第二十四章 圆【过关测试01】(原卷版)

合集下载

人教版数学九年级上册第二十四章圆-测试题含答案

人教版数学九年级上册第二十四章圆-测试题含答案

人教版数学九年级上册第二十四章圆(时间:60分钟,分值:100分)一、选择题(每小题3分,共30分)1.下列交通标志中既是中心对称图形,又是轴对称图形的是()2.如图所示,如果为的直径,弦,垂足为,那么下列结论中,错误的是() A. B. C.D.3.(2013·杭州中考)在一个圆中,给出下列命题,其中正确的是()A.若圆心到两条直线的距离都等于圆的半径,则这两条直线不可能垂直B.若圆心到两条直线的距离都小于圆的半径,则这两条直线与圆一定有4个公共点C.若两条弦所在直线不平行,则这两条弦可能在圆内有公共点D.若两条弦平行,则这两条弦之间的距离一定小于圆的半径 4.如图,点都在圆上,若34C ∠,则AOB ∠的度数为()A.34B.56C.60D.685.如图所示,体育课上,小丽的铅球成绩为6.4m ,她投出的铅球落在()A.区域①B.区域②C.区域③D.区域④ABCD6.半径为R的圆内接正三角形的面积是()A.232R B.2πRC.2332R D.2334R7.(2013·聊城中考)把地球看成一个表面光滑的球体,假设沿地球赤道绕紧一圈钢丝,然后把钢丝加长,使钢丝圈沿赤道处处高出球面16cm,那么钢丝大约需要加长()A.102cmB.104cmC.106cmD.108cm8.如图所示,已知O⊙的半径6OA=,90AOB∠=°,则AOB∠所对的弧AB的长为()A. B.C. D.9.钟表的轴心到分针针端的长为,那么经过分钟,分针针端转过的弧长是()A. B. C. D.10.如图所示,⊙的半径为2,点到直线的距离为3,点是直线上的一个动点,切⊙于点,则的最小值是()A.13B.5C.3D.2二、填空题(每小题3分,共24分)11.如图所示,在⊙中,直径垂直弦于点,连接,已知⊙的半径为2,32,则∠=________度.12.(2013·黄石中考)如图,在边长为3的正方形ABCD中,⊙O1与⊙O2外切,且⊙O1分别与DA、DC边相切,⊙O2分别与BA、BC边相切,则圆心距O1O2为.OBA第8题图13.如图所示,已知⊙的半径为5,点O 到弦AB 的距离为3,则⊙上到弦所在直线的距离为2的点有______个.14.如图所示,⊙O 的半径为4cm ,直线l 与⊙O 相交于A ,B 两点,AB=4cm ,P 为直线l 上一动点,以1cm 为半径的⊙P 与⊙O 没有公共点.设PO =d cm ,则d 的取值范围是_____________.15.如图所示,AB 是⊙的直径,点C D ,是圆上两点,100AOC ∠= ,则D ∠=_______.16.如图所示,图①中圆与正方形各边都相切,设这个圆的周长为;图②中的四个圆的半径相等,并依次外切,且与正方形的边相切,设这四个圆的周长为;图③中的九个圆的半径相等,并依次外切,且与正方形的边相切,设这九个圆的周长为;….依此规律,当正方形边长为2时,=_______.17.如图所示,以为圆心的两个同心圆中,大圆的弦与小圆相切于点,若大圆半径为,小圆半径为,则弦的长为_______.AOBD C第15题图第18题图A PBO18.如图所示,PA ,PB 切⊙O 于A ,B 两点,若60APB =∠,⊙O 的半径为3,则阴影部分的面积为_______.三、解答题(共46分)19.(6分)如图所示,的直径和弦相交于点,,,∠=30°,求弦长.20.(6分)如图,点D 在O ⊙的直径AB 的延长线上,点C 在O ⊙上,且,∠°.(1)求证:CD 是O ⊙的切线;(2)若O ⊙的半径为2,求图中阴影部分的面积.21.(6分)(2013·兰州中考)如图,直线MN交⊙O 于A,B两点,AC是直径,AD平分∠CAM交⊙O 于点D,过点D作DE⊥MN于点E.(1)求证:DE是⊙O 的切线.(2)若DE=6cm,AE=3cm,求⊙O 的半径22.(6分)已知等腰△的三个顶点都在半径为5的⊙上,如果底边的长为8,求边上的高.23.(6分)已知:如图所示,在Rt ABC △中,90C ∠=,点O 在AB 上,以O 为圆心,OA 长为半径的圆与AC AB ,分别交于点D E ,,且CBD A ∠=∠.判断直线BD与的位置关系,并证明你的结论.24.(8分)如图所示,AB 为⊙O 的直径,点C 在⊙O 上,点P 是直径AB 上的一点(不与A ,DCOABE第23题图第21题图B重合),过点P作AB的垂线交BC的延长线于点Q.(1)在线段PQ上取一点D,使DQ=DC,连接DC,试判断CD与⊙O的位置关系,并说明理由;(2)若cos B=35,BP=6,AP=1,求QC的长.25.(8分)如图,△内接于,,∥,CD与的延长线交于点.(1)判断与的位置关系,并说明理由;(2)若∠120°,,求的长.参考答案1.D解析:选项A 是轴对称图形但不是中心对称图形,选项B 、C 既不是中心对称图形也不是轴对称图形.只有选项D 既是轴对称图形又是中心对称图形.2.D解析:依据垂径定理可得,选项A ,B ,C 都正确,选项D 是错误的.3.C 解析:A :如图,则A 不正确;B :如图,则B不正确;C :如图,则C 正确;D :如图,则D 不正确.4.D解析:5.D 解析:小丽的铅球成绩为6.4m ,在6m 与7m 之间,所以她投出的铅球落在区域④.6.D解析:如图所示,由题意得由勾股定理得,由三角形面积公式,得.7.A解析:设赤道的半径为r cm ,则加长后围成的圆的半径为(r +16)cm ,所以钢丝大约需加长2π(r +16)-2πr =2π×16≈102(cm ).8.B解析:本题考查了圆的周长公式..∵O ⊙的半径6OA =,90AOB ∠=°,∴弧AB 的长为.9.B 解析:分针分钟旋转º,则分针针端转过的弧长是.10.B解析:设点到直线的距离为E AB CD•O第6题答图∵切⊙于点,∴.∵直线外一点与直线上的点的所有连线中,垂线段最短,∴11.30解析:由垂径定理得∴,∴∠∴∠.12.6-解析:如图所示分别作出经过圆心和切点的两条直线,设它们交于点O ,设⊙O 1、⊙O 2的半径分别为R 、r ,根据相切两圆的性质得到O 1O 2=R +r ,OO 1=OO 2=3-R -r ,所以R +r =(3-R -r ).解得R +r =6-.点拨:两个圆相外切时,圆心距等于两圆半径的和.13.3解析:在弦AB 的两侧分别有一个和两个点符合要求.14.d >5或2≤d <3解析:分别在两圆内切和外切时,求出两圆圆心距,进而得出d 的取值范围.如图所示,连接OP ,⊙O 的半径为4cm ,⊙P 的半径为1cm ,则d =5时,两圆外切,d =3时,两圆内切.过点O 作OD ⊥AB 于点D ,OD =224(23) =2(cm),当点P运动到点D 时,OP 最小为2cm ,此时两圆没有公共点.∴以1cm 为半径的⊙P 与⊙O 没有公共点时,d >5或2≤d <3.点拨:动点问题要分类讨论,注意不要漏解.15.40°解析:∵∠,∴∠,∴∠.16.10100解析:,10100.17.16解析:连接,则.第12题答图∵∴∴18.PA ,PB 切⊙于A ,B 两点,所以∠=∠,所以∠所以所以阴影部分的面积为.19.解:过点作,垂足为,连结OD.∵,∴OD.=.∵∠,∴,∴=20.(1)证明:连接OC .∵CD AC =,120ACD ︒∠=,∴30A D ︒∠=∠=.∵OC OA =,∴230A ︒∠=∠=.∴290OCD ACD ︒∠=∠-∠=.∴CD 是O ⊙的切线.(2)解:∵,∴.∴.在Rt △OCD 中,tan 60CD OC =⋅︒=.∴Rt 11222OCD S OC CD ∆=⨯=⨯⨯=∴图中阴影部分的面积为-3223π.21.分析:(1)连接OD ,证OD ⊥DE .(2)连接CD ,证△ACD ∽△ADE ,可求直径CA 的长,从而求出⊙O 的半径.(1)证明:如图,连接OD .∵OA =OD ,∴∠OAD =∠ODA .∵∠OAD =∠DAE ,∴∠ODA =∠DAE ,∴DO ∥MN .∵DE ⊥MN ,∴∠ODE =∠DEA =90°,即OD ⊥DE ,∴DE 是⊙O 的切线.(2)解:如图,连接CD .∵∠AED =90°,DE =6,AE =3,∴AD ===3.∵AC 是⊙O 的直径,∴∠ADC =∠AED =90°.∵∠CAD =∠DAE ,∴△ACD ∽△ADE ,∴=,即=,∴AC =15,∴OA =AC =7.5.∴⊙O 的半径是7.5cm.22.解:作,则即为边上的高.设圆心到的距离为,则依据垂径定理得.当圆心在三角形内部时,边上的高为;当圆心在三角形外部时,边上的高为.23.解:直线BD 与相切.证明如下:如图,连接OD ,ED .OA OD = ,∴A ADO ∠=∠.90C ∠= ,∴90CBD CDB ∠+∠= .又CBD A ∠=∠ ,∴90ADO CDB ∠+∠=.∴90ODB ∠= .∵点D 在上,∴直线BD 与相切.DCOABE第23题答图第22题答图CBAOD DO CBA第21题答图24.分析:(1)连接OC ,通过证明OC ⊥DC 得CD 是⊙O 的切线;(2)连接AC ,由直径所对的圆周角是直角得△ABC 为直角三角形,在Rt △ABC 中根据cos B =35,BP =6,AP =1,求出BC 的长,在Rt △BQP 中根据cos B =BPBQ求出BQ 的长,BQ -BC 即为QC 的长.解:(1)CD 是⊙O 的切线.理由如下:如图所示,连接OC ,∵OC =OB ,∴∠B =∠1.又∵DC =DQ ,∴∠Q =∠2.∵PQ ⊥AB ,∴∠QPB =90°.∴∠B +∠Q =90°.∴∠1+∠2=90°.∴∠DCO =∠QCB -(∠1+∠2)=180°-90°=90°.∴OC ⊥DC .∵OC 是⊙O 的半径,∴CD 是⊙O 的切线.(2)如图所示,连接AC ,∵AB 是⊙O 的直径,∴∠ACB =90°.在Rt △ABC 中,BC =AB cos B =(AP +PB )cos B =(1+6)×35=215.在Rt △BPQ 中,BQ =cos BP B =635=10.∴QC =BQ -BC =10-215=295.点拨:要证圆的切线通常需要连接半径,根据“经过半径的外端并且垂直于这条半径的直线是圆的切线”求证.25.解:(1)CD 与⊙O 的位置关系是相切.理由如下:作直径CE ,连接AE .∵是直径,∴∠90°,∴∠∠°.∵,∴∠∠.∵AB ∥CD ,∴∠ACD =∠CAB .∵∠∠,∴∠∠,∴∠+∠ACD =90°,即∠DCO =90°,∴,∴CD与⊙O相切.(2)∵∥,,∴又∠°,∴∠∠°.∵,∴△是等边三角形,∴∠°,∴在Rt△DCO中,,∴.第11页共11页。

初中数学人教版九年级上册 第二十四章 圆单元测试卷(含答案)

初中数学人教版九年级上册 第二十四章 圆单元测试卷(含答案)

人教版数学九上圆一、单选题1.下列语句中正确的是( )A.长度相等的两条弧是等弧B.圆上一条弧所对的圆心角等于它所对圆周角的一半C.垂直于圆的半径的直线是圆的切线D.三角形有且只有一个外接圆2.如图,OA,OC是⊙O的半径,点B在⊙O上,若AB∥OC,∠BCO=21°,则∠AOC的度数是( )A.42°B.21°C.84°D.60°3.如图,在矩形ABCD中,AD=8,以AD的中点O为圆心,以OA长为半径画弧与BC相切于点E,则阴影部分的面积为( )A.8―4πB.16―4πC.32―4πD.32―8π4.如图,⊙O的半径OD⊥弦AB于点C,连接BO并延长交⊙O于点E,连接CE,若AB=4,CD=1,则CE的长为( )A.13B.4C.10D.155.如图,A点在半径为2的⊙O上,过线段OA上的一点P作直线l,与⊙O过A点的切线交于点B,且∠APB=60°,设OP=x,则△PAB的面积y关于x的函数图象大致是( )A.B.C.D.6.如图.将扇形AOB翻折,使点A与圆心O重合,展开后折痕所在直线l与AB交于点C,连接AC.若OA=2,则图中阴影部分的面积是( )A.2π3―32B.2π3―3C.π3―32D.π37.如图,⊙O是正△ABC的外接圆,△DOE是顶角为120°的等腰三角形,点O与圆心重合,点D,E 分别在圆弧上,若⊙O的半径是6,则图中阴影部分的面积是( )A.4πB.12π―9 3C.12π―923D.24π―9 38.如图,在正方形ABCD中,点E,F分别是边BC和CD上的动点(不与端点重合),∠EAF=45°,AF、AE分别与对角线BD交于点G和点H,连接EG.以下四个结论:(1)BE+DF=EF;(2)△AGE是等腰直角三角形;(3)S△AGH:S△AEF=1:2;(4)AB+BE=2BG,其中正确结论的个数是( )A.1B.2C.3D.49.【情境】如图是某数学项目学习小组设计的“鱼跃龙门”徽章图案,已知A,B,C,D,E是圆的5个等分点,连结BD,CE交于点F.设鱼头部分的四边形ABFE的面积为S1,鱼尾部分的△CDF的面积为S2.【问知】设S1:S2=n:1,则n的值为( )A.43―1B.3+5C.1+25D.35―110.如图,半径为5的圆中有一个内接矩形ABCD,AB>BC,点M是ABC的中点,MN⊥AB于点N,若矩形ABCD的面积为30,则线段MN的长为()A.10B.522C.702D.210二、填空题11.如图,在⊙O的内接五边形ABCDE中,∠EBD=31°,则∠A+∠C= °.12.如图,在半径为10cm的圆形铁片上切下一块高为4cm的弓形铁片,则弓形弦AB的长为 cm.13.如图,⊙O是△ABC的外接圆,∠A=45°,BC=2,则⊙O的直径为 .14.如图,将扇形AOB翻折,使点A与圆心O重合,展开后折痕所在直线l与AB交于点C,若OA=2,则OC的长为 .15.如图,半径为5的⊙O与y轴相交于A点,B为⊙O在x轴上方的一个动点(不与点A重合),C 为y轴上一点且∠OCB=60°,I为△BCO的内心,则△AIO的外接圆的半径的取值(或取值范围)为 .16.如图,已知△ABC是⊙O的内接三角形,⊙O的半径为2,将劣弧AC沿AC折叠后刚好经过弦BC的中点D.若∠ACB=60°,则弦AC的长为 .三、解答题17.如图,直径为1m的圆柱形水管有积水(阴影部分),水面的宽度AB为0.8m,求水的最大深度CD.18.如图,在⊙O中,半径OA⊥OB,∠B=28°,求∠BOC的度数.19.如图,△ABC是⊙O的内接三角形,AB为⊙O的直径,AB=6,AD平分∠BAC,交BC于点E,交⊙O于点D,连结BD.(1)求证:∠BAD=∠CBD.(2)若∠AEB=125°,求BD的长.(结果保留π)20.如图,AB为⊙O的直径,弦CD⊥AB于E,连接AC,过A作AF⊥AC,交⊙O于点F,连接DF,过B作BG⊥DF,交DF的延长线于点G.(1)求证:BG是⊙O的切线:(2)若∠DFA=30°,DF=4,求阴影部分的面积.21.在直角坐标系中,以M(3,0)为圆心的⊙M交x轴负半轴于A,交x轴正半轴于B,交y轴于C、D.其中C点坐标为(0,4).(1)求点A坐标.(2)如图,过C作⊙M的切线CE,过A作AN⊥CE于F,交⊙M于N,求AN的长度.(3)在⊙M上,若∠CPM=45°,求出点P的坐标.22.圆内接四边形若有一组邻边相等,则称之为等邻边圆内接四边形.(1)如图1,四边形ABCD为等邻边圆内接四边形,AD=CD,∠ADC=60°,直接写出∠ABD的度数;(2)如图2,四边形ADBC内接于⊙O,AB为⊙O的直径,AB=10,AC=6,若四边形ADBC为等邻边圆内接四边形,AD=BD,求CD的长.(3)如图3,四边形ABCD为等邻边圆内接四边形,BC=CD,AB为⊙O的直径,且AB=48.设BC= x,四边形ABCD的周长为y,试确定y与x的函数关系式,并求出y的最大值.答案解析部分1.【答案】D2.【答案】A3.【答案】D4.【答案】A5.【答案】D6.【答案】B7.【答案】B8.【答案】D9.【答案】B10.【答案】A11.【答案】21112.【答案】1613.【答案】2214.【答案】2π315.【答案】53316.【答案】621717.【答案】解:∵⊙O的直径为1m,∴OA=OD=0.5m.∵OD⊥AB,AB=0.8m,∴AC=0.4m,∴OC=OA2―AC2=0.52―0.42=0.3m,∴CD=OD―OC=0.5―0.3=0.2m.答:水的最大深度为0.2m.18.【答案】解:∵OA⊥OB,∴∠AOB=90°,∴∠A=90°﹣∠B=90°﹣28°=62°,∵OA=OC,∴∠ACO=∠A=62°,而∠ACO=∠BOC+∠B,∴∠BOC=62°﹣28°=34°.19.【答案】(1)证明:∵AD平分∠BAC,∴∠CAD=∠BAD.∵∠CAD=∠CBD,∴∠BAD=∠CBD;(2)解:如图,连结OD.∵∠AEB= 125°,∴∠AEC= 55°.∵AB为⊙O的直径,∴∠ACE=90°,∴∠CAE= 35°,∴∠DAB=∠CAE=35°,∴∠BOD=2∠BAD=70°,∴BD的长为70×π×3180=7 6π.20.【答案】(1)证明:∵C,A,D,F在⊙O上,AF⊥AC,∴∠D=∠CAF=90°,∵AB⊥CD,BG⊥DF,∴∠BED=∠G=90°,∴四边形BEDG中,∠ABG=90°,∴半径OB⊥BG,∴BG是⊙O的切线;(2)解:连接CF,∵∠CAF=90°,∴CF是⊙O的直径,∴OC=OF,∵直径AB⊥CD于E,∴CE=DE,∴OE是△CDF的中位线,∴OE=12DF=2,∵∠AFD=30°,∴∠ACD=∠AFD=30°,∴∠CAE=90°―∠ACE=60°,∵OA=OC,∴△AOC是等边三角形,∵CE⊥AB,∴E为AO的中点,∴OA=2OE=4,OB=4,AE=2,∴BE=OB+OE=6,DE=CE=23,∵∠BED=∠D=∠G=90°,∴四边形BEDG是矩形,∴S阴影=S矩形BEDG―S梯形OEDF―S扇形BOF=6×23―12×(2+4)×23―60π⋅42360=63―83π.21.【答案】(1)解:连接CM,∵M(3,0),C(0,4),∴OM=3,OC=4,∴CM=5,即⊙M的半径为5,∴MA=5,∴AO=AM-OM=2,∴A(―2,0);(2)连接CM,作MH⊥AN于H,∵CE为⊙M的切线,∴MC⊥EC,即∠MCE=90°.∵AN⊥CE于F,即∠AFC=90°.又∵MH⊥AN于H,即∠MHA=90°.∴在四边形FHMC中,∠CMH=90°=∠CMO+∠AMH.∵在Rt△AHM中,∠HAM+∠AMH=90°,∴∠HAM=∠CMO.∵在Rt△COM中,∠CMO+∠OCM=90°,∴∠OCM=∠AMH.∵在△AMH与△MCO中,{∠HAM=∠CMOMC=MA∠OCM=∠AMH∴△AMH≌△MCO(ASA),故AH=MO=3.即AN=HN+AH=3+3=6;(3)解:结合题意,可知PM=CM,△CMP为等腰三角形,同时因为∠CPM=45°=∠PCM,因此△CMP也是等腰直角三角形,即∠CMP=90°且CM=PM=5.①当P在CM右侧时,作PE垂直x轴于E.∵∠CMP=90°,∴∠CMO+∠PME=90°.又∵在Rt△PEM中,∠PME+∠MPE=90°,∴∠CMO=∠MPE.∴同理可得∠MCO=∠PME.在△MCO与△PME中,{∠CMO=∠MPECM=PM∠MCO=∠PME∴△MCO≌△PME(ASA)∴OM=PE=3,ME=OC=4,即存在P1(7,3);②当P在CM左侧时(设为P2),作PF垂直x轴于F.根据圆的对称性,结合①的结论,易证:△MCO≌△PMF,∴OM=PF=3,FM=OC=4,即存在P2(―1,―3).22.【答案】(1)解:60°(2)解:连接CD,过点A作AH⊥CD,交CD于点H.如图:在Rt△AHC中,∵∠ACH=∠ABD=45°,AC=6,∴CH=AH=32,此时△ADB为等腰直角三角形,AD=BD=52,在Rt△AHD中,∵AH=32,AD=52,∴DH=42,∴CD=CH+DH=72.(3)解:如图,连接OC,BD.∵BC=CD,OB=OD,∴OC垂直平分BD,∵O为AB中点,∴OF为△BDA的中位线,有OF=12AD,OF//AD,设OF=t,则CF=24―t,AD=2t,y=48+x+x+2t=2t+2x+48,在Rt△BFC中,B F2=B C2―C F2=x2―(24―t)2,在Rt△BFO中,B F2=B O2―O F2=242―t2,于是有:x2―(24―t)2=242―t2,整理得,t=―148x2+24,∴y=―124x 2+2x+96=―124(x―24)2+120,当x=24时,y max=120。

第二十四章圆单元测试人教版2024—2025学年九年级上册秋季

第二十四章圆单元测试人教版2024—2025学年九年级上册秋季

第二十四章圆单元测试人教版2024—2025学年九年级上册秋季考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟注意事项:1.本试卷分第I卷(选择题)和第II卷(非选择题)两部分。

笞卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第I卷时,选出每小题答案后,把答案填写在答题卡上对应题目的位置,填空题填写在答题卡相应的位置写在本试卷上无效。

3.回答第II卷时,将答案写在第II卷答题卡上。

4.考试结束后,将本试卷和答题卡一并交回。

第I卷一、选择题(每题只有一个正确选项,每小题3分,满分30分)1.下列说法中,正确的是()A.过圆心的直线是圆的直径B.直径是圆中最长的弦C.相等长度的两条弧是等弧D.顶点在圆上的角是圆周角2.某校九年级学生参加社会实践,学习编织圆锥型工艺品.若这种圆锥的母线长为40厘米,底面圆的半径为30厘米,则该圆锥的侧面积为()A.700π平方厘米B.900π平方厘米C.1200π平方厘米D.1600π平方厘米3.如图,点A、点B、点C在⊙O上,∠BAC=130°,那么∠BOC是()A.160°B.120°C.100°D.200°4.如图,在⊙O中,弦AB的长为8,圆心O到AB的距离OE=4,则⊙O的半径长为()A.4B.C.5D.5.如图,AB是⊙O的直径,C,D是⊙O上两点,且∠BDC=35°,则∠BOC=()A.20°B.40°C.55°D.70°6.如图,在Rt△ABC中,∠C=90°,∠B=30°,AC=2.以A为圆心AC为半径画圆,交AB于点D,则阴影部分面积是()A.B.C.D.7.如图,点A、B、C都在⊙O上,若∠AOC=150°,则∠ABC的度数()A.30°B.150°C.105°D.110°8.如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm2,则该半圆的半径为()A.cm B.9 cm C.cm D.cm9.如图是唐代亭皋发明了“桨轮船”,该桨轮船的轮子被水面截得线AB为10,轮子的吃水深度CD为3,则该桨轮船的轮子半径为()A.B.C.D.610.刘徽(今山东滨州人)是魏晋时期我国伟大的数学家,中国古典数学理论的奠基者之一,被誉为“世界古代数学泰斗”.刘徽在注释《九章算术》时十分重视一题多解,其中最典型的是勾股容方和勾股容圆公式的推导,他给出了内切圆直径的多种表达形式.如图,Rt△ABC中,∠C=90°,AB,BC,CA的长分别为c,a,b.则可以用含c,a,b的式子表示出△ABC的内切圆直径d,下列表达式错误的是()A.d=a+b﹣c B.C.D.d=|(a﹣b)(c﹣b)|二、填空题(每小题3分,满分18分)11.将圆锥的侧面沿一条母线剪开后展平,所得扇形的面积为4πcm2,圆心角θ为90°,圆锥的底面圆的半径为.12.如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,若∠C=20°,则∠CAD=°.13.如图,△ABC是⊙O的内接三角形,∠BAC=50°,⊙O半径为3,则的长为.14.若90°圆心角所对的弧长是3πcm,则此弧所在圆的半径是15.如图,四边形ABCD内接于⊙O,点E在AD的延长线上,若∠CDE=80°,则∠ABC 的度数是°.15.如图,动点E、F分别在正方形ABCD的边AD、BC上,AE=CF,过点C作CG⊥EF,垂足为G,连接BG,若AB=2,则线段BG长的最小值为.第II卷第二十四章圆单元测试人教版2024—2025学年九年级上册秋季考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________准考证号:___________一、选择题题号12345678910答案二、填空题11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17.如图,△ABC中.∠ACB=90°,点O为AC边上一点,以点O为圆心,OC为半径作圆与AB相切于点D,连接CD.(1)求证:∠ABC=2∠ACD;(2)若AC=8,BC=6,求⊙O的半径.18.如图,在Rt△ABC中,∠C=90°,以点C为圆心,AC长为半径的⊙C与AB相交于点D.(1)若弧AD的度数为70°,则∠B=°;(2)若AC=6,BC=8,求线段BD的长.19.如图,在△ABC中,以AB为直径的⊙O交BC于点D,DE⊥AC,垂足为E.⊙O的两条弦FB,FD相交于点F,∠DAE=∠BFD.(1)求证:DE是⊙O的切线;(2)若∠C=30°,CD=2,求扇形OBD的面积.20.如图,线段AB,CD是⊙O的两条弦,AB=CD,连结AD,AC.(1)证明:AM=DM.(2)若AB⊥CD于点M,且弦AC的弦心距为4,求⊙O的半径.21.如图,△ABC内接于⊙O,D是BC上一点,AD=AC.E是⊙O外一点,∠BAE=∠CAD,∠ADE=∠ACB,连接BE.(1)若AB=8,求AE的长;(2)求证:EB是⊙O的切线.22.如图,AB是半径为5的⊙O的直径,C是的中点,连接CD交AB于点E,连接AC,AD,OC.(1)求证:OC⊥AD.(2)若BE=1,求AD的长.(3)如图2,作CF⊥AB于点H,交AD于点F,射线CB交AD的延长线于点G,若OH=1,求AG的长.23.如图,AB是⊙O的直径,==2,连接AC、CD、AD.CD交AB于点F,过点B作⊙O的切线BM交AD的延长线于点E.(1)求证:AC=CD;(2)连接OE,若DE=2,求OE的长.24.如图,⊙O是△ABC的外接圆,AB为直径,过点C作⊙O的切线CD交BA延长线于点D,点E为上一点,且=.(1)求证:DC∥AE;(2)若EF垂直平分OB,DA=3,求阴影部分的面积.25.如图,在圆内接四边形ABCD中,AD<AC,∠ADC<∠BAD,延长AD至点E,使AE =AC,延长BA至点F,连结EF,使∠AFE=∠ADC.(1)若∠AFE=60°,CD为直径,求∠ABD的度数.(2)求证:①EF∥BC;②EF=BD.。

人教版九年级数学上册第二十四章圆测试题(含答案)(含知识点)

人教版九年级数学上册第二十四章圆测试题(含答案)(含知识点)

数学第二十四章圆测试题附参考答案时间:45分钟分数:100分一、选择题(每小题3分,共33分)1.(2005·资阳)若⊙O所在平面内一点P到⊙O上的点的最大距离为a,最小距离为b(a>b),则此圆的半径为()A.2ba+B.2ba-C.22baba-+或D.baba-+或2.(2005·浙江)如图24—A—1,⊙O的直径为10,圆心O到弦AB的距离OM的长为3,则弦AB的长是()A.4 B.6 C.7 D.83.已知点O为△ABC的外心,若∠A=80°,则∠BOC的度数为()A.40°B.80°C.160°D.120°4.如图24—A—2,△ABC内接于⊙O,若∠A=40°,则∠OBC的度数为()A.20°B.40°C.50°D.70°5.如图24—A—3,小明同学设计了一个测量圆直径的工具,标有刻度的尺子OA、OB在O点钉在一起,并使它们保持垂直,在测直径时,把O点靠在圆周上,读得刻度OE=8个单位,OF=6个单位,则圆的直径为()A.12个单位B.10个单位C.1个单位D.15个单位6.如图24—A—4,AB为⊙O的直径,点C在⊙O上,若∠B=60°,则∠A等于()A.80°B.50°C.40°D.30°7.如图24—A—5,P为⊙O外一点,PA、PB分别切⊙O于A、B,CD切⊙O于点E,分别交PA、PB于点C、D,若PA=5,则△PCD的周长为()A.5 B.7 C.8 D.108.若粮仓顶部是圆锥形,且这个圆锥的底面直径为4m,母线长为3m,为防雨需图24—A—5图24—A—1 图24—A—2 图24—A—3 图24—A—4在粮仓顶部铺上油毡,则这块油毡的面积是( )A .26m B .26m π C .212m D .212m π 9.如图24—A —6,两个同心圆,大圆的弦AB 与小圆相切于点P ,大圆的弦CD 经过点P ,且CD=13,PC=4,则两圆组成的圆环的面积是( )A .16πB .36πC .52πD .81π10.已知在△ABC 中,AB=AC=13,BC=10,那么△ABC 的内切圆的半径为( ) A .310 B .512 C .2 D .3 11.如图24—A—7,两个半径都是4cm 的圆外切于点C ,一只蚂蚁由点A 开始依A 、B 、C 、D 、E 、F 、C 、G 、A 的顺序沿着圆周上的8段长度相等的路径绕行,蚂蚁在这8段路径上不断爬行,直到行走2006πcm 后才停下来,则蚂蚁停的那一个点为( ) A .D 点 B .E 点 C .F 点 D .G 点 二、填空题(每小题3分,共30分) 12.如图24—A —8,在⊙O 中,弦AB 等于⊙O 的半径,OC ⊥AB 交⊙O 于点C ,则∠AOC= 。

九年级数学上册第二十四章圆单元综合测试1含解析新版新人教版

九年级数学上册第二十四章圆单元综合测试1含解析新版新人教版

《第24章圆》一、选择题(共10小题,每小题3分,共30分)1.下列说法正确的是()A.三点确定一个圆B.一个三角形只有一个外接圆C.和半径垂直的直线是圆的切线D.三角形的内心到三角形三个顶点距离相等2.如图,⊙O的直径AB与弦CD的延长线交于点E,若DE=OB,∠AOC=84°,则∠E等于()A.42° B.28° C.21° D.20°3.已知如图,AB是⊙O的直径,弦CD⊥AB于E,CD=6,AE=1,则⊙O的直径为()A.6 B.8 C.10 D.124.如图,DC是以AB为直径的半圆上的弦,DM⊥CD交AB于点M,CN⊥CD交AB于点N.AB=10,CD=6.则四边形DMNC的面积()A.等于24 B.最小为24 C.等于48 D.最大为485.如图,在半径为5的⊙O中,弦AB=6,OP⊥AB,垂足为点P,则OP的长为()A.3 B.2.5 C.4 D.3.56.如图表示一圆柱形输水管的横截面,阴影部分为有水部分,如果输水管的半径为5cm,水面宽AB为8cm,则水的最大深度CD为()A.4cm B.3cm C.2cm D.1cm7.图中的五个半圆,邻近的两半圆相切,两只小虫同时出发,以相同的速度从A点到B点,甲虫沿ADA1、A1EA2、A2FA3、A3GB路线爬行,乙虫沿ACB路线爬行,则下列结论正确的是()A.甲先到B点B.乙先到B点C.甲、乙同时到B D.无法确定8.在直径为200cm的圆柱形油槽内装入一些油以后,截面如图.若油面的宽AB=160cm,则油的最大深度为()A.40cm B.60cm C.80cm D.100cm9.如图,AB是⊙O的直径,四边形ABCD内接于⊙O,若BC=CD=DA=4cm,则⊙O的周长为()A.5πcm B.6πcm C.9πcm D.8πcm10.如图,AB是⊙O的弦,点C在圆上,已知∠OBA=40°,则∠C=()A.40° B.50° C.60° D.80°二、填空题(共6小题,每小题3分,共18分)11.如图,在⊙O中,弦AB∥CD,若∠ABC=40°,则∠BOD= .12.如图,在矩形ABCD中,AB=4,AD=3,以顶点D为圆心作半径为r的圆,若要求另外三个顶点A、B、C中至少有一个点在圆内,且至少有一个点在圆外,则r的取值范围是.13.如图,已知∠BOA=30°,M为OB边上一点,以M为圆心、2cm为半径作⊙M.点M在射线OB上运动,当OM=5cm时,⊙M与直线OA的位置关系是.14.如图,正方形ABCD内接于⊙O,其边长为4,则⊙O的内接正三角形EFG的边长为.15.已知扇形的半径为6cm,圆心角的度数为120°,则此扇形的弧长为cm.16.如图,半圆O的直径AB=2,弦CD∥AB,∠COD=90°,则图中阴影部分的面积为.三、解答题(共8题,共72分)17.圆锥底面圆的半径为3m,其侧面展开图是半圆,求圆锥母线长.18.在一个底面直径为5cm,高为18cm的圆柱形瓶内装满水,再将瓶内的水倒入一个底面直径是6cm,高是10cm的圆柱形玻璃杯中,能否完全装下?若未能装满,求杯内水面离杯口的距离.19.如图,AB和CD分别是⊙O上的两条弦,过点O分别作ON⊥CD于点N,OM⊥AB于点M,若ON=AB,证明:OM=CD.20.如图为桥洞的形状,其正视图是由和矩形ABCD构成.O点为所在⊙O的圆心,点O又恰好在AB为水面处.若桥洞跨度CD为8米,拱高(OE⊥弦CD于点F )EF为2米.求所在⊙O的半径DO.21.△ABC是⊙O的内接三角形,BC=.如图,若AC是⊙O的直径,∠BAC=60°,延长BA到点D,使得DA=BA,过点D作直线l⊥BD,垂足为点D,请将图形补充完整,判断直线l和⊙O的位置关系并说明理由.22.如图直角坐标系中,已知A(﹣8,0),B(0,6),点M在线段AB上.(1)如图1,如果点M是线段AB的中点,且⊙M的半径为4,试判断直线OB与⊙M的位置关系,并说明理由;(2)如图2,⊙M与x轴、y轴都相切,切点分别是点E、F,试求出点M的坐标.23.已知等边三角形ABC,AB=12,以AB为直径的半圆与BC边交于点D,过点D作DF⊥AC,垂足为F,过点F作FG⊥AB,垂足为G,连接GD,(1)求证:DF与⊙O的位置关系并证明;(2)求FG的长.24.如图,等边△ABC的边长为2,E是边BC上的动点,EF∥AC交边AB于点F,在边AC上取一点P,使PE=EB,连接FP.(1)请直接写出图中与线段EF相等的两条线段;(不再另外添加辅助线)(2)探究:当点E在什么位置时,四边形EFPC是平行四边形?并判断四边形EFPC是什么特殊的平行四边形,请说明理由;(3)在(2)的条件下,以点E为圆心,r为半径作圆,根据⊙E与平行四边形EFPC四条边交点的总个数,求相应的r的取值范围.《第24章圆》参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.下列说法正确的是()A.三点确定一个圆B.一个三角形只有一个外接圆C.和半径垂直的直线是圆的切线D.三角形的内心到三角形三个顶点距离相等【考点】圆的认识.【分析】根据确定圆的条件对A、B进行判断;根据切线的判定定理对C进行判断;根据三角形内心的性质对D进行判断.【解答】解:A、不共线的三点确定一个圆,所以A选项错误;B、一个三角形只有一个外接圆,所以B选项正确;C、过半径的外端与半径垂直的直线是圆的切线,所以C选项错误;D、三角形的内心到三角形三边的距离相等,所以D选项错误.故选B.【点评】本题考查了圆的认识:掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).也考查了确定圆的条件和切线的判定.2.如图,⊙O的直径AB与弦CD的延长线交于点E,若DE=OB,∠AOC=84°,则∠E等于()A.42° B.28° C.21° D.20°【考点】圆的认识;等腰三角形的性质.【专题】计算题.【分析】利用半径相等得到DO=DE,则∠E=∠DOE,根据三角形外角性质得∠1=∠DOE+∠E,所以∠1=2∠E,同理得到∠AOC=∠C+∠E=3∠E,然后利用∠E=∠AOC进行计算即可.【解答】解:连结OD,如图,∵OB=DE,OB=OD,∴DO=DE,∴∠E=∠DOE,∵∠1=∠DOE+∠E,∴∠1=2∠E,而OC=OD,∴∠C=∠1,∴∠C=2∠E,∴∠AOC=∠C+∠E=3∠E,∴∠E=∠AOC=×84°=28°.故选B.【点评】本题考查了圆的认识:掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等).也考查了等腰三角形的性质.3.已知如图,AB是⊙O的直径,弦CD⊥AB于E,CD=6,AE=1,则⊙O的直径为()A.6 B.8 C.10 D.12【考点】垂径定理;勾股定理.【分析】连接OC,根据题意OE=OC﹣1,CE=3,结合勾股定理,可求出OC的长度,即可求出直径的长度.【解答】解:连接OC,∵弦CD⊥AB于E,CD=6,AE=1,∴OE=OC﹣1,CE=3,∴OC2=(OC﹣1)2+32,∴OC=5,∴AB=10.故选C.【点评】本题主要考查了垂径定理、勾股定理,解题的关键在于连接OC,构建直角三角形,根据勾股定理求半径OC的长度.4.如图,DC是以AB为直径的半圆上的弦,DM⊥CD交AB于点M,CN⊥CD交AB于点N.AB=10,CD=6.则四边形DMNC的面积()A.等于24 B.最小为24 C.等于48 D.最大为48【考点】垂径定理;勾股定理;梯形中位线定理.【分析】过圆心O作OE⊥CD于点E,则OE平分CD,在直角△ODE中利用勾股定理即可求得OE的长,即梯形DMNC的中位线,根据梯形的面积等于OE•CD即可求得.【解答】解:过圆心O作OE⊥CD于点E,连接OD.则DE=CD=×6=3.在直角△ODE中,OD=AB=×10=5,OE===4.则S四边形DMNC=OE•CD=4×6=24.故选A.【点评】本题考查了梯形的中位线以及垂径定理,正确作出辅助线是关键.5.如图,在半径为5的⊙O中,弦AB=6,OP⊥AB,垂足为点P,则OP的长为()A.3 B.2.5 C.4 D.3.5【考点】垂径定理;勾股定理.【分析】连接OA,根据垂径定理得到AP=AB,利用勾股定理得到答案.【解答】解:连接OA,∵AB⊥OP,∴AP==3,∠APO=90°,又OA=5,∴OP===4,故选C.【点评】本题考查的是垂径定理的应用,掌握垂直于弦的直径平分这条弦是解题的关键.6.如图表示一圆柱形输水管的横截面,阴影部分为有水部分,如果输水管的半径为5cm,水面宽AB为8cm,则水的最大深度CD为()A.4cm B.3cm C.2cm D.1cm【考点】垂径定理的应用;勾股定理.【分析】根据题意可得出AO=5cm,AC=4cm,进而得出CO的长,即可得出答案.【解答】解:如图所示:∵输水管的半径为5cm,水面宽AB为8cm,水的最大深度为CD,∴DO⊥AB,∴AO=5cm,AC=4cm,∴CO==3(cm),∴水的最大深度CD为:2cm.故选:C.【点评】本题考查的是垂径定理的应用及勾股定理,根据构造出直角三角形是解答此题的关键.7.图中的五个半圆,邻近的两半圆相切,两只小虫同时出发,以相同的速度从A点到B点,甲虫沿ADA1、A1EA2、A2FA3、A3GB路线爬行,乙虫沿ACB路线爬行,则下列结论正确的是()A.甲先到B点B.乙先到B点C.甲、乙同时到B D.无法确定【考点】圆的认识.【专题】应用题.【分析】甲虫走的路线应该是4段半圆的弧长,那么应该是π(AA1+A1A2+A2A3+A3B)=π×AB,因此甲虫走的四段半圆的弧长正好和乙虫走的大半圆的弧长相等,因此两个同时到B点.【解答】解:π(AA1+A1A2+A2A3+A3B)=π×AB,因此甲虫走的四段半圆的弧长正好和乙虫走的大半圆的弧长相等,因此两个同时到B点.故选C.【点评】本题考查了圆的认识,主要掌握弧长的计算公式.8.在直径为200cm的圆柱形油槽内装入一些油以后,截面如图.若油面的宽AB=160cm,则油的最大深度为()A.40cm B.60cm C.80cm D.100cm【考点】垂径定理的应用;勾股定理.【分析】连接OA,过点O作OE⊥AB,交AB于点M,由垂径定理求出AM的长,再根据勾股定理求出OM的长,进而可得出ME的长.【解答】解:连接OA,过点O作OE⊥AB,交AB于点M,∵直径为200cm,AB=160cm,∴OA=OE=100cm,AM=80cm,∴OM===60cm,∴ME=OE﹣OM=100﹣60=40cm.故选:A.【点评】本题考查的是垂径定理的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.9.如图,AB是⊙O的直径,四边形ABCD内接于⊙O,若BC=CD=DA=4cm,则⊙O的周长为()A.5πcm B.6πcm C.9πcm D.8πcm【考点】圆心角、弧、弦的关系;等边三角形的判定与性质.【分析】如图,连接OD、OC.根据圆心角、弧、弦的关系证得△AOD是等边三角形,则⊙O的半径长为BC=4cm;然后由圆的周长公式进行计算.【解答】解:如图,连接OD、OC.∵AB是⊙O的直径,四边形ABCD内接于⊙O,若BC=CD=DA=4cm,∴==,∴∠AOD=∠DOC=∠BOC=60°.又OA=OD,∴△AOD是等边三角形,∴OA=AD=4cm,∴⊙O的周长=2×4π=8π(cm).故选:D.【点评】本题考查了圆心角、弧、弦的关系,等边三角形的判定.该题利用“有一内角是60度的等腰三角形为等边三角形”证得△AOD是等边三角形.10.如图,AB是⊙O的弦,点C在圆上,已知∠OBA=40°,则∠C=()A.40° B.50° C.60° D.80°【考点】圆周角定理.【分析】首先根据等边对等角即可求得∠OAB的度数,然后根据三角形的内角和定理求得∠AOB的度数,再根据圆周角定理即可求解.【解答】解:∵OA=OB,∴∠OAB=∠OBA=40°,∴∠AOB=180°﹣40°﹣40°=100°.∴∠C=∠AOB=×100°=50°.故选B.【点评】本题考查了等腰三角形的性质定理以及圆周角定理,正确理解定理是关键.二、填空题(共6小题,每小题3分,共18分)11.如图,在⊙O中,弦AB∥CD,若∠ABC=40°,则∠BOD= 80°.【考点】圆周角定理;平行线的性质.【分析】根据平行线的性质由AB∥CD得到∠C=∠ABC=40°,然后根据圆周角定理求解.【解答】解:∵AB∥CD,∴∠C=∠ABC=40°,∴∠BOD=2∠C=80°.故答案为80°.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,一条弧所对的圆周角的度数等于它所对的圆心角度数的一半.也考查了平行线的性质.12.如图,在矩形ABCD中,AB=4,AD=3,以顶点D为圆心作半径为r的圆,若要求另外三个顶点A、B、C中至少有一个点在圆内,且至少有一个点在圆外,则r的取值范围是3<r<5 .【考点】点与圆的位置关系.【分析】要确定点与圆的位置关系,主要根据点与圆心的距离与半径的大小关系来进行判断.当d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内.【解答】解:在直角△ABD中,CD=AB=4,AD=3,则BD==5.由图可知3<r<5.故答案为:3<r<5.【点评】此题主要考查了点与圆的位置关系,解决本题要注意点与圆的位置关系,要熟悉勾股定理,及点与圆的位置关系.13.如图,已知∠BOA=30°,M为OB边上一点,以M为圆心、2cm为半径作⊙M.点M在射线OB上运动,当OM=5cm时,⊙M与直线OA的位置关系是相离.【考点】直线与圆的位置关系.【专题】常规题型.【分析】作MH⊥OA于H,如图,根据含30度的直角三角形三边的关系得到MH=OM=,则MH大于⊙M 的半径,然后根据直线与圆的位置关系的判定方法求解.【解答】解:作MH⊥OA于H,如图,在Rt△OMH中,∵∠HOM=30°,∴MH=OM=,∵⊙M的半径为2,∴MH>2,∴⊙M与直线OA的位置关系是相离.故答案为相离.【点评】本题考查了直线与圆的位置关系:设⊙O的半径为r,圆心O到直线l的距离为d,直线l和⊙O相交⇔d<r;直线l和⊙O相切⇔d=r;直线l和⊙O相离⇔d>r.14.如图,正方形ABCD内接于⊙O,其边长为4,则⊙O的内接正三角形EFG的边长为2.【考点】正多边形和圆.【分析】连接AC、OE、OF,作OM⊥EF于M,先求出圆的半径,在RT△OEM中利用30度角的性质即可解决问题.【解答】解;连接AC、OE、OF,作OM⊥EF于M,∵四边形ABCD是正方形,∴AB=BC=4,∠ABC=90°,∴AC是直径,AC=4,∴OE=OF=2,∵OM⊥EF,∴EM=MF,∵△EFG是等边三角形,∴∠GEF=60°,在RT△OME中,∵OE=2,∠OEM=∠GEF=30°,∴OM=,EM=OM=,∴EF=2.故答案为2.【点评】本题考查正多边形与圆、等腰直角三角形的性质、等边三角形的性质等知识,解题的关键是熟练应用这些知识解决问题,属于中考常考题型.15.已知扇形的半径为6cm,圆心角的度数为120°,则此扇形的弧长为4πcm.【考点】弧长的计算.【分析】在半径是R的圆中,因为360°的圆心角所对的弧长就等于圆周长C=2πR,所以n°圆心角所对的弧长为l=nπR÷180.【解答】解:∵扇形的半径为6cm,圆心角的度数为120°,∴扇形的弧长为:=4πcm;故答案为:4π.【点评】本题考查了弧长的计算.解答该题需熟记弧长的公式l=.16.如图,半圆O的直径AB=2,弦CD∥AB,∠COD=90°,则图中阴影部分的面积为.【考点】扇形面积的计算.【分析】由CD∥AB可知,点A、O到直线CD的距离相等,结合同底等高的三角形面积相等即可得出S=S△OCD,进而得出S阴影=S扇形COD,根据扇形的面积公式即可得出结论.△ACD【解答】解:∵弦CD∥AB,∴S△ACD=S△OCD,∴S阴影=S扇形COD=•π•=×π×=.故答案为:.【点评】本题考查了扇形面积的计算以及平行线的性质,解题的关键是找出S阴影=S扇形COD.本题属于基础题,难度不大,解决该题型题目时,通过分割图形找出面积之间的关系是关键.三、解答题(共8题,共72分)17.圆锥底面圆的半径为3m,其侧面展开图是半圆,求圆锥母线长.【考点】圆锥的计算.【分析】侧面展开后得到一个半圆就是底面圆的周长.依此列出方程即可.【解答】解:设母线长为x,根据题意得2πx÷2=2π×3,解得x=6.故圆锥的母线长为6m.【点评】本题考查圆锥的母线长的求法,注意利用圆锥的弧长等于底面周长这个知识点.18.在一个底面直径为5cm,高为18cm的圆柱形瓶内装满水,再将瓶内的水倒入一个底面直径是6cm,高是10cm的圆柱形玻璃杯中,能否完全装下?若未能装满,求杯内水面离杯口的距离.【考点】圆柱的计算.【专题】计算题.【分析】设将瓶内的水倒入一个底面直径是6cm,高是10cm的圆柱形玻璃杯中时,水面高为xcm,根据水的体积不变和圆柱的条件公式得到π•()2•x=π•()2•18,解得x=12.5,然后把12.5与10进行大小比较即可判断能否完全装下.【解答】解:设将瓶内的水倒入一个底面直径是6cm,高是10cm的圆柱形玻璃杯中时,水面高为xcm, 根据题意得π•()2•x=π•()2•18,解得x=12.5,∵12.5>10,∴不能完全装下.【点评】本题考查了圆柱:圆柱的母线(高)等于展开后所得矩形的宽,圆柱的底面周长等于矩形的长;圆柱的侧面积=底面圆的周长×高;圆柱的表面积=上下底面面积+侧面积;圆柱的体积=底面积×高.19.如图,AB和CD分别是⊙O上的两条弦,过点O分别作ON⊥CD于点N,OM⊥AB于点M,若ON=AB,证明:OM=CD.【考点】垂径定理;全等三角形的判定与性质.【专题】证明题.【分析】设圆的半径是r,ON=x,则AB=2x,在直角△CON中利用勾股定理即可求得CN的长,然后根据垂径定理求得CD的长,然后在直角△OAM中,利用勾股定理求得OM的长,即可证得.【解答】证明:设圆的半径是r,ON=x,则AB=2x,在直角△CON中,CN==,∵ON⊥CD,∴CD=2CN=2,∵OM⊥AB,∴AM=AB=x,在△AOM中,OM==,∴OM=CD.【点评】此题涉及圆中求半径的问题,此类在圆中涉及弦长、半径、圆心角的计算的问题,常把半弦长,半圆心角,圆心到弦距离转换到同一直角三角形中,然后通过直角三角形予以求解.20.如图为桥洞的形状,其正视图是由和矩形ABCD构成.O点为所在⊙O的圆心,点O又恰好在AB为水面处.若桥洞跨度CD为8米,拱高(OE⊥弦CD于点F )EF为2米.求所在⊙O的半径DO.【考点】垂径定理的应用;矩形的性质.【分析】先根据垂径定理求出DF的长,再由勾股定理即可得出结论.【解答】解:∵OE⊥弦CD于点F,CD为8米,EF为2米,∴EO垂直平分CD,DF=4m,FO=DO﹣2,在Rt△DFO中,DO2=FO2+DF2,则DO2=(DO﹣2)2+42,解得:DO=5;答:所在⊙O的半径DO为5m.【点评】本题考查的是垂径定理的应用,此类题中一般使用列方程的方法,这种用代数方法解决几何问题即几何代数解的数学思想方法一定要掌握.21.△ABC是⊙O的内接三角形,BC=.如图,若AC是⊙O的直径,∠BAC=60°,延长BA到点D,使得DA=BA,过点D作直线l⊥BD,垂足为点D,请将图形补充完整,判断直线l和⊙O的位置关系并说明理由.【考点】直线与圆的位置关系.【分析】作OF⊥l于F,CE⊥l于E,设AD=a,则AB=2AD=2a,只要证明OF是梯形ADEC的中位线即可解决问题.【解答】解:图形如图所示,直线l与⊙O相切.理由:作OF⊥l于F,CE⊥l于E,∵AC是直径,∴∠ABC=90°,∵l⊥BD,∴∠BDE=90°,∵OF⊥l,CE⊥l,∴AD∥OF∥CE,∵AO=OC,∴DF=FE,∴OF=(AD+CE),设AD=a,则AB=2AD=2a,∵∠ABC=∠BDE=∠CED=90°,∴四边形BDEC是矩形,∴CE=BD=3a,∴OF=2a,∵在Rt△ABC中,∠ABC=90°,∠ACB=30°,AB=2a,∴AC=4a,∴OF=OA=2a,∴直线l是⊙O切线.【点评】本题考查直线与圆的位置关系、图形中位线的性质等知识,解题的关键是添加辅助线,要证明切线的方法有两种,一是连半径,证垂直,二是作垂直,正半径,此题则是运用第二种方法.22.如图直角坐标系中,已知A(﹣8,0),B(0,6),点M在线段AB上.(1)如图1,如果点M是线段AB的中点,且⊙M的半径为4,试判断直线OB与⊙M的位置关系,并说明理由;(2)如图2,⊙M与x轴、y轴都相切,切点分别是点E、F,试求出点M的坐标.【考点】直线与圆的位置关系;坐标与图形性质.【分析】(1)设线段OB的中点为D,连结MD,根据三角形的中位线求出MD,根据直线和圆的位置关系得出即可;(2)求出过点A、B的一次函数关系式是y=x+6,设M(a,﹣a),把x=a,y=﹣a代入y=x+6得出关于a的方程,求出即可.【解答】解:(1)直线OB与⊙M相切,理由:设线段OB的中点为D,连结MD,如图1,∵点M是线段AB的中点,所以MD∥AO,MD=4.∴∠AOB=∠MDB=90°,∴MD⊥OB,点D在⊙M上,又∵点D在直线OB上,∴直线OB与⊙M相切;,(2)解:连接ME,MF,如图2,∵A(﹣8,0),B(0,6),∴设直线AB的解析式是y=kx+b,∴,解得:k=,b=6,即直线AB的函数关系式是y=x+6,∵⊙M与x轴、y轴都相切,∴点M到x轴、y轴的距离都相等,即ME=MF, 设M(a,﹣a)(﹣8<a<0),把x=a,y=﹣a代入y=x+6,得﹣a=a+6,得a=﹣,∴点M的坐标为(﹣,).【点评】本题考查了直线和圆的位置关系,用待定系数法求一次函数的解析式的应用,能综合运用知识点进行推理和计算是解此题的关键,注意:直线和圆有三种位置关系:已知⊙O的半径为r,圆心O 到直线l的距离是,当d=r时,直线l和⊙O相切.23.已知等边三角形ABC,AB=12,以AB为直径的半圆与BC边交于点D,过点D作DF⊥AC,垂足为F,过点F作FG⊥AB,垂足为G,连接GD,(1)求证:DF与⊙O的位置关系并证明;(2)求FG的长.【考点】直线与圆的位置关系;等边三角形的性质;勾股定理;垂径定理.【分析】(1)连接OD,证∠ODF=90°即可.(2)利用△ADF是30°的直角三角形可求得AF长,同理可利用△FHC中的60°的三角函数值可求得FG长.【解答】(1)证明:连接OD,∵以等边三角形ABC的边AB为直径的半圆与BC边交于点D,∴∠B=∠C=∠ODB=60°,∴OD∥AC,∵DF⊥AC,∴∠CFD=∠ODF=90°,即OD⊥DF,∵OD是以边AB为直径的半圆的半径,∴DF是圆O的切线;(2)∵OB=OD=AB=6,且∠B=60°,∴BD=OB=OD=6,∴CD=BC﹣BD=AB﹣BD=12﹣6=6,∵在Rt△CFD中,∠C=60°,∴∠CDF=30°,∴CF=CD=×6=3,∴AF=AC﹣CF=12﹣3=9,∵FG⊥AB,∴∠FGA=90°,∵∠FAG=60°,∴FG=A Fsin60°=.【点评】本题主要考查了直线与圆的位置关系、等边三角形的性质、垂径定理等知识,判断直线和圆的位置关系,一般要猜想是相切,那么证直线和半径的夹角为90°即可;注意利用特殊的三角形和三角函数来求得相应的线段长.24.如图,等边△ABC的边长为2,E是边BC上的动点,EF∥AC交边AB于点F,在边AC上取一点P,使PE=EB,连接FP.(1)请直接写出图中与线段EF相等的两条线段;(不再另外添加辅助线)(2)探究:当点E在什么位置时,四边形EFPC是平行四边形?并判断四边形EFPC是什么特殊的平行四边形,请说明理由;(3)在(2)的条件下,以点E为圆心,r为半径作圆,根据⊙E与平行四边形EFPC四条边交点的总个数,求相应的r的取值范围.【考点】点与圆的位置关系;等边三角形的性质;平行四边形的判定;菱形的判定.【专题】探究型.【分析】(1)由平行易得△BFE是等边三角形,那么各边是相等的;(2)当点E是BC的中点时,△PEC为等边三角形,可得到PC=EC=BE=EF,也就得到了四边形EFPC是平行四边形,再有EF=EC可证为菱形;(3)根据各点到圆心的距离作答即可.【解答】解:(1)如图,∵△ABC是等边三角形,∴∠B=∠A=∠C=60°.又∵EF∥AC,∴∠BFE=∠A=60°,∠BEF=∠C=60°,∴△BFE是等边三角形,PE=EB,∴EF=BE=PE=BF;(2)当点E是BC的中点时,四边形是菱形;∵E是BC的中点,∴EC=BE,∵PE=BE,∴PE=EC,∵∠C=60°,∴△PEC是等边三角形,∴PC=EC=PE,∵EF=BE,∴EF=PC,又∵EF∥CP,∴四边形EFPC是平行四边形,∵EC=PC=EF,∴平行四边形EFPC是菱形;(3)如图所示:当点E是BC的中点时,EC=1,则NE=ECcos30°=,当0<r<时,有两个交点;当r=时,有四个交点;当<r<1时,有六个交点;当r=1时,有三个交点;当r>1时,有0个交点.【点评】本题综合考查了等边三角形的性质和判定,菱形的判定及点和圆的位置关系等知识点.注意圆和线段有交点,应根据半径作答.。

人教版九年级数学上册第24章《圆》测试卷1(附答案)

人教版九年级数学上册第24章《圆》测试卷1(附答案)

人教版九年级数学上册第24章《圆》测试卷1(附答案)时间:100分钟总分:120分一、选择题(每小题3分,共30分)1.已知⊙O与点P在同一平面内,如果⊙O的半径为5,线段OP的长为4,则点P( )A.在⊙O上B.在⊙O内C.在⊙O外D.以上答案都不正确2.若半径为5c m的一段弧长等于半径为2c m的圆的周长,则这段弧所对的圆心角为( )A.144°B.132°C.126°D.108°3.如图,一个直角三角尺的30°角的顶点P落在⊙O上,两边分别交⊙O于A,B两点,若⊙O的直径为4,则弦AB长为( )A.2B.3C.√2D.√3第3题图第4题图第5题图第6题图4.如图,CD是⊙O的直径,弦AB⊥CD于点G,直线EF与⊙O相切于点D,则下列结论中不一定正确的是( )A.AG=BGB.AD//BCC.AB//EFD. ∠ABC= ∠ADC5.某盏路灯照射的空间可以看成如图所示的圆锥,它的高AO=8m,底面半径OB=6m,则圆锥的侧面积是( )A.60πm²B.50π m²C.47.5π m²D.45.5π m²6. 如图,四边形ABCD内接于⊙O,若四边形ABCO是平行四边形,则∠ADC的大小为( )A.45°B.50°C.60°D.75°7. 已知⊙A与⊙B外切,⊙C与⊙A,⊙B都内切,且AB=5,AC=6,BC=7,那么⊙C的半径长是( )A.11B.10C.9D.88.如图,⊙P与x轴交于点A(-5,0),B(1,0),与y轴的正半轴交于点C.若∠ACB=60°,则点P的坐标为( )A.(-3, √3)B.(-2, √3,)C.(-3, 3√3)D.(-2, 3√3)第8题图第9题图第10题图9.如图,用6个小正方形构造如图所示的网格图(每个小正方形的边长均为2),设经过图中M,P,H三点的圆弧与AH交于点R,则图中阴影部分的面积为( )A.3π-2B.2π-5C.5π2--5 D. 5π4-5210. 如图,⊙O的半径为5,点A是⊙O上一定点,点B在⊙O上运动,且∠ABM =30°,AC⊥BM于点C,连接OC,则OC的最小值是( )A. 3−√32B.√32C. √33D.5√32−52二、填空题(每小题3分,共15分)11.已知某个正六边形的周长为6,则这个正六边形的边心距是__________.12.如图所示,在“世界杯”足球比赛中,甲带球向对方球门PQ进攻,当他带球冲到点A时,同伴乙已经成功冲到点B,现在有两种射门方式:第一种是甲直接射门;第二种是甲将球传给乙,由乙射门.仅从射门角度大小考虑,应选择第______种射门方式.第12题图第13题图第14题图第15题图13.用等分圆的方法,在半径为OA的圆中,画出了如图所示的四叶幸运草,若OA = 2,则四叶幸运草的周长是________.14. 如图,一条公路的转弯处是一段圆弧AB,点O是这段弧所在圆的圆心,AB=40m,C是弧AB的中点,且CD=10m,则这段弯路所在圆的半径为_________ m.15. 如图,在扇形OAB中,∠AOB=60°,OA = 4,射线AM⊥OA,E为弧AB上的一个动点,过点E作EF⊥AM于点F,连接AE,当AE-EF的值最大时,图中阴影部分的面积为______.三、解答题(本大题共8个小题,满分75分)16.(8分)如图,AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于点D,且CO=CD,求∠PCA的度数.17.(9分)如图,矩形ABCD中,AB=2BC,以AB为直径作⊙O.(1)求证CD是OO的切线.(2)若BC=3,连接BD,求阴影部分的面积.(结果保留π)18.(9分)下面是小东设计的“过圆外一点作这个圆的两条切线”的尺规作图过程..已知:⊙O及⊙O外一点P.求作:直线P A和直线PB,使P A切⊙O于点A,PB切⊙O于点B.作法:如图.OP的长为半径作弧,两弧分别交于点M,N;①连接OP.分别以点O和点P为圆心,大于12②连接MN,交OP于点Q,再以点Q为圆心,OQ的长为半径作弧,交⊙O于点A和点B;③作直线P A和直线PB.所以直线P A和PB就是所求作的直线.根据小东设计的尺规作图过程解答下列问题:(1)使用直尺和圆规,补全图形(保留作图痕迹)(2)完成下面的证明.证明:连接OA,OB . ∵OP是⊙Q的直径,∴∠OAP=∠OBP =______°( ) (填推理的依据).∴P A⊥OA , PB⊥OB .∵OA,OB为⊙O的半径,∴P A,PB是⊙O的切线.̂上,连19.(9分)如图,在⊙O的内接四边形ABCD中,AB=AD,∠BCD=120°,点E在AD接AE,DE.(1)求∠AED的度数;(2)连接OA,OD,OE,当∠DOE=90°时,AE恰好为⊙O的内接正n边形的一边,求n的值.̂=BĈ= AĈ,点E是BC上的一点,20.(9分)如图,已知△ABC是⊙O的内接三角形,AB连接AE,过点B作BD//AE交⊙O于点D,连接CD交AB于点F.(1)求证:AF=BE.(2)若∠CAE=15°,请仅用无刻度的直尺在图中作出一个⊙O的内接等腰直角三角形(保留作图痕迹,不写作法).̂的中点,N是AĈ的中点,弦MN分别交21.(10分)如图,AB,AC是⊙O的两条弦,M是ABAB,AC于点P,D.(1)求证AP=AD.(2)连接PO,若AP=3,OP=√10,⊙O的半径为5,求MP的长.22.(10分)如图,AB是⊙O的直径,点C是⊙O上一点(点C不与A,B重合),连接CA,CB,∠ACB的平分线CD与⊙O交于点D.(1)求∠ACD的度数;(2)探究CA,CB,CD三者之间的等量关系,并证明;(3)E为⊙O外一点,满足ED=BD,AB=5,AE =3,若P为AE中点,求PO的长.23.(11分)如图,AB是⊙O的直径,PC切⊙O于点P,过点A作直线AC⊥PC交⊙O于另一点D,连接P A,PB,PO.(1)求证:AP平分∠CAB;(2)若P是直径AB上方半圆弧上一动点。

2022年人教版数学九年级第24章圆单元试卷及参考答案(一)

2022年人教版数学九年级第24章圆单元试卷及参考答案(一)

第二十四章圆单元检测一.填空题1.如图,AB 是⊙O 的直径,假设AB =4㎝,∠D =30°,那么AC =㎝.2.⊙O 的直径AB 为2cm,那么以AB 为底,第三个顶点在圆周上的三角形中,面积最大的三角形的面积等于㎝2.3. 如图,ΔABC 是⊙O 的内接三角形,BC =4cm, ∠A =30°,那么ΔOBC 的面积为cm 2.4.矩形ABCD 中,AB =6cm ,AD =8cm ,假设以A 为圆心作圆,使B 、C 、D 三点中至少有一点在圆内,且至少有一点在圆外,那么⊙A 的半径r 的取值范围是.5.如图,∠AOB =30°,M 为OB 边上一点,以M 为圆心、2cm 为半径作⊙M . 假设点M 在OB 边上运动,那么当OM =cm 时,⊙M 与OA 相切.6.两圆相切,圆心距为5,其中一个圆的半径为4,那么另一个圆的半径为.7.在半径为10 cm 的圆中,72°的圆心角所对的弧长为cm.8. 将一个弧长为12πcm, 半径为10cm 的扇形铁皮围成一个圆锥形容器(不计接缝), 那么这个圆锥形容器的高为_____cm.9.假设圆锥侧面积是底面积的2倍,那么这个圆锥的侧面展开图的圆心角是 . 10.如图,圆柱体底面圆的半径为π2,高为2,AB 、CD 分别是两底面的直径,AD 、BC 是母线,假设一只小虫从A 点出发,从侧面爬行到C 点,那么小虫爬行的最短的路线的长度是 (结果保存根式). 二.选择题11.⊙O 的半径为2cm,弦AB 的长为23,那么这条弦的中点到弦所对优弧的中点的距离为〔 〕A.1cmB.3cmC.(2+2)cmD.(2+3 )cm12.如图,A 、B 、C 、D 、E 均在⊙O 上,且AC 为直径,那么∠A +∠B +∠C =〔 〕度. A .30 B .45 C .60 D .9013.⊿ABC 中,∠C =90°,AB =5,BC =4,以A 为圆心,以3为半径,那么点C 与⊙A 的位置关系为〔 〕A.点C 在⊙A 内B.点C 在⊙A 上C.点C 在⊙A 外D.点C 在⊙A 上或点C 在⊙A 外 14.设⊙O 的半径为r ,圆心O 到直线L 的距离为d ,假设直线L 与⊙O 有交点,那么d 与r 的关系为〔 〕A.d =rB.d <rC.d >rD.d ≤rABCDO (第1题)OBAM5题图OCAB3题图第10题 第10题OAEB D12题图15.以点P 〔1,2〕为圆心,r 为半径画圆,与坐标轴恰好有三个交点,那么r 应满足〔 〕 A. r =2或5B. r =2 C.r =5D. 2≤r ≤516.如图中的正方形的边长都相等,其中阴影局部面积相等的图形的个数是〔 〕 A .1个 B .2个 C .3个 D .4个17.一块等边三角形的木板,边长为1,现将木板沿水平线翻滚〔如图〕,那么B 点从开始至结束所走过的路径长度为〔 〕 A.23πB.34π C.4 D.2+23π18.如图,半径为2的两个等圆⊙O 1与⊙O 2外切于点P ,过O 1作⊙O 2的两条切线,切点分别为A 、B ,与⊙O 1分别交于C 、D ,那么APB 与CPD 的弧长之和为〔〕A.π2B.π2C.πD.π2119.现有一圆心角为90°,半径为8cm 的扇形纸片,用它恰好围成一个圆锥的侧面〔接缝忽略不计〕,那么该圆锥底面圆的半径为〔 〕 A .4cmB .3cmC .2cmD .1cm20.两个等圆⊙O 1和⊙O 2相交于A ,B 两点,且⊙O 1经过点O 2,那么四边形O 1AO 2B 是〔〕 A 、两个邻边不相等的平行四边形B 、菱形C 、矩形D 、正方形 三、解答题21.如图,⊙O是△ABC 的外接圆,AB 为直径,AC =CF ,CD ⊥AB 于D ,且交⊙O 于G ,AF 交CD 于E . 〔1〕求∠ACB 的度数;〔2〕求证:AE =CE ; 22.如图,点A 是一个半径为300m 村庄,现要在B ,C 两村庄之间修一条长为1000m =45°,∠ACB =30°,问此公路是否会穿过该森林公园?并通过计算进行说明.23.如图,AB 是⊙O 的直径,CB 、CE 分别切⊙O 于点B 、D ,CE与BA 的延长线交于点E ,连结OC 、OD . 〔1〕求证:△OBC ≌△ODC ; 〔2〕DE =a ,AE =b ,BC =c ,请你思考后,选用以上适当的数,设计出计算⊙O 半径r 的一种方案:①你选用的数是; ① 写出求解过程.〔结果用字母表示〕 24.:如图,∠MAN =30°,O 为边AN 上一点,以O 为圆心、(第18题图)17题图A B 第24题图〔1〕第24题图〔2〕2为半径作⊙O ,交AN 于D 、E 两点,设AD =x , ⑴.如图⑴当x 取何值时,⊙O 与AM 相切;⑵.如图⑵当x 为何值时,⊙O 与AM 相交于B 、C 两点,且∠BOC=90°. 25.如图中〔1〕、〔2〕、…〔m 〕分别是边长均大于2的三角形、四边形、…、凸n以它们的各顶点为圆心,以1为半径画弧与两邻边相交,得到3条弧、4条弧……、n 条弧. ⑴图⑴中3条弧的弧长的和为_________;⑵中4条弧的弧长的和为___________; ⑵求图(m )中n 条弧的弧长的和 (用n 表示). 26.在一次科学探究实验中,小明将半径为5cm 的圆形滤纸片按图1所示的步骤进行折叠,并围成圆锥形. (1)取一漏斗,上部的圆锥形内壁〔忽略漏斗管口处〕的母线OB 长为6cm ,开口圆的直径为6cm.当滤纸片重叠局部三层,且每层为14圆时,滤纸围成的圆锥形放入该漏斗中,能否紧贴此漏斗的内壁〔忽略漏斗管口处〕,请你用所学的数学知识说明;(2)假设有一特殊规格的漏斗,其母线长为6cm ,开口圆的直径为7.2cm ,现将同样大小的滤纸围成重叠局部为三层的圆锥形,放入此漏斗中,且能紧贴漏斗内壁.问重叠局部每层的面积为多少?第二十四章 单元检测答案一.填空题129993 4.π0°2二.选择题 三.解答题21.〔1〕90° 〔2〕略 A 作AD ⊥BC 交BC 于D .求得AD =500〔3-1〕>300,所以此公路不会穿过该森林公园.23.〔1〕略 〔2〕答案不唯一.现提供两例:一 .①a 和b ②r =bb a 222- 二. ①a 、b 、c ②r =abc 24.(1)x =2 (2)x =22-225.(1)π;2π (2)(n-2)π26. (1) 通过计算得知滤纸围成的漏斗与真正的漏斗“展开〞圆心角都是180°,所以能.(2)5π 备注:已发表于07--08学年《学苑新报》第25期 第二套一、选择题:〔本大题10个小题,每题4分,共40分〕每题只有一个答案是正确的,请将正确答案的代号填入题后的括号内。

新人教版九年级数学上册《第二十四章圆》测试题(含答案)

新人教版九年级数学上册《第二十四章圆》测试题(含答案)
16.某中学的铅球场如图所示,已知扇形������������������的面积是18������米2,弧������������的长度为6������米,那么 圆心角为________度.
17.一个圆锥的底面半径为3������������,高为4������������,则这个圆锥的表面积为________. 18.如图,菱形������������������������中,对角线������������、������������交于������点,分别以������、������为圆心,������������、������������为半径画 圆弧,交菱形各边于点������、������、������、������,若������������ = 2 3,������������ = 2,则图中阴影部分的面积是 ________.
B.(7, 7) D.(8, 8)
8.如图, ⊙ ������是等边三角形������������������的外接圆, ⊙ ������的半径为2,则等边 △ ������������������的边长为( )
A.1
B. 2
C. 3
D.2 3
9.已知点������到 ⊙ ������的最长距离是3,最短距离是2,则 ⊙ ������的半径是( )
������������于������,连������������,������������,下列结论:
^=^
^
①������������ ������������;②������������ // ������������;③∠������������������ = ∠������������������;④当������是半圆������������的中点时,则������������ = ������������.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版2020年第四单元《圆》过关检测(一)
一.选择题(共12小题)
1.已知⊙O的半径是5cm,则⊙O中最长的弦长是()
A.5cm B.10cm C.15cm D.20cm
2.在以下所给的命题中,正确的个数为()
①直径是弦;②弦是直径;③半圆是弧,但弧不一定是半圆;④半径相等的两个半圆是等弧;⑤长度
相等的弧是等弧.
A.1B.2C.3D.4
3.如图,在⊙O中,直径AB⊥CD,∠A=26°,则∠D度数是()
A.26°B.38°C.52°D 4.如图,四边形ABCD的外接
圆为⊙O,BC=CD,∠DAC
=35°,∠ACD=45°,则∠ADB的度数为()
A.55°B.60°C.65°D.70°
第3题第4题第6题
5.半径为R的圆内接正三角形、正方形、正六边形的边心距分别为a,b,c,则a,b,c的大小关系是()A.a<b<c B.b<a<c C.a<c<b D.c<b<a
6.如图所示,四边形ABCD 是圆O 的内接四边形,∠A =45°,BC =4,CD =22,则弦BD 的长为( )
A .25
B .35
C .10
D .210
7.往直径为52cm 的圆柱形容器内装入一些水以后,截面如图所示,若水面宽AB =48cm ,则水的最大深度为( )
A .8cm
B .10cm
C .16cm
D .20cm 第7题
8.如图是一个废弃的扇形统计图,小明同学利用它的阴影部分制作一个圆锥,则这个圆锥的底面半径是( )
A .3.6
B .1.8
C .3
D .6
9.如图,AB 是圆O 的直径.点P 是BA 延长线上一点,PC 与圆O 相切,切点为C ,连接OC ,BC ,如果∠P =40°,那么∠B 的度数为( )
A .40°
B .25°
C .35°
D .45°
10.如图,在矩形ABCD 中,AB =2,AD =4,将D 边绕点A 顺时针旋转,使点D 正好落在BC 边上的点D ′处,则阴影部分的扇形面积为( )
A .π
B .2π
C .3π
D .3

第8题第9题第10题
11.如图,已知P A,PB是⊙O的两条切线,A,B为切点,线段OP交⊙O于点M.给出下列四种说法:
①P A=PB;
②OP⊥AB;
③四边形OAPB有外接圆;
④M是△AOP外接圆的圆心.
其中正确说法的个数是()第11题
A.1B.2C.3D.4
12.如图,已知⊙O的半径为5,弦AB、CD所对的圆心角分别是∠AOB、∠COD,若∠AOB与∠COD互补,弦CD=6,则点O到弦AB的距离为()
A.6B.8C.3D.4
第12题
二.填空题(共4小题)
13.如图,四边形ABCD内接于⊙O,连接AC,若AC=AD,且∠DAC=50°,则∠B的度数为.14.如图,AB是⊙O的直径,C、D是的三等分点,∠AOE=60°,则∠COE=.
第13题第14题
15.如图,⊙O是△ABC的内切圆,若∠A=90°,BC=10cm,⊙O的半径是2.5cm,则△ABC的周长
是cm.
16.如图,菱形ABCD的边长为4cm,∠ADC=120°,以点B为圆心,AB长为半径画弧AD,以点C为圆心、BC长为半径画弧BD,以点D为圆心,AD长为半径画弧ABC,则阴影部分的面积为cm2.(结果保留π)
第15题第16题
三.解答题(共8小题)
17.如图,△ABC内接于⊙O,若⊙O的半径为6,∠B=60°,求AC的长.
第17题
18.如图,点A,B,C在⊙O上,BE∥AC,交⊙O于点E,点D为射线BC上一动点,AC平分∠BAD,连接AC.
(1)求证:AD∥CE;
(2)连接EA,若BC=3,则当CD=时,四边形EBCA是矩形.
19.如图,在△ABC中,AB=AC=210,BC=4,⊙O是△ABC的外接圆.
(1)求⊙O的半径;
(2)若在同一平面内的⊙P也经过B、C两点,且P A=2,请直接写出⊙P的半径的长.
20.已知,如图,直线MN交⊙O于A,B两点,AC是直径,AD平分∠CAM交⊙O于D,过D作DE⊥MN于E.
(1)求证:DE是⊙O的切线;
(2)若DE=8cm,AE=4cm,求⊙O的半径.
21.如图,四边形ABCD内接于圆,AD,BC的延长线交于点E,F是BD延长线上任意一点,AB=AC.(1)求证:DE平分∠CDF;
(2)求证:∠ACD=∠AEB.
22.如图,在一座圆弧形拱桥,它的跨度AB为60m,拱高PM为18m,当洪水泛滥到跨度只有30m时,就
要采取紧急措施,若某次洪水中,拱顶离水面只有4m,即PN=4m时,试通过计算说明是否需要采取紧急措施.
23.已知:如图,在半圆O中,直径AB的长为6,点C是半圆上一点,过圆心O作AB的垂线交线段AC 的延长线于点D,交弦BC于点E.
(1)求证:∠D=∠ABC;
(2)记OE=x,OD=y,求y关于x的函数表达式;
(3)若OE=CE,求图中阴影部分的面积.
24.如图,已知AB是⊙O的直径,BD是⊙O的弦,延长BD到C,使DC=BD,连接AC,过点D作DE ⊥AC,垂足为E.
(1)求证:AB=AC;
(2)求证:DE是⊙O的切线;
(3)若⊙O的半径为6,∠BAC=60°,则DE=.。

相关文档
最新文档