全国高考试题分类解析 直线与圆

合集下载

高考数学专题《直线与圆的位置关系》习题含答案解析

高考数学专题《直线与圆的位置关系》习题含答案解析

专题9.2 直线与圆的位置关系1.(福建高考真题(理))直线:1l y kx =+与圆22:1O x y +=相交于,A B 两点,则"1"k =是“OAB ∆的面积为12”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分又不必要条件【答案】A 【解析】由1k =时,圆心到直线:1l y x =+的距离d =..所以1122OAB S ∆==.所以充分性成立,由图形的对成性当1k =-时,OAB ∆的面积为12.所以不要性不成立.故选A.2.(2018·北京高考真题(理))在平面直角坐标系中,记d 为点()cos ,sin P θθ到直线20x my --=的距离,当θ、m 变化时,d 的最大值为( )A .1B .2C .3D .4【答案】C 【解析】22cos sin 1θθ+=∴Q ,P 为单位圆上一点,而直线20x my --=过点()2,0A ,所以d 的最大值为1213OA +=+=,选C.3.(2021·全国高二单元测试)已知直线l 与直线1y x =+垂直,且与圆221x y +=相切,切点位于第一象限,则直线l 的方程是( ).A.0x y +=B .10x y ++=C .10x y +-=D.0x y +=【答案】A 【分析】根据垂直关系,设设直线l 的方程为()00x y c c ++=<,利用直线与圆相切得到参数值即可.【详解】由题意,设直线l 的方程为()00x y c c ++=<.练基础圆心()0,0到直线0x y c ++=1,得c =c =,故直线l 的方程为0x y +=.故选:A4.(2020·北京高考真题)已知半径为1的圆经过点(3,4),则其圆心到原点的距离的最小值为( ).A .4B .5C .6D .7【答案】A 【分析】求出圆心C 的轨迹方程后,根据圆心M 到原点O 的距离减去半径1可得答案.【详解】设圆心(),C x y 1=,化简得()()22341x y -+-=,所以圆心C 的轨迹是以(3,4)M 为圆心,1为半径的圆,所以||1||OC OM +≥5==,所以||514OC ≥-=,当且仅当C 在线段OM 上时取得等号,故选:A.5.【多选题】(2021·吉林白城市·白城一中高二月考)若直线0x y m ++=上存在点P ,过点P 可作圆O :221x y +=的两条切线PA ,PB ,切点为A ,B ,且60APB ∠=︒,则实数m 的取值可以为( )A .3B .C .1D .-【答案】BCD 【分析】先由题意判断点P 在圆224x y +=上,再联立直线方程使判别式0∆≥解得参数范围,即得结果.【详解】点P 在直线0x y m ++=上,60APB ∠=︒,则30APO OPB ∠=∠=︒,由图可知,Rt OPB V 中,22OP OB ==,即点P 在圆224x y +=上,故联立方程224x y x y m ⎧+=⎨++=⎩,得222240x mx m ++-=,有判别式0∆≥,即()2244240m m -⨯-≥,解得m -≤≤A 错误,BCD 正确.故选:BCD.6.(2022·江苏高三专题练习)已知大圆1O 与小圆2O 相交于(2,1)A ,(1,2)B 两点,且两圆都与两坐标轴相切,则12O O =____【答案】【分析】由题意可知大圆1O 与小圆2O 都在第一象限,进而设圆的圆心为(,)(0)a a a >,待定系数得5a =或1a =,再结合两点间的距离求解即可.【详解】由题知,大圆1O 与小圆2O 都在第一象限,设与两坐标轴都相切的圆的圆心为(,)(0)a a a >,其方程为222()()x a y a a -+-=,将点(1,2)或(2,1)代入,解得5a =或1a =,所以221:(5)(5)25O x y -+-=,222:(1)(1)1O x y -+-=,可得1(5,5)O ,2(1,1)O ,所以12||O O ==故答案为:7.(江苏高考真题)在平面直角坐标系xOy 中,圆C 的方程为228150x y x +-+=,若直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值为__________.【答案】43【解析】∵圆C 的方程为x 2+y 2-8x+15=0,整理得:(x-4)2+y 2=1,即圆C 是以(4,0)为圆心,1为半径的圆;又直线y=kx-2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,∴只需圆C ′:(x-4)2+y 2=4与直线y=kx-2有公共点即可.设圆心C (4,0)到直线y=kx-2的距离为d,2d 即3k 2≤4k,∴0≤k≤43,故可知参数k 的最大值为43.8.(2018·全国高考真题(文))直线1y x =+与圆22230x y y ++-=交于A B ,两点,则AB =________.【答案】【解析】根据题意,圆的方程可化为22(1)4x y ++=,所以圆的圆心为(0,1)-,且半径是2,根据点到直线的距离公式可以求得d ==,结合圆中的特殊三角形,可知AB ==,故答案为.9.(2021·湖南高考真题)过圆2240x y x +-=的圆心且与直线20x y +=垂直的直线方程为___________【答案】220x y --=【分析】根据圆的方程求出圆心坐标,再根据两直线垂直斜率乘积为1-求出所求直线的斜率,再由点斜式即可得所求直线的方程.【详解】由2240x y x +-=可得()2224x y -+=,所以圆心为()2,0,由20x y +=可得2y x =-,所以直线20x y +=的斜率为2-,所以与直线20x y +=垂直的直线的斜率为12,所以所求直线的方程为:()1022y x -=-,即220x y --=,故答案为:220x y --=.10.(2020·浙江省高考真题)设直线:(0)l y kx b k =+>与圆221x y +=和圆22(4)1x y -+=均相切,则k =_______;b =______.【解析】设221:1C x y +=,222:(4)1C x y -+=,由题意,12,C C到直线的距离等于半径,即1=1=,所以||4b k b =+,所以0k =(舍)或者2b k =-,解得k b ==.1.(2020·全国高考真题(理))若直线l 与曲线y和x 2+y 2=15都相切,则l 的方程为()A .y =2x +1B .y =2x +12C .y =12x +1D .y =12x +12【答案】D 【分析】根据导数的几何意义设出直线l 的方程,再由直线与圆相切的性质,即可得出答案.【详解】设直线l在曲线y =(0x ,则00x >,函数y =y '=l的斜率k =,设直线l的方程为)0y x x =-,即00x x -+=,由于直线l 与圆2215x y +==两边平方并整理得2005410x x --=,解得01x =,015x =-(舍),则直线l 的方程为210x y -+=,即1122y x =+.练提升故选:D.2.【多选题】(2021·全国高考真题)已知点P 在圆()()225516x y -+-=上,点()4,0A 、()0,2B ,则( )A .点P 到直线AB 的距离小于10B .点P 到直线AB 的距离大于2C .当PBA ∠最小时,PB =D .当PBA ∠最大时,PB =【答案】ACD 【分析】计算出圆心到直线AB 的距离,可得出点P 到直线AB 的距离的取值范围,可判断AB 选项的正误;分析可知,当PBA ∠最大或最小时,PB 与圆M 相切,利用勾股定理可判断CD 选项的正误.【详解】圆()()225516x y -+-=的圆心为()5,5M ,半径为4,直线AB 的方程为142xy+=,即240x y +-=,圆心M 到直线AB 4=>,所以,点P 到直线AB 42-<,410<,A 选项正确,B 选项错误;如下图所示:当PBA ∠最大或最小时,PB 与圆M 相切,连接MP 、BM ,可知PM PB ⊥,=,4MP =CD 选项正确.故选:ACD.3.【多选题】(2021·肥城市教学研究中心高三月考)已知圆22:230A x y x +--=,则下列说法正确的是()A .圆A 的半径为4B .圆A 截y 轴所得的弦长为C .圆A 上的点到直线34120x y -+=的最小距离为1D .圆A 与圆22:88230B x y x y +--+=相离【答案】BC 【分析】将圆的一般方程转化为标准方程即可得半径可判断A ;利用几何法求出弦长可判断B ;求出圆心A 到直线的距离再减去半径可判断C ;求出圆B 的圆心和半径,比较圆心距与半径之和的大小可判断D ,进而可得正确选项.【详解】对于A :由22230x y x +--=可得()2214x y -+=,所以A 的半径为2r =,故选项A 不正确;对于B :圆心为()1,0到y 轴的距离为1d =,所以圆A 截y 轴所得的弦长为==B 正确;对于C :圆心()1,0到直线34120x y -+=3,所以圆A 上的点到直线34120x y -+=的最小距离为3321r -=-=,故选项C 正确;对于D :由2288230x y x y +--+=可得()()22449x y -+-=,所以圆心()4,4B ,半径3R =,因为5AB r R ===+,所以两圆相外切,故选项D 不正确;故选:BC.4.(2021·全国高三专题练习)在平面直角坐标系xOy 中,圆C 的方程为228150x y x +-+=,若直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的取值范围是_______.【答案】403k ≤≤【分析】求出圆C 的圆心和半径,由题意可得圆心到直线的距离小于或等于两圆的半径之和即可求解.【详解】由228150x y x +-+=可得22(4)1x y -+=,因此圆C 的圆心为(4,0)C ,半径为1,若直线2y kx =-上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,只需点(4,0)C 到直线2y kx =-的距离112d =≤+=,即22(21)1k k -≤+,所以2340k k -≤,解得403k ≤≤,所以k 的取值范围是403k ≤≤,故答案为:403k ≤≤.5.(2021·富川瑶族自治县高级中学高一期中(理))直线()20y kx k =+>被圆224x y +=截得的弦长为________.【答案】60 【分析】由已知求得圆心到直线的距离,再由点到直线的距离公式列式求得k ,然后利用斜率等于倾斜角的正切值求解.【详解】直线()20y kx k =+>被圆224x y +=截得的弦长为所以,圆心()0,0O 到直线20kx y -+=的距离1d ==,1=,解得)0k k =>.设直线的倾斜角为()0180θθ≤<,则tan θ=,则60θ= .因此,直线()20y kx k =+>的倾斜角为60 .故答案为:60 .6.(2021·昆明市·云南师大附中高三月考(文))已知圆O : x 2+y 2=4, 以A (1,为切点作圆O 的切线l 1,点B 是直线l 1上异于点A 的一个动点,过点B 作直线l 1的垂线l 2,若l 2与圆O 交于D , E 两点,则V AED 面积的最大值为_______.【答案】2【分析】由切线性质得2//OA l ,O 到直线2l 的距离等于A 到2l 的距离,因此ADEODE S S =!!,设O 到2l 距离为d ,把面积用d 表示,然后利用导数可得最大值.【详解】根据题意可得图,1OA l ⊥,所以2//OA l ,因此O 到直线2l 的距离等于A 到2l 的距离,ADEODE S S =!!,过点(00)O ,作直线2l 的垂线,垂足为F ,记||(20)OF d d =>>,则弦||DE =角形ADE 的面积为S ,所以12S d =g g ,将S 视为d 的函数,则S '=+ 1(2)2d d -当0d <<时,0S '>,函数()S d 2d <<时,0S '<,函数()S d 单调递减,所以函数()S d 有最大值,当d =max ()2S d =,故AED V 面积的最大值为2.故答案为:2.7.(2021·全国高三专题练习)已知ABC V 的三个顶点的坐标满足如下条件:向量(2,0)OB →=,(2,2)OC →=,,CA α→=)α,则AOB ∠的取值范围是________【答案】5,1212ππ⎡⎤⎢⎥⎣⎦【分析】先求出点A 的轨迹是以(2,2)C . 过原点O 作此圆的切线,切点分别为M 、N ,如图所示,连接CM ,CN ,得到MOB NOB θ∠∠…….所以15BOM ∠=︒,75BON ∠=︒,即得解.【详解】由题得||CA →=所以点A 的轨迹是以(2,2)C .过原点O 作此圆的切线,切点分别为M 、N ,如图所示,连接CM ,CN ,则向量OA →与OB →的夹角θ的范围是MOB NOB θ∠∠…….由图可知45COB ∠=︒.∵||OC →=1||||||2CM CN OC →→→==知30COM CON ∠=∠=︒,∴453015BOM ∠=︒-︒=︒,453075BON ∠=︒+︒=︒.∴1575θ︒︒…….故AOB ∠的取值范围为{}1575θθ︒≤≤︒丨.故答案为:{}π5π15751212θθ⎡⎤︒≤≤︒⎢⎥⎣⎦丨或,8.(2021·全国高三专题练习)已知x 、y R ∈,2223x x y -+=时,求x y +的最大值与最小值.【答案】最小值是1,最大值是1+【分析】根据2223x x y -+=表示圆()2214x y -+=,设x y b +=表示关于原点、x 轴、y 轴均对称的正方形,然后由直线与圆的位置关系求解.【详解】2223x x y -+=的图形是圆()2214x y -+=,既是轴对称图形,又是中心对称图形.设x y b +=,由式子x y +的对称性得知x y b +=的图形是关于原点、x 轴、y 轴均对称的正方形.如图所示:当b 变化时,图形是一个正方形系,每个正方形四个顶点均在坐标轴上,问题转化为正方形系中的正方形与圆有公共点时,求b 的最值问题.当1b <时,正方形与圆没有公共点;当1b =时,正方形与圆相交于点()1,0-,若令直线y x b =-+与圆()2214x y -+=相切,2,解得1b =±所以当1b =+当1b >+故x y +的最小值是1,最大值是1+.9.(2021·黑龙江哈尔滨市·哈尔滨三中)已知ABC V 的内切圆的圆心M 在y 轴正半轴上,半径为1,直线210x y +-=截圆M (1)求圆M 方程;(2)若点C 的坐标为()2,4,求直线AC 和BC 的斜率;(3)若A ,B 两点在x 轴上移动,且AB 4=,求ABC V 面积的最小值.【答案】(1)22(1)1y x +-=;(2)2;(3)163.【分析】(1)设ABC V 的内切圆的圆心()0,M b ,先求得圆心到直线210x y +-=的距离,再根据直线截圆M (2)当直线AC 和BC 的斜率不存在时,设直线方程为2x =,易知不成立;当直线AC 和BC 的斜率存在时,设直线方程为()42y k x -=-,然后由圆心到直线的距离等于半径求解; (3)根据AB 4=,设()()(),0,4,040A t B t t +-<<,进而得到直线AC 和直线 BC 的斜率,写出直线AC 和BC 的方程,联立求得点C 的坐标,进而得到坐标系的最小值求解.【详解】(1)设ABC V 的内切圆的圆心()0,,0M b b >,圆心到直线210x y +-=的距离为d又因为直线截圆M21+=,解得1b =,所以圆M 方程()2211x y +-=;(2)当直线AC 和BC 的斜率不存在时,设直线方程为2x =,则圆心到直线的距离 0221d r =-=≠=,不成立,当直线AC 和BC 的斜率存在时,设直线方程为()42y k x -=-,即 240kx y k --+=,圆心到直线的距离d ,解得2k =(3)因为AB 4=,设()()(),0,4,040A t B t t +-<<,所以直线AC 的斜率为:2222tan 2111ACt t k MAO t t-=∠==---,同理直线BC 的斜率为: ()()222241411BCt t k t t --+==+-- ,所以直线AC 的方程为:()221ty x t t =---,直线BC 的方程为:()()()224441t y x t t -+=--+- ,由()()()()222124441t y x t t t y x t t ⎧=--⎪-⎪⎨-+⎪=--⎪+-⎩,解得 22224412841t x t t t t y t t +⎧=⎪⎪++⎨+⎪=⎪++⎩,即2222428,4141t t t C t t t t ⎛⎫++ ⎪++++⎝⎭,又 ()2222282222414123t t y t t t t t +==-=-+++++-,当2t =-时,点C 的纵坐标取得最小值83,所以ABC V 面积的最小值.18164233ABC S =⨯⨯=V .10.(2021·新疆乌鲁木齐市·乌市八中高二期末(文))已知直线l :43100x y ++=,半径为2的圆C 与l 相切,圆心C 在x 轴上且在直线l 的上方(1)求圆C 的方程;(2)过点()1,0M 的直线与圆C 交于A ,B 两点(A 在x 轴上方),问在x 轴正半轴上是否存在点N ,使得x 轴平分ANB ∠?若存在,请求出点N 的坐标;若不存在,请说明理由.【答案】(1)224x y +=;(2)存在,()4,0N .【分析】(1)设出圆心坐标(),0C a ,根据直线与圆相切可得圆心到直线的距离等于半径,由此求解出a 的值(注意范围),则圆C 的方程可求;(2)当直线AB 的斜率不存在时,直接根据位置关系分析即可,当直线AB 的斜率存在时,设出直线方程并联立圆的方程,由此可得,A B 坐标的韦达定理形式,根据AN BN k k =-结合韦达定理可求点N 的坐标.【详解】解:(1)设圆心(),0C a ,∵圆心C 在l 的上方,∴4100a +>,即52a >-,∵直线l :43100x y ++=,半径为2的圆C 与l 相切,∴d r =,即41025a +=,解得:0a =或5a =-(舍去),则圆C 方程为224x y +=;(2)当直线AB x ⊥轴,则x 轴平分ANB ∠,当直线AB 的斜率存在时,设AB 的方程为()1y k x =-,(),0N t ,()11,A x y ,()22,B x y ,由224(1)x y y k x ⎧+=⎨=-⎩得,()22221240k x k x k +-+-=,所以212221k x x k +=+,212241k x x k -=+若x 轴平分ANB ∠,则AN BN k k =-,即()()1212110k x k x x tx t--+=--,整理得:()()12122120x x t x x t -+++=,即()()222224212011k k t t k k -+-+=++,解得:4t =,当点()4,0N ,能使得ANM BNM ∠=∠总成立.1.(2021·山东高考真题)“圆心到直线的距离等于圆的半径”是“直线与圆相切”的( )A .充分没必要条件B .必要不充分条件C .充要条件D .既不充分也没必要条件【答案】C 【分析】由直线与圆相切的等价条件,易判断【详解】由于“圆心到直线的距离等于圆的半径”⇒“直线与圆相切”,因此充分性成立;“直线与圆相切”⇒“圆心到直线的距离等于圆的半径”,故必要性成立;可得“圆心到直线的距离等于圆的半径”是“直线与圆相切”的充要条件故选:C2.(2021·北京高考真题)已知直线y kx m =+(m 为常数)与圆224x y +=交于点M N ,,当k 变化时,若||MN 的最小值为2,则m = A .±1B.C.D .2±【答案】C 【分析】先求得圆心到直线距离,即可表示出弦长,根据弦长最小值得出m 【详解】由题可得圆心为()0,0,半径为2,则圆心到直线的距离d =则弦长为||MN =则当0k =时,弦长|MN取得最小值为2=,解得m =故选:C.3.(2020·全国高考真题(理))已知⊙M :222220x y x y +---=,直线l :220x y ++=,P 为l 上的动点,过点P 作⊙M 的切线,PA PB ,切点为,A B ,当||||PM AB ⋅最小时,直线AB 的方程为( )练真题A .210x y --=B .210x y +-=C .210x y -+=D .210x y ++=【答案】D 【解析】圆的方程可化为()()22114x y -+-=,点M 到直线l的距离为2d >,所以直线l 与圆相离.依圆的知识可知,四点,,,A P B M 四点共圆,且AB MP ⊥,所以14442PAM PM AB S PA AM PA ⋅==⨯⨯⨯=V,而PA =,当直线MP l ⊥时,min MP =,min 1PA =,此时PM AB ⋅最小.∴()1:112MP y x -=-即1122y x =+,由1122220y x x y ⎧=+⎪⎨⎪++=⎩解得,10x y =-⎧⎨=⎩.所以以MP 为直径的圆的方程为()()()1110x x y y -++-=,即2210x y y +--=,两圆的方程相减可得:210x y ++=,即为直线AB 的方程.故选:D.4.【多选题】(2021·全国高考真题)已知直线2:0l ax by r +-=与圆222:C x y r +=,点(,)A a b ,则下列说法正确的是( )A .若点A 在圆C 上,则直线l 与圆C 相切B .若点A 在圆C 内,则直线l 与圆C 相离C .若点A 在圆C 外,则直线l 与圆C 相离D .若点A 在直线l 上,则直线l 与圆C 相切【答案】ABD 【分析】转化点与圆、点与直线的位置关系为222,a b r +的大小关系,结合点到直线的距离及直线与圆的位置关系即可得解.【详解】圆心()0,0C 到直线l的距离d =若点(),A a b 在圆C 上,则222a b r +=,所以d =则直线l 与圆C 相切,故A 正确;若点(),A a b 在圆C 内,则222a b r +<,所以d =则直线l 与圆C 相离,故B 正确;若点(),A a b 在圆C 外,则222a b r +>,所以d =则直线l 与圆C 相交,故C 错误;若点(),A a b 在直线l 上,则2220a b r +-=即222=a b r +,所以d =l 与圆C 相切,故D 正确.故选:ABD.5.(2021·山东高考真题)已知椭圆的中心在坐标原点,右焦点与圆22670x my m +--=的圆心重合,长轴长等于圆的直径,那么短轴长等于______.【答案】【分析】由于22670x my m +--=是圆,可得1m =,通过圆心和半径计算,,a b c ,即得解【详解】由于22670x my m +--=是圆,1m ∴=即:圆22670x y x +--=其中圆心为()3,0,半径为4那么椭圆的长轴长为8,即3c =,4a =,b ==那么短轴长为故答案为:6.(2019·北京高考真题(文))设抛物线y 2=4x 的焦点为F ,准线为l .则以F 为圆心,且与l 相切的圆的方程为__________.【答案】(x -1)2+y 2=4.【解析】抛物线y 2=4x 中,2p =4,p =2,焦点F (1,0),准线l 的方程为x =-1,以F 为圆心,且与l 相切的圆的方程为 (x -1)2+y 2=22,即为(x -1)2+y 2=4.。

历年高考直线与圆真题以及解析

历年高考直线与圆真题以及解析
(2)假设存在满足题意的直线l,设M(x1,y1)N(x2,y2),联立直线与圆的方程,由直线与圆相交可得△=(2k+4)2﹣16(1+k2)>0,由数量积的计算公式可得 • =(1+k2) + +4=6,解可得k的值,验证是否满足△>0,即可得答案.
【详解】(1)根据题意,圆C:(x﹣a)2+(y﹣b)2=1(a>0)关于直线3x﹣2y=0对称,
【详解】(1) 直线 与直线 垂直,
,解得 .
(2)当 时,直线 化为: 不满足题意.
当 时,可得直线 与坐标轴的交点 , .
直线 在两轴上的截距相等,
,解得: .
该直线的方程为 ,即 .
11.
(1) ;(2)存在,理由见解析
【分析】
(1)根据题意得到 ,再解不等式即可得到答案.
(2)首先假设存在得以 为直径的圆过原点,设 , ,直线与圆联立得到 ,再根据韦达定理和圆的性质即可得到答案.
化简可得: 即为点Q的轨迹方程.
【点睛】本题考查直线与圆的位置关系,考查直线被圆截得的弦长公式的应用,考查直线恒过定点问题和轨迹问题,属于中档题.
10.
(1) ;(2) .
【分析】
(1)利用两条直线垂直的条件列方程,解方程求得 的值.
(2)分成 和 两种情况,结合直线 在两轴上的截距相等求得 ,由此求得所求直线方程.
②当切线斜率存在时,设切线斜率为 ,
则切线方程为 ,即
因为圆心到切线距离等于半径,
所以 ,解得 ,此时切线方程为 ,
综上所述,过点 的圆的切线方程为 和 .
(2)因为 即 , 为圆上任意一点,
所以 即原点到圆上一点的直线的斜率,
令 ,则原点到圆上一点的直线的方程为 ,即

高考数学试题分类汇编——直线与圆

高考数学试题分类汇编——直线与圆

高考数学试题分类汇编直线与圆一. 选择题:1.(全国一10)若直线1x ya b+=与圆221x y +=有公共点,则( D )A .221a b +≤B .221a b +≥C .22111a b+≤D .2211a b+≥12.(全国二3)原点到直线052=-+y x 的距离为( D ) A .1B .3C .2D .53.(全国二6)设变量x y ,满足约束条件:222y x x y x ⎧⎪+⎨⎪-⎩,,.≥≤≥,则y x z 3-=的最小值为( D ) A .2-B .4-C .6-D .8-4.(安徽卷10)若过点(4,0)A 的直线l 与曲线22(2)1x y -+=有公共点,则直线l 的斜率的取值范围为( D )A .[3,3]B .(3,3)C .33[33-D .33(,)33-5.(安徽卷11) 若A 为不等式组002x y y x ≤⎧⎪≥⎨⎪-≤⎩表示的平面区域,则当a 从-2连续变化到1时,动直线x y a += 扫过A 中的那部分区域的面积为 ( C )A .34B .1C .74D .56.(北京卷6)若实数x y ,满足1000x y x y x ⎧-+⎪+⎨⎪⎩,,,≥≥≤则2z x y =+的最小值是( A )A .0B .12C .1D .27.(福建卷2)“a=1”是“直线x+y =0和直线x-ay =0互相垂直”的C A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件8.(福建卷10)若实数x 、y 满足10,0,2,x y x x -+≤⎧⎪⎨⎪≤⎩则y x 的取值范围是DA.(0,2)B.(0,2)C.(2,+∞)D.[2,+∞)9.(广东卷6)经过圆2220x x y ++=的圆心C ,且与直线0x y +=垂直的直线方程是( C )A 、10x y ++=B 、10x y +-=C 、10x y -+=D 、10x y --=10.(海南卷10)点P (x ,y )在直线4x + 3y = 0上,且满足-14≤x -y ≤7,则点P 到坐标原点距离的取值范围是( B )A. [0,5]B. [0,10]C. [5,10]D. [5,15]11.(湖北卷5)在平面直角坐标系xOy 中,满足不等式组,1x y x ⎧≤⎪⎨⎪⎩的点(,)x y 的集合用阴影表示为下列图中的C12.(湖南卷3.已条变量y x ,满足⎪⎩⎪⎨⎧≤-≤≥,0,2,1y x y x 则y x +的最小值是( C )A .4 B.3 C.2 D.113.(辽宁卷3)圆221x y +=与直线2y kx =+没有..公共点的充要条件是( B ) A .(22)k ∈-,B . (33)k ∈-,C .(2)(2)k ∈--+∞,,∞D .(3)(3)k ∈--+∞,,∞ 14.(辽宁卷9)已知变量x y ,满足约束条件1031010y x y x y x +-⎧⎪--⎨⎪-+⎩≤,≤,≥,则2z x y =+的最大值为( B ) A .4B .2C .1D .4-15.(山东卷11)若圆C 的半径为1,圆心在第一象限,且与直线430x y -=和x 轴相切,则该圆的标准方程是( B )A .227(3)13x y ⎛⎫-+-= ⎪⎝⎭B .22(2)(1)1x y -+-=C .22(1)(3)1x y -+-=D .223(1)12x y ⎛⎫-+-= ⎪⎝⎭16.(陕西卷5)直线30x y m -+=与圆22220x y x +--=相切,则实数m 等于( A )A 3或3-B .3-33C .33-3D .3-3317.(四川卷6)直线3y x =绕原点逆时针旋转090,再向右平移1个单位,所得到的直线为( A )(A)1133y x =-+ (B)113y x =-+(C)33y x =- (D)113y x =+18.(天津卷2)设变量x y ,满足约束条件012 1.x y x y x y -⎧⎪+⎨⎪+⎩≥,≤,≥则目标函数5z x y =+的最大值为( D ) A .2B .3C .4D .519.(浙江卷10)若0,0≥≥b a ,且当⎪⎩⎪⎨⎧≤+≥≥1,0,0y x y x 时,恒有1≤+by ax ,则以a ,b 为坐标点(,)P a b 所形成的平面区域的面积等于C (A )12 (B )4π (C )1 (D )2π 20.(重庆卷3)曲线C :cos 1.sin 1x y θθ=-⎧⎨=+⎩(θ为参数)的普通方程为C(A)1)1()1(22=++-y x(B)1)1()1(22=+++y x(C) 1)1()1(22=-+-y x(D)1)1()1(22=-++y x二. 填空题:1.(全国一13)若x y ,满足约束条件03003x y x y x ⎧+⎪-+⎨⎪⎩,,,≥≥≤≤则2z x y =-的最大值为 .92.(福建卷14)若直线3x+4y +m =0与圆x 2+y 2-2x +4y +4=0没有公共点,则实数m 的取值范围是 . (,0)(10,)-∞⋃+∞3.(广东卷12)若变量x ,y 满足240,250,0,0,x y x y x y +≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩则z =3x +2y 的最大 值是________。

高三数学高考复习直线与圆的方程考题分析

高三数学高考复习直线与圆的方程考题分析

直线与圆的方程考题分析关于直线或直线与圆相结合的题型是历年高考考查的重点.下面我们撷取几例典型的题目,与同学们共赏.例1 (广东卷)在平面直角坐标系中,已知矩形ABCD 的长为2,宽为1,AB 、AD 边分别在x 轴、y 轴的正半轴上,A 点与坐标原点重合(如图1所示).将矩形折叠,使A 点落在线段DC 上.若折痕所在直线的斜率为k ,试写出折痕所在直线的方程.解:①当k =0时,A 点与D 点重合,折痕所在的直线方程为12y =; ②当k ≠0时,设将矩形折叠后A 落在线段CD 上的点为G (a ,1),所以A 与G 关于折痕所在的直线对称,故有1OG k k =-,解得a k =-.故G 点坐标为G (-k ,1).从而折痕所在的直线与OG 的交点坐标(线段OG 的中点)为122k M ⎛⎫- ⎪⎝⎭,. 所以折痕所在的直线方程为122k y k x ⎛⎫-=+ ⎪⎝⎭,即2122k y kx =++. 由①、②得折痕所在的直线方程为k =0时,12y =;k ≠0时,2122k y kx =++. 点评:本题以“折叠”为载体,考查了直线关于直线对称或者是点对称等知识,给直线方程问题又增添了“动”的活力.例2 (江苏卷)直线x +2y =0被曲线2262150x y x y +---=所截得的弦长等于 ____.解析:本小题主要考查直线与圆的方程以及直线与圆的位置关系、点到直线的距离、弦长求法等知识.重点考查了数形结合的思想.曲线2262150x y x y +---=,即222(3)(1)5x y -+-=.此曲线是以(31)C ,为圆心,5为半径的圆.由点到直线的距离公式,得圆心C到直线x +2y =0的距离为d ==又圆的半径r =5,所以截得的弦长l =故应填例3 在坐标平面内,与点(12)A ,距离为l ,且与点(31)B ,距离为2的直线共有( ). A.1条 B.2条 C.3条 D.4条解析:解决本题可以先设出直线的方程,然后应用点到直线的距离公式求解,满足条件的直线方程为y =3,4x +3y -5=0,但那样做将面临非常复杂的计算.事实上,本题并没有要求求出与点(12)A ,距离为1且与点(31)B ,距离为2的直线方程,只要求判断满足这样条件的直线有几条,所以可以通过画图的办法来解决问题.经过计算可知,A、B两点间的距离为,所以在A、B两点间不可能存在满足条件的直线,这样的直线只可能在A、B两点的同侧,所以满足条件的直线有两条.也可以从平面解析几何的角度来考虑.如图2,到点A距离为1的动点轨迹是一个圆,到点B距离为2的动点轨迹也是一个圆,因为这两个圆相交,所以它们只有两条外公切线,即为所求的两条直线.所以答案应选(B).。

高考数学真题分类汇编 9.3 直线与圆、圆与圆的位置关系 理 (1)

高考数学真题分类汇编 9.3 直线与圆、圆与圆的位置关系 理 (1)

§9.3 直线与圆、圆与圆的位置关系考点直线与圆、圆与圆的位置关系1(2014江西,9,5分)在平面直角坐标系中,A,B分别是x轴和y轴上的动点,若以AB为直径的圆C与直线2x+y-4=0相切,则圆C面积的最小值为( )A.πB.πC.(6-2)πD.π答案 A2.(2014课标Ⅱ,16,5分)设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是.答案[-1,1]3.(2014江苏,9,5分)在平面直角坐标系xOy中,直线x+2y-3=0被圆(x-2)2+(y+1)2=4截得的弦长为.答案4.(2014湖北,12,5分)直线l1:y=x+a和l2:y=x+b将单位圆C:x2+y2=1分成长度相等的四段弧,则a2+b2= .答案 25.(2014重庆,13,5分)已知直线ax+y-2=0与圆心为C的圆(x-1)2+(y-a)2=4相交于A,B两点,且△ABC为等边三角形,则实数a= .答案4±6.(2014江苏,18,16分)如图,为保护河上古桥OA,规划建一座新桥BC,同时设立一个圆形保护区.规划要求:新桥BC与河岸AB垂直;保护区的边界为圆心M在线段OA上并与BC相切的圆,且古桥两端O和A到该圆上任意一点的距离均不少于80 m.经测量,点A位于点O正北方向60 m处,点C位于点O正东方向170 m处(OC为河岸),tan∠BCO=.(1)求新桥BC的长;(2)当OM多长时,圆形保护区的面积最大?解析解法一:(1)如图,以O为坐标原点,OC所在直线为x轴,建立平面直角坐标系xOy.由条件知A(0,60),C(170,0),直线BC的斜率k BC=-tan∠BCO=-.因为AB⊥BC,所以直线AB的斜率k AB=.设点B的坐标为(a,b),则k BC==-,k AB==.解得a=80,b=120.所以BC==150.因此新桥BC的长是150 m.(2)设保护区的边界圆M的半径为r m,OM=d m(0≤d≤60).由条件知,直线BC的方程为y=-(x-170),即4x+3y-680=0.由于圆M与直线BC相切,故点M(0,d)到直线BC的距离是r,即r==. 因为O和A到圆M上任意一点的距离均不少于80 m,所以即解得10≤d≤35.故当d=10时,r=最大,即圆面积最大.所以当OM=10 m时,圆形保护区的面积最大.解法二:(1)如图,延长OA,CB交于点F.因为tan∠FCO=,所以sin∠FCO=,cos∠FCO=.因为OA=60,OC=170,所以OF=OCtan∠FCO=,CF==,从而AF=OF-OA=.因为OA⊥OC,所以cos∠AFB=sin∠FCO=.又因为AB⊥BC,所以BF=AFcos∠AFB=,从而BC=CF-BF=150.因此新桥BC的长是150 m.(2)设保护区的边界圆M与BC的切点为D,连结MD,则MD⊥BC,且MD是圆M的半径,并设MD=r m,OM=d m(0≤d≤60).因为OA⊥OC,所以sin∠CFO=cos∠FCO.故由(1)知sin∠CFO====,所以r=.因为O和A到圆M上任意一点的距离均不少于80 m,所以即解得10≤d≤35.故当d=10时,r=最大,即圆面积最大.所以当OM=10 m时,圆形保护区的面积最大.。

高考数学最新真题专题解析—直线与圆(全国通用)

高考数学最新真题专题解析—直线与圆(全国通用)

高考数学最新真题专题解析—直线与圆(全国通用)考向一 求圆的方程【母题来源】2022年高考全国乙卷(理科)【母题题文】过四点(0,0),(4,0),(1,1),(4,2)-中的三点的一个圆的方程为____________.【答案】()()222313x y -+-=或()()22215x y -+-=或224765339x y ⎛⎫⎛⎫-+-=⎪ ⎪⎝⎭⎝⎭或()2281691525x y ⎛⎫-+-= ⎪⎝⎭;【试题解析】解:依题意设圆的方程为220x y Dx Ey F ++++=,若过()0,0,()4,0,()1,1-,则01640110F D F D E F =⎧⎪++=⎨⎪+-++=⎩,解得046F D E =⎧⎪=-⎨⎪=-⎩,所以圆的方程为22460x y x y +--=,即()()222313x y -+-=;若过()0,0,()4,0,()4,2,则01640164420F D F D E F =⎧⎪++=⎨⎪++++=⎩,解得042F D E =⎧⎪=-⎨⎪=-⎩,所以圆的方程为22420x y x y +--=,即()()22215x y -+-=;若过()0,0,()4,2,()1,1-,则0110164420F D E F D E F =⎧⎪+-++=⎨⎪++++=⎩,解得083143F D E ⎧⎪=⎪⎪=-⎨⎪⎪=-⎪⎩,所以圆的方程为22814033x y x y +--=,即224765339x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭;若过()1,1-,()4,0,()4,2,则1101640164420D E F D F D E F +-++=⎧⎪++=⎨⎪++++=⎩,解得1651652F D E ⎧=-⎪⎪⎪=-⎨⎪=-⎪⎪⎩,所以圆的方程为2216162055x y x y +---=,即()2281691525x y ⎛⎫-+-= ⎪⎝⎭;故答案为:()()222313x y -+-=或()()22215x y -+-=或224765339x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭或()2281691525x y ⎛⎫-+-= ⎪⎝⎭; 【命题意图】本题考查圆的一般方程的形式,通过解方程组求一般方程中的系数. 【命题方向】这类试题在考查题型选择、填空、解答题都有可能出现,多为低档题,是历年高考的热点. 常见的命题角度有:(1)直线的方程;(2)圆的方程;(3)直线与圆的位置关系;(4)圆与圆的位置关系. 【得分要点】(1)正确写出圆的一般方程的形式; (2)解方程组;(3)一般式转化为标准式. 考向二 直线与圆的位置关系【母题来源】2022年高考全国甲卷(文科)【母题题文】 若双曲线2221(0)x y m m-=>的渐近线与圆22430x y y +-+=相切,则m =_________.【答案】22(1)(1)5x y -++=【试题解析】设出点M 的坐标,利用(3,0)和(0,1)均在M 上,求得圆心及半径,即可得圆的方程.【详解】解:∵点M 在直线210x y +-=上,∴设点M 为(,12)-a a ,又因为点(3,0)和(0,1)均在M 上, ∴点M 到两点的距离相等且为半径R , 2222(3)(12)(2)-+-=+-=a a a a R ,222694415-++-+=a a a a a ,解得1a =,∴(1,1)M -,5R =M 的方程为22(1)(1)5x y -++=.【命题意图】本题考查直线与圆的位置关系,通过圆心到直线的距离与半径的关系求解.【命题方向】这类试题在考查题型选择、填空题出现,多为低档题,是历年高考的热点.常见的命题角度有:(1)直线的方程;(2)圆的方程;(3)直线与圆的位置关系;(4)圆与圆的位置关系. 【得分要点】(1)正确写出圆的标准方程; (2)求出圆心到直线的距离;(3)由直线与圆的位置关系确定圆心到直线的距离与半径之间的关系. 真题汇总及解析一、单选题1.(湖北省新高考联考协作体2021-2022学年高二下学期期末数学试题)“2m =”是“直线()2140x m y +++=与直线320x my --=垂直”的( ) A .充分必要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件【答案】B 【解析】 【分析】由直线()2140x m y +++=与直线320x my --=垂直求出m 的值,再由充分条件和必要条件的定义即可得出答案. 【详解】直线()2140x m y +++=与直线320x my --=垂直, 则()()2310m m ⨯++⨯-=,解得:2m =或3m =-,所以“2m =”是“直线()2140x m y +++=与直线320x my --=垂直”的充分不必要条件. 故选:B.2.(2022·四川乐山·高一期末)圆222440x y x y +-+-=关于直线10x y +-=对称的圆的方程是( ) A .22(3)16x y -+= B .22(3)9x y +-= C .22(3)16x y +-= D .22(3)9x y -+= 【答案】D 【解析】【分析】先求得圆222440x y x y +-+-=关于直线10x y +-=对称的圆的圆心坐标,进而即可得到该圆的方程. 【详解】圆222440x y x y +-+-=的圆心坐标为(1,2)-,半径为3 设点(1,2)-关于直线10x y +-=的对称点为(,)m n ,则211121022n m m n +⎧=⎪⎪-⎨+-⎪+-=⎪⎩ ,解之得30m n =⎧⎨=⎩ 则圆222440x y x y +-+-=关于直线10x y +-=对称的圆的圆心坐标为(3,0) 则该圆的方程为22(3)9x y -+=, 故选:D .3.(2022·四川成都·模拟预测(文))直线410mx y m 与圆2225x y +=相交,所得弦长为整数,这样的直线有( )条 A .10 B .9 C .8 D .7【答案】C 【解析】 【分析】求出过定点(4,1)32(5,6),最长的弦长为直径10,则弦长为6的直线恰有1条,最长的弦长为直径10,也恰有1条,弦长为7,8,9的直线各有2条,即可求出答案. 【详解】直线410mx y m 过定点(4,1),圆半径为5, 最短弦长为2251732(5,6),恰有一条,但不是整数;弦长为6的直线恰有1条,有1条斜率不存在,要舍去; 最长的弦长为直径10,也恰有1条; 弦长为7,8,9的直线各有2条,共有8条, 故选:C .4.(2022·广西柳州·模拟预测(理))已知直线(0)y kx k =>与圆()()22:214C x y -+-=相交于A ,B 两点23AB =k =( ) A .15B .43C .12D .512【答案】B 【解析】 【分析】圆心()2,1C 到直线(0)y kx k =>的距离为d ,则2211k d k-=+而224312AB d r ⎛⎫=--= ⎪⎝⎭,所以22111k d k -=+,解方程即可求出答案. 【详解】圆()()22:214C x y -+-=的圆心()2,1C ,2r =所以圆心()2,1C 到直线(0)y kx k =>的距离为d ,则2211k d k -=+而224312AB d r ⎛⎫=--= ⎪⎝⎭,所以22111k d k -=+,解得:43k =. 故选:B.5.(2022·全国·模拟预测)直线:3410l x y +-=被圆22:2440C x y x y +---=所截得的弦长为( ) A .25B .4 C .3D .22【答案】A 【解析】 【分析】直接利用直线被圆截得的弦长公式求解即可. 【详解】由题意圆心()1,2C ,圆C 的半径为3, 故C 到:3410l x y +-=22381234+-=+,故所求弦长为2223225-=故选:A.6.(2022·全国·模拟预测)若圆()()()22140x a y a -+-=>与单位圆恰有三条公切线,则实数a 的值为( ) A 3B .2 C .2D .23【答案】C 【解析】 【分析】两圆恰有三条公切线,说明两圆为外切关系,圆心距12d r r =+. 【详解】由题,两圆恰有三条公切线,说明两圆为外切关系(两条外公切线,一条内公切22121a +=+,结合0a >解得22a =故选:C.7.(2022·湖南岳阳·模拟预测)已知点A (2,0),B (0,﹣1),点P 是圆x 2+(y ﹣1)2=1上任意一点,则PAB △ 面积最大值为( ) A .2 B .45C .51D .52【答案】D 【解析】 【分析】结合点到直线距离公式及图形求出圆上点P 到直线AB 距离的最大值,由此可求PAB △面积的最大值.【详解】 由已知=5AB要使PAB △的面积最大,只要点P 到直线AB 的距离最大. 由于AB 的方程为21x y+=-1,即x ﹣2y ﹣2=0, 圆心(0,1)到直线AB 的距离为d 022455--==, 故P 到直线AB 451, 所以PAB △面积的最大值为()114551=522AB d ⎫⨯⨯+⎪⎪⎝⎭故选:D .8.(2022·河南安阳·模拟预测(理))已知圆22:(2)(6)4-+-=C x y ,点M 为直线:80l x y -+=上一个动点,过点M 作圆C 的两条切线,切点分别为A ,B ,则当四边形CAMB 周长取最小值时,四边形CAMB 的外接圆方程为( )A .22(7)(1)4-+-=x yB .22(1)(7)4-+-=x yC .22(7)(1)2-+-=x yD .22(1)(7)2-+-=x y【答案】D 【解析】 【分析】根据给定条件,利用切线长定理求出四边形CAMB 周长最小时点M 的坐标即可求解作答. 【详解】圆22:(2)(6)4-+-=C x y 的圆心(2,6)C ,半径2r =,点C 到直线l 的距离22221(1)d ==+-依题意,CA AM ⊥,四边形CAMB 周长2222||2||42424CA AM CM CA d +=+-+-242(22)48=+-=,当且仅当CM l ⊥时取“=”,此时直线:80CM x y +-=,由8080x y x y -+=⎧⎨+-=⎩得点(0,8)M ,四边形CAMB 的外接圆圆心为线段CM 中点(1,7)222(1)(7)2-+-=x y .故选:D9.(2022·全国·模拟预测(理))已知圆C 过圆221:42100C x y x y ++--=与圆222:(3)(3)6C x y ++-=的公共点.若圆1C ,2C 的公共弦恰好是圆C 的直径,则圆C的面积为( ) A .115πB .265πC 130πD .1045π【答案】B【解析】 【分析】根据题意求解圆1C ,2C 的公共弦方程,再计算圆2C 中的公共弦长即可得圆C 的直径,进而求得面积即可 【详解】由题,圆1C ,2C 的公共弦为2242100x y x y ++--=和22(3)(3)6x y ++-=的两式相减,化简可得2110x y -+=,又()23,3C -到2110x y -+=的距离()2232311512d --⨯+==+-,故公共弦长为22262655⎛⎫-= ⎪⎝⎭,故圆C 265C 的面积为265π故选:B10.(2022·广东·深圳市光明区高级中学模拟预测)已知圆:C 22(1)4x y -+=与抛物线2(0)y ax a =>的准线相切,则=a ( ) A .18B .14C .4D .8【答案】A 【解析】 【分析】求出抛物线的准线方程,利用圆与准线相切可得124a-=,求解即可. 【详解】因为圆:C 22(1)4x y -+=的圆心为(1,0),半径为2r =抛物线2(0)y ax a =>的准线为14y a=-,所以124a -=,即18a =, 故选:A.二、填空题11.(2022·江苏南京·模拟预测)已知ABC 中,()30A -,,()3,0B ,点C 在直线3yx 上,ABC 的外接圆圆心为()0,4E ,则直线EC 的方程为______. 【答案】344y x =+ 【解析】 【分析】圆心E 到点B 的距离即为半径,可得到外接圆的方程,联立圆的方程与直线的方程,得到C 点坐标,利用直线方程两点式即可求解. 【详解】因为ABC 的外接圆圆心为()0,4E ,所以ABC 22345+=, 即ABC 的外接圆方程为()22425x y +-=.联立()223425y x x y =+⎧⎪⎨+-=⎪⎩,解得47x y =⎧⎨=⎩,或30x y =-⎧⎨=⎩, 所以()4,7C 或()3,0C -(与A 点重合),舍, 所以直线EC 的方程为747440y x --=--,即344y x =+. 故答案为:344y x =+.12.(2022·天津二中模拟预测)已知圆221:4C x y +=与圆222:860C x y x y m +-++=外切,此时直线:0l x y +=被圆2C 所截的弦长_________. 34【解析】 【分析】将圆2C 的方程写成标准形式,然后根据两圆外切,可得圆心距离为半径之和,可得m ,接着计算2C 到直线的距离,最后根据圆的弦长公式计算可得结果. 【详解】由题可知:221:4C x y +=222:860C x y x y m +-++=,即()()224325-++=-x y m且25025->⇒<m m()()224030225-+--=-m ,解得16m = 所以2:C ()()22439x y -++=2C 到直线的距离为2243211-=+d 2C 的半径为R 则直线:0l x y +=被圆2C 所截的弦长为22129342-=-R d 故答案为: 3413.(2022·安徽·合肥市第八中学模拟预测(文))直线:10l x my m +--=被圆O ;223x y +=截得的弦长最短,则实数m =___________.【答案】1 【解析】 【分析】求出直线MN 过定点A (1,1),进而判断点A 在圆内,当OA MN ⊥时,|MN |取最小值,利用两直线斜率之积为-1计算即可. 【详解】直线MN 的方程可化为10x my m +--=,由1110y x -=⎧⎨-=⎩,得11x y =⎧⎨=⎩,所以直线MN 过定点A (1,1), 因为22113+<,即点A 在圆223x y +=内. 当OA MN ⊥时,|MN |取最小值,由1OA MN k k =-,得111m ⎛⎫⨯-=- ⎪⎝⎭,∴1m =, 故答案为:1.14.(2022·上海静安·模拟预测)已知双曲线()222210,0x y a b a b-=>>的两条渐近线均与圆()22:34C x y -+=相切,右焦点和圆心重合,则该双曲线的标准方程为____________.【答案】22154x y -=【解析】 【分析】根据已知条件得出双曲线的渐近线方程及圆的圆心和半径,进而得出双曲线的焦点坐标,利用双曲线的渐近线与圆相切,得出圆心到渐近线的距离等于半径,结合双曲线中,,a b c 三者之间的关系即可求解. 【详解】由题意可知,双曲线()222210,0x y a b a b-=>>的渐近线方程为b y x a =±,即0bx ay ±=.由圆C 的方程为()2234x y -+=,得圆心为()3,0C ,半径为2r =.因为右焦点和圆心重合,所以双曲线右焦点的坐标为3,0.3c =又因为双曲线()222210,0x y a b a b-=>>的两条渐近线均与圆()22:34C x y -+=相切,22302b a a b ⨯±⨯=+22c=,解得2b =.所以222945a c b =-=-=,所以该双曲线的标准方程为22154x y -=.故答案为:22154x y -=.15.(2022·全国·哈师大附中模拟预测(理))已知函数()22x xe ef x e -=(其中e是自然对数的底数),若在平面直角坐标系xOy 中,所有满足()()0f a f b +>的点(),a b 都不在圆C 上,则圆C 的方程可以是______(写出满足条件的一个圆的方程即可).【答案】221x y +=(答案不唯一) 【解析】 【分析】根据题意,得到()(2)0f x f x +-=,且关于点(1,0)中心对称,得到2a b +>,进而化简得到2x y +≤,即可得到答案. 【详解】由题意,函数222e e ()e e ex x x xf x --==-在R 上单调递增,且()(2)0f x f x +-=, 所以曲线()y f x =关于点(1,0)中心对称,所以()()0f a f b +>,即2a b +>, 在平面直角坐标系xOy 中所有满足()()0f a f b +>,即2a b +>的点(,)a b 都不在圆C 上,所以圆C 上的点都满足2x y +≤,即圆C 在2x y +≤表示的半平面内, 故圆C 可以是以原点为圆心,半径为1的圆,圆C 的方程可以为221x y +=. 故答案为:221x y +=(答案不唯一).三、解答题16.(2022·江苏·南京市天印高级中学模拟预测)已知动点(),M x y 是曲线C 上任一点,动点M 到点10,4A ⎛⎫⎪⎝⎭的距离和到直线14y =-的距离相等,圆M 的方程为()2221x y +-=.(1)求C 的方程,并说明C 是什么曲线;(2)设1A 、2A 、3A 是C 上的三个点,直线12A A 、13A A 均与圆M 相切,判断直线23A A 与圆M 的位置关系,并说明理由. 【答案】(1)答案见解析(2)若直线12A A 、13A A 与圆M 相切,则直线23A A 与圆M 相切,理由见解析 【解析】 【分析】(1)由抛物线的定义可得出曲线C 是以10,4A ⎛⎫⎪⎝⎭为焦点,直线14y =-为准线的抛物线,进而可求得曲线C 的方程;(2)分析可知直线12A A 、13A A 、23A A 的斜率都存在,设()2111,A x x 、()2222,A x x 、()2333,A x x ,其中1x 、2x 、3x 两两互不相等,利用二次方程根与系数的关系以及点到直线的距离公式以及几何法判断可得出结论.(1)解:由题设知,曲线C 上任意到点10,4A ⎛⎫⎪⎝⎭的距离和到直线14y =-的距离相等,因此,曲线C 是以10,4A ⎛⎫⎪⎝⎭为焦点,直线14y =-为准线的抛物线,故曲线C 的方程为2x y =.(2)解:若直线23A A 的斜率不存在,则直线23A A 与曲线C 只有一个交点,不合乎题意,所以,直线12A A 、13A A 、23A A 的斜率都存在,设()2111,A x x 、()2222,A x x 、()2333,A x x ,则1x 、2x 、3x 两两互不相等,则1222121212A Ax x k x x x x -==+-,同理1313A A k x x =+,2323A A k x x =+, 所以直线12A A 方程为()()21121y x x x x x -=+-,整理得()12120x x x y x x +--=,同理可知直线13A A 的方程为()13130x x x y x x +--=, 因为直线12A A 与圆M ()12212211x x x x +=++,整理可得()222121211230x x x x x -++-=,同理可得()222131311230x x x x x -++-=,所以2x 、3x 为方程()2221111230x x x x x -++-=的两根,则11x ≠±,所以,1232121x x x x +=--,21232131x x x x -=-,圆心M 到直线23A A ()2211221231222123122111321211112111x x x x x x x x x x x x +-+-+-===+++⎛⎫+- ⎪--⎝⎭,所以直线23A A 与圆M 相切. 综上,若直线12A A 、13A A 与圆M 相切,则直线23A A 与圆M 相切. 【点睛】方法点睛:求动点的轨迹方程有如下几种方法:(1)直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程; (2)定义法:如果能确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程;(3)相关点法:用动点Q 的坐标x 、y 表示相关点P 的坐标0x 、0y ,然后代入点P 的坐标()00,x y 所满足的曲线方程,整理化简可得出动点Q 的轨迹方程;(4)参数法:当动点坐标x 、y 之间的直接关系难以找到时,往往先寻找x 、y 与某一参数t 得到方程,即为动点的轨迹方程;(5)交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程.17.(2022·四川成都·模拟预测(理))点P 为曲线C 上任意一点,直线l :x =-4,过点P 作PQ 与直线l 垂直,垂足为Q ,点()1,0F -,且2PQ PF =. (1)求曲线C 的方程;(2)过曲线C 上的点()()000,1M x y x ≥作圆()2211x y ++=的两条切线,切线与y 轴交于A ,B ,求△MAB 面积的取值范围.【答案】(1)22143x y +=(2)212S ⎡∈⎢⎣ 【解析】 【分析】(1)设点(),P x y ,通过2PQ PF =得到等式关系,化简求得曲线方程; (2)设切线方程()00y y k x x -=-,通过点到切线的距离,化简成k 的一元二次方程,再韦达定理得出12,k k 与00,x y 的等式关系,再求出||AB 弦长,消去12,k k ,再求面积即可.(1)设(),P x y ,由2PQ PF =,得()2241x x y +=++22143x y +=,所以曲线C 的方程为22143x y +=;(2)设点()00,M x y 的切线方程为()00y y k x x -=-(斜率必存在),圆心为()1,0F -,r =1所以()1,0F -到()00y y k x x -=-的距离为:00211k y kx d k-+-==+平方化为()()2220000022110x x k x y k y +-++-=,设P A ,PB 的斜率分别为1k ,2k则()0012200212x y k k x x ++=+,201220012y k k x x -=+ 因为P A :()010y y k x x -=-,令x =0有010A y y k x =-,同理020B y y k x =-所以()()()()222200000201212120414214A B x y x x y AB y y x k k x k k k k +-+-=-=-=+-=又因为22004123y x =-代入上式化简为0062x AB x +=+ 所以3200000006611122222MABx x x S x AB x x x ++=⋅⋅=⋅=++△[]01,2x ∈ 令()3262x x f x x +=+,[]1,2x ∈,求导知()f x 在[]1,2x ∈为增函数,所以2126S ∈⎢⎣.18.(2022·陕西·交大附中模拟预测(理))已知在平面直角坐标系xOy 中,点()0,3A ,直线:24=-l y x .设圆C 的半径为1,圆心在直线l 上.(1)若圆心C 也在直线1y x =-上,过点A 作圆C 的切线,求切线的方程; (2)若圆C 上存在点M ,使2=MA MO ,求圆心C 的横坐标a 的取值范围. 【答案】(1)3y =或34120x y +-=(2)120,5⎡⎤⎢⎥⎣⎦【解析】 【分析】(1)求出圆心的坐标,设出切线的方程,利用圆心到切线的距离等于半径可求出相应的参数值,即可得出所求切线的方程; (2)设点(),M x y ,由已知可得()2214x y ++=,分析可知圆C 与圆()2214x y ++=有公共点,可得出关于a 的不等式组,由此可解得实数a 的取值范围.(1)解:联立241y x y x =-⎧⎨=-⎩,解得32x y =⎧⎨=⎩,即圆心()3,2C ,所以,圆C 的方程为()()22321x y -+-=.若切线的斜率不存在,则切线的方程为0x =,此时直线0x =与圆C 相离,不合乎题意;所以,切线的斜率存在,设所求切线的方程为3y kx =+,即30kx y -+=, 23111+=+k k ,整理可得2430k k +=,解得0k =或34-.故所求切线方程为3y =或334y x =-+,即3y =或34120x y +-=.(2)解:设圆心C 的坐标为(),24a a -,则圆C 的方程为()()22241x a y a -+--=⎡⎤⎣⎦,设点(),M x y ,由2=MA MO 可得()222232x y x y +-+整理可得()2214x y ++=,由题意可知,圆C 与圆()2214x y ++=有公共点,所以,()221233a a ≤+-,即22512805120a a a a ⎧-+≥⎨-≤⎩,解得1205a ≤≤.所以,圆心C 的横坐标a 的取值范围是120,5⎡⎤⎢⎥⎣⎦.。

2024高考数学常考题型 第18讲 直线与圆常考6种题型总结(解析板)

2024高考数学常考题型  第18讲 直线与圆常考6种题型总结(解析板)

第18讲直线与圆常考6种题型总结【考点分析】考点一:圆的定义:在平面上到定点的距离等于定长的点的轨迹是圆考点二:圆的标准方程设圆心的坐标()C a b ,,半径为r ,则圆的标准方程为:()()222x a y b r -+-=考点三:圆的一般方程圆的一般方程为220x y Dx Ey F ++++=,圆心坐标:()22D E --,,半径:r =注意:①对于F E D 、、的取值要求:2240D E F +->当2240D E F +-=时,方程只有实数解22D E x y =-=-,.它表示一个点()22D E--,当2240D E F +-<时,方程没有实数解,因而它不表示任何图形.②二元二次方程220Ax Bxy Cy Dx Ey F +++++=,表示圆的充要条件是22040A C B D E AF =≠⎧⎪=⎨⎪+->⎩考点四:以1122()()A x y B x y ,,,为直径端点的圆的方程为1212()()()()0x x x x y y y y -⋅-+--=考点五:阿波罗尼斯圆设A B ,为平面上相异两定点,且||2(0)AB a a =>,P 为平面上异于A B ,一动点且||||PA PB λ=(0λ>且1λ≠)则P 点轨迹为圆.考点六:直线与圆的位置关系设圆心到直线的距离d ,圆的半径为r ,则直线与圆的位置关系几何意义代数意义公共点的个数①直线与圆相交r d <0>∆两个②直线与圆相切r d =0=∆一个③直线与圆相离r d >0<∆0个注:代数法:联立直线方程与圆方程,得到关于x 的一元二次方程2Ax Bx C ++=考点七:直线与圆相交的弦长问题法一:设圆心到直线的距离d ,圆的半径为r ,则弦长222d r AB -=法二:联立直线方程与圆方程,得到关于x 的一元二次方程20Ax Bx C ++=,利用韦达定理,弦长公式即可【题型目录】题型一:圆的方程题型二:直线与圆的位置关系题型三:直线与圆的弦长问题题型四:圆中的切线切线长和切点弦问题题型五:圆中最值问题题型六:圆与圆的位置关系问题【典型例题】题型一:圆的方程【例1】AOB 顶点坐标分别为()2,0A ,()0,4B ,()0,0O .则AOB 外接圆的标准方程为______.【答案】()()22125x y -+-=【解析】设圆的标准方程为()()222x a y b r -+-=,因为过点()2,0A ,()0,4B ,()0,0O 所以()()()()()()222222222200400a b r a b r a b r ⎧-+-=⎪⎪-+-=⎨⎪-+-=⎪⎩解得2125a b r =⎧⎪=⎨⎪=⎩则圆的标准方程为()()22125x y -+-=故答案为:()()22125x y -+-=【例2】已知圆22(1)(2)4x y +++=关于直线()200,0ax by a b ++=>>对称,则12a b+的最小值为()A .52B .92C .4D .8故选:B【例3】过点(1,1),(3,5)A B -,且圆心在直线220x y ++=上的圆的方程为_______.【例4】设甲:实数3a <;乙:方程2230x y x y a +-++=是圆,则甲是乙的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【例5】苏州有很多圆拱的悬索拱桥(如寒山桥),经测得某圆拱索桥(如图)的跨度100AB =米,拱高10OP =米,在建造圆拱桥时每隔5米需用一根支柱支撑,则与OP 相距30米的支柱MN 的高度是()米.(注意:≈3.162)A .6.48B .5.48C .4.48D .3.48【答案】A【解析】以O 为原点,以AB 所在直线为x 轴,以OP 所在直线为y 轴建立平面直角坐标系.设圆心坐标为(0,a ),则P (0,10),A (-50,0).可设圆拱所在圆的方程为()222x y a r +-=,由题意可得:()()222221050a r a r ⎧-=⎪⎨-+=⎪⎩解得:2120,16900a r =-=.所以所求圆的方程为()2212016900x y ++=.将x =-30代入圆方程,得:()290012016900y ++=,因为y >0,所以12040 3.162120 6.48y =≈⨯-=.故选:A.【例6】阿波罗尼斯(约公元前262-190年)证明过这样一个命题:在平面内到两定点距离之比为常数(0,1)k k k >≠的点的轨迹是圆,后人将这个圆称为阿氏圆.若平面内两定点A ,B 间的距离为2,动点P 满足||||PA PB =,则PAB △面积的最大值是()AB .2C.D .4【答案】C【解析】设经过点A ,B 的直线为x 轴,AB的方向为x 轴正方向,线段AB 的垂直平分线为y 轴,线段AB 的中点O 为原点,建立平面直角坐标系.则()1,0A -,()10B ,.设(),P x y,∵PA PB==两边平方并整理得22610x y x +-+=,即()2238x y -+=.要使PAB △的面积最大,只需点P到AB (x 轴)的距离最大时,此时面积为122⨯⨯故选:C.【题型专练】1.设点M 在直线210x y +-=上,点(3,0)和(0,1)均在M 上,则M 的方程为______________.2.经过三个点00()(02)()0A B C -,,,,的圆的方程为()A .(()2212x y ++=B .(()2212x y +-=C .(()2214x y ++=D .(()2214x y +-=中的三点的一个圆的方程为____________.【答案】22420x y x y +--=或22460x y x y +--=或22814033x y x y +--=或2216162055x y x y +---=(答案不唯一,填其中一个即可)【解析】设圆的方程为220x y Dx Ey F ++++=若圆过(0,0),(4,0),(4,2)三点,则0164020420F D F D E F =⎧⎪++=⎨⎪+++=⎩,解得420D E F =-⎧⎪=-⎨⎪=⎩,故圆的方程为22420x y x y +--=;若圆过(0,0),(4,0),(1,1)-三点,则0164020F D F D E F =⎧⎪++=⎨⎪-++=⎩,解得460D E F =-⎧⎪=-⎨⎪=⎩,故圆的方程为22460x y x y +--=;若圆过(0,0),(1,1)-,(4,2)三点,则02020420F D E F D E F =⎧⎪-++=⎨⎪+++=⎩,解得831430D E F ⎧=-⎪⎪⎪=-⎨⎪=⎪⎪⎩,故圆的方程为22814033x y x y +--=;若圆过(4,0),(1,1)-,(4,2)三点,则16402020420D F D E F D E F ++=⎧⎪-++=⎨⎪+++=⎩,解得1652165D E F ⎧=-⎪⎪=-⎨⎪⎪=-⎩,故圆的方程为2216162055x y x y +---=.4.已知“m t ≤”是“220x y m ++=”表示圆的必要不充分条件,则实数t 的取值范围是()A .()1,-+∞B .[)1,+∞C .(),1-∞D .(),1-∞-5.若两定点()1,0A ,()4,0B ,动点M 满足2MA MB =,则动点M 的轨迹围成区域的面积为().A .2πB .5πC .3πD .4π6.古希腊著名数学家阿波罗尼斯发现:平面内到两定点A ,B 的距离之比为定值λ(λ≠1)的点的轨迹是圆,此圆被称为“阿波罗尼斯圆”.在平面直角坐标系xOy 中,A (-2,0),B (4,0),点P 满足PA PB=12.设点P 的轨迹为C ,则下列结论正确的是()A .轨迹C 的方程为(x +4)2+y 2=9B .在x 轴上存在异于A ,B 的两点D ,E 使得PD PE=12C .当A ,B ,P 三点不共线时,射线PO 是∠APB 的平分线D .在C 上存在点M ,使得2MO MA =【答案】BC【分析】根据阿波罗尼斯圆的定义,结合两点间距离公式逐一判断即可.MA MO,则在O,A,M三点所能构成7.已知动点M与两个定点O(0,0),A(3,0)的距离满足2=的三角形中面积的最大值是()A.1B.2C.3D.4易知90MBO ∠=︒时,MOA S △取得最大值3.故选:C .题型二:直线与圆的位置关系【例1】直线:10l kx y k -+-=与圆223x y +=的位置关系是()A .相交B .相离C .相切D .无法确定【例2】(黑龙江哈尔滨市)若过点()4,3A 的直线l 与曲线()()22231x y -+-=有公共点,则直线l 的斜率的取值范围为()A .⎡⎣B .(C .,33⎡-⎢⎣⎦D .,33⎛⎫- ⎪ ⎪⎝⎭【答案】C【解析】由题意知,直线的斜率存在,设直线的斜率为k ,则直线方程为()43-=-x k y ,即043=-+-k y kx ,圆心为()3,2,半径为1,所以圆心到直线得距离1211433222+≤-⇒≤+-+-=k k k kk d ,解得3333≤≤-k【例3】直线:20l kx y --=与曲线1C x -只有一个公共点,则实数k 范围是()A .(3,)(,3)+∞-∞- B .3,2⎡⎫+∞⎪⎢⎣⎭C .4(2,4]3⎧⎫⎨⎬D .(-由图知,当24k <≤或故选:C【例4】已知直线2:0l ax by r +-=与圆222:C x y r +=,点(),A a b ,则下列说法正确的是()A .若点A 在圆C 上,则直线l 与圆C 相切B .若点A 在圆C 内,则直线l 与圆C 相交C .若点A 在圆C 外,则直线l 与圆C 相离D .若点A 在直线l 上,则直线l 与圆C 相切【答案】AD【分析】根据直线与圆的位置关系相应条件判断即可.【题型专练】1.直线():120l kx y k k R -++=∈与圆22:5C x y+=的公共点个数为()A .0个B .1个C .2个D .1个或2个【答案】D【解析】将直线l 变形为()012=+-+y x k ,令⎩⎨⎧=+-=+0102y x ,解得⎩⎨⎧=-=12y x ,所以直线过定点()1,2-P ,因为()51222=+-,所以点P 在圆上,所以直线与圆相切或者相交2.已知关于x 的方程2(3)1k x ++有两个不同的实数根,则实数k 的范围______.当直线与半圆相切时,圆心O 到直线1l 的距离d 解得:13265k -=(舍),或13265k +=当直线过点(2,0)-时,可求得直线2l 的斜率2k =则利用图像得:实数k 的范围为3261,5⎡⎫+⎪⎢⎪⎣⎭故答案为:3261,5⎡⎫+⎪⎢⎪⎣⎭3.(2022全国新高考2卷)设点A (-2,3),B (0(x +3)2+(y +2)2=1有公共点,则a 的取值范围为_______.【答案】13,32⎡⎤⎢⎥⎣⎦【解析】()2,3A -关于y a =对称的点的坐标为()2,23A a '--,()0,B a 在直线y a =上,所以A B '所在直线即为直线l ,所以直线l 为32a y x a -=+-,即()3220a x y a -+-=;圆()()22:321C x y +++=,圆心()3,2C --,半径1r =,依题意圆心到直线l 的距离1d =≤,即()()2225532a a -≤-+,解得1332a ≤≤,即13,32a ⎡⎤∈⎢⎥⎣⎦;故答案为:13,32⎡⎤⎢⎥⎣⎦题型三:直线与圆的弦长问题【例1】已知圆C :()()22210x y a a +-=>与直线l :x -y -1=0相交于A ,B 两点,若△ABC 的面积为2,则圆C 的面积为()A .πB .2πC .4πD .6π【答案】C 【解析】如图,由圆C 方程可知圆心()0,1C ,半径为a ,由点到直线的距离公式可知圆心C到直线l 的距离d =又△ABC 的面积为11222S AB d =⋅==,解得AB =2222a ⎛+= ⎝⎭,则a =2,即圆C 的半径为2.则圆C 的面积为24S a ππ==.故选:C.【例2】已知圆22:60M x y x +-=,过点()1,2的直线1l ,2l ,…,()*n l n ∈N 被该圆M 截得的弦长依次为1a ,2a ,…,n a ,若1a ,2a ,…,n a 是公差为13的等差数列,则n 的最大值是()A .10B .11C .12D .13【答案】D【分析】求出弦长的最小和最大值,根据等差数列的关系即可求出n 的最大值此时,直线DE 的解析式为:3y x =-+直线BC 的解析式为:=+1y x 圆心到弦BC 所在直线的距离:AM 连接BM ,由勾股定理得,()22=322=1AB -x y+=交于,A B两点,过,A B分别作l的垂线与x轴交于【例3】已知直线:10l mx y+--=与圆2216,C D两点,则当AB最小时,CD=()A.4B.C.8D.故选:D【例4】(多选题)若直线l 经过点0(3,1)P -,且被圆2282120x y x y +--+=截得的弦长为4,则l 的方程可能是()A .3x =B .3y =C .34130x y --=D .43150x y --=【题型专练】1.直线:l y x m =+与圆224x y +=相交于A ,B 两点,若AB ≥m 的取值范围为()A .[]22-,B .⎡⎣C .[]1,1-D .,22⎡⎤⎢⎥⎣⎦【答案】B【解析】令圆224x y +=的圆心(0,0)O 到直线l 的距离为d ,而圆半径为2r =,弦AB 长满足AB ≥,则有1d =,又d =1≤,解得m ≤≤所以实数m 的取值范围为⎡⎣.故选:B2.在圆22420x y x y +-+=内,过点()1,0E 的最长弦和最短弦分别是AC 和BD ,则四边形ABCD 的面积为()A .B .C .D .【答案】D【解析】圆22420x y x y +-+=化简为22(2)(1)5x y -++=可得圆心为(2,1),r -=易知过点()1,0E 的最长弦为直径,即||AC =而最短弦为过()1,0E 与AC 垂直的弦,圆心(2,1)-到()1,0E 的距离:d ==所以弦||BD ==所以四边形ABCD 的面积:12S AC BD =⋅=故选:D.3.若直线1y kx =+与圆221x y +=相交于B A ,两点,且60AOB ∠= (其中O 为原点),则k 的值为()A .3-或3B .3C .D 4.直线l :()()2110m x m y -+-+=与圆C :2260x x y -+=相交于A ,B 两点,则AB 的最小值是()A .B .2C .D .4【答案】D【解析】分别取1,2m m ==,则1010x y -+=⎧⎨-+=⎩,得11x y =⎧⎨=⎩,即直线l 过定点(1,1)P ,将圆C 化为标准方程:22(3)9x y -+=,圆心为(3,0),半径3r =.如图,因为AB =,所以当圆心到直线距离最大时AB 最小.当CP 不垂直直线l 时,总有d CP <,故当CP l ⊥时AB 最小,因为CP =所以AB的最小值为4=.故选:D题型四:圆中的切线切线长和切点弦问题【例1】直线l 过点(2,1)且与圆22:(1)9C x y ++=相切,则直线l 的方程为______________.【例2】已知圆C :228240x y y +--+=,且圆外有一点()0,2P ,过点P 作圆C 的两条切线,且切点分别为A ,B ,则AB =______.【例3】点P 在圆C :()()22334x y -+-=上,()2,0A ,()0,1B ,则PBA ∠最大时,PB =___________.【答案】3【分析】根据题意PBA ∠最大时,直线【详解】点P 在圆C :()23x -+如图将BA 绕点B 沿逆时针方向旋转,当刚好与圆当旋转到与圆相切于点2P 时,∠【例4】过点()2,1P 作圆O :221x y +=的切线,切点分别为,A B ,则下列说法正确的是()A.PA B .四边形PAOB 的外接圆方程为222x y x y +=+C .直线AB 方程为21y x =-+D .三角形PAB 的面积为85【题型专练】1.过点(0,2)作与圆2220x y x +-=相切的直线l ,则直线l 的方程为()A .3480x y -+=B .3480x y +-=C .0x =D .1x =2.直线40x y +-=平分圆222:2250C x y bx by b +---+=的周长,过点()1,P b --作圆C 的一条切线,切点为Q ,则PQ =()A .5B .4C .3D .2【答案】B【详解】圆222:2250C x y bx by b +---+=的圆心为(,)C b b ,半径为r =因为直线40x y +-=平分圆222:2250C x y bx by b +---+=的周长,所以直线40x y +-=经过(,)C b b ,所以40b b +-=,故2b =,由已知()1,2P --,(2,2)C ,||PC ,圆的半径为3,所以4PQ =,故选:B.3.过点(2,2)P 作圆224x y +=的两条切线,切点分别为A 、B ,则直线AB 的方程为_______.【答案】2+-x y 0=【分析】由题知()0,2A 、()2,0B ,进而求解方程即可.【详解】解:方法1:由题知,圆224x y +=的圆心为()0,0,半径为2r =,所以过点(2,2)P 作圆224x y +=的两条切线,切点分别为()0,2A 、()2,0B ,所以1AB k =-,所以直线AB 的方程为2y x =-+,即2+-x y ;方法2:设()11,A x y ,()22,B x y ,则由2211111142.12x y y y x x ⎧+=⎪-⎨=-⎪-⎩,可得112x y +=,同理可得222x y +=,所以直线AB 的方程为2+-x y 0=.故答案为:2+-x y 题型五:圆中最值问题【例1】已知l :4y x =+,分别交x ,y 轴于A ,B 两点,P 在圆C :224x y +=上运动,则PAB △面积的最大值为()A .82-B .1682-C .842+D .162+【答案】C 【解析】如图所示,以AB 为底边,则PAB △面积最大等价于点P 到l 距离最大,而点P 到l 距离最大值等于O 到l 的距离加半径看,O 到l 的距离422d =O 的半径2r =,()4,0A -,()0,4B ,则42AB =PAB △面积的最大值为()14222822⨯=+故选:C【例2】已知点P 是圆()()2241625x y -+-=上的点,点Q 是直线0x y -=上的点,点R 是直线125240x y -+=上的点,则PQ QR +的最小值为()A .7B .335C .6D .295【答案】B【分析】设圆心()1,6C ,记点()6,1E ,作圆()()224:1625C x y -+-=关于直线0x y -=的对称圆()()224:6125E x y -+-=,计算出圆心E 到直线125240x y -+=的距离d ,结合对称性可得出PQ QR +的最小值为25d -,即可得解.【详解】设圆心()1,6C ,记点()6,1E ,作圆()()224:1625C x y -+-=关于直线0x y -=的对称圆()()224:6125E x y -+-=,由对称性可知CQ EQ =,点E 到直线125240x y -+=的距离为()221265247125d ⨯-+==+-,【例3】已知直线:320l x y ++=与x 、轴的交点分别为A 、B ,且直线1:310l mx y m --+=与直线2:310l x my m +--=相交于点P ,则PAB 面积的最大值是()A .103+B .103+C D【例4】已知圆()()22:254C x y -+-=的圆心为C ,T 为直线220x y --=上的动点,过点T 作圆C 的切线,切点为M ,则TM TC ⋅的最小值为()A .10B .16C .18D .20()2TM TC TC CM TC TC CM ⋅=+⋅=+ CM TM ⊥ ,CM CT CM CT ∴⋅=⋅ 24TM TC TC ∴⋅=- ,【例5】已知复数z 满足1i 1z +-=(i 为虚数单位),则z 的最大值为()A .2B 1C 1D .1【答案】B【解析】令i z x y =+,x ,y ∈R ,则()1i 11i 1z x y +-=++-=,即()()22111x y ++-=,表示点(),x y 与点()1,1-距离为1的点集,此时,i z x y =-()()22111x y ++-=上点到原点距离,所以z 的最大值,即为圆上点到原点的距离的最大值,,且半径为1,1.故选:B .【例6】若0x =,则2yx -的取值范围为【答案】11[,]22-【解析】因为0x +=x =-所以()2210x y x +=≤如图,此方程表示的是圆心在原点,半径为1的半圆,2yx -的几何意义是点(),x y 与点()2,0连线的斜率如图,()()0,1,0,1A B -,()2,0P101022PA k -==--,101022PB k --==-所以2y x -的取值范围为11[,]22-故选:D【例】AB 为⊙C :(x -2)2+(y -4)2=25的一条弦,6AB =,若点P 为⊙C 上一动点,则PA PB ⋅的取值范围是()A .[0,100]B .[-12,48]C .[-9,64]D .[-8,72]【答案】D 【解析】【分析】取AB 中点为Q ,利用数量积的运算性质可得2||9PA PB PQ ⋅=- ,再利用圆的性质可得||PQ 取值范围,即求.【详解】取AB 中点为Q ,连接PQ2PA PB PQ ∴+= ,PA PB BA -= 221()()4PA PB PA PB PA PB ⎡⎤∴⋅=+--⎣⎦ 2214||||4PQ BA ⎡⎤=-⎣⎦ ,又||6BA = ,4CQ =2||9PA PB PQ ∴⋅=-,∵点P 为⊙C 上一动点,∴max min ||9,|5|15PQ Q P C Q Q C =+=-==PA PB ∴⋅的取值范围[-8,72].故选:D.【题型专练】1.直线20x y +-=分别与x 轴,y 轴交于,A B 两点,点P 在圆22(2)2x y ++=上,则ABP 面积的取值范围是()A .[]2,6B .[]4,8C .D .⎡⎣2.(多选题)已知点P 在圆O :224x y +=上,直线l :43120x y +-=分别与x 轴,轴交于,A B 两点,则()A .过点B 作圆O 的切线,则切线长为B .满足0PA PB ⋅=的点P 有3个C .点P 到直线l 距离的最大值为225D .PA PB +的最小值是1【答案】ACD【分析】对于A,根据勾股定理求解即可;对于B,0PA PB ⋅=即PA PB ⊥,所以点P 在以AB 为直径的圆上,设AB 的中点为M ,写出圆M 的方程,根据两个圆的交点个数即可判断正误;对于C,根据圆上一点到直线的最大3.已知动点A ,B 分别在圆1C :()2221x y ++=和圆2C :()2244x y -+=上,动点P 在直线10x y -+=上,则PA PB +的最小值是_______【答案】3-##3-+如图,设点()10,2C -关于直线10x y -+=对称的点为()030,C x y ,所以,00002121022y x x y +⎧=-⎪⎪⎨-⎛⎫⎪-+= ⎪⎪⎝⎭⎩,解得003,1x y =-=,即()33,1C -,所以,3252C C =所以,32523PA B C P C r R --+=-≥,即PA PB +的最小值是523-.故答案为:523-4.过直线3450x y +-=上的一点P 向圆()()22344x y -+-=作两条切线12l l ,.设1l 与2l 的夹角为θ,则θ的最大值为______.【答案】π3##60︒【分析】由题可得圆心为()3,4C ,半径为2,设12l l ,与圆C 切于,A B ,根据圆的性质结合条件可得1sin sin22APC θ∠=≤,进而即得.【详解】由()()22344x y -+-=,可得圆心为()3,4C ,半径为2,设12l l ,与圆C 切于,A B ,则2APB APC θ=∠=∠,在Rt APC △中,2AC =,2sin sin 2CA APC CP CPθ∠===又()3,4C 到直线3450x y +-=的距离为223344534⨯+⨯-+所以4CP ≥,1sin sin22APC θ∠=≤,所以APC ∠的最大值为π6,即θ的最大值为π3.故答案为:π3.5.已知圆22:410,+--=M x y x (),P x y 是圆M 上的动点,则3t x =+的最大值为_________;22x y +的最小值为____________.6.18世纪末,挪威测量学家维塞尔首次利用坐标平面上的点来表示复数,使复数及其运算具有了几何意义,例如z OZ =,也即复数z 的模的几何意义为z 对应的点Z 到原点的距离.已知复数z 满足2z =,则34i z --的最大值为()A .3B .5C .7D .9【答案】C【解析】2z = ,z ∴对应的点(),Z x y 的轨迹为圆224x y +=;34i z -- 的几何意义为点(),Z x y 到点()3,4的距离,max 34i 27z ∴--==.故选:C.题型六:圆与圆的位置关系问题【例1】已知圆221:1C x y +=与圆222:(3)(4)4C x y -+-=,则圆1C 与2C 的位置关系是()A .内含B .相交C .外切D .相离【例2】已知点P 在圆O :224x y +=上,点()30A -,,()0,4B ,满足AP BP ⊥的点P 的个数为()A .3B .2C .1D .0【答案】B【解析】【分析】设(,)P x y ,轨迹AP BP ⊥ 可得点P 的轨迹方程,即可判断该轨迹与圆的交点个数.设点(,)P x y ,则224x y +=,且(3,)(,4)AP x y BP x y =+=- ,,由AP BP ⊥,得22(3)(4)340AP BP x x y y x y x y ⋅=++-=++-= ,即22325()(2)24x y ++-=,故点P 的轨迹为一个圆心为3(,2)2-、半径为52的圆,则两圆的圆心距为52,半径和为59222+=,半径差为51222-=,有159222<<,所以两圆相交,满足这样的点P 有2个.故选:B.【例3】圆221:22260O x y x y +---=与圆222:820O x y y +--=的公共弦长为()A .B .C .D .【例4】已知圆C :()()22681x y -+-=和两点(),0A m -,()(),00B m m >,若圆C 上存在点P ,使得90APB ∠=︒,则m 的最大值为()A .12B .11C .10D .9【答案】B【分析】由题意得P 点轨迹,转化为有交点问题【详解】90APB ∠=︒,记AB 中点为O ,则||OP m =,故P 点的轨迹是以原点为圆心,m 为半径的圆,又P 在圆C 上,所以两圆有交点,则|1|||1m OC m -≤≤+,而||10OC =,得911m ≤≤.故选:B【题型专练】1.写出与圆221x y +=和圆()2264x y -+=都相切的一条直线的方程______.2.(2022全国新高考1卷)写出与圆x 2+y 2=1和(x -3)2+(y -4)2=16都相切的一条直线的方程_______.【答案】3544y x =-+或7252424y x =-或1x =-【解析】【分析】先判断两圆位置关系,分情况讨论即可.【详解】圆221x y +=的圆心为()0,0O ,半径为1,圆22(3)(4)16x y -+-=的圆心1O 为(3,4),半径为4,5=,等于两圆半径之和,故两圆外切,如图,当切线为l 时,因为143OO k =,所以34l k =-,设方程为3(0)4y x t t =-+>O 到l 的距离1d ==,解得54t =,所以l 的方程为3544y x =-+,当切线为m 时,设直线方程为0kx y p ++=,其中0p >,0k <,由题意14⎧=⎪⎪=,解得7242524k p ⎧=-⎪⎪⎨⎪=⎪⎩,7252424y x =-当切线为n 时,易知切线方程为1x =-,故答案为:3544y x =-+或7252424y x =-或1x =-.3.(多选题)圆221:20x y x O +-=和圆222:240O x y x y ++-=的交点为A ,B ,则有()A .公共弦AB 所在直线的方程为0x y -=B .公共弦AB 所在直线的方程为10x y +-=C .公共弦ABD .P 为圆1O 上一动点,则P 到直线AB 14.已知点()()2,3,5,1A B -,则满足点A 到直线l 的距离为1,点B 到直线l 距离为3的直线l 的条数有()A .1B .2C .3D .4【答案】D【解析】【分析】以A 为圆心,1为半径,B 为圆心,3为半径分别画圆,将所求转化为求圆A 与圆B 的公切线条数,判断两圆的位置关系,从而得公切线条数.【详解】以A 为圆心,1为半径,B 为圆心,3为半径分别画圆,如图所示,由题意,满足点A 到直线l 的距离为1,点B 到直线l 距离为3的直线l 的条数即为圆A 与圆B 的公切线条数,因为513AB ==>+,所以两圆外离,所以两圆的公切线有4条,即满足条件的直线l 有4条.故选:D5.已知圆()()221:111C x y -++=,圆()()222:459C x y -+-=,点M 、N 分别是圆1C 、圆2C 上的动点,点P 为x 轴上的动点,则PN PM -的最大值是()A .4B .9C .7D .2【答案】B【解析】【分析】分析可知()21max 4PN PM PC PC -=-+,设点()24,5C 关于x 轴的对称点为()24,5C '-,可得出22PC PC '=,求出21PC PC '-的最大值,即可得解.【详解】圆()()221:111C x y -++=的圆心为()11,1C -,半径为1,圆()()222:459C x y -+-=的圆心为()24,5C ,半径为3.()max min max PN PM PN PM -=- ,又2max 3PN PC =+,1min 1PMPC =-,()()()2121max 314PN PM PC PC PC PC ∴-=+--=-+.点()24,5C 关于x 轴的对称点为()24,5C '-,2121125PC PC PC PC C C ''-=-≤==,所以,()max 549PN PM -=+=,故选:B .。

2023年高考数学真题题源解密(新高考全国卷)专题11 直线与圆(解析版)

2023年高考数学真题题源解密(新高考全国卷)专题11  直线与圆(解析版)

专题11直线与圆目录一览2023真题展现考向一直线与圆相切考向二直线与圆相交真题考查解读近年真题对比考向一直线与圆相切考向二直线与圆的位置关系命题规律解密名校模拟探源易错易混速记/二级结论速记考向一直线与圆相切1.(2023•新高考Ⅰ•第6题)过点(0,﹣2)与圆x 2+y 2﹣4x ﹣1=0相切的两条直线的夹角为α,则sin α=()A .1B .154C .104D .64【答案】B解:圆x 2+y 2﹣4x ﹣1=0可化为(x ﹣2)2+y 2=5,则圆心C (2,0),半径为r =5;设P (0,﹣2),切线为PA 、PB ,则PC =22+22=22,△PAC中,sin �2=5cos �2==3所以sin α=2sin �2cos �2=2×5×3=154.故选:B .考向二直线与圆相交2.(2023•新高考Ⅱ•第15题)已知直线x ﹣my +1=0与⊙C :(x ﹣1)2+y 2=4交于A ,B 两点,写出满足“△ABC 面积为85”的m 的一个值.【答案】2(或﹣2或12或−12)解:由圆C :(x ﹣1)2+y 2=4,可得圆心坐标为C (1,0),半径为r =2,因为△ABC 的面积为85,可得S △ABC =12×2×2×sin ∠ACB =85,解得sin ∠ACB =45,设12∠ACB =θ所以∴2sin θcos θ=45,可得2푠푖푛휃 푠휃푠푖푛2휃+ 푠2휃=45,∴2푡푎푛휃푡푎푛2휃+1=45,∴tan θ=12或tan θ=2,∴cos θ=cos θ=∴圆心眼到直线x ﹣my +1=0的距离d===解得m =±12或m =±2.故答案为:2(或﹣2或12或−12).【命题意图】考查直线的倾斜角与斜率、直线方程、两直线平行与垂直、距离公式、圆的方程、直线与圆的位置关系、圆与圆的位置关系.【考查要点】常考查直线与圆的位置关系、动点与圆、圆与圆的关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2005年全国高考试题分类解析(直线与圆) 一、选择题
1.(江西卷)在△OAB 中,O 为坐标原点,]2
,
0(),1,(sin ),cos ,1(π
θθθ∈B A ,则当△OAB
的面积达最大值时,=θ
( )
A .
6
π
B .
4
π C .
3
π D .
2
π 2.(江西卷) “a =b ”是“直线2
2
2()()2y x x a y b =+-++=与圆相切”的 ( )
A .充分不必要条件
B .必要不充分条件
C .充分必要条件
D .既不充分又不必要条件 3. (重庆卷)圆(x +2)2+y 2=5关于原点(0,0)对称的圆的方程为
( )
(A) (x -2)2+y 2=5; (B) x 2+(y -2)2=5; (C) (x +2)2+(y +2)2=5;
(D) x 2+(y +2)2=5。

4 (浙江)点(1,-1)到直线x -y +1=0的距离是( )
(A)
21 (B) 3
2
(C) 22 (D)322
5.(浙江)设集合A ={(x ,y )|x ,y ,1-x -y 是三角形的三边长},则A 所表示的平面区域(不含边界的阴影部分)是( )
6.(天津卷)将直线2x -y +λ=0,沿x 轴向左平移1个单位,所得直线与圆x 2+y 2+2x -4y=0
相切,则实数λ的值为 A .-3或7 B .-2或8 C .0或10 D .1或11 7. (全国卷Ⅰ)在坐标平面上,不等式组⎩

⎧+-≤-≥131
x y x y 所表示的平面区域的面积为( )
(A )2
(B )
2
3
(C )
2
2
3 ( )2
8. (全国卷Ⅰ)设直线l 过点)0,2(-,且与圆12
2
=+y x 相切,则l 的斜率是( )
(A )1±
(B )2

(C )3

(D )3±
9. (全国卷I)已知直线l 过点),(02-,当直线l 与圆x y x 22
2=+有两个交点时,其斜率k 的取值范围是(

(A )),(2222-
(B )),(22-
(C )
),(4
2
42-
(D ))
,(8
1
81- 10. (全国卷III)已知过点A(-2,m)和B(m ,4)的直线与直线2x+y-1=0平行,则m 的值为( )
(A )0 (B )-8 (C )2 (D )10 11(北京卷)从原点向圆 x 2+y 2-12y +27=0作两条切线,则该圆夹在两条切线间的劣弧长为( )
(A )π (B )2π (C )4π (D )6π
12 (辽宁卷)若直线02=+-c y x 按向量)1,1(-=平移后与圆52
2
=+y x 相切,则c 的值为( ) A .8或-2
B .6或-4
C .4或-6
D .2或-8
13. (湖南卷)设直线的方程是0=+By Ax ,从1,2,3,4,5这五个数中每次取两个不同的数作为A 、 B 的值,则所得不同直线的条数是
( )
A .20
B .19
C .18
D .16 14.(湖南卷)已知点P (x ,y )在不等式组⎪⎩

⎨⎧≥-+≤-≤-022,01,
02y x y x 表示的平面区域上运动,则z
=x -y 的取值范围是 ( )
A .[-2,-1]
B .[-2,1]
C .[-1,2]
D .[1,2]
15.(北京卷)“m =2
1
”是“直线(m +2)x +3my +1=0与直线(m -2)x +(m +2)y -3=0相互垂直”的( )
(A )充分必要条件 (B )充分而不必要条件 (C )必要而不充分条件 (D )既不充分也不必要条件
填空题
1.(全国卷II)圆心为(1,2)且与直线512 70x y --=相切的圆的方程为-------------------------.
2.(湖南卷)设直线0132=++y x 和圆0322
2
=--+x y x 相交于点A 、B ,则弦AB 的
垂直平分线方程是 .
P
M
N
3.(湖南卷)已知直线ax +by +c =0与圆O :x 2+y 2=1相交于A 、B 两点,且|AB|=3,
则⋅ = .
4.(湖北卷)某实验室需购某种化工原料106千克,现在市场上该原料有两种包装,一种是
每袋35千克,价格为140元;另一种是每袋24千克,价格为120元. 在满足需要的条件下,最少要花费 元. 5 (福建卷)15.非负实数x 、y 满足y x y x y x 3,0
30
42+⎩⎨
⎧≤-+≤-+则的最大值为 .
6(江西卷)设实数x , y 满足的最大值是则x y y y x y x ,0
320420
2⎪⎩

⎨⎧≤->-+≤-- .
7(上海)3.若x,y 满足条件
x+y ≤3
y ≤2x ,则z=3x+4y 的最大值是 . 8(上海)直线y=
2
1
x 关于直线x =1对称的直线方程是 . 9.(上海)将参数方程⎩
⎨⎧=+=θθ
sin 2cos 21y x (θ为参数)化为普通方程,所得方程是 _________。

10.(山东卷)设x 、y 满足约束条件5,
3212,03,0 4.x y x y x y +≤⎧⎪+≤⎪
⎨≤≤⎪⎪≤≤⎩则使得目标函数65z x y =+的最大的点
(,)x y 是-------------
解答题
1.(江苏卷) 如图,圆O 1与圆O 2的半径都是1,O 1O 2=4,过动点P 分别作圆O 1、圆O 2的切线PM 、PN (M 、N 分别为切点),使得PM =试建立适当的坐标系,并求动点 P 的轨
迹方程.
2.(广东卷)在平面直角坐标系中,已知矩形ABCD的长为2,宽为1,AB、AD边分别在x轴、y轴的正半轴上,A点与坐标原点重合(如图5所示).将矩形折叠,使A点落在线段DC上.
(Ⅰ)若折痕所在直线的斜率为k,试写出折痕所在直线的方程;
(Ⅱ)求折痕的长的最大值.
X。

相关文档
最新文档