,则AC β⊥,过C 作'
CB b ⊥交'
b 于B ,连结AB ,由三垂线定理知'
AB b ⊥,∴△APB 为直角三角形,故APB ∠为锐角,从而应当选C.
8.C 显然, {}{}
22
,11,,11M x x R a x a N x x R a x a
=∈-≤≤+=∈-≤≤+,假设
M 不是N 的真子集,则有22
22
1111
1111a a a a a a a a ⎧⎧+>++≥+⎪⎪⎨⎨-≤--<-⎪⎪⎩
⎩或,解得12a a >≤-或.于是,集合M 不是N 的真子集时必有实数21a -<≤
9.A 猜想出“黄金双曲线”的离心率e
等于
1
2
.
得2
2
2
AF BF AB =+,即有2222()()(a c b c a +=+++注意到2
2
2
b c a =-,c e a =
,变形得210,e e e --==从而
21
62502
t t -+=, 距离差 有最小值7米,故选D. 11
从而312
x S >
>即. 12、解析:42 将集合{}1,2,3,,20A = 中的元素按3除所得的余数进行分类,A 1 = {1,4,7,10},A 2 = {2,5,8},A 3 = {3,6,9},由三个数之和能被3整除,故三个数均取自同
E P
H
B
O
G
C F
一集合或在A 1 ,A 2 ,A 3中各取一个,共有:4+1+1+4×3×3 =42。
13、解析:求所给定的三个数的最大数并输出.
14、解析:⑴7515
或 取AC 的中点H ,连结FH 、EH ,在∆EFH 中,由已知可得
EH=FH=
2
AB ,且AB 和CD 成30 得30150EHF ∠=
或,故EF 和AB 所成的角是7515 或.
⑵20y +-=
因为cos cos 62πρθρθ⎛⎫
-= ⎪
⎝
⎭
20y +-=.
三.解答题
15
π21ω∴=,()cos f x x ∴=.
2
3
α=,两边平方后整理得
5cos 9
α=- (12分)
16数之和的最大值为6n ,时,点数之和不可能大于2n ,即
( 5分) 16
(7分) 第二关:22=4,2A 即“不能过第二关”,设第一次抛掷出现的点数为x ,设第一次抛掷出现的点数为y ,且a y x =+,要使此人“不能过第二关”,a 的可能取值是2、3或4, (8分)
当=a 2时,361
6
1,1,12
1==∴==P y x , 当=a 3时,362
62,1
22122==∴⎩⎨⎧==⎩⎨
⎧==P y x y x 或,
231===x x x 17 119
99∴11C B MN ⊥ (12分) 而B A MN 1⊥ ,∴MN 是C 1B 1与A 1B 的公垂线段
∴P 与N 重合时,才能使B PA 1∆的面积最大。
(14分) 18、解析:⑴当080,*x x N <<∈时,
()22500100011
10250402501000033
x L x x x x x ⨯=
---=-+- (2分)
当*80,x x N ≥∈时,
(
)500100010000511450250120010000x L x x x ⨯=
--+-=-
()()()2**140250,080,3
100001200,80,x x x x N L x x x x N x ⎧-+-<<∈⎪⎪∴=⎨
⎛⎫⎪-+≥∈ ⎪⎪⎝⎭⎩
(9分)
2001000-= (12分) 100千件时,该厂 (14分) 19过()11,A x y 处切线方程为
1111111 (2分)
同理,过()22,B x y 处切线方程为222y ax x y =-,
又()00,P x y 在上述两切线上, 01012y ax x y =-,02022y ax x y =-,
∴过A 、B 两点的直线方程为:002y ax x y =-,即002y ax x y =-. (6分)
⑵联立2
00
2y ax y ax x y ⎧=⎨=-⎩,得20020ax ax x y -+=,
01201212,,0,4y x x x x x F a a ⎛⎫
∴+==
⎪⎝⎭
又, (8分)
AF BF ∴=
=
(14分) 20
⎪⎩
⎪
⎨
⎧ (6分)
⑵由题,1x 、2x 是方程2
2
0ax bx a +-=的两个根,
1212,0b
x x x x a a
∴+=-=-<可得两根一正一负,
不妨设120,0,x x <>122122,x x x x +=⇒-=
()()
()2
22
22212112244444b x x x x x x a b a a a
∴-=+-⇒=+⇒=-.
设()2234444,0.t a a a a a =-=->其中
()'2281212003t a a a a a a ⎛
⎫=-=--=== ⎪⎝
⎭得舍去或当23a >时,'0t <.所以当23a =时,max 1627t =,即2
b。