PA逻辑分析仪使用手册

合集下载

逻辑分析仪使用教程

逻辑分析仪使用教程

声明: 本文来自分析仪开发手册.pdf)前言一、什么是逻辑分析仪二、使用介绍三、安装说明四、Saleae软件使用方法五、逻辑分析仪硬件安装六、使用Saleae分析电视红外遥控器通信协议七、使用Saleae分析UART通信八、使用Saleae分析IIC总线通信九、使用Saleae分析SPI总线通信十、Saleae逻辑分析仪使用问题和注意事项淘宝地址:(原文件名:21.jpg)前言:工欲善其事,必先利其器。

逻辑分析仪是电子行业不可或缺的工具。

但是由于一直以来,逻辑分析仪都属于高端产品,所以价格居高不下。

因此我们首先要感谢Cypress公司,提供给我们68013这么好的芯片,感谢俄罗斯毛子哥将这个Saleae逻辑分析仪开源出来,让我们用平民的价格,就可以得到贵族的待遇,获得一款性价比如此之高的逻辑分析仪,可以让我们在进行数字逻辑分析仪的时候,快速查找并且解决许多信号、时序等问题,进一步提高我们处理实际问题的能力。

原本计划,直接将Saleae的英文版本使用手册直接翻译过来提供给大家,我花费半天时间翻译完后,发现外国人写的东西不太符合我们国人的思维习惯,当然,也是由于我的英语水平有限,因此,我根据自己摸索这个Saleae的过程,写了一份个人认为符合中国人习惯的Saleae,提供给大家,希望大家在使用过程中少走弯路,快速掌握使用方法,更快的解决自己实际遇到的问题。

由于个人水平有限,因此在文章撰写的过程中难免存在问题和错误,如果有任何问题,希望大家能够提出来,我会虚心接受并且改进,希望通过我们的交流,给越来越多的人提供更加优秀的资料,共同进步。

一、什么是逻辑分析仪:逻辑分析仪是一种类似于示波器的波形测试设备,它通过采集指定的信号,并通过图形或者数据统计化的方式展示给开发人员,开发人员通过这些图形化时序信号按照协议来分析硬件或者软件中的错误。

逻辑分析仪是设计中不可缺少的设备,通过它,可以迅速定位错误,发现并解决问题,达到事半功倍的效果,尤其在分析时序,比如1wire、I2C、UART、SPI、CAN等数据的时候,应用逻辑分析仪解决问题非常快速。

逻辑分析仪使用说明

逻辑分析仪使用说明

Saleae 24M 8CH 逻辑分析仪使用手册/item.htm?id=8430104015一,软件的安装以及基本使用1,首先安装软件Logic Setup 1.1.4 (32-bit),可从/downloads 下载,还有支持其他操作系统的软件版本,可对应下载。

2,安装完毕之后启动一下我们可以到可以看到以下界面:这个软件在没有接入硬件的时候可以模拟运行,我们可以看到。

点一下START SIMULATION 就可以看到波形,这时候的只是软件根据你设置的要分析的协议(如果你已经设置的话)模拟出来的,随机产生的。

如下图:用鼠标的左键点图形将实现ZOOM IN 放大,右键是ZOOM OUT缩小,如果使用的是三论鼠标,可以使用中键进行放大缩小。

我们也可以移动底部的滑动条来查看波形。

3,安装完毕后插入硬件,出现找到新硬件提示,如下点自动搜索驱动。

之后就能完成驱动加载。

在安装驱动的最后一步,询问你是否从新启动系统,你可以点否,不用重新启动就可以使用。

此时驱动安装完毕。

4,再次启动软件会发现,我们看到现在按钮的名字变成了START 而不是没有接硬件之前的START SIMULATION。

这时候点START将实现8路逻辑信号的采集。

二,关于采样深度和采样率在软件的左上方有两个下拉选项,左边一个是采样深度,右边一个是采样速率。

采样深度就是你总共要采集多少数据,图上的每路都采集25MBIT ;采样速率更好理解,就是一秒采集多少次。

比方说我们采25M标示每路每路集深度是1M采样速率也是1M,那总的采集时间就是1秒。

采集一秒后自动停止采集,并在界面上显示波形。

三,关于波形信息1在软件界面的右上方有波形信息,可以通过点击来选择自己感兴趣的参数。

如下图:2,以下图为例,看一下具体参数都是什么含义:Width :是图中的时间长度.Period :是图中的周期,也就是说将这个电平单独分析,其周期是多少。

而接下来的DUTY Cycle自然就是这个电平作为一个周期来分析,其占空比为多少。

Saleae 8通道24M采样逻辑分析手册

Saleae 8通道24M采样逻辑分析手册

Saleae minilogic 24M 8CH 逻辑分析仪使用手册MIRROROKQQ 4641452 /ite m.htm?id=12378862970注意本逻辑分析仪需要PC具有USB2.0接口,如果是较老计算机或者笔记本慎用!!信号输入幅度:2V-5V采用频率0-24MHZ一、软件的安装1,首先安装软件Logic Setup 1.1.4 (32-bit),可从/downloads下载,还有支持其他操作系统的软件版本,可选择对应的操作系统下载2,选取安装的软件Logic Setup 1.1.4 (32-bit).exe,双击进行安装:3.选择NEXT,进入下一步:4.按照上图选择后,点击NEXT,出现下面界面默认安装路径已经设置在C:\PROGRAM FILES\SALEAE LLC,不选的话按照默认的安装目录,此时选择NEXT;也可以设置自己设定的目录.5.安装过程可能需要1-2分钟6.安装完成后出现下面界面:7.安装完毕之后启动一下我们可以到可以看到以下界面:二、基本使用方法:在没有连接MINILOGIC的时候软件处于模拟状态Simulation,此时可以进行软件的信号模拟;2.1选取 Analyzers右侧的加号 + 如下图提示增加一个协议分析 Add a protocol analyzer2.2出现右侧一组协议分析类型共7种如下:CAN,I2C 1-WIRE ASYNC SERIAL,SPI,INI/O,I2S/PCM; 协议类型简介:请看附件选取I2C 协议类型,如下图选择模拟I2C,出现分析设置界面:选取默认设置,SDA信号模拟在通道0,SCL信号模拟在通道1,地址显示设置选用默认的。

完成后界面通道0处显示SDA,通道1处显示SCL,如下图;在右侧下部出现I2C 的设置:2.3模拟仿真选取Start Simulation开始启动仿真软件开始模拟采样sampling采样完成出现下面界面:使用鼠标的滑轮,向上可以放大波形;向下可以缩小波形;三、信号测量实战:我第一个测试来测出A TMEGA128核心板的GPIO波形。

ZRtech Saleae 24M 8CH 逻辑分析仪 使用说明

ZRtech Saleae 24M 8CH 逻辑分析仪 使用说明

一,软件的安装以及基本使用1,首先安装软件Logic Setup 1.1.4 (32-bit),可从/downloads 下载,还有支持其他操作系统的软件版本,可对应下载。

2,安装完毕之后启动一下我们可以到可以看到以下界面:这个软件在没有接入硬件的时候可以模拟运行,我们可以看到。

点一下START SIMULATION就可以看到波形,这时候的只是软件根据你设置的要分析的协议(如果你已经设置的话)模拟出来的,随机产生的。

如下图:用鼠标的左键点图形将实现ZOOM IN 放大,右键是ZOOM OUT 缩小,如果使用的是三论鼠标,可以使用中键进行放大缩小。

我们也可以移动底部的滑动条来查看波形。

3,安装完毕后插入硬件,出现找到新硬件提示,如下点自动搜索驱动。

之后就能完成驱动加载。

在安装驱动的最后一步,询问你是否从新启动系统,你可以点否,不用重新启动就可以使用。

此时驱动安装完毕。

4,再次启动软件会发现,我们看到现在按钮的名字变成了START 而不是没有接硬件之前的START SIMULATION。

这时候点START 将实现8 路逻辑信号的采集。

二,关于采样深度和采样率在软件的左上方有两个下拉选项,左边一个是采样深度,右边一个是采样速率。

采样深度就是你总共要采集多少数据,图上的25M 标示每路都采集25MBIT ;采样速率更好理解,就是一秒采集多少次。

比方说我们采集深度是1M 采样速率也是1M,那总的采集时间就是1 秒。

采集一秒后自动停止采集,并在界面上显示波形。

三,关于波形信息1 在软件界面的右上方有波形信息,可以通过点击(齿轮图标)来选择自己感兴趣的参数。

如下图:2,以下图为例,看一下具体参数都是什么含义:Width :是图中的时间长度.Period :是图中的周期,也就是说将这个电平单独分析,其周期是多少。

而接下来的DUTY Cycle 自然就是这个电平作为一个周期来分析,其占空比为多少。

FREQUENCY,当然就是周期的倒数。

Tek_PA1000泰克功率计使用手册

Tek_PA1000泰克功率计使用手册

电流量程 (1 A 分流器 ) 2.0 Apeak, 1.0 Apeak, 0.4 Apeak, 0.2 Apeak, 0.1 Apeak, 0.04 Apeak, 0.02 Apeak, 0.01 Apeak,
0.004 Apeak, 0.002 Apeak
测量精度 - 电压
电压精度 , Vrms (45 Hz - 850 Hz)1
Байду номын сангаас
电压量程
1000 Vpeak, 500 Vpeak, 200 Vpeak, 100 Vpeak, 50 Vpeak, 20 Vpeak, 5 Vpeak
电流量程 (20 A 分流器 ) 100 Apeak, 50 Apeak, 20 Apeak, 10 Apeak, 5 Apeak, 2 Apeak, 1 Apeak, 0.5 Apeak, 0.2 Apeak, 0.1 Apeak
/power-analyzer-series/pa1000 5
PA1000 功率分析仪
订货信息
PA1000
标配附件 电压线组 特定国家电源线 USB 通讯电缆 文档光盘
校准证明 五年产品保修
推荐附件 BB1000-NA BB1000-EU BB1000-UK BALLAST-CT CL200 CL1200 PA-LEADSET
通过任何仪器通信端口与 PA1000 通信 远程改变仪器设置 从仪器实时传送、查看和保存测量数据,包括波形、 谐波柱状图和曲线 记录一段时间的测量数据 与多台 PA1000 仪器通信,从多台 PA1000 仪器记录 数据 创建公式,计算功率转换效率和其它值 把测量数据导出到 .csv 格式,以导入其它应用 对特定应用测试,使用设置向导界面,只需点击几下 鼠标,即可自动完成仪器设置、数据采集和报告生成 根据 IEC 62301 第二版低功率待机要求自动执行全 面一致性测试 在未来版本中将增加其它自动测试功能

逻辑分析仪使用说明

逻辑分析仪使用说明

MicroLA1016使用说明By RoasnVersion 1.2一、硬件信息 (3)1. 硬件指标 (3)2. 接口说明 (3)3. 指示灯 (4)二、菜单操作 (5)1. 文件 (5)打开 (5)1) 保存数据 (5)2) 保存图像 (5)3) 导出 (5)4) 打印 (5)5) 退出 (5)2. 设置 (6)1) 触发设置 (6)2) 通道设置 (6)3) 颜色设置 (6)4) 保存设置 (6)5) 重载设置 (6)6) 保存为默认 (6)3. 状态 (6)4. 测试 (7)5. 解码 (7)6. 帮助 (7)三、工具栏操作 (7)四、状态栏 (9)五、操作方法 (9)1、数据采集 (9)2、触发设置 (9)3、通道设置 (10)4、图像操作 (11)1) 查找沿变化 (11)2) 放置光标 (12)一、 硬件信息1. 硬件指标最高采样频率:100MHz最大存储深度:512Kbit/路输入阻抗:1MΩ输入电压:0~5V信号电平:TTL/CMOS接口类型:USB2.0高速触发位置:0~511K,步进为1K+通通通通通通通通道道道道道道道道1 2 3456783. 指示灯指示灯作用如下图所示:电源指示灯在设备通电后就会点亮。

工作指示灯在数据采集期间点亮,采样结束后(上位机软件停止采样或读取采样数据后)熄灭。

命令指示灯在每次收到命令后翻转(亮变灭,或灭变亮)。

二、 菜单操作1. 文件打开打开保存过的数据文件。

1)保存数据保存逻辑分析仪采集下来的数据,保存下来的数据用本软件再次打开。

2)保存图像保存当前视图为bmp图像文件。

3)导出可导出采集到的数据,可保存的格式为CSV格式与二进制根式,供第三方软件分析。

保存下来的数据不能用本软件再次打开。

4)打印把当前图像输出到打印机。

5)退出退出软件。

2. 设置1)触发设置设置触发条件。

进入触发条件设置后,右键菜单能保存当前触发设置或打开保存过的触发设置。

逻辑分析仪使用方法

逻辑分析仪使用方法

逻辑分析仪使用方法逻辑分析仪是一种用来测量和分析数字信号的仪器,它可以帮助工程师和技术人员对数字电路进行故障诊断、信号分析和性能评估。

在本文中,我们将介绍逻辑分析仪的基本使用方法,以帮助用户更好地理解和操作这一设备。

1. 连接逻辑分析仪。

首先,将逻辑分析仪与待测电路进行连接。

通常情况下,逻辑分析仪会配备一根数据线,用户需要将其连接至待测电路的输入端。

另外,还需要将逻辑分析仪的地线连接至待测电路的接地端,以确保测量的准确性和稳定性。

2. 设置测量参数。

在连接完成后,用户需要设置逻辑分析仪的测量参数,包括采样率、触发条件、数据存储方式等。

采样率决定了逻辑分析仪对信号的采样频率,触发条件则决定了逻辑分析仪何时开始进行数据采集。

用户需要根据实际情况和需求进行适当的设置,以确保测量结果的准确性和完整性。

3. 启动测量。

设置完成后,用户可以启动逻辑分析仪进行测量。

在测量过程中,逻辑分析仪会实时采集待测电路的数字信号,并将其显示在设备的屏幕上。

用户可以通过屏幕上的波形图和数据表格来观察和分析信号的变化情况,以便进行故障诊断和性能评估。

4. 分析测量结果。

测量完成后,用户需要对采集到的数据进行分析。

逻辑分析仪通常会提供丰富的数据分析工具,包括波形显示、时序分析、协议解码等功能。

用户可以利用这些工具来深入分析信号的特性,找出潜在的问题和改进方案。

5. 结束测量。

最后,在测量结束后,用户需要及时断开逻辑分析仪与待测电路的连接,并对设备进行适当的存储和维护。

同时,也需要将测量结果进行保存和备份,以便日后的查阅和分析。

总结。

逻辑分析仪是一种非常重要的测试设备,它可以帮助用户对数字电路进行全面的分析和评估。

通过正确的连接、设置、启动、分析和结束测量等步骤,用户可以充分发挥逻辑分析仪的功能,提高工作效率和测试准确性。

希望本文所述的逻辑分析仪使用方法能够对用户有所帮助,谢谢!以上就是逻辑分析仪使用方法的全部内容,希望对您有所帮助。

逻辑分析仪使用手册

逻辑分析仪使用手册
1.1 1.2 逻辑分析仪原理 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 2 逻辑分析仪基本概念 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 2 1.2.1 定时采样 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 2 1.2.2 状态采样 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 3 1.2.3 动态采样 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 3 1.2.4 存储容量 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 3 1.2.5 采样时间 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 4 1.2.6 测量带宽 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 4 1.2.7 门限电压 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 5 1.2.8 触发 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 5 1.2.9 触发位置优先 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 5 1.2.10 触发状态优先 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 5
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

PA8000 逻辑分析仪手册版本04.09CH四、内容:1.逻辑分析仪介绍:---------------------------------------------------------0032.逻辑分析仪操作----------------------------------------------------------0043.逻辑分析仪触发----------------------------------------------------------0054.逻辑分析仪触发源--------------------------------------------------------0065.波形发生器设置----------------------------------------------------------007C信号介绍------------------------------------------------------------ 0087.波形发生器WFG信号------------------------------------------------------012一、逻辑分析仪介绍:上图为逻辑分析仪使用中状态。

屏幕上方:C1,C2标尺。

T为时间轴,单位:ms屏幕右侧:F1-F8功能按键屏幕左侧:H水平标线屏幕内:用颜色表示的监控项目波形图,可编辑尺寸的网格,白色标尺线,水平线等二、逻辑分析仪操作图标名称介绍设置用于设置逻辑分析仪监测的各项目特性,触发模式,触发源,显示线颜色,连接等特性。

可参考:逻辑分析仪设置触发手动触发。

仅在触发源设置为手动触发或单次触发模式自动调整将当前监控的项目的刻度,偏置自动调整,充分显示在屏幕上。

监控项目可以用PgUp/Dn切换视窗打开/关闭观测窗口载入数据和设置载入LA数据文件,包含其设置保存设置和数据保存LA数据文件,包含其设置开启波形发生器启动波形发生器停止波形发生器停止波形发生器波形发生器窗口在观测窗口面板上显示/隐藏波形发生器窗口移动光标1 激活C1光标的移动功能,在观测窗口显示C1标尺实际值,可用鼠标或键盘左右键移动标尺移动光标2 激活C2光标的移动功能,在观测窗口显示C2标尺实际值,可用鼠标或键盘左右键移动标尺移动交叉光标激活水平游标尺的移动功能,可用鼠标或键盘上下键移动。

移动主标度激活主标度的移动功能,可用鼠标或键盘上下键移动。

移动视窗激活观测窗孔的移动功能,可用鼠标或键盘上下键移动。

快速移动模式激活C1,C2,水平标尺,主标度,视窗移动的快速移动模式三、逻辑分析仪触发设置【触发】-【模式】●无:在此模式下信号为连续采样,不显示触发源等选项●手动:该模式下信号触发为手动触发,采样一个扫描波形,不显示触发源等选项●单次:该模式下信号触发为手动触发,触发一次采样一次,然后触发被禁止●连续:被触发条件任意触发,并且显示采样。

触发源只能被设置单一条件:◆一个触发条件信号,如PLC信号◆一个NC程序的一个程序行◆在手动或无触发源设置下,可以不用触发源触发条件:> 上升沿< 下降沿= 等于# 不等于~ 信号的任何变化都触发触发信号源触发可以被延迟,延迟时间只能为正值,单位ms四、逻辑分析信号选择最大可以监控8个项目,项目1-8的界面风格类似,都有单独的设置栏。

当信号是数组形式,则需要索引。

信号源类型:●IPO:插补器控制环●INPR:解释器控制环●POSL:位置环●SPDL:速度环●CURL:电流环●PLC:PLC控制器,只有当PLC被载入运行时,在信号源中才能看到PLC可以被监控的信号信号可以被CNC服务器进行处理后输出,处理类型:标准一阶导数二阶导数频谱信号五、波形发生器设置(慎用)六、CNC信号源介绍常用功能说明Actual Axis Position[32] 实际轴位置Actual Block Number 实际进给行号Distance between Cam and Marker[32] 理论轨迹与实际指令之间距离Actual Axis Speed[32] 实际轴速度Commanded Position[32] 命令位置Flag of Emergency Stop 急停标志FilterState 滤波器状态Actual Axis Error[32] 实际轴误差(滞后值)Value of Blocks in the Dynamic Buffer 动态缓冲区预读段数Actual Velocity on the Path 轨迹运行实际速度()高级功能说明AccelerationFactor 加速因子ActualAxisPosition[32]AFCSFeedPotAFCSpeedFlag 当模拟量控制被激活,则=1 AFCSpeedV ariationAFCV oltageAnalogIn[32]AnalogOut[32]BJogAxisIndexBlockBufferEmptyReductionFactorActual Block NumberBlockNoActiveBlockNoTempActualDistance between Cam and Marker[32]CamToMarkerDistance[32]CircleKVEffCNCSystemEnableCommandedDelta[32] 命令位置(老外用的)Actual Axis Speed[32]CommandedDeltaDelta[32]CommandedMachinePos[32]CommandedMachinePosCorr[32]Commanded Position[32]CrossErrorCompOffset[32]CtrlResetFlagCycleMaxBlockDistContrDistanceDistContrValueDistContrVoltDriveOnFlag EmergencyStopFlagFlag of Emergency StopEndAngleEndPointAbscEndPosOrdEndRadiusEscapeAxisPart[32] EscapeEndPoint[32] EscapeFeedIntern EscapePathEnd FilterActFrequency FilterActualOrderFilterStateFlagTestG33SpindlePositionG33SpindleSlopeRevG33SpindleV elocity HandwheeelDirectionPLC[32] HandwheelCorr[32]Actual Axis Error[32]MachineV elocity[32] MainProgramNoActual NCBlkBufAvailValue of Blocks in the Dynamic Buffer OperatingModeChangeInfo OperatingModeFlagPActualPos[32]Parameter[200]ParkAxesFlagPartRotationPhiActual Velocity on the Path PathVelocity PCommandedMachineLag[32 PDriftCompensation[32] PDriveOnFlagPitchErrorValue[32]PLag[32]PLCFeedOverride PLCSpindleOverridePM19PosPMeasuringSignal PNewAcceleration[32] PNewAccelerationDelta[32] PNewPos[32] PNewVelocity[32] POutputValueIntern[32] ProgramActiveFlag PZerolagAccelerationDelta[32] PZerolagAccelerationFactor[32] PZerolagFactor[32] ReferencePosKey ReverseActive ReverseAfcOff ReverseBlockEnd ReversePath ReversePathActive ReversePathEnd ReversePoti RotationCenterAbsc RotationCenterOrd SAcceleration[32] SActMachinePos[32] SActualFeedPotSActualPos[32] SARTAcceleration[32] SARTAccuracyDelta[32] SARTAccuracyDeltaOld[32] SARTVelocity[32] SBacklashCorr[32] SBCDActiveSBCDStop SBlockTransferFlag SCircleContourErrorComp SCycleOnOutput SCycleStopCommand SCycleStopStatus SDownslopeFlag SDriftComp[32] SEmergeencyStopQ SEnableAllAxes SenableOfTransfer SercosDriveControl SercosDriveReadySercosZK1FlagSetPosOld[32]SFeedPotSFeedPotOld SFeedStopOff SFeedStopQSG92Offset[32]SInPosLag[32] SIpoStopFlag SLagDeviation[32] SLookAheadCounterSM19FlagSMachinePos[32] SMeasuringPos[32] SNCStartSNCStartOffSPathSpeed SpindleActSpeedFlag SpindleOutput SpindleStillStanding SSetPos[32] SSetPosDelta[32] SSpindlePotSTangent[32] SubProgramIndex SubProgramNoActual SumOfDriftDelta[32]SV AxisIncrement[32] SVelocity[32] TransferDone TransferType FIOutPutValueInterger,WORD七、波形发生器信号(慎用)信号名称介绍AFCV oltage 用作速度控制的模拟量电压。

相关文档
最新文档