风电机组基础形式

合集下载

新能源风机塔筒及基础设计

新能源风机塔筒及基础设计

7.风电机组基础及塔筒设计风电机组基础设计所依据的规范主要有:《风电机组地基基础设计规定》 (试行)版、《建筑地基基础设计规范》《混凝土结构设计规范 》等。

根据工程地质情况风电机组基础的主要形式有以下几种:风机基础基础环式基础锚栓式基础扩大板式基础PH基础梁板式基础岩石锚杆基础第一种分法第二种分法承台桩基础7.1.1基础环式基础:风机塔架与基础之间通过基础环进行连接的基础。

优点:基础环的防腐与塔架的防腐方案一致,因此不存在后期使用过程中基础环的腐蚀问题。

缺点:基础环与混凝土基础连接部位存在刚度突变,因此基础环附近混凝土容易疲劳破坏。

设计时需要特别注意。

适用条件:适用于所有陆上场地。

基础环底法兰处混凝土损坏7.1.1基础环式基础:7.1.2锚栓式基础:风机塔架与基础之间通过锚栓连接;通过对锚栓施加预应力,从而实现塔架在基础上的固结。

优点:锚栓的下端固结于基础底部,因此整个基础中不存在刚度突变,受力合理,不存在混凝土疲劳等问题。

缺点:1.国内目前的锚栓防腐均存在问题,锚栓腐蚀后,承载力降低,从而存在安全隐患;2.锚栓如果在施工中,被张拉断,断后更换成本巨大。

适用条件:适用于陆上所有场地。

锚栓组合件锚栓腐蚀锚栓断裂7.1.2锚栓式基础:7.1.3扩大板式基础:传统扩大板式基础分为承台和底板两部分,实体结构。

基础高度和底部直径比例<1:3,随着基础顶部荷载变大,底部直径增大,该比例逐渐变小。

基础底板多为圆形或多边形。

优点:支模容易,施工速度比梁板式快。

缺点:于大由功率风机基础需承受较大的弯矩,基础底面积往往较大,致使底面尺寸较大,混凝土用量大,开挖回填量增大。

适用条件:适用于所有陆上所有场地基础环扩大板式基础锚栓式扩大板式基础锚栓式扩大板式基础7.1.4梁板式基础:梁板式独立基础,为在扩大板式基础方案下的改进,形状参数基本相同,其改进点为用地基梁代替变截面圆台,梁板式基础中间圆台与塔筒下法兰对接。

海上风机基础形式

海上风机基础形式

海上风机基础形式(原创实用版)目录一、引言二、海上风力发电基础形式概述1.定义及分类2.发展背景及意义三、海上风电机组基础结构1.现今主要形式2.各类基础结构的适用情况及优缺点四、海上风电基础的发展趋势五、结论正文一、引言随着全球气候变暖和能源价格的持续上涨,发展新能源和可再生能源已成为世界各国的共同关注。

其中,海上风力发电作为一种清洁、可再生的能源形式,得到了越来越多国家的重视。

为更好地推广和应用海上风电技术,本文将对海上风力发电基础形式进行分析和探讨,以期为海上风电场的建设提供借鉴和参考。

二、海上风力发电基础形式概述1.定义及分类海上风力发电基础形式是指支撑海上风电机组的建筑物或结构物。

根据不同的分类标准,海上风电基础形式可以分为以下几类:(1)固定式基础:包括单桩、群桩等类型,主要适用于浅海区域。

(2)漂浮式基础:主要包括单体漂浮式、群体漂浮式等类型,适用于深海区域。

(3)海底固定式基础:如海底电缆、海床锚等类型,适用于深海区域。

2.发展背景及意义随着全球能源消耗的持续增长和环境污染问题日益严重,各国政府纷纷提出发展可再生能源的战略目标。

海上风力发电具有资源丰富、占地面积小、对环境影响较小等优点,成为各国政府和企业竞相发展的领域。

海上风力发电基础形式的研究和创新,对于提高海上风电场的安全性、稳定性和经济性具有重要意义。

三、海上风电机组基础结构1.现今主要形式目前,海上风电机组的基础结构主要有以下几种:(1)单桩基础:单桩基础是海上风电场中最常见的一种基础形式,其结构简单,施工方便,适用于各种海况。

(2)群桩基础:群桩基础由多根桩基组成,可以提高风电机组的稳定性,适用于海况较恶劣的区域。

(3)漂浮式基础:漂浮式基础适用于深海区域,其主要特点是可以随着海浪的波动而上下浮动,以减小对海底的影响。

(4)海底固定式基础:海底固定式基础通过海底电缆、海床锚等结构将风电机组固定在海底,适用于深海区域。

2.各类基础结构的适用情况及优缺点(1)单桩基础:适用情况广泛,优点是结构简单、施工方便,缺点是对海况要求较高。

各种海上风电地基基础的比较及适用范围

各种海上风电地基基础的比较及适用范围

各种海上风电地基基础的适用范围1 海上风电机组基础结构设计需考虑的因素海上风电机组基础结构设计中,基础形式选择取决于水深、水位变动幅度、土层条件、海床坡率与稳定性、水流流速与冲刷、所在海域气候、风电机组运行要求、靠泊与防撞要求、施工安装设备能力、预加工场地与运输条件、工程造价和项目建设周期要求等。

当前阶段国内外海上风电机组基础常用类型包括单桩基础、重力式基础、桩基承台基础(潮间带风电机组)、高桩承台基础、三脚架或多脚架基础、导管架基础等。

试验阶段的风电机组基础类型包括悬浮式、吸力桶式、张力腿式、三桩钢架式基础等形式,但仅处于研究或试验阶段。

基础型式结构特征优缺点造价成本适用范围安装施工重力式有混凝土重力式基础和钢沉降基础结构简单、抗风浪袭击性能好;施工周期长,安装不便较低浅水到中等水深(0~10m)大型起重船等单桩式靠桩侧土压力传递风机荷载安装简便,无需海床准备;对土体扰动大,不适于岩石海床高浅水到中等水深(0~30m)液压打桩锤、钻孔安装多桩式上部承台/三脚架/四脚架/导管架适用于各种地质条件,施工方便;建造成本高,难移动高中等水深到深水(>20m)蒸汽打桩锤、液压打桩锤浮式直接漂浮在海中(筒型基础/鱼雷锚/平板锚)安装灵活,可移动、易拆除;基础不稳定,只适合风浪小的海域较高深水(>50m)与深水海洋平台施工法一致吸力锚利用锚体内外压力差贯入海床节省材料,施工快,可重复利用;“土塞”现象,倾斜校正低浅水到深水(0~25m)负压下沉就位表1 当前常用风电基础形式的比较2 中国各海域适用风电基础形式的分析我国渤海水深较浅,辽东湾北部浅海区水深多小于10 m ,海底表层为淤泥、粉质粘土、淤泥质粉砂,粉土底部沉积物以细砂为主,承载力相对较大,可作持力层。

和粉砂层,承载力小,易液化,不适宜作持力层;而黄河口海域多为黄河泥沙冲淤海底,因此,渤海的大部分海域为淤泥质软基海底,冲刷现象也较为严重,且冬季有冰荷载的作用,不宜采用重力式基础和负压桶基础,可采用单桩结构。

各种海上风电地基基础的比较及适用范围

各种海上风电地基基础的比较及适用范围

各种海上风电地基基础的适用范围1 海上风电机组基础结构设计需考虑的因素海上风电机组基础结构设计中,基础形式选择取决于水深、水位变动幅度、土层条件、海床坡率与稳定性、水流流速与冲刷、所在海域气候、风电机组运行要求、靠泊与防撞要求、施工安装设备能力、预加工场地与运输条件、工程造价和项目建设周期要求等。

当前阶段国内外海上风电机组基础常用类型包括单桩基础、重力式基础、桩基承台基础(潮间带风电机组)、高桩承台基础、三脚架或多脚架基础、导管架基础等。

试验阶段的风电机组基础类型包括悬浮式、吸力桶式、张力腿式、三桩钢架式基础等形式,但仅处于研究或试验阶段。

基础型式结构特征优缺点造价成本适用范围安装施工重力式有混凝土重力式基础和钢沉降基础结构简单、抗风浪袭击性能好;施工周期长,安装不便较低浅水到中等水深(0~10m)大型起重船等单桩式靠桩侧土压力传递风机荷载安装简便,无需海床准备;对土体扰动大,不适于岩石海床高浅水到中等水深(0~30m)液压打桩锤、钻孔安装多桩式上部承台/三脚架/四脚架/导管架适用于各种地质条件,施工方便;建造成本高,难移动高中等水深到深水(>20m)蒸汽打桩锤、液压打桩锤浮式直接漂浮在海中(筒型基础/鱼雷锚/平板锚)安装灵活,可移动、易拆除;基础不稳定,只适合风浪小的海域较高深水(>50m)与深水海洋平台施工法一致吸力锚利用锚体内外压力差贯入海床节省材料,施工快,可重复利用;“土塞”现象,倾斜校正低浅水到深水(0~25m)负压下沉就位表1 当前常用风电基础形式的比较2 中国各海域适用风电基础形式的分析我国渤海水深较浅,辽东湾北部浅海区水深多小于10 m ,海底表层为淤泥、粉质粘土、淤泥质粉砂,粉土底部沉积物以细砂为主,承载力相对较大,可作持力层。

和粉砂层,承载力小,易液化,不适宜作持力层;而黄河口海域多为黄河泥沙冲淤海底,因此,渤海的大部分海域为淤泥质软基海底,冲刷现象也较为严重,且冬季有冰荷载的作用,不宜采用重力式基础和负压桶基础,可采用单桩结构。

陆上风机基础设计中应注意的几个问题

陆上风机基础设计中应注意的几个问题

陆上风机基础设计中应注意的几个问题近些年,我国风电事业发展迅猛。

随着风电建设的快速发展,风机基础设计分析水平也显著提高。

风机基础形式由最初的传统重力式扩展基础发展到梁板式基础、高台柱基础等多种基础形式。

标签:风机基础;基础设计1 风机基础形式分析1.1 重力式扩展基础钢筋混凝土重力式扩展基础是目前国内陆上风电场最常采用的一种基础形式。

一般通过基础环或预应力锚栓将上部荷载传给基础。

基础底面形状一般有正方形、六边形、八边形以及圆形,目前最常用的是正方形和圆形。

通过计算认为,尽管方形基础混凝土用量比圆形基础略大,但在相同工况下,方形基础的基底压力分布较为合理,基底脱开面积较小,并且钢筋使用量较小,对于盛行风较为固定的地区,适合选用方形或多边形基础。

重力式扩展基础采用极限状态设计方法。

首先根据轮毂高度、单机容量、风速、荷载水平及地质条件等确定基础底板的尺寸和高度。

然后分别计算基底反力、沉降、倾斜、基底脱开面积等。

分别校核地基承载力、基础变形及稳定性是否同时满足规范以及风机厂家的要求。

重力式扩展基础施工较为简便、工程经验丰富、适用范围广,但是这种基础形式抗压能力有余,抗弯效率不高。

由于整体刚度较大,基础边缘与地基脱开面积起到控制作用,尤其是对于大容量的风力发电机组,基础的悬挑板长度过大,需要大量的混凝土,经济性较差。

1.2 梁板式基础梁板式风机基础是由基础台柱、基础底板、从台柱悬挑出的放射状的主梁、封边次梁组成。

主梁格间由素土夯实,底面通常为八边形或圆形。

上部荷载通过基础环传递给主梁,再由主梁传递给次梁及地基。

这种风机基础形式主要通过主梁的刚度抵抗基础变形,通过基础及梁格间的填土自重共同抵抗倾覆力矩。

相对于重力扩展基础,梁板式基础偏“柔”,能够充分发挥主梁的抗弯特性,使基地压力分布更为合理,从而减小基地脱开面积。

目前,梁板式风机基础仍参考《风电机组地基基础设计规定》中重力式扩展基础的设计方法,对梁板式风机基础的力学特性以及计算方法的深入分析未见报道。

风电基础施工方案

风电基础施工方案

风电基础施工方案一、项目概述根据风能资源评估报告,我公司决定在地建设一座风电场。

该风电场的装机容量为XXX兆瓦,由多台风力发电机组组成。

为了确保风电场的稳定运行,需要在施工过程中对风电机组的基础进行合理设计和施工。

二、基础设计根据地质勘探结果和风力发电机组的要求,我们采用桩基础作为风电机组的基础形式。

具体设计如下:1.基础选址:在合适的地理位置选择施工点,并考虑到风力资源和环境影响等因素。

2.桩基选型:根据地质勘探结果,选择适当的桩型和直径,保证基础的承载力和稳定性。

3.桩基布置:按照设计要求,合理布置桩基,并考虑到风电机组的排列方式和通风要求等因素。

4.基础设置:根据风电机组的重量和要求,设置适当数量的基础,确保整个风电场的稳定性和均衡性。

5.基础尺寸:根据风电机组的重量和荷载要求,确定基础的尺寸,并进行相应的加固设计。

三、基础施工工序基础施工包括以下工序:1.土方开挖:根据基础设计要求,进行土方开挖,并考虑到施工机械的进出和施工安全等因素。

2.桩基施工:采用打桩机进行桩基施工,按照设计要求,控制桩的垂直度和精度。

3.基础浇筑:将混凝土按照设计配比进行浇筑,并采取相应的振捣措施,确保混凝土的密实性和强度。

4.基础养护:在混凝土浇筑完成后,进行适当的养护措施,保证混凝土的早期强度和稳定性。

四、施工方案1.施工组织:成立专门的施工队伍,组织施工人员并分工合理,明确责任和任务。

2.施工进度:根据项目计划,制定详细的施工进度表,并进行合理的施工调度和安排,确保项目按时完成。

3.施工设备:选用合适的施工机械和设备,保证施工质量和进度。

4.施工安全:严格遵守施工安全规定,加强施工现场的管理,确保人员安全和现场秩序。

5.施工质量:按照设计要求和相关标准施工,进行质量检查和验收,确保施工质量符合要求。

五、施工保障措施1.人员培训:对施工人员进行岗前培训,提高他们的技能和安全意识。

2.施工材料:严格按照设计要求采购施工材料,并进行质量检验和验收。

风电机三桩导管架基础施工工法(2)

风电机三桩导管架基础施工工法(2)

风电机三桩导管架基础施工工法一、前言:风电机三桩导管架基础施工工法是一种在风电机组建设中常用的基础施工工法,可以确保风电机组在风能的作用下稳定运行。

本文将详细介绍该工法的特点、适应范围、工艺原理、施工工艺、劳动组织、机具设备、质量控制、安全措施、经济技术分析以及工程实例。

二、工法特点:风电机三桩导管架基础施工工法具有以下特点:1. 采用三桩导管架基础,可以提升风电机组的稳定性和承载能力。

2. 工法施工简单,节省时间和成本。

3. 适应性广,可以应用于多种地质环境和土质条件。

4. 基础结构牢固,能够承受风压、风载和地震等外部作用力。

三、适应范围:风电机三桩导管架基础施工工法适用于具有以下特点的风电机组项目:1. 地质条件较好,土质坚实。

2. 项目规模较大,风电机组高度较高。

3. 地面承载能力符合设计要求。

4. 地下水位较低,不会对基础施工造成困扰。

四、工艺原理:风电机三桩导管架基础施工工法的原理基于以下几个方面:1. 对施工工法与实际工程之间的联系:施工工法通过三桩导管架基础的设计和施工,将风电机组与地面牢固连接,使得风电机组能够抵抗风力作用。

2. 采取的技术措施:施工过程中需要使用钻机、导管架、钢筋和混凝土等设备和材料,通过预先确定桩孔位置、打桩、焊接导管架、浇筑混凝土等步骤,确保基础的稳定性和强度。

五、施工工艺:风电机三桩导管架基础施工工法的施工工艺主要包括以下几个阶段:1. 基础设计和准备:根据工程要求确定基础的设计方案,编制工程施工方案,准备好所需的设备和材料。

2. 桩孔施工:使用钻机在合适的位置打桩孔,确保孔壁垂直度和直径符合设计要求。

3. 导管架施工:将导管架焊接完成,并根据设计要求进行预埋件的安装。

4. 钢筋加工和安装:根据基础设计图纸进行钢筋的加工和安装,确保与导管架的连接牢固。

5. 混凝土浇筑:按照混凝土配合比进行浇筑,并采取震捣措施,确保混凝土的密实性和强度。

6. 养护和验收:对新浇筑的基础进行养护,并进行验收,确保施工质量符合设计要求。

风电机组重力式扩展与肋梁式基础的优与劣

风电机组重力式扩展与肋梁式基础的优与劣

风电机组重力式扩展与肋梁式基础的优与劣
伴随着我国风电产业从量向质的转变发展,在保证安全的前提下,更优化的风机基础设计也逐渐地成为发电企业在投资建场过程中更为关注的重要环节。

重力式扩展基础、肋梁式(梁板式)基础、无张力灌注桩基础、预应力锚栓基础等等“花哨”的名称让决策者们难以抉择。

其中重力式扩展基础与肋梁式基础的适用条件更为接近,也往往是投资者们更为纠结的两种,究竟孰优孰劣?
下面以某实际工程的同一机型在相同地质条件下这两种形式基础的工程量、工期、造价三方面数据进行说明。

表1:单台基础工程量对比
表2:单台基础工期对比(风机与塔筒连接方式为:预应力法兰)
表3:单台基础造价对比
综上可知,传统重力式扩展基础较肋梁式基础而言,因施工工艺更简化,工期有明显优势。

而肋梁式基础在工程量方面有一定的优势。

而两者的造价方面并无明显差距。

对于投资者而言,在选择风机基础形式时,除了考量工程量、工期、造价等方面外,还应结合项目的工期背景、工程地质条件、当地施工经验与水平等其他因素进行综合考量
图:圆形拓展式
图:梁板式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

风电机组基础形式
风电机组是利用风能转化为电能的装置,是风能利用的核心设备之一。

其基础形式主要包括风轮、轴、变速器、发电机、控制系统等组成。

风轮是风电机组的核心部件,也是能量转换的关键。

风轮通常由多个叶片组成,叶片的形状和数量根据风能利用的要求进行设计。

当风经过叶片时,叶片会受到风的作用力,产生转动运动。

风轮的转动速度与风速成正比,转动的动能将被传递到轴上。

轴是连接风轮和发电机的部件,它起到传递动能的作用。

轴通常由高强度的金属材料制成,以承受风轮转动时的巨大力量。

轴的设计要考虑到力学强度和刚度,以确保能够稳定地传递动能。

变速器是风电机组中一个重要的组成部分,其作用是将风轮转动的速度转换为适合发电机工作的转速。

由于风轮的转速会受到风速的影响,因此通过变速器可以调整风电机组的输出功率。

变速器通常采用齿轮传动的方式,通过不同大小的齿轮组合来实现转速的调节。

发电机是将风能转化为电能的装置,是风电机组中最关键的部件之一。

发电机通常采用电磁感应原理,通过转子和定子之间的相对运动产生电流。

转子由风轮带动,定子则固定在发电机内部。

发电机的设计需要考虑到输出功率、转速和效率等方面的要求。

控制系统是风电机组的智能化管理系统,用于监测和控制整个风电机组的运行。

控制系统可以实时监测风速、转速、温度等参数,并根据设定的策略调整发电机的输出功率。

此外,控制系统还可以对风电机组进行故障诊断和维护管理,提高风电机组的运行效率和可靠性。

风电机组基础形式包括风轮、轴、变速器、发电机和控制系统等组成。

这些组件相互协作,实现将风能转化为电能的过程。

风电机组的设计和制造需要考虑到机械强度、转速、功率输出和可靠性等方面的要求,以提高风电机组的性能和经济效益。

随着科技的不断进步,风电机组的形式也在不断创新和发展,为清洁能源的利用提供了重要支持。

相关文档
最新文档