用计算法确定地球化学背景值及异常下限值的一些认识

合集下载

地球化学背景值及异常下限确定方法

地球化学背景值及异常下限确定方法

地球化学背景值及异常下限确定方法地球化学背景值是指地球表层物质的普遍背景含量或分布特征,它代表了地球自然状态下的正常水平。

异常下限是指地球化学异常的边界或基线,用于识别具有异常地球化学特征的物质。

确定地球化学背景值及异常下限的方法可以分为以下几种。

第一种方法是统计方法。

这种方法通过大量的样品分析数据来确定地球化学背景值及异常下限。

首先需要收集大量的样品数据,包括地球表层物质的各种元素含量数据。

然后对这些数据进行统计分析,例如计算平均值、标准差、分位数等。

通过统计分析可以确定地球化学背景值,它通常是根据样品数据的分布特征来确定的,例如取所有样品数据的中间值作为地球化学背景值。

异常下限可以根据统计分析的结果和专家经验来确定,例如确定一个范围,低于这个范围的数据可以被认为是异常值。

第二种方法是地表地质特征方法。

这种方法通过研究地球表层的地质特征,例如地貌、岩石类型、土壤类型等,来确定地球化学背景值及异常下限。

地球表层的地质特征通常与地球化学特征有一定的关联性,例如其中一种地貌环境下可能富含其中一种元素。

通过研究这些地质特征可以得出地球化学背景值及异常下限的范围,例如其中一种地貌环境下的元素含量可以被认为是正常的,低于或高于这个范围的元素含量可以被认为是异常的。

第三种方法是参照国内外标准方法。

许多国家和地区都有地球化学调查和研究的标准方法,例如美国地质调查局的“地球化学参考样品和数据计划”(Geochemical Reference Samples and Data)和欧洲的“Geochemical Atlas of Europe”等。

这些标准方法提供了丰富的样品数据和分析结果,可以作为确定地球化学背景值及异常下限的参考。

通过比对本地区样品数据和国际标准数据,可以确定地球化学背景值及异常下限的范围。

确定地球化学背景值及异常下限是地球化学调查和研究的基础工作,它对于判别地球化学异常、环境污染、资源勘查等方面具有重要意义。

用计算法确定地球化学背景值及异常下限值的一些认识

用计算法确定地球化学背景值及异常下限值的一些认识

用计算法确定地球化学背景值及异常下限值的一些认识地球化学背景值是指某一地区或某一地质单元中普遍存在的元素或化合物的含量、性质和分布的基准值。

地球化学背景值的确定对于研究区域地球化学异常具有重要意义,可以用于评价地球化学异常的成因、时空分布规律以及对环境和人类健康的影响,为矿产资源勘探、环境污染监测、地质灾害预测等提供科学依据。

确定地球化学背景值的主要方法之一是计算法。

计算法是通过收集并统计分析成矿地区及其周边无矿化影响的样品数据,分析其元素或化合物的含量、分布规律等,从中获得背景值的估计。

计算法的基本原理是利用大量背景样品数据计算平均值、标准差、变异系数等统计参数,确定地球化学背景值。

计算法确定地球化学背景值的具体步骤如下:1.数据收集:收集大量的无矿化样品数据,包括土壤、沉积物、岩石等,覆盖研究区域的不同地质单元和不同土壤类型等。

数据来源可以包括地质调查、环境监测和矿产勘探等。

2.数据筛选:对收集到的数据进行筛选,剔除控制在矿化脉管附近的样品数据,以排除矿化影响。

3.数据统计:对经过筛选的数据进行统计分析,计算平均值、标准差、变异系数等统计参数。

可以利用专业软件进行数据分析和处理。

4.背景值估计:根据统计参数计算地球化学背景值。

常用的方法有平均值加减n倍标准差法、变异系数法等。

根据背景值的不确定性要求,选择合适的置信度和倍数。

5.空间插值:通过空间插值方法,将背景值估计结果推广到整个研究区域。

常用的插值方法有逆距离加权法、克里金插值法等。

6.异常下限值划定:在背景值基础上,结合地质地球化学特征和成矿理论,确定地球化学异常的下限值。

异常下限值是判定地球化学异常的重要参数,可以用于识别矿化体、预测矿床赋存的有效性和潜力。

需要指出的是,计算法确定地球化学背景值存在一定的局限性。

首先,背景样品的数量和质量对结果的可靠性有一定影响,样本数据的局限性和不均衡性可能导致背景值的误差。

其次,计算法难以建立起全面的空间覆盖,对大范围、复杂地质条件下的背景值估计存在一定困难。

背景值及异常下限

背景值及异常下限

求区域背景值的方法就用黎彤的克拉克值就可以。

设:T=黎彤的克拉克值E=光谱分析的测试值E=2的(n-1)次方*T求出的n值就是改元素的丰度值。

n的大小就能反映他的富集程度。

新方法哦。

异常下限(threshold of anomaly)是根据背景值和标准离差按一定置信度所确定的异常起始值。

它是分辨地球化学背景与异常的一个量值界限。

从这个数值起,所有的高含量都可认为是地球化学异常,低于这个数值的所有含量则属于地球化学背景范围。

异常下限多用统计学方法求得,通常用背景平均值加上两倍或三倍标准差作为异常下限。

[1异常下限(threshold of anomaly)是根据背景值和标准离差按一定置信度所确定的异常起始值。

它是分辨地球化学背景与异常的一个量值界限。

从这个数值起,所有的高含量都可认为是地球化学异常,低于这个数值的所有含量则属于地球化学背景范围。

通常异常下限求得,即采用“迭代法”来求得,具体操作为:1、先计算背景平均值,及标准差。

2、背景平均值加上三倍标准差作为一个参照数,寻找分析数据中是否有大于这个参照数。

有的话,删除。

3、删除后的数据,又进行计算背景平均值,及标准差。

按背景平均值加上三倍标准差方法得出新的参照数,寻找分析数据中的大于这个参照数,有的话,删除。

4、循环执行第3步,直至数据不存在大于背景平均值加上三倍标准差的数时,才取这时的背景平均值加上三倍标准差的值为异常下限。

有时候可以用1.5,2 3倍标准差计算异常下限)也可通过LOG10()函数将原数据转为对,用上述方法进行计算。

近年来,随着分形理论的深入,采取分形技术也可求取一个拐点值,采取其中一个合适的值作为异常下限,从而圈定异常!楼主这个算法是通常的生产中的经验,一般的都这么算。

但楼主忽略了一个东西,那就是算出来的是理论异常下限,生产中的异常下限,我们通常都要进行校正。

校正主要是考虑该区域所处的大背景。

在excel中的计算方法1选择数据,进行升序排列在EXCEL中的公式中有计算标准离差的公式平均值:X=average键入:“=average(b2:b25)”[b2、b25.代表数据所在的行数和列数]计算出某元素的平均值。

用计算法确定地球化学背景值及异常下限值的一些认识

用计算法确定地球化学背景值及异常下限值的一些认识

用计算法确定地球化学背景值及异常下限值的一些认识摘要:一、地球化学背景值及异常下限的概念与意义1.地球化学背景值:地球化学元素含量的平均水平2.地球化学异常:元素含量明显偏离背景值的现象3.异常下限:区分背景与异常的界限值二、计算法确定地球化学背景值及异常下限的方法1.数据收集与处理2.计算背景值及异常下限3.确定置信度三、计算法在地球化学背景值及异常下限确定中的应用1.在既有正异常又有负异常分布的同一地区中的应用2.应用实例:地质勘探、矿产资源评价等四、注意事项与挑战1.数据质量与可靠性2.地区特性的考虑3.方法选择的合理性正文:地球化学背景值及异常下限的确定是地质勘探、矿产资源评价等领域的重要任务。

背景值反映了地球化学元素含量的平均水平,而异常则是指元素含量明显偏离背景值的现象。

在实际应用中,我们需要将背景值与异常进行区分,以便更好地发现和评价矿产资源。

本文将介绍用计算法确定地球化学背景值及异常下限值的一些认识。

首先,我们需要收集并处理一定区域内的地球化学数据。

这一步骤中,需要注意数据的可靠性和代表性。

数据来源可以是地质调查、土壤采样、水质分析等。

在数据处理阶段,需要对原始数据进行质量控制,剔除异常值和缺失数据,并对数据进行统计分析。

接下来,我们通过计算得出地球化学背景值及异常下限。

计算方法主要包括算术平均法、中位数法、加权平均法等。

其中,算术平均法是最常用的方法。

计算公式为:背景值= (Σ元素含量)/ 样品数量在确定异常下限时,我们通常采用一定置信度的方法。

置信度反映了我们所估计的异常下限的可靠性。

常见的置信度有95%、99%等。

计算公式为:异常下限= 背景值+ 置信度对应的标准差在实际应用中,计算法在地球化学背景值及异常下限确定中具有重要意义。

例如,在既有正异常又有负异常分布的同一地区,我们可以用计算法求出总体元素背景值和异常下限。

此外,计算法还可以应用于地质勘探、矿产资源评价、环境监测等领域。

异常背景值的计算

异常背景值的计算
一、地区背景值与背景上限的确定
1.样品不多并服从正态分布,其样品含量的算术平均 值可作为背景值C0。
C0 X
X
i 1
N
N
其中,X为样品谋元素的含量;N为样品数。
2.当样品数量较多时,可根据含量分组,以各组含量组 中值(x)与各组样品数频数(f)来计算含量平均值。
即:
f x C0 X f
异常上限:
Ca C 0 2
Ca 10 2 4.6 17.6
含量间隔 (10-9) 样品数
0~3 30
3~6 80
6~9 150
9~12 200
12~15 120
15~18 30
… …
从表可知:i=3×10-9时,x0=9×10-9, f1=150, f2=200, f3=120
i ( f 2 f 1) 3 (200 150 ) M0 X0 9 10.1 2f 2 f1 f 3 2 200 150 120
如在一个铜矿区甲地段采集了100个土壤样品,分析测试后整理为:
含量 (10-6) 样品 数 3 8 5 9 6 11 8 10 10 30 15 25 20 5 25 2
再将样品含量划分间隔组,统计各组样品数(频数),计算有关 数据:
含量间隔 (10-9) 0~ 5 5~10 10~15 15~20 20~25 组中值 ( x) 2.5 7.5 12.5 17.5 22.5
x2
6.25 56.25 153.8 306.3 506.3
频数(f)
17 51 25 5 2
f x
42.5 382.5 312.5 87.5 45.0
f x2
106.25 2868.75 3845.0 1531.5 1012.6

地球化学异常异常下限确定及异常圈定探讨-地质所-朱斌

地球化学异常异常下限确定及异常圈定探讨-地质所-朱斌

2、概率格纸法(可以不考虑奇异值)
将实测数据点以含量和频率作 图投绘在正态概率格纸图上,如果 基本分布在一条直线上,就可以读 出任一分位数值,分位数值就是某 一累积频率所对应的含量值。 15%——负异常 50%——背景值 98%——(X+2δ)异常下限 分位数值是一组很有用的统计 特征值。
如果为两条斜率不等的 直线所综合形成的曲线,应 用多重母体分解法,以拐点 为界,左侧背景占60%,右 侧异常占40%,换算成单一 母体累计频率。 背景母体的累计频率=背景 部分每个点的累计概率 *100/60。 异常母体累计频率=(异常 部分每个点的累计频率-60) *100/40。 再分别绘累计频率图。 所得背景部分累计频率基本 为一条直线,50处的横坐标 即为背景值。98处的横坐标 即为异常下限。
3、直方图法(可以不考虑奇异值)
背景值 研究子样分布直方图为单峰、并接 近对称的近似正态分布,则对最大频率 柱左侧顶角与右邻直方柱左顶角连线, 两条线交点在横坐标上的投影为众值M0, 即可作为背景值。以最大频率直方柱高 的0.6倍作横线,与频率密度曲线有左右 两交点,左交点至众值投影线间长度对 应的含量为均方差S。由向右量2-3倍S长 度,该处所指的含量即为异常下限。
S
2S
异常下限
如果是明显的双峰分布、且各自较为对称, 即可以在衔接部位定位异常界限,也可以按上 法对低含量的母体进行图解求众值、均方差和 异常下限。
如果分布直方图为单峰正偏形态,仍按下 述方法图解,因为确定均方差S时,只考虑未 受高含量矿化影响的样品,只对低含量部分进 行图解。
4、多重分形法

多重分形法将背景与矿化 异常的形成认为是两个相互独 立的过程,它们分别满足不同 的幂指数分别。目前利用分形 技术进行地球化学异常下限确 定的方法主要有(含量)周长 法、(含量)面积法、(含量) 距离法、(含量)频数法等, (含量)求和法,以(含量) 求和法进行讲解。

用计算法确定地球化学背景值及异常下限值的一些认识

用计算法确定地球化学背景值及异常下限值的一些认识

用计算法确定地球化学背景值及异常下限值的一些认识
摘要:
一、背景值和异常下限值的定义
二、计算法确定地球化学背景值及异常下限值的方法
三、应用计算法确定地球化学背景值及异常下限值的注意事项
四、结论
正文:
地球化学背景值和异常下限值是地球化学研究中非常重要的概念。

背景值是指某一地区在自然条件下,某种元素的含量;而异常下限值则是指某种元素含量超过正常背景值的最低值。

在地球化学研究中,正确地确定地球化学背景值和异常下限值对于理解元素的分布规律和地球化学环境具有重要意义。

计算法是一种常用的确定地球化学背景值及异常下限值的方法。

这种方法主要基于统计学原理,通过计算某种元素在一定区域内的平均含量和标准离差,从而得出该元素背景值和异常下限值。

在实际操作中,通常采用最小二乘法、最大似然法等数学模型进行计算。

然而,应用计算法确定地球化学背景值及异常下限值时需要注意以下几点。

首先,计算法适用于元素含量较为均匀的地区,对于元素含量变化较大的地区,计算结果可能存在较大误差。

其次,计算法需要有足够的样本数据支持,样本数量过少可能导致计算结果偏差较大。

最后,计算法仅能确定元素的背景值和异常下限值,对于元素异常的原因和机制仍需通过其他方法进行研究。

总之,计算法作为一种常用的确定地球化学背景值及异常下限值的方法,在实际应用中需要注意其适用范围和局限性。

用计算法确定地球化学背景值及异常下限值的一些认识

用计算法确定地球化学背景值及异常下限值的一些认识

用计算法确定地球化学背景值及异常下限值的一些认识计算法是一种确定地球化学背景值及异常下限值的常用方法。

通过该方法,可以对地球化学样品数据进行统计分析,并根据数据的分布特征来确定背景值和异常下限值。

在进行计算法确定地球化学背景值和异常下限值的过程中,需要遵循以下一般步骤:1.数据采集与处理:收集地球化学样品的数据,并进行必要的数据处理,包括数据清洗、异常值处理、数据转换等。

2.数据分布分析:对数据进行统计分析,了解数据的分布特征。

可以使用统计方法,如平均值、中位数、众数、标准差、变异系数等,来描述数据的集中趋势和离散程度。

3.背景值确定:通过分析数据的分布特征,确定地球化学元素的背景值。

通常背景值可以采用平均值、中位数、众数等,但也要结合地质特征和地球化学元素的空间变异性进行综合分析。

4.异常下限值确定:在确定背景值基础上,可以根据数据分布的统计特征,选择一定的标准差或百分位数作为异常下限值。

常用的方法包括3倍标准差法、2倍标准差法、95%百分位数法等。

5.专家经验参考:在确定地球化学背景值和异常下限值时,还可以参考地质学、地球化学和环境科学领域的专家经验。

特别是对于一些特殊地质环境或地球化学元素的特殊性,可以综合专家经验进行判断。

需要注意的是,计算法只是一种初步的确定地球化学背景值和异常下限值的方法,其结果还需要结合实地勘察、专家评价和实际监测数据进行进一步确认。

同时,对于不同地质环境下的地球化学背景值和异常下限值的确定,也需要遵循相应的规范和标准。

综上所述,计算法是一种常用的确定地球化学背景值和异常下限值的方法。

通过对地球化学样品数据的统计分析,结合专家经验和地质环境特征,可以对地球化学背景值和异常下限值进行初步确定,为环境监测、矿产勘查和环境治理提供科学依据。

但需要注意的是,计算法的结果还需与实际数据和专家判断相结合,进行综合分析和确认。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用计算法确定地球化学背景值及异常下限值的一些认识地球化学背景值和异常下限值是确定地球化学数据(如元素、同位素、矿物成分等)在特定地区或区域中的参考水平和异常程度的重要依据。


过准确、科学地确定这些值,可以更好地了解地质体的特征和演化过程,
为地质勘探、矿产资源开发、环境保护等提供科学依据。

一、地球化学背景值的确定
地球化学背景值是指在其中一地区或区域内,特定物质的浓度或含量
的平均水平。

确定地球化学背景值的步骤通常包括以下几个方面:
1.收集样品:收集具有代表性的地球化学样品,例如土壤、水体、岩矿、植物等。

样品的选择应该根据所研究的地质背景、地貌类型、地球化
学特征等因素进行科学确定。

2.分析样品:对采集的地球化学样品进行实验室分析,测量样品中感
兴趣元素或化合物的浓度或含量。

常用的分析方法包括原子吸收光谱法、
质谱法、电感耦合等离子体发射光谱法等。

3.数据处理:对得到的分析数据进行标准化处理,比如排除明显异常值、进行数据加权、样品稀释等。

可以使用地质统计学的方法,如均值、
中位值、方差、协方差等进行数据处理。

4.制定地球化学背景值:根据所得到的标准化数据,结合地质特征、
地貌分布、岩石类型和地球化学异常的特点,确定具体的地球化学背景值。

这个过程需要综合考虑样品的数量、采集方法、标准化处理等多个因素,
确保背景值的可靠性和科学性。

二、地球化学异常下限值的确定
地球化学异常下限值是在地球化学背景值的基础上确定的最低异常值,用于评价地球化学数据是否存在异常现象。

确定地球化学异常下限值的步
骤如下:
1.选择异常处理方法:根据所研究的地质背景、地貌类型、地球化学
特征等因素,选择适合的异常处理方法。

常用的异常处理方法包括等级判
别法、离群值分析法、空间统计法等。

2.处理异常值:对采集的地球化学样品中的异常值进行排除或修正。

排除异常值的方法通常包括删除异常值数据样本、使用替代值代替异常数
据等。

3.确定异常下限值:根据排除或修正之后的数据样本,再次进行数据
处理,得到修正后的数据分布。

通过综合分析修正后的数据的分布特征、
异常程度等,确定地球化学异常下限值。

4.判断异常程度:根据具体的研究目的和地质背景,将地球化学数据
与地球化学异常下限值进行对比,判断数据是否存在显著异常。

常见的判
断方法包括假设检验、比较分析等。

总结起来,确定地球化学背景值和异常下限值是通过收集地球化学样品,进行实验室分析和数据处理的过程。

在这个过程中,需要考虑样品的
选择、实验方法、数据处理方法等多个因素,以确保所得到的结果准确性
和科学性。

这些值的准确确定对于地质勘探、资源开发、环境保护等具有
重要的实际意义。

相关文档
最新文档