历年考研数学一真题及答案解析1989~1999
1999年考研数学一真题

⎞ ⎟⎠
等于
1
(A)
2
【答】 应选(C).
(B) − 1 2
3
(C)
4
(D) − 3 4
【】
【详解】 由题设知,应先将 f ( x) 从[0,1) 作偶延拓,使之成为区间[−1,1] 上的偶函数,然后
再作周期(周期 2)延拓,进一步展开为傅里叶级数,根据收敛定理有
S
⎛ ⎜⎝
−
5 2
⎞ ⎟⎠
=
S
⎛ ⎜⎝
又
f ' ( x) = 2x ln x − x + 2 − 1 , f ' (1) = 0
x
f
''
(
x)
=
2 ln
x
+1+
1 x2
,
f
''
(1)
=
2
>
0
( ) f ''' ( x) = 2
2
⎞ ⎟⎠
a
2b
−
π 2
a3.
五、 设函数 y ( x)( x ≥ 0) 二阶可导且 y' ( x) > 0, y (0) = 1, 过曲线 y = y ( x) 上任意一点 P ( x, y ) 作该曲线的切线及 x 轴的垂线,上述两直线与 x 轴所围成的三角形的面积记为 S1, 区 间 [0, x] 上以 y = y ( x) 为曲边的曲边梯形面积记为 S2 ,并设 2S1 − S2 恒为 1,求此曲线 y = y ( x) 的方程. 【详解】 曲线 y = y ( x) 上点 P ( x, y) 处的切线方程为
∫ y2 −
2y'
1999年全国硕士研究生入学统一考试数学一、二、三、四试题完整版附答案解析及评分标准

由格林公式,前一部分 I1
D
(b a)dxdy
2
a2 (b a) ,
„„1 分 „„3 分
1999 年 • 第 2 页
其中 D 为 L L1 所围成的半区域. 直接计算后一积分可得
I2
2a (bx)dx 2a2b .
0
„„4 分
从而
I
I1
I2
2
a2 (b
a)
2a2b
( 2
2)a2b
解:曲线 y y(x) 上在点 P(x, y) 处的切线方程为Y y y(x)( X x) .
它与 x 轴的交点为 (x y , 0) .由于 y(x) 0, y(0) 1 ,从而 y(x) 0 , y
于是 S1
1 2
y
x (x
y) y
y2 2 y
.
又 S2
dz dx
f
xf Fx
.
由此解得 dz ( f xf )Fy xf F x
dx
Fy xf F z
( Fy x f Fz 0 ) .
„„5 分
(注:不写出条件 Fy x f Fz 0 不扣分).
四、(本题满分 5 分)
求 I (ex sin y b(x y)) dx (ex cos y ax) dy ,其中 a, b 为正的常数, L 为从点 L
A(2a, 0) 沿曲线 y= 2ax x2 到点 O(0, 0) 的弧.
解一:添加从点 O(0, 0) 沿 y 0 到点 A(2a, 0) 的有向直线段 L1 ,
I (ex sin y b(x y))dx (ex cos y ax)dy L L1
(ex sin y b(x y))dx (ex cos y ax)dy L1
1999考研数一真题及解析

十二、(本题满分8分)
设随机变量X 与Y 相互独立,下表列出了二维随机变量 X,Y 联合分布律及关于X 和关于
Y 的边缘分布律中的部分数值,试将其余数值填入表中的空白处.
Y X
y1
y2
y3
PX xi pi
x1
1
8
x2
1
8
P Y yj pj
1
(1)【答案】 1 . 3
【分析】利用 x 0 的等价变换和洛必达法则求函数极限.
【详解】
方法1:
lim
x0
1 x2
x
1 tan
x
lim
x0
tan x x x2 tan x
tan
x
tan x x
x lim x0
x3
洛 lim sec2 x 1 lim tan2 x tan x x lim x2 1
六、(本题满分6分)
试证:当 x 0 时, x2 1 ln x x 12 .
七、(本题满分6分) 为清除井底的污泥,用缆绳将抓斗放入井底,抓起污泥后提出井口
见图,已知井深 30m30m,抓斗自重 400N , 缆绳每米重 50N ,抓斗抓 起的污泥重 2000N ,提升速度为 3m / s ,在提升过程中,污泥以 20N / s
(1)
lim
x0
1 x2
x
1 tan
x
d
(2)
x sin(x t)2dt
dx 0
(3) y " 4 y e2x 的通解为 y
(4) 设n 阶矩阵A 的元素全为1,则A 的 n 个特征值是
(5) 设两两相互独立的三事件A, B 和C 满足条件:
1999考研数学一真题及答案解析

1999年全国硕士研究生入学统一考试数学一试题一、填空题(本题共5个小题,每小题3分,满分15分。
把正确答案填写在题中横线上。
)(1)2011lim tan x x x x →⎛⎫-=⎪⎝⎭(2)20sin()x d x t dt dx-=⎰(3)2"4xy y e -=的通解为y =(4)设n 阶矩阵A 的元素全为1,则A 的n 个特征值是(5)设两两相互独立的三事件A ,B 和C 满足条件:1,()()(),2ABC P A P B P C φ===<9(),16P A B C ⋃⋃=则()P A =二、选择题(本题共5小题,每小题3分,满分15分。
每小题给出得四个选项中,只有一个是符合题目要求的,把所选项前的字母填在提后的括号内。
)(1)设()f x 是连续函数,()F x 是()f x 的原函数,则()(A)当()f x 是奇函数时,()F x 必是偶函数。
(B)当()f x 是偶函数时,()F x 必是奇函数。
(C)当()f x 是周期函数时,()F x 必是周期函数。
(D)当()f x 是单调增函数时,()F x 必是单调增函数。
(2)设20()(),0x f x x g x x >=≤⎩其中()g x 是有界函数,则()f x 在0x =处()(A)极限不存在(B)极限存在,但不连续(C)连续,但不可导(D)可导(3)设011,02(),()cos ,,1222,12n n x x a f x S x a n x x x x π∞=⎧≤≤⎪⎪==+-∞<<+∞⎨⎪- <<⎪⎩∑其中102()cos ,(0,1,2,),n a f x n xdx n π==⋅⋅⋅⎰则52S ⎛⎫- ⎪⎝⎭等于()(A)12(B)12-(C)34(D)34-(4)设A 是m n ⨯矩阵,B 是n m ⨯矩阵,则(A)当m n >时,必有行列式AB 0≠(B)当m n >时,必有行列式AB 0=(C)当n m >时,必有行列式AB 0≠(D)当n m >时,必有行列式AB 0=(5)设两个相互独立的随机变量X 和Y 分别服从正态分布N (0,1)和N (1,1),则(A){}10.2P X Y +≤=(B){}1P X+Y 1.2≤=(C){}1P X-Y 0.2≤=(D){}1P X-Y 1.2≤=三、(本题满分5分)设()y y x =,()z z x =是由方程()z xf x y =+和(,,)F x y z =0所确定的函数,其中f 和F 分别具有一阶连续导数和一阶连续偏导数,求dzdx。
1999年数学一真题及答案详解

1999年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上) (1)2011lim()tan x x x x→-=_____________. (2)20sin()xd x t dt dx -⎰=_____________. (3)24e xy y ''-=的通解为y =_____________.(4)设n 阶矩阵A 的元素全为1,则A 的n 个特征值是 _____________.(5)设两两相互独立的三事件,A B 和C 满足条件:1,()()(),2ABC P A P B P C =∅==< 且已知9(),16P AB C =则()P A =_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设()f x 是连续函数,()F x 是()f x 的原函数,则 (A)当()f x 是奇函数时,()F x 必是偶函数(B)当()f x 是偶函数时,()F x 必是奇函数(C)当()f x 是周期函数时,()F x 必是周期函数 (D)当()f x 是单调增函数时,()F x必是单调增函数(2)设20()() 0x f x x g x x >=≤⎩,其中()g x 是有界函数,则()f x 在0x =处 (A)极限不存在 (B)极限存在,但不连续(C)连续,但不可导(D)可导(3)设 01()122 12x x f x x x ≤≤⎧⎪=⎨-<<⎪⎩,01()cos ,,2n n a S x a n x x π∞==+-∞<<+∞∑ 其中102()cos n a f x n xdx π=⎰ (0,1,2,)n =,则5()2S -等于 (A)12(B)12-(C)34(D)34-(4)设A 是m n ⨯矩阵,B 是n m ⨯矩阵,则(A)当m n >时,必有行列式||0≠AB(B)当m n >时,必有行列式||0=AB(C)当n m >时,必有行列式||0≠AB(D)当n m >时,必有行列式||0=AB(5)设两个相互独立的随机变量X 和Y 分别服从正态分布(0,1)N 和(1,1)N ,则(A)1{0}2P X Y +≤= (B)1{1}2P X Y +≤=(C)1{0}2P X Y -≤=(D)1{1}2P X Y -≤=三、(本题满分6分)设(),()y y x z z x ==是由方程()z xf x y =+和(,,)0F x y z =所确定的函数,其中f 和F 分别具有一阶连续导数和一阶连续偏导数,求.dz dx四、(本题满分5分)求(e sin ())(e cos ),x x LI y b x y dx y ax dy =-++-⎰其中,a b 为正的常数,L 为从点(2,0)A a 沿曲线y =(0,0)O 的弧.五、(本题满分6分)设函数()(0)y x x ≥二阶可导且()0,(0) 1.y x y '>=过曲线()y y x =上任意一点(,)P x y 作该曲线的切线及x 轴的垂线,上述两直线与x 轴所围成的三角形的面积记为1S ,区间[0,]x 上以()y y x =为曲线的曲边梯形面积记为2S ,并设122S S -恒为1,求曲线()y y x =的方程.六、(本题满分7分)论证:当0x >时,22(1)ln (1).x x x -≥-七、(本题满分6分)为清除井底的淤泥,用缆绳将抓斗放入井底,抓起污泥后提出井口(见图).已知井深30m,抓斗自重400N,缆绳每米重50N,抓斗抓起的污泥重2000N,提升速度为3m/s,在提升过程中,污泥以20N/s 的速率从抓斗缝隙中漏掉.现将抓起污泥的抓斗提升至井口,问克服重力需作多少焦耳的功? (说明:①1N ⨯1m=1Jm,N,s,J 分别表示米,牛,秒,焦.②抓斗的高度及位于井口上方的缆绳长度忽略不计.)八、(本题满分7分)设S 为椭球面222122x y z ++=的上半部分,点(,,),P x y z S π∈为S 在点P 处的切平面,(,,)x y z ρ为点(0,0,0)O 到平面π的距离,求.(,,)SzdS x y z ρ⎰⎰九、(本题满分7分)设4tan :n n a xdx π=⎰(1)求211()n n n a a n ∞+=+∑的值. (2)试证:对任意的常数0,λ>级数1nn a nλ∞=∑收敛. 十、(本题满分8分)设矩阵153,10ac b c a -⎡⎤⎢⎥=⎢⎥⎢⎥--⎣⎦A 其行列式||1,=-A 又A 的伴随矩阵*A 有一个特征值0λ,属于0λ的一个特征向量为(1,1,1),T=--α求,,a b c 和0λ的值.十一、(本题满分6分)设A 为m 阶实对称矩阵且正定,B 为m n ⨯实矩阵,T B 为B 的转置矩阵,试证TB AB 为正定矩阵的充分必要条件是B 的秩().r n =B十二、(本题满分8分)设随机变量X 与Y 相互独立,下表列出了二维随机变量(,)X Y 联合分布率及关于X 和关于Y十三、(本题满分6分)设X 的概率密度为36() 0< ()0 其它xx x f x θθθ⎧-<⎪=⎨⎪⎩,12,,,n X X X 是取自总体X 的简单随机样本(1)求θ的矩估计量ˆθ. (2)求ˆθ的方差ˆ().D θ1999年全国硕士研究生入学统一考试数学(一)答案详解一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上) (1) 【答】31 【详解1】 302020tan lim tan tan lim tan 11lim x x x x x x x x x x x x x -=-=⎪⎭⎫⎝⎛-→→→ 313tan lim lim22031sec 022===→-→x x x xx x 【详解2】 302020cos sin lim sin cos sin lim tan 11lim x x x x x x x x x x x x x x x -=-=⎪⎭⎫⎝⎛-→→→ 313sin lim 3sin cos cos lim 020==+-=→→x x x x x x x x x (2)【答】 2sin x【详解】 ⎰⎰-=--x xdu u dx d u t x dt t x dx d 0022)sin ()sin( 202sin sin x du u dxd x ==⎰ 故本题应填2sin x (3)【答】 x xe x C eC y 222141⎪⎭⎫ ⎝⎛++=-,其中21,C C 为任意常数.【详解】 特征方程为:042=-λ,解得2-,22,1==λλ.故04"=-y y 的通解为x xe C eC y 22211+=-,由于非齐次项为2,)(2==a e x f x 为特征方程的单根,因此原方程的特解可设为xAxe y 2=*,代入原方程求得41=A , 故所求解为x x x xee C e C y y y 22221141++=+=-* 故本题应填x xe x C e C y 222141⎪⎭⎫ ⎝⎛++=-,其中21,C C 为任意常数.(4)【答】10,,0,-n n【详解】 因为111111111111111---------=---------=-λλλλλλλλλ n n n A E λλλ 0000111)(---=n故矩阵A 的n 个特征值是n 和0(n-1重)因此本题应填10,,0,-n n(5) 【答】41 【详解】 根据加法式有())()()()()()()(ABC P BC P AB P AC P C P B P A P C B A P +---++=⋃⋃ 由题A,B 和C 两两相互独立,21)()()(,<===C P B P A P ABC φ,因此有 ),()()()(2A P BC P AC P AB P === 0)()(==φP ABC P , 从而 ()169)(3)(32=-=⋃⋃A P A P C B A P 解得 41)(,43)(==A P A P 又根据题设 41)(,21)(=<A P A P 故二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)【答】 应选(A )【详解】 )(x f 的原函数)(x F 可以表示为C dt t f x F x+=⎰)()(,于是.)()()()(0C u d u f t u C dt t f x F xx+---=+=-⎰⎰-当)(x f 为奇函数时,),()(u f u f -=-从而有)()()()(0x F C dt t f C du u f x F xx=+=+=-⎰⎰即 )(x F 为偶函数.故(A )为正确选项,至于(B )、(C )、(D )可分别举反例如下:2)(x x f =是偶函数,但其原函数131)(3+=x x F 不是奇函数,可排除(B ); x x f 2cos )(=是周期函数,但其原函数x x x F 2sin 4121)(+=不是周期函数,可排除(C );x x f =)(在区间()∞∞-,内是单调增函数,但其原函数221)(x x F =在区间()∞∞-,内非单调增函数,可排除(D )。
1989考研数一真题及解析

1989年全国硕士研究生入学统一考试数学一试题一、填空题(本题共5个小题,每小题3分,满分15分.) (1) 已知(3)2f '=,则 0(3)(3)lim2h f h f h→--=_______.(2) 设()f x 是连续函数,且1()2()f x x f t dt =+⎰,则()f x =_______.(3) 设平面曲线L 为下半圆周21,y x =--则曲线积分22()Lx y ds +=⎰_______.(4) 向量场22(,,)ln(1)zu x y z xy i ye j x z k =+++在点(1,1,0)P 处的散度divu =_______.(5) 设矩阵300140003A ⎛⎫ ⎪= ⎪ ⎪⎝⎭, 100010001E ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则逆矩阵1(2)A E --=_______.二、选择题(本题共5个小题,每小题3分,满分15分.) (1) 当0x >时,曲线1siny x x= ( ) (A) 有且仅有水平渐近线 (B) 有且仅有铅直渐近线(C) 既有水平渐近线,也有铅直渐近线 (D) 既无水平渐近线,也无铅直渐近线(2) 已知曲面224z x y =--上点P 处的切平面平行于平面2210x y z ++-=,则点P 的坐标是 ( ) (A) (1,-1,2) (B) (-1,1,2) (C) (1,1,2) (D) (-1,-1,2)(3) 设线性无关的函数1y 、2y 、3y 都是二阶非齐次线性方程()()()y p x y q x y f x '''++=的解,1C 、2C 是任意常数,则该非齐次方程的通解是 ( ) (A) 11223C y C y y ++ (B) 1122123()C y C y C C y +-+ (C) 1122123(1)C y C y C C y +--- (D) 1122123(1)C y C y C C y ++-- (4) 设函数2(),01,f x x x =≤<而1()sin ,,nn S x bn x x π∞==-∞<<+∞∑其中102()sin ,1,2,3,n b f x n xdx n π==⎰…,则1()2S -等于 ( )(A) 12-(B) 14- (C) 14 (D) 12(5) 设A 是n 阶矩阵,且A 的行列式||0A =,则A 中 ( )(A) 必有一列元素全为0(B) 必有两列元素对应成比例(C) 必有一列向量是其余列向量的线性组合 (D) 任一列向量是其余列向量的线性组合三、(本题满分15分,每小题5分.)(1) 设(2)(,)z f x y g x xy =-+,其中函数()f t 二阶可导,(,)g u v 具有连续的二阶偏导数,求2z x y∂∂∂. (2) 设曲线积分2()Cxy dx y x dy ϕ+⎰与路径无关,其中()x ϕ具有连续的导数,且(0)0ϕ=,计算(1,1)2(0,0)()xy dx y x dy ϕ+⎰的值.(3) 计算三重积分()x z dV Ω+⎰⎰⎰,其中Ω是由曲面22z x y =+与221z x y =--所围成的区域.四、(本题满分6分.)将函数1()arctan 1xf x x+=-展为x 的幂级数.五、(本题满分7分.)设0()sin ()()xf x x x t f t dt =--⎰,其中f 为连续函数,求()f x .六、(本题满分7分.)证明方程0ln 1cos 2x x xdx e π=--⎰在区间(0,+∞)内有且仅有两个不同实根.七、(本题满分6分.)问λ为何值时,线性方程组131231234226423x x x x x x x x λλλ+ =⎧⎪++=+⎨⎪++=+⎩ 有解,并求出解的一般形式.八、(本题满分8分.)假设λ为n 阶可逆矩阵A 的一个特征值,证明: (1)1λ为1A -的特征值; (2)Aλ为A 的伴随矩阵A *的特征值.九、(本题满分9分.)设半径为R 的球面∑的球心在定球面2222(0)x y z a a ++=>上,问当R 为何值时,球面∑在定球面内部的那部分的面积最大?十、填空题(本题满分6分,每小题2分.)(1) 已知随机事件A 的概率()P A =0.5,随机事件B 的概率()P B =0.6及条件概率()P B A |=0.8,则和事件A B 的概率()P A B =_______.(2) 甲、乙两人独立地对同一目标射击一次,其命中率分别为0.6和0.5.现已知目标被命中,则它是甲射中的概率为_______. (3) 若随机变量ξ在(1,6)上服从均匀分布,则方程210x x ξ++=有实根的概率是______.十一、(本题满分6分.)设随机变量X 与Y 独立,且X 服从均值为1、标准差(均方差)2,而Y 服从标准正态分布.试求随机变量23Z X Y =-+的概率密度函数.1989年全国硕士研究生入学统一考试数学一试题解析一、填空题(本题共5个小题,每小题3分,满分15分.) (1)【答案】1- 【解析】原式=01(3)(3)1lim (3)122h f h f f h -→--'-=-=--. (2)【答案】1x -【解析】由定积分的性质可知,1()f t dt ⎰和变量没有关系,且()f x 是连续函数,故1()f t dt ⎰为一常数,为简化计算和防止混淆,令10()f t dt a =⎰,则有恒等式()2f x x a =+,两边0到1积分得11()(2)f x dx x a dx =+⎰⎰,即 []111112000001(2)222a x a dx xdx a dx x a x ⎡⎤=+=+=+⎢⎥⎣⎦⎰⎰⎰122a =+,解之得 12a =-,因此()21f x x a x =+=-. (3)【答案】π【解析】方法一:L 的方程又可写成221(0)x y y +=≤,被积分函数在L 上取值,于是原积分=1Lds π=⎰(半径为1的的半圆周长).方法二:写出L 的参数方程,cos sin x ty t=⎧⎨=⎩,(0)t π-≤≤ 则00222222()(cos sin )(sin )cos 1Lx y ds t t t tdt dt πππ--+=+-+=⋅=⎰⎰⎰.(4)【答案】2【解析】直接用散度公式22[()()(ln(1))]z PP divuxy ye x z x y z∂∂∂=+++∂∂∂ 220(1,1,0)22220()10112110z zy e x e z =++⋅=++⋅=+=++.(5)【答案】10011022001⎛⎫ ⎪ ⎪-⎪ ⎪⎝⎭【解析】由于3002001002140020120003002001A E ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪-=-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,为求矩阵的逆可有多种办法,可用伴随,可用初等行变换,也可用分块求逆.方法一:如果对(2)A E E -作初等行变换,则由1(2)((2))A E E E A E --→-可以直接得出1(2)A E --.本题中,第一行乘以()1-加到第二行上;再第二行乘以12,有 10010010010010010011120010020110010022001001001001001001⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪ → -→ - ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 从而知 110011(2)022001A E -⎛⎫⎪ ⎪-=-⎪ ⎪⎝⎭. 方法二:对于2阶矩阵的伴随矩阵有规律:a b A c d ⎛⎫=⎪⎝⎭,则求A 的伴随矩阵 *a b d b A c d c a *-⎛⎫⎛⎫== ⎪ ⎪-⎝⎭⎝⎭.如果0A ≠,这样111a b d b d b c d c a c a A ad bc ---⎛⎫⎛⎫⎛⎫== ⎪ ⎪⎪---⎝⎭⎝⎭⎝⎭. 再利用分块矩阵求逆的法则:1110000A AB B ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭,本题亦可很容易求出110011(2)022001A E -⎛⎫⎪ ⎪-=-⎪ ⎪⎝⎭.二、选择题(本题共5个小题,每小题3分,满分15分.) (1)【答案】(A)【解析】函数1siny x x =只有间断点0x =. 001lim lim sin x x y x x ++→→=,其中1sin x是有界函数,而当0x +→时,x 为无穷小,而无穷小量和一个有界函数的乘积仍然是无穷小, 所以 001lim lim sin 0x x y x x++→→==,故函数没有铅直渐近线.01sin1sin lim limlim 11x x x t x y t x tx+→+∞→+∞→===令, 所以1y =为函数的水平渐近线,所以答案为(A).【相关知识点】铅直渐近线:如函数()y f x =在其间断点0x x =处有0lim ()x x f x →=∞,则0x x =是函数的一条铅直渐近线;水平渐近线:当lim (),(x f x a a →∞=为常数),则y a =为函数的水平渐近线.(2)【答案】(C)【解析】题设为求曲面:(,,)0S F x y z =(其中22(,,)4F x y z z x y =++-)上点P 使S 在该点处的法向量n 与平面2210x y z ++-=的法向量{}02,2,1n =平行.S 在(,,)P x y z 处的法向量{},,2,2,1F F F n x y x y z ⎧⎫∂∂∂==⎨⎬∂∂∂⎩⎭,若0//,n n 则0,n n λλ=为常数,即22,22,1x y λλλ===.即1,1x y ==. 又点(,,)P x y z S ∈,所以2222(,)(1,1)44112x y z x y ==--=--=,故求得(1,1,2)P .因此应选(C).(3)【答案】(D)【解析】由二阶常系数非齐次微分方程解的结构定理可知,1323,y y y y --为方程对应齐次方程的特解,所以方程()()()y p x y q x y f x '''++=的通解为1132233()()y C y y C y y y =-+-+,即1122123(1)y C y C y C C y =++--,故应选D. (4)【答案】(B)【解析】()S x 是函数()f x 先作奇延拓后再作周期为2的周期延拓后的函数的傅式级数的和函数,由于()S x 是奇函数,于是11()()22S S -=-.当12x =时,()f x 连续,由傅式级数的收敛性定理,21111()()()2224S f ===.因此, 11()24S -=-.应选(B).(5)【答案】(C)【解析】本题考查||0A =的充分必要条件,而选项(A) 、(B)、(D)都是充分条件,并不必要.因为对矩阵A 来说,行和列具有等价性,所以单说列或者单说行满足什么条件就构成了||0A =的必要条件,但是不具有任意性,只需要存在一列向量是其余列向量的线性组合.以3阶矩阵为例,若 112123134A ⎛⎫⎪= ⎪ ⎪⎝⎭,条件(A)必有一列元素全为0,(B)必有两列元素对应成比例均不成立,但有||0A =,所以(A)、 (B)不满足题意,不可选.若123124125A ⎛⎫⎪= ⎪ ⎪⎝⎭,则||0A =,但第三列并不是其余两列的线性组合,可见(D)不正确.这样用排除法可知应选(C).三、(本题满分15分,每小题5分.)(1)【解析】由于混合偏导数在连续条件下与求导次序无关,可以先求zx∂∂,也可以先求z y ∂∂.方法一:先求zx∂∂,由复合函数求导法,1212(2)()()2z f x y g x g xy f g yg x x x x∂∂∂∂''''''=-++=++∂∂∂∂, 再对y 求偏导,得212(2)2(2)z f g yg f x y x y y y∂∂∂'''''=++=-∂∂∂∂ 111222122()()()()g x g xy g yg x yg xy y y y y ⎡⎤⎡⎤∂∂∂∂'''''''''+++++⎢⎥⎢⎥∂∂∂∂⎣⎦⎣⎦111222122200f g xg g yg xyg '''''''''''=-+⋅+++⋅+ 212222f xg g xyg '''''''=-+++. 方法二:先求zy∂∂, 122(2)()()z f x y g x g xy f xg y y y y∂∂∂∂'''''=-++=-+∂∂∂∂, 再对x 求偏导数,得222()z z f xg x y y x x∂∂∂''==-+∂∂∂∂∂ 22122(2)()()f x y g xg x xg xy x x x∂∂∂'''''''=--+++∂∂∂221222f g xg xyg '''''''=-+++. 【相关知识点】复合函数求导法则:若(,)u u x y =和(,)v v x y =在点(,)x y 处偏导数存在,函数(,)z f u v =在对应点(,)u v 具有连续偏导数,则复合函数[(,),(,)]z f u x y v x y =在点(,)x y 处的偏导数存在,且,z f u f v z f u f v x u x v x y u y v y∂∂∂∂∂∂∂∂∂∂=+=+∂∂∂∂∂∂∂∂∂∂. (2)【解析】方法一:先求出()x ϕ,再求曲线积分.设(,),(,)P x y Q x y 有连续偏导数,在所给的单连通区域D 上,LPdx Qdy +⎰与路径无关,则在D 上有Q P x y∂∂=∂∂,所以()2,y x xy ϕ'=即2()2,()x x x x C ϕϕ'==+.由(0)ϕ=0,得0C =,即2()x x ϕ=,因此(1,1)(1,1)(1,1)2222222(0,0)(0,0)(0,0)1()2I xy dx y x dy xy dx yx dy y dx x dy ϕ=+=+=+⎰⎰⎰ (1,1)(0,0)(1,1)2222(0,0)111()()222d x y x y ===⎰. 或取特殊路径如图:11222001LI xy dx yx dy dx y dy =+=+⎰⎰⎰1201122y ⎡⎤==⎢⎥⎣⎦. 方法二:不必求出()x ϕ,选取特殊的路径,取积分路径如图,则(1,1)2(0,0)()I xy dx y x dy ϕ=+⎰11011(0)022y dy xdx ϕ=+=+=⎰⎰. (3)【解析】利用三重积分的性质,Ω关于yz 平面对称,x 对x 为奇函数,所以0xdV Ω=⎰⎰⎰,即()x z dV zdV ΩΩ+=⎰⎰⎰⎰⎰⎰.Ω是由球心在原点半径为1的上半球面与顶点在原点、对称轴为z 轴、半顶角为4π的锥面所围成.故可选用球坐标变换,则020014πθπϕρΩ≤≤≤≤≤≤:,,,所以 2cos sin I zdV d d d ρϕρϕρϕθΩΩ==⋅⎰⎰⎰⎰⎰⎰ 2113344000001cos sin 2sin 22d d d d d πππθϕϕϕρρπϕϕρρ==⎰⎰⎰⎰⎰1440011cos 2248πππϕρ⎡⎤⎡⎤=-⋅=⎢⎥⎢⎥⎣⎦⎣⎦.四、(本题满分6分.)【解析】直接展开()f x 相对比较麻烦,可()f x '容易展开,2222211(1)(1)21()1(1)(1)(1)11()1x x f x x x x x x x--+⋅-'=⋅==+--++++-. 由2011(1)(1),(||1)1n nn n n t t t t t t∞==-+-+-+=-<+∑,令2t x =得242222111(1)(1),(1)11nnn n n x x x x x t x ∞===-+-+-+=-<++∑即 221()(1),(||1)1n n n f x x x x ∞='==-<+∑ 所以()()(0)xf x f u du f '=+⎰,22000010(1)arctan(1)104x x nnnn n n u du u du π∞∞==+=-+=+--∑∑⎰⎰ 210(1)421n nn x n π+∞==+-+∑,(||1)x <当1x =±时,式210(1)21n nn x n +∞=-+∑均收敛,而左端1()arctan 1xf x x +=-在1x =处无定义.因此 2101(1)()arctan,[1,1)1421n n n x f x x x x n π∞+=+-==+∈--+∑.五、(本题满分7分.)【解析】先将原式进行等价变换,再求导,试着发现其中的规律, 0()sin ()()sin ()()xx xf x x x t f t dt x x f t dt tf t dt =--=-+⎰⎰⎰,所给方程是含有未知函数及其积分的方程,两边求导,得()cos ()()()cos ()xxf x x f t dt xf x xf x x f t dt '=--+=-⎰⎰,再求导,得()sin ()f x x f x ''=--,即 ()()sin f x f x x ''+=-.这是个简单的二阶常系数非齐次线性微分方程,对应的齐次方程的特征方程为210r +=, 此特征方程的根为r i =±,而右边的sin x 可看作sin xe x αβ,i i αβ±=±为特征根,因此非齐次方程有特解sin cos Y xa x xb x =+.代入方程并比较系数,得10,2a b ==,故cos 2xY x =,所以 12()cos sin cos 2xf x c x c x x =++,又因为(0)0,(0)1f f '==,所以1210,2c c ==,即1()sin cos 22xf x x x =+.六、(本题满分7分.)【解析】方法一:判定方程()0f x =等价于判定函数()y f x =与x 的交点个数.令 0()ln 1cos 2x f x x xdx e π=-+-⎰,其中1cos 2xdx π-⎰是定积分,为常数,且被积函数1cos2x -在(0,)π非负,故1cos 20xdx π->⎰,为简化计算,令01cos 20xdx k π-=>⎰,即()ln xf x x k e=-+,则其导数11()f x x e'=-,令()0f x '=解得唯一驻点x e =, 即 ()0,0()0,f x x ef x e x '><<⎧⎨'<<<+∞⎩,所以x e =是最大点,最大值为()ln 0ef e e k k e=-+=>. 又因为00lim ()lim (ln )lim ()lim (ln )x x x x x f x x k ex f x x k e ++→→→+∞→+∞⎧=-+=-∞⎪⎪⎨⎪=-+=-∞⎪⎩,由连续函数的介值定理知在(0,)e 与(,)e +∞各有且仅有一个零点(不相同),故方程0ln 1cos 2x x xdx e π=--⎰在(0,)+∞有且仅有两个不同实根.方法二:201cos 2sin xdx xdx ππ-=⎰⎰,因为当0x π≤≤时,sin 0x ≥,所以]2002sin 2sin 2cos 220xdx xdx x πππ==-=>⎰,其它同方法一.七、(本题满分6分.)【解析】对方程组的增广矩阵作初等行变换.第一行分别乘以有()4-、()6-加到第二行和第三行上,再第二行乘以()1-加到第三行上, 有1011011014122012320123261423012430001λλλλλλλλλ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪+→--+→--+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪+--+-+⎝⎭⎝⎭⎝⎭. 由于方程组有解的充要条件是()()r A r A =,故仅当10λ-+=,即1λ=时,方程组有解.此时秩()()23r A r A n ==<=,符合定理的第二种情况,故方程组有无穷多解.由同解方程组 1323 1,21,x x x x +=⎧⎨-=-⎩令3,x t =解得原方程组的通解1231,21,,x t x t x t =-+⎧⎪=-⎨⎪=⎩ (其中t 为任意常数). 【相关知识点】1.非齐次线性方程组有解的判定定理:设A 是m n ⨯矩阵,线性方程组Ax b =有解的充分必要条件是系数矩阵的秩等于增广矩阵()A A b =的秩,即是()()r A r A =(或者说,b 可由A 的列向量12,,,n ααα线表出,亦等同于12,,,n ααα与12,,,,n b ααα是等价向量组)设A 是m n ⨯矩阵,线性方程组Ax b =,则(1) 有唯一解 ⇔ ()().r A r A n == (2) 有无穷多解 ⇔ ()().r A r A n =< (3) 无解 ⇔ ()1().r A r A +=⇔ b 不能由A 的列向量12,,,n ααα线表出.八、(本题满分8分.)【解析】(1)由λ为A 的特征值可知,存在非零向量α使A αλα=,两端左乘1A -,得1A αλα-=.因为0α≠,故0λ≠,于是有11A ααλ-=.按特征值定义知1λ是1A -的特征值.(2)由于逆矩阵的定义1||A A A *-=,据第(1)问有1||||A A A A ααααλλ**=⇒=,按特征值定义,即||A λ为伴随矩阵A *的特征值.【相关知识点】矩阵特征值与特征向量的定义:设A 是n 阶矩阵,若存在数λ及非零的n 维列向量X 使得AX X λ=成立,则称λ是矩阵A 的特征值,称非零向量X 是矩阵A 的特征向量.九、(本题满分9分.)【解析】由球的对称性,不妨设球面∑的球心是(0,0,)a , 于是∑的方程是2222()x y z a R ++-=.先求∑与球面2222x y z a ++=的交线Γ:2222222222(),22,x y z a R a R z a x y z a ⎧++-=-⎪⇒=⎨++=⎪⎩. 代入上式得Γ的方程 422224R x y R a+=-.它在平面xOy 上的投影曲线4222222,(02),40,R x y b b R R a az ⎧+==-<<⎪⎨⎪=⎩相应的在平面xOy 上围成区域设为xy D ,则球面∑在定球面内部的那部分面积22()1xyx y D S R z z dxdy ''=++⎰⎰.将∑的方程两边分别对,x y 求偏导得,z x z y x z a y z a∂∂=-=-∂-∂-, 所以 2222()11()()xyxyx y D D x y S R z z dxdy dxdy a z a z''=++=++--⎰⎰⎰⎰ 222221()()xyxyD D x y dxdy dxdy a z a z R x y =++=----⎰⎰⎰⎰.利用极坐标变换(02,0)b θπρ≤≤≤≤有222222()xybD S R dxdy d R x yR πθρρ=---⎰⎰⎰⎰极坐标变换2222200()2b R d R R πθρρ=---⎰⎰ 222202()2()b R R R R b R πρπ=--=--代入42224R b R a =-,化简得32()2R S R R aππ=-.这是一个关于R 的函数,求()S R 在(0,2)a 的最大值点,()S R 两边对R 求导,并令()0S R '=,得23()40R S R R a ππ'=-=,得43aR =. 且 4()0,034()0,23S R R a S R a R a ⎧'><<⎪⎪⎨⎪'<<<⎪⎩,故43aR =时()S R 取极大值,也是最大值. 因此,当43aR =时球面∑在定球面内部的那部分面积最大.十、填空题(本题满分6分,每小题2分.) (1)【解析】 方法一:()()()()P A B P A P B P AB =+-()()()(|)0.7P A P B P A P B A =+-=. 方法二:()()()P AB P B P AB =+()()(|)0.60.50.20.7P B P A P B A =+=+⨯=.(2)【解析】设事件A =“甲射中”,B =“乙射中”,依题意,()0.6P A =,()0.5P B =,A 与B 相互独立,()()()0.60.50.3P AB P A P B =⋅=⨯=.因此,有 ()()()()P AB P A P B P AB =+-0.60.50.30.8=+-=. (())()(|)0.75()()P A A B P A P A AB P A B P A B ===.(3)【解析】设事件A =“方程有实根”,而方程210x x ξ++=有实根的充要条件是其判别式240ξ∆=-≥,即{}{}22404A ξξ=-≥=≥.随机变量ξ在(1,6)上服从均匀分布,所以其分布函数为0, 1,1(), 16,611, 6.x x F x x x <⎧⎪-⎪=≤<⎨-⎪≥⎪⎩由分布函数的定义()()P x k F k ≤=,{}{}21210.20.8.P P ξξ≥=-<=-= 而{}20.P ξ≤-=所以由概率的可加性,有{}{}{}2()422P A P P ξξξ=≥=≥+≤-0.800.8=+=.【相关知识点】广义加法公式:()()()()P AB P A P B P AB =+-.条件概率:()(|)()P BA P B A P A =,所以()()(|)()P AB P BA P B A P A ==. 十一、(本题满分6分.)【解析】~(1,2)X N ,~(0,1)Y N ,由独立的正态变量X 与Y 的线性组合仍服从正态分布,且235,EZ EX EY =-+=44219DZ DX DY =+=⨯+=,得 ~(5,9)Z N .代入正态分布的概率密度公式,有Z 的概率密度函数为 2(5)18()32z Z f z π--=.【相关知识点】对于随机变量X 与Y 均服从正态分布,则X 与Y 的线性组合亦服从正态分布.若X 与Y 相互独立,由数学期望和方差的性质,有()()()E aX bY c aE X bE Y c ++=++, 22()()()D aX bY c a D X b D Y ++=+,其中,,a b c 为常数.。
1999考研数一真题解析

1999 年全国硕士研究生入学统一考试数学一试题解析一、填空题(本题共5个小题,每小题3分,满分15分.把正确答案填写在题中横线上.) (1)【答案】1.3【分析】利用0x →的等价变换和洛必达法则求函数极限. 【详解】 方法1:22300011tan tan lim lim tan lim tan tan x x x x x x x x x x x x x x x →→→--⎛⎫-=⎪⎝⎭ 220sec 1lim 3x x x →-洛220tan lim 3x x x→=2201tan lim 33x x x x x →= 方法2:222000111cos sin cos lim lim lim tan sin sin x x x x x x x x x x x x x x x →→→-⎛⎫⎛⎫-=-=⎪ ⎪⎝⎭⎝⎭3200sin cos cos cos sin sin limlim 3x x x x x x x x x x x x x →→--+ 洛0sin 1lim 33x x x →==(2)【答案】2sin x 【分析】欲求(,)ba d x t dt dxϕ⎰,唯一的办法是作变换,使含有(,)x t ϕ中的x “转移”到ϕ之外 【详解】令u x t =-,则dt du =-,所以有()0220sin()sin x x d d x t dt u du dx dx -=-⎰⎰220sin sin x d u du x dx==⎰(3)【答案】22121,4xx y C eC x e -⎛⎫=++ ⎪⎝⎭其中12,C C 为任意常数.【分析】先求出对应齐次方程的通解,再求出原方程的一个特解.【详解】原方程对应齐次方程"40y y -=的特征方程为:240,λ-=解得122,2λλ==-,故"40y y -=的通解为22112,x x y C e C e -=+由于非齐次项为2(),x f x e =因此原方程的特解可设为*2,x y Axe =代入原方程可求得14A =,故所求通解为*2211214x x y y y C e C x e -⎛⎫=+=++ ⎪⎝⎭(4)【详解】因为E A λ-11 (111)...1 (1)1...1λλλ---⎛⎫⎪---⎪= ⎪⎪---⎝⎭(对应元素相减)两边取行列式,11...111...1............11...1E A λλλλ-------=---1...121 (1) (11)...1n n n n λλλλλ---⋯------把第,,列加到第列11...1111...1() (11)...1n λλλ-------提取第列的公因子2111 (1)0 031()...............1n n λλλ----- - 行行行行行行-1()n n λλ=-令-1()0n E A n λλλ-=-=,得12(10((1)n n λλ==-重),重),故矩阵A 的n 个特征值是n 和0((-1)n 重)(5)【答案】14 【详解】根据加法公式有()()()()()()()()P A B C P A P B P C P AC P AB P BC P ABC =++---+因为()()()P A P B P C ==,设()()()P A P B P C p ===由于,,A B C 两两相互独立,所以有2()()()P AB P A P B p p p ==⨯=, 2()()()P AC P A P C p p p ==⨯=, 2()()()P BC P B P C p p p ==⨯=,又由于ABC =∅,因此有()()0,P ABC P =∅=所以 ()()()()()()()()P A B C P A P B P C P AC P AB P BC P ABC =++---+2220p p p p p p =++---+233p p =-又9()16P A B C =,从而29()3316P A B C p p =-= ,则有2933016p p --= 23016p p ⇒-+=,解得 3144p ==或p 因1()()()2P A P B P C p ===<,故 14p =,即1()4P A =二、选择题 (1)【答案】( A )【详解】应用函数定义判定函数的奇偶性、周期性和单调性.()f x 的原函数()F x 可以表示为0()(),xF x f t dt C =+⎰于是()0()()().u txxF x f t dt C f u d u C =---=+=--+⎰⎰当()f x 为奇函数时,()()f u f u -=-,从而有()()()()x xF x f u du C f t dt C F x -=+=+=⎰⎰即 F (x )为偶函数. 故(A)为正确选项.(B)、(C)、(D)可分别举反例如下:2()f x x =是偶函数,但其原函数31()13F x x =+不是奇函数,可排除(B);2()cos f x x =是周期函数,但其原函数11()sin 224F x x x =+不是周期函数,可排除(C); ()f x x =在区间(,)-∞+∞内是单调增函数,但其原函数21()2F x x =在区间(,)-∞+∞内非单调增函数,可排除(D).(2)【答案】( D )【详解】由于可导必连续,连续则极限必存在,可以从函数可导性入手.因为20001()(0)(0)lim lim lim 0,0x x x xf x f f x ++++→→→-'====- 2000()(0)()(0)lim lim lim ()0,0x x x f x f x g x f xg x x x----→→→-'====-从而,(0)f '存在,且(0)0f '=,故正确选项为(D).(3)【答案】( C )【详解】由题设知,应先将()f x 从[0,1)作偶延拓,使之成为区间[−1,1]上的偶函数,然后再作周期(周期2)延拓,进一步展开为傅里叶级数,5111()(2)()()2222S S S S -=--=-=而12x =是()f x 的间断点,按狄利克雷定理有, 111(0)(0)113222().2224f f S -+++===(4)【答案】B 【详解】方法1:A 是m n ⨯矩阵,B 是n m ⨯矩阵,则AB 是m 阶方阵,因[]()()min (),()min ,r AB r A r B m n ≤≤.当m n >时,有()min[(),()]r AB r A r B n m ≤≤<. (()0AB x =的系数矩阵的秩小于未知数的个数),故有行列式0AB =,故应选(B).方法2:B 是n m ⨯矩阵, 当m n >时, 则()r B n = (系数矩阵的秩小于未知数的个数) ,方程组0Bx =必有非零解,即存在00x ≠,使得00Bx =,两边左乘A ,得00ABx =,即0ABx =有非零解,从而0AB =,故选(B).方法3:用排除法(A)m n >,取()1,00,0m n n m A B ⨯⨯⎛⎫== ⎪⎝⎭ 0000AB ⎛⎫= ⎪⎝⎭,0AB =,(A)不成立(C)n m >,取()010,,1m n n mA B ⨯⨯⎛⎫== ⎪⎝⎭ 0AB =,0AB =,(C)不成立 (D)n m >,取()110,,0m n n m A B ⨯⨯⎛⎫== ⎪⎝⎭1AB =,1AB =,(D)不成立,故选(B).(5)【答案】B【详解】 根据正态分布的性质:服从正态分布的独立随机变量的线性组合仍服从正态分布.因X Y 和相互独立,且~(0,1)X N ,~(1,1)Y N ,所以2111~(,)T X Y N u σ=+, 2222~(,)T X Y N u σ=-其中1()u E X Y =+,21()D X Y σ=+,2()u E X Y =-,22()D X Y σ=-由期望的性质:1()()011E T E X Y EX EY =+=+=+=,2()()011E T E X Y EX EY =-=-=-=-由独立随机变量方差的性质:1()()112D T D X Y DX DY =+=+=+= 2()()112D T D X Y DX DY =-=+=+= 所以 1~(1,2)T X Y N =+,2~(1,2)T X Y N =--(一般来说遇到正态分布的小题,主要就考两点,标准化和对称性,考虑问题也是从这两点出发)A 选项:{}10.2P X Y +≤=因1~(1,2)T X Y N =+ 由标准化的定义:若2~(,)X N u σ,则~(0,1)X uN σ-(0,1)N ,将其标准化有 {}0P X Y P P +≤=≤=≤(保证变换过程中概率不变,所以不等号的左边怎么变,右边也同样的变化) 又因为标准正态分布图像是关于y 轴对称,所以102P ⎫≤=⎬⎭,而12P ≤<,所以A 错.B 选项:{}11.2P X Y +≤=将其标准化有:102P P ⎫≤=≤=⎬⎭(根据标准正态分布的对称性) 故B 正确.C 选项:{}10.2P X Y -≤=将其标准化有:12P P ≤=≤>,故C 错.D 选项:{}11.2P X Y -≤=将其标准化有:1P 2P ≤=≤>,故D 错.三【详解】分别在()z xf x y =+和(,,)0F x y z =的两端对x 求导数,得(,)1(,)0x y z dz dy f x y x f x y dx dx dy dz F F F dx dx ⎧⎛⎫'=++ ⎪⎪⎪⎝⎭⎨⎪'''++=⎪⎩整理后得 (,)(,)(,)yz x dy dz xf x y f x y xf x y dx dxdy dz F F F dxdx ⎧''-+=+⎪⎪⎨⎪'''+=-⎪⎩解此方程组,得(),(0)1y x y z y z y z y z xf f xf F F f xf F xf Fdz F xf Fxf dxF xf FF F ''-+''-''''+-'''==+≠'-'''+''四【详解】方法1:凑成闭合曲线,应用格林公式.添加从点(0,0)O 沿0y =到点()2a,0A 的有向直 线段1L , 如图,则()()1sin ()cos xx L L I ey b x y dx e y ax dy +=-++-⎰()()1sin ()cos x x L e y b x y dx e y ax dy --++-⎰利用格林公式,前一积分21()()2D DQ P I dxdy b a dxdy a b a x y π⎛⎫∂∂=-=-=- ⎪∂∂⎝⎭⎰⎰⎰⎰其中D 为1L +L 所围成的半圆域,后一积分选择x 为参数,得1L :(),02,0x xx a y =⎧≤≤⎨=⎩可直接积分 2220()2aI b x d x a b =-=-⎰,故 23122.22I I I a b a ππ⎛⎫=-=+- ⎪⎝⎭方法2:将曲线积分分成两部分,其中一部分与路径无关,余下的积分利用曲线的参数方程计算.()()sin ()cos x x LI e y b x y dx e y ax dy =-++-⎰sin cos ()x x LLe ydx e ydy b x y dx axdy =+-++⎰⎰前一积分与路径无关,所以(0,0)(2,0)sin cos sin 0xx xa Leydx e ydy e y+==⎰对后一积分,取L 的参数方程cos sin x a a t y a t =+⎧⎨=⎩,则sin cos dx a tdtdy a tdt=-⎧⎨=⎩,t 从0到π,得 ()Lb x y dx axdy ++⎰22223320(sin sin cos sin cos cos )a b t a b t t a b t a t a t dt π=---++⎰22311222a b a b a ππ=--+从而 22323110(2)22222I a b a b a a b a ππππ⎛⎫=---+=+- ⎪⎝⎭五【详解】如图,曲线()y y x =上点(,)P x y 处的切线方程为()()()Y y x y x X x '-=-所以切线与x 轴的交点为,0'y x y ⎛⎫-⎪⎝⎭由于'()0,(0)1,y x y >=因此()0y x >(0)x >于是 211.2'2'y y S y x x y y ⎛⎫=--=⎪⎝⎭又20()xS y t dt =⎰,根据题设1221,S S -= 即 202()1,2'x y y t dt y -=⎰ 两边对x 求导并化简得 ()2"'yy y =这是可降阶得二阶常微分方程,令,p y '=则dp dp dy dp y p dx dy dx dy''=== , 则上述方程可化为2,dp ypp dy=分离变量得dp dyp y =,解得 1,p C y =即1,dy C y dx = 从而有 12x y C e C =+,根据 (0)1,'(0)y y ==可得121,0,C C ==故所求曲线得方程为 xy e =六【详解】构造函数,利用函数的单调性, 证法1:令 ()()22()1l n 1.f x x x x =---易知(1)0f =又 1()2l n 2,(1)0f x x x x f x''=-+-= 21()2ln 1,(1)20f x x f x''''=++=> 232(1)()x f x x-'''= 可见,当01x <<时,()0()f x f x '''<⎧⎨''⎩ ;当1x <<+∞时,()0()f x f x '''>⎧⎨''⎩因此,(1)2f ''=为()f x ''的最小值,即当0x <<+∞时,()(1)20f x f ''''≥=>,所以()f x '为单调增函数. 又因为(1)0f '=,所以有01x <<时()0f x '< ;1x <<+∞时()0f x '>,所以利用函数单调性可知,1f ()为()f x 的最小值,即()(1)0f x f ≥= 所以有0x >时,()()221ln 1.x x x -≥-证法2:先对要证的不等式作适当变形,当1x =时,原不等式显然成立;当01x <<时,原不等式等价于1ln ;1x x x -≤+ 当1x <<+∞时,原不等式等价于1ln ;1x x x -≥+ 令 1()ln 1x f x x x -=-+ 则 ()()()222121()0011x f x x x x x x +'=-=>>++ 又因为(1)0,f =利用函数单调性可知当01x <<时,()0,f x <即1ln ;1x x x -<+当1x <<+∞时,()0,f x >即1ln ;1x x x ->+综上所述,当0x >时,()()221ln 1.x x x -≥-七【详解】建立坐标轴如图所示,解法1:将抓起污泥的抓斗提升至井口需做功123W W W W =++,其中1W 是克服抓斗自重所作的功;2W 是克服缆绳重力作的功;3W 为提出污泥所作的功. 由题意知14003012000.W N m J =⨯=将抓斗由x 处提升到x dx +处,克服缆绳重力所作的功为2dW = 缆绳每米重×缆绳长×提升高度50(30),x dx =-从而 302050(30)22500.W x dx J =-=⎰在时间间隔[,]t t dt +内提升污泥需做功为3((3)dW dt =-⨯原始污泥重漏掉污泥重)提升高度(200020)3t dt =-将污泥从井底提升至井口共需时间3010,3/ms m s= 所以 10303(200020)57000.W t dt J =-=⎰因此,共需做功123120002250057000)91500W W W W J J =++=++=(解法2:将抓起污泥的抓斗提升至井口需做功记为W ,当抓斗运动到x 处时,作用力()f x 包括抓斗的自重400N , 缆绳的重力50(30)x N -, 污泥的重力(200020),3xN -⋅ 即 20170()40050(30)20003900,33f x x x x =+-+-=-于是 302301708539003900117000245009150033W x dx x x J ⎛⎫=-=-=-= ⎪⎝⎭⎰八【分析】先写出切平面方程,然后求(,,)x y z ρ,最后将曲面积分化成二重积分.【详解】点(,,)P x y z S ∈,S 在点P 处的法向量为{},,2n x y z =,设(,,)X Y Z 为π上任意一点,则π的方程为()()2()0x X x y Y y z Z z -+-+-=,化简得122x yX Y zZ ++= 由点到平面的公式,(0,0,0)O 到π的距离12222(,,)44x y x y z z ρ-⎛⎫===++ ⎪⎝⎭从而(,,)S Sz dS x y z ρ=⎰⎰⎰⎰ 用投影法计算此第一类曲面积分,将S 投影到xOy 平面,其投影域为{}22(,)|2D x y x y =+≤由曲面方程知,),z x y D =∈于是zz xy ∂∂==∂∂因此dS σσ==故有(,,)S Sz dS x y z ρ=⎰⎰⎰⎰()222200114)44D x y d d r rdr πσθ=---⎰⎰⎰极坐标3.2π=九【详解】(1) 因为()2244200111tan (1tan )tan sec n n n n a a x x dx x xdx n n n ππ++=+=⎰⎰tan 1400111tan tan (1)x t n n xd x t dt n n n n π====+⎰⎰ 又由部分和数列()211111111()1,(1)11nn nn i i i i i S a a i i i i i n +====+==-=-+++∑∑∑有 lim 1,n n S →∞=因此()2111.n n n a a n∞+=+=∑ (2) 先估计n a 的值,因为40tan n n a xdx π=⎰,令tan t x =,则2sec dt xdx =,即21dtdx t=+ 所以 112001,11n n n t a t dt t n =<=++⎰⎰ 所以111,(1)n a n n n n λλλ+<<+ 由于10λ+>,所以111n n λ∞+=∑收敛,从而1nn a nλ∞=∑也收敛.十【详解】根据题设,*A 有一个特征值0λ,属于0λ的一个特征向量为(1,1,1),Tα=-- 根据特征值和特征向量的概念,有 *0,A αλα=把1A =-代入*AA A E =中,得*,AA A E E ==-则*AA E ααα=-=-. 把*0A αλα=代入,于是*00,AA A A αλαλα== 即0A αλα-=也即011153111011a c b c a λ---⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦,011531(1)1a c b c a λ-++-⎡⎤⎡⎤⎢⎥⎢⎥⇒--+=--⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦常数0λ乘以矩阵153(1)a c b c a -++⎡⎤⎢⎥--+⎢⎥⎢⎥---⎣⎦,需用0λ乘以矩阵的每一个元素 00001(1)153(53)1(1)[(1)]1a c a c b b c a c a λλλλ-++-++-⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥--+=--+=--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥------⎣⎦⎣⎦⎣⎦矩阵相等,则矩阵的对应元素都相同,可得000(1)1(1)(53)1(2)(1)1a c b c a λλλ-++= ⎧⎪--+= ⎨⎪-+-=- (3)⎩ 因10A =-≠, A 的特征值0λ≠,*A 的特征值*0Aλλ=≠,故00λ≠由(1),(3)两式得00(1)(1)a c c a λλ-++=--+-,两边同除0λ,得 1(1)a c c a -++=--+- 整理得a c =,代入(1)中,得01λ=. 再把01λ=代入(2)中得3b =- 又由1A =-,3b =-以及ac =,有153310a a A aa-=---131533110a a -+--行行121523100a a a-+列列3113(1)23a a+--按第行展开(其中31(1)+-的指数3,1分别是1的行数和列数)3(1)2a a =--31a =-=-故 2,a c == 因此02,3,2, 1.a b c λ==-==十一【详解】“必要性”. 设TB AB 为正定矩阵,则由定义知,对任意的实n 维列向量0x ≠,有()0,T T x B AB x > 即()()0,TBx A Bx >于是,0Bx ≠,即对任意的实n 维列向量0x ≠,都有0Bx ≠. (若0Bx =,则()00AB x A ==矛盾). 因此,0Bx =只有零解,故有()r B n =(0Bx =有唯一零解的充要条件是()r B n =).“充分性”. 因A 为m 阶实对称矩阵,则TA A =,故(),TTT T T B ABB A B B AB ==根据实对称矩阵的定义知TB AB 也为实对称矩阵. 若()r B n =,则线性方程组0Bx =只有零解,从而对任意的实n 维列向量0x ≠,有0Bx ≠. 又A 为正定矩阵,所以对于0Bx ≠有()()()0,TT T Bx A Bx x B AB x => 故T B AB 为正定矩阵(对任意的实n 维列向量0x ≠,有()0T T x B AB x >).十二【详解】离散型随机变量边缘分布律的定义:{}{},,1,2,i i i j ij jjp P X x P X x Y y p i ⋅=======∑∑{}{},,1,2,j j i j ij iip P Y y P X x Y y p j =======∑∑(通俗点说就是在求关于X 的边缘分布时,就把对应x 的所有y 都加起来,同理求关于Y 的边缘分布时,就把对应y 的所有x 都加起来)故 {}{}1111,iiiiP Y y p P X x Y y p⋅======∑∑ 即{}{}{}11121,,P Y y P X x Y y P X x Y y ====+==而由表知{}116P Y y ==,{}211,8P X x Y y ===,所以 {}{}{}11121111,,6824P X x Y y P Y y P X x Y y ====-===-= 又根据X Y 和相互独立,则有:{}{}{},i j i j P X x Y y P X x P Y y ===== 即ij i j p p p ⋅⋅=因{}111,24P X x Y y ===,{}116P Y y ==,而{}{}{}1111,P X x Y y P X x P Y y ===== 所以{}{}{}11111,124146P X x Y y P X x P Y y =======再由边缘分布的定义有{}{}{}{}1111213,,,P X x P X x Y y P X x Y y P X x Y y ====+==+==所以 {}{}{}{}1311112,,,P X x Y y P X x P X x Y y P X x Y y ====-==-==1111424812=--= 又由独立性知{}{}{}1313,P X x Y y P X x P Y y =====所以 {}{}{}13311,112134P X x Y y P Y y P X x =======由边缘分布定义有{}{}{}31323,,P Y y P X x Y y P X x Y y ====+==所以 {}{}{}23313111,,3124P X x Y y P Y y P X x Y y ====-===-= 再由1i ip⋅=∑,所以{}{}21131144P X x P X x ==-==-= 而 {}{}{}{}2212223,,,P X x P X x Y y P X x Y y P X x Y y ====+==+== 故 {}{}{}{}2222123,,,P X x Y y P X x P X x Y y P X x Y y ====-==-==31134848=--= 又1jjp =∑,所以{}{}{}21311111632P Y y P Y y P Y y ==-=-==--= 所以有:十三【详解】矩估计的实质在于用样本矩来估计相应的总体矩,此题中被估参数只有一个,故只需要用样本矩(样本均值)来估计总体的一阶原点矩(期望)(1) 矩估计:由期望的定义:23323666()()()()xx x E X xf x dx xx dx dx θθθθθθ+∞-∞==-=-⎰⎰⎰232366x dx x dx θθθθ=-⎰⎰342366323422θθθθθθθ=-=-=样本均值11ni i X X n ==∑,用样本均值估计期望有EX X =,即,2X θ= 解得θ的矩估计量 2X θ= (2) 由随机变量方差的性质:2()()D cX c D X =,所以 ()(2)4()D D X D X θ== 又由独立随机变量方差的性质:若X Y 和独立,则()D X Y DX DY +=+因12,,,n X X X ⋅⋅⋅是取自总体X 的简单随机样本,所以12,,,n X X X ⋅⋅⋅独立且12,,,nX X X ⋅⋅⋅与X 服从同一分布,即1,2,i DX DXi n ==而 22211111111()()()()()n nn ni i i i i i i D X D X D X D X D X n n n n ========∑∑∑∑22111()1()()n i n D X D X D X n n n ====∑方差的定义:[]22()()()D X E X E X =-,所以求方差只需要求出2()E X 和()E X根据二阶原点矩的定义:22()()E X x f x dx +∞-∞=⎰故 33422232306666()()()()20x x x E X x f x dx x dx dx θθθθθθθ+∞-∞==-=-=⎰⎰⎰而()2E X θ=,所以[]222226()()()20220D XE X E X θθθ⎛⎫=-=-=⎪⎝⎭ 因此 2X θ=的方差为 ()(2)4()D D X D X θ==24().5D X n nθ==。
考研数学一(常微分方程)历年真题试卷汇编2(题后含答案及解析)

考研数学一(常微分方程)历年真题试卷汇编2(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.(1989年)设线性无关的函数y1,y2,y3都是二阶非齐次线性方程y”+p(x)y’+q(x)y=f(x)的解,c1,c2是任意常数,则该非齐次方程的通解是A.c1 y1+c2y2+y3B.c1y1+c2y2一(c1+c2)y3C.c1y1+c2y2一(1一c1—c2)y3D.c1y1+c2y2+(1一c1一c2)y3正确答案:D解析:由于(D)中的y=C1y1+C2y2+(1一C1—C2)y3=C1(y1一y3)+C2(y2一y3)+y3其中y1一y3和y2一y3是对应的齐次方程的两个解,且y1一y3与y2—y3线性无关.事实上,若令A(y1—y3)+B(y2一y3)=0即Ay1+By2一(A+B)y3=0由于y1,y2,y3线性无关,则A=0,B=0,一(A+B)=0因此y1一y3与y2一y3线性无关,故y=C1y1+C2y2+(1一C1—C2)y3是原方程通解.知识模块:常微分方程2.(1991年)若连续函数f(x)满足关系式则f(x)等于A.exln2B.e2xln2C.ex+ln2D.e2x+ln2正确答案:B解析:等式两边求导得f’(x)=2f(x)解此方程得f(x)=Ce2x由原方程可知f(0)=ln2,代入f(x)=Ce2x得C=ln2.故f(x)=e2xln2 知识模块:常微分方程3.(1993年)设曲线积分与路径无关,其中f(x)具有一阶连续导数,且f(0)=0,则f(x)等于A.B.C.D.正确答案:B解析:由得f’(x)+f(x)=ex解此方程得f(x)=e-x(e2x+C)由f(0)=0得,故知识模块:常微分方程填空题4.(1992年)微分方程y’+ytanx=cosx的通解为y=_____________.正确答案:(x+c)cosx.解析:由线性方程通解公式得知识模块:常微分方程5.(1996年)微分方程y”一2y’+2y=ex的通解为___________.正确答案:特征方程为λ2一2λ+2=0,解得λ1,2=1±i,则齐次方程通解为y=ex(C1cosx+C2sinx)易观察出y=ex是非齐次方程的一个特解.则原方程通解为y=ex(C1cosx+C2sinx)+ex 涉及知识点:常微分方程6.(1999年)y”一4y—e2x的通解为y=____________.正确答案:C1e-2x+C2e2x+xe2x.解析:特征方程为λ2一4=0,则λ=一2,λ2=2,从而齐次方程的解为由于λ=2为特征方程单根,则非齐次待定特解可设为y*=Axe2x代入原方程得故所求通解为y=C1e-2x+C2e2x+xe2x 知识模块:常微分方程7.(2000年)微分方程xy”+3y’=0的通解为____________.正确答案:解析:令y’=p,则y”=p’.代入原方程得解得因此知识模块:常微分方程8.(2001年)设y=ex(C1sinx+C2cosx)(C1,C2为任意常数)为某二阶常系数线性齐次微分方程的通解,则该方程为___________.正确答案:y”-2y’+2y=0解析:所求方程的特征根为λ1,2=1,±i则其特征方程为λ2一2λ+2=0故所求方程为y”一2y’+2y=0 知识模块:常微分方程9.(2002年)微分方程yy”+y’2一0满足初始条件的特解是____________.正确答案:y2=x+1或解析:解 1 令y’=P,则代入原方程得解得可知,则所求的特解为y2=x+1 解2 由于原方程左端从而原方程可改写为因此yy’=C1以下求解同解1.知识模块:常微分方程10.(2004年)欧拉方程的通解为___________.正确答案:解析:令z=et 代入原方程所得新方程的特征方程为ρ(ρ一1)+4ρ+2=0 解得ρ1=一1,ρ2=一2则新方程通解为y=C1e-t+C2e-2t,将x=et代入得原方程通解为知识模块:常微分方程解答题解答应写出文字说明、证明过程或演算步骤。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1989年全国硕士研究生入学统一考试数学一试题一、填空题(本题共5个小题,每小题3分,满分15分.) (1) 已知(3)2f '=,则 0(3)(3)lim2h f h f h→--=_______.(2) 设()f x 是连续函数,且1()2()f x x f t dt =+⎰,则()f x =_______.(3) 设平面曲线L 为下半圆周21,y x =--则曲线积分22()Lx y ds +=⎰_______.(4) 向量场22(,,)ln(1)zu x y z xy i ye j x z k =+++在点(1,1,0)P 处的散度divu =_______.(5) 设矩阵300140003A ⎛⎫ ⎪= ⎪ ⎪⎝⎭, 100010001E ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则逆矩阵1(2)A E --=_______.二、选择题(本题共5个小题,每小题3分,满分15分.) (1) 当0x >时,曲线1siny x x= ( ) (A) 有且仅有水平渐近线 (B) 有且仅有铅直渐近线(C) 既有水平渐近线,也有铅直渐近线 (D) 既无水平渐近线,也无铅直渐近线(2) 已知曲面224z x y =--上点P 处的切平面平行于平面2210x y z ++-=,则点P 的坐标是 ( ) (A) (1,-1,2) (B) (-1,1,2) (C) (1,1,2) (D) (-1,-1,2)(3) 设线性无关的函数1y 、2y 、3y 都是二阶非齐次线性方程()()()y p x y q x y f x '''++=的解,1C 、2C 是任意常数,则该非齐次方程的通解是 ( ) (A) 11223C y C y y ++ (B) 1122123()C y C y C C y +-+ (C) 1122123(1)C y C y C C y +--- (D) 1122123(1)C y C y C C y ++-- (4) 设函数2(),01,f x x x =≤<而1()sin ,,nn S x bn x x π∞==-∞<<+∞∑其中102()sin ,1,2,3,n b f x n xdx n π==⎰…,则1()2S -等于 ( )(A) 12-(B) 14- (C) 14 (D) 12(5) 设A 是n 阶矩阵,且A 的行列式||0A =,则A 中 ( )(A) 必有一列元素全为0(B) 必有两列元素对应成比例(C) 必有一列向量是其余列向量的线性组合 (D) 任一列向量是其余列向量的线性组合三、(本题满分15分,每小题5分.)(1) 设(2)(,)z f x y g x xy =-+,其中函数()f t 二阶可导,(,)g u v 具有连续的二阶偏导数,求2z x y∂∂∂. (2) 设曲线积分2()Cxy dx y x dy ϕ+⎰与路径无关,其中()x ϕ具有连续的导数,且(0)0ϕ=,计算(1,1)2(0,0)()xy dx y x dy ϕ+⎰的值.(3) 计算三重积分()x z dV Ω+⎰⎰⎰,其中Ω是由曲面22z x y =+与221z x y =--所围成的区域.四、(本题满分6分.)将函数1()arctan 1xf x x+=-展为x 的幂级数.五、(本题满分7分.)设0()sin ()()xf x x x t f t dt =--⎰,其中f 为连续函数,求()f x .六、(本题满分7分.)证明方程0ln 1cos 2x x xdx e π=--⎰在区间(0,+∞)内有且仅有两个不同实根.七、(本题满分6分.)问λ为何值时,线性方程组131231234226423x x x x x x x x λλλ+ =⎧⎪++=+⎨⎪++=+⎩ 有解,并求出解的一般形式.八、(本题满分8分.)假设λ为n 阶可逆矩阵A 的一个特征值,证明: (1)1λ为1A -的特征值; (2)Aλ为A 的伴随矩阵A *的特征值.九、(本题满分9分.)设半径为R 的球面∑的球心在定球面2222(0)x y z a a ++=>上,问当R 为何值时,球面∑在定球面内部的那部分的面积最大?十、填空题(本题满分6分,每小题2分.)(1) 已知随机事件A 的概率()P A =0.5,随机事件B 的概率()P B =0.6及条件概率()P B A |=0.8,则和事件A B 的概率()P A B =_______.(2) 甲、乙两人独立地对同一目标射击一次,其命中率分别为0.6和0.5.现已知目标被命中,则它是甲射中的概率为_______. (3) 若随机变量ξ在(1,6)上服从均匀分布,则方程210x x ξ++=有实根的概率是______.十一、(本题满分6分.)设随机变量X 与Y 独立,且X 服从均值为1、标准差(均方差)2,而Y 服从标准正态分布.试求随机变量23Z X Y =-+的概率密度函数.1989年全国硕士研究生入学统一考试数学一试题解析一、填空题(本题共5个小题,每小题3分,满分15分.) (1)【答案】1- 【解析】原式=01(3)(3)1lim (3)122h f h f f h -→--'-=-=--. (2)【答案】1x -【解析】由定积分的性质可知,1()f t dt ⎰和变量没有关系,且()f x 是连续函数,故1()f t dt ⎰为一常数,为简化计算和防止混淆,令10()f t dt a =⎰,则有恒等式()2f x x a =+,两边0到1积分得11()(2)f x dx x a dx =+⎰⎰,即 []111112000001(2)222a x a dx xdx a dx x a x ⎡⎤=+=+=+⎢⎥⎣⎦⎰⎰⎰122a =+,解之得 12a =-,因此()21f x x a x =+=-. (3)【答案】π【解析】方法一:L 的方程又可写成221(0)x y y +=≤,被积分函数在L 上取值,于是原积分=1Lds π=⎰(半径为1的的半圆周长).方法二:写出L 的参数方程,cos sin x ty t=⎧⎨=⎩,(0)t π-≤≤ 则00222222()(cos sin )(sin )cos 1Lx y ds t t t tdt dt πππ--+=+-+=⋅=⎰⎰⎰.(4)【答案】2【解析】直接用散度公式22[()()(ln(1))]z PP divuxy ye x z x y z∂∂∂=+++∂∂∂ 220(1,1,0)22220()10112110z zy e x e z =++⋅=++⋅=+=++.(5)【答案】10011022001⎛⎫ ⎪ ⎪-⎪ ⎪⎝⎭【解析】由于3002001002140020120003002001A E ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪-=-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,为求矩阵的逆可有多种办法,可用伴随,可用初等行变换,也可用分块求逆.方法一:如果对(2)A E E -作初等行变换,则由1(2)((2))A E E E A E --→-可以直接得出1(2)A E --.本题中,第一行乘以()1-加到第二行上;再第二行乘以12,有 10010010010010010011120010020110010022001001001001001001⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪ → -→ - ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 从而知 110011(2)022001A E -⎛⎫⎪ ⎪-=-⎪ ⎪⎝⎭. 方法二:对于2阶矩阵的伴随矩阵有规律:a b A c d ⎛⎫=⎪⎝⎭,则求A 的伴随矩阵 *a b d b A c d c a *-⎛⎫⎛⎫== ⎪ ⎪-⎝⎭⎝⎭.如果0A ≠,这样111a b d b d b c d c a c a A ad bc ---⎛⎫⎛⎫⎛⎫== ⎪ ⎪⎪---⎝⎭⎝⎭⎝⎭. 再利用分块矩阵求逆的法则:1110000A AB B ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭,本题亦可很容易求出110011(2)022001A E -⎛⎫⎪ ⎪-=-⎪ ⎪⎝⎭.二、选择题(本题共5个小题,每小题3分,满分15分.) (1)【答案】(A)【解析】函数1siny x x =只有间断点0x =. 001lim lim sin x x y x x ++→→=,其中1sin x是有界函数,而当0x +→时,x 为无穷小,而无穷小量和一个有界函数的乘积仍然是无穷小, 所以 001lim lim sin 0x x y x x++→→==,故函数没有铅直渐近线.01sin1sin lim limlim 11x x x t x y t x tx+→+∞→+∞→===令, 所以1y =为函数的水平渐近线,所以答案为(A).【相关知识点】铅直渐近线:如函数()y f x =在其间断点0x x =处有0lim ()x x f x →=∞,则0x x =是函数的一条铅直渐近线;水平渐近线:当lim (),(x f x a a →∞=为常数),则y a =为函数的水平渐近线.(2)【答案】(C)【解析】题设为求曲面:(,,)0S F x y z =(其中22(,,)4F x y z z x y =++-)上点P 使S 在该点处的法向量n 与平面2210x y z ++-=的法向量{}02,2,1n =平行.S 在(,,)P x y z 处的法向量{},,2,2,1F F F n x y x y z ⎧⎫∂∂∂==⎨⎬∂∂∂⎩⎭,若0//,n n 则0,n n λλ=为常数,即22,22,1x y λλλ===.即1,1x y ==. 又点(,,)P x y z S ∈,所以2222(,)(1,1)44112x y z x y ==--=--=,故求得(1,1,2)P .因此应选(C).(3)【答案】(D)【解析】由二阶常系数非齐次微分方程解的结构定理可知,1323,y y y y --为方程对应齐次方程的特解,所以方程()()()y p x y q x y f x '''++=的通解为1132233()()y C y y C y y y =-+-+,即1122123(1)y C y C y C C y =++--,故应选D. (4)【答案】(B)【解析】()S x 是函数()f x 先作奇延拓后再作周期为2的周期延拓后的函数的傅式级数的和函数,由于()S x 是奇函数,于是11()()22S S -=-.当12x =时,()f x 连续,由傅式级数的收敛性定理,21111()()()2224S f ===.因此, 11()24S -=-.应选(B).(5)【答案】(C)【解析】本题考查||0A =的充分必要条件,而选项(A) 、(B)、(D)都是充分条件,并不必要.因为对矩阵A 来说,行和列具有等价性,所以单说列或者单说行满足什么条件就构成了||0A =的必要条件,但是不具有任意性,只需要存在一列向量是其余列向量的线性组合.以3阶矩阵为例,若 112123134A ⎛⎫⎪= ⎪ ⎪⎝⎭,条件(A)必有一列元素全为0,(B)必有两列元素对应成比例均不成立,但有||0A =,所以(A)、 (B)不满足题意,不可选.若123124125A ⎛⎫⎪= ⎪ ⎪⎝⎭,则||0A =,但第三列并不是其余两列的线性组合,可见(D)不正确.这样用排除法可知应选(C).三、(本题满分15分,每小题5分.)(1)【解析】由于混合偏导数在连续条件下与求导次序无关,可以先求zx∂∂,也可以先求z y ∂∂.方法一:先求zx∂∂,由复合函数求导法,1212(2)()()2z f x y g x g xy f g yg x x x x∂∂∂∂''''''=-++=++∂∂∂∂, 再对y 求偏导,得212(2)2(2)z f g yg f x y x y y y∂∂∂'''''=++=-∂∂∂∂ 111222122()()()()g x g xy g yg x yg xy y y y y ⎡⎤⎡⎤∂∂∂∂'''''''''+++++⎢⎥⎢⎥∂∂∂∂⎣⎦⎣⎦111222122200f g xg g yg xyg '''''''''''=-+⋅+++⋅+ 212222f xg g xyg '''''''=-+++. 方法二:先求zy∂∂, 122(2)()()z f x y g x g xy f xg y y y y∂∂∂∂'''''=-++=-+∂∂∂∂, 再对x 求偏导数,得222()z z f xg x y y x x∂∂∂''==-+∂∂∂∂∂ 22122(2)()()f x y g xg x xg xy x x x∂∂∂'''''''=--+++∂∂∂221222f g xg xyg '''''''=-+++. 【相关知识点】复合函数求导法则:若(,)u u x y =和(,)v v x y =在点(,)x y 处偏导数存在,函数(,)z f u v =在对应点(,)u v 具有连续偏导数,则复合函数[(,),(,)]z f u x y v x y =在点(,)x y 处的偏导数存在,且,z f u f v z f u f v x u x v x y u y v y∂∂∂∂∂∂∂∂∂∂=+=+∂∂∂∂∂∂∂∂∂∂. (2)【解析】方法一:先求出()x ϕ,再求曲线积分.设(,),(,)P x y Q x y 有连续偏导数,在所给的单连通区域D 上,LPdx Qdy +⎰与路径无关,则在D 上有Q P x y∂∂=∂∂,所以()2,y x xy ϕ'=即2()2,()x x x x C ϕϕ'==+.由(0)ϕ=0,得0C =,即2()x x ϕ=,因此(1,1)(1,1)(1,1)2222222(0,0)(0,0)(0,0)1()2I xy dx y x dy xy dx yx dy y dx x dy ϕ=+=+=+⎰⎰⎰ (1,1)(0,0)(1,1)2222(0,0)111()()222d x y x y ===⎰. 或取特殊路径如图:11222001LI xy dx yx dy dx y dy =+=+⎰⎰⎰1201122y ⎡⎤==⎢⎥⎣⎦. 方法二:不必求出()x ϕ,选取特殊的路径,取积分路径如图,则(1,1)2(0,0)()I xy dx y x dy ϕ=+⎰11011(0)022y dy xdx ϕ=+=+=⎰⎰. (3)【解析】利用三重积分的性质,Ω关于yz 平面对称,x 对x 为奇函数,所以0xdV Ω=⎰⎰⎰,即()x z dV zdV ΩΩ+=⎰⎰⎰⎰⎰⎰.Ω是由球心在原点半径为1的上半球面与顶点在原点、对称轴为z 轴、半顶角为4π的锥面所围成.故可选用球坐标变换,则020014πθπϕρΩ≤≤≤≤≤≤:,,,所以 2cos sin I zdV d d d ρϕρϕρϕθΩΩ==⋅⎰⎰⎰⎰⎰⎰ 2113344000001cos sin 2sin 22d d d d d πππθϕϕϕρρπϕϕρρ==⎰⎰⎰⎰⎰1440011cos 2248πππϕρ⎡⎤⎡⎤=-⋅=⎢⎥⎢⎥⎣⎦⎣⎦.四、(本题满分6分.)【解析】直接展开()f x 相对比较麻烦,可()f x '容易展开,2222211(1)(1)21()1(1)(1)(1)11()1x x f x x x x x x x--+⋅-'=⋅==+--++++-. 由2011(1)(1),(||1)1n nn n n t t t t t t∞==-+-+-+=-<+∑,令2t x =得242222111(1)(1),(1)11nnn n n x x x x x t x ∞===-+-+-+=-<++∑即 221()(1),(||1)1n n n f x x x x ∞='==-<+∑ 所以()()(0)xf x f u du f '=+⎰,22000010(1)arctan(1)104x x nnnn n n u du u du π∞∞==+=-+=+--∑∑⎰⎰ 210(1)421n nn x n π+∞==+-+∑,(||1)x <当1x =±时,式210(1)21n nn x n +∞=-+∑均收敛,而左端1()arctan 1xf x x +=-在1x =处无定义.因此 2101(1)()arctan,[1,1)1421n n n x f x x x x n π∞+=+-==+∈--+∑.五、(本题满分7分.)【解析】先将原式进行等价变换,再求导,试着发现其中的规律, 0()sin ()()sin ()()xx xf x x x t f t dt x x f t dt tf t dt =--=-+⎰⎰⎰,所给方程是含有未知函数及其积分的方程,两边求导,得()cos ()()()cos ()xxf x x f t dt xf x xf x x f t dt '=--+=-⎰⎰,再求导,得()sin ()f x x f x ''=--,即 ()()sin f x f x x ''+=-.这是个简单的二阶常系数非齐次线性微分方程,对应的齐次方程的特征方程为210r +=, 此特征方程的根为r i =±,而右边的sin x 可看作sin xe x αβ,i i αβ±=±为特征根,因此非齐次方程有特解sin cos Y xa x xb x =+.代入方程并比较系数,得10,2a b ==,故cos 2xY x =,所以 12()cos sin cos 2xf x c x c x x =++,又因为(0)0,(0)1f f '==,所以1210,2c c ==,即1()sin cos 22xf x x x =+.六、(本题满分7分.)【解析】方法一:判定方程()0f x =等价于判定函数()y f x =与x 的交点个数.令 0()ln 1cos 2x f x x xdx e π=-+-⎰,其中1cos 2xdx π-⎰是定积分,为常数,且被积函数1cos2x -在(0,)π非负,故1cos 20xdx π->⎰,为简化计算,令01cos 20xdx k π-=>⎰,即()ln xf x x k e=-+,则其导数11()f x x e'=-,令()0f x '=解得唯一驻点x e =, 即 ()0,0()0,f x x ef x e x '><<⎧⎨'<<<+∞⎩,所以x e =是最大点,最大值为()ln 0ef e e k k e=-+=>. 又因为00lim ()lim (ln )lim ()lim (ln )x x x x x f x x k ex f x x k e ++→→→+∞→+∞⎧=-+=-∞⎪⎪⎨⎪=-+=-∞⎪⎩,由连续函数的介值定理知在(0,)e 与(,)e +∞各有且仅有一个零点(不相同),故方程0ln 1cos 2x x xdx e π=--⎰在(0,)+∞有且仅有两个不同实根.方法二:201cos 2sin xdx xdx ππ-=⎰⎰,因为当0x π≤≤时,sin 0x ≥,所以]2002sin 2sin 2cos 220xdx xdx x πππ==-=>⎰,其它同方法一.七、(本题满分6分.)【解析】对方程组的增广矩阵作初等行变换.第一行分别乘以有()4-、()6-加到第二行和第三行上,再第二行乘以()1-加到第三行上, 有1011011014122012320123261423012430001λλλλλλλλλ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪+→--+→--+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪+--+-+⎝⎭⎝⎭⎝⎭. 由于方程组有解的充要条件是()()r A r A =,故仅当10λ-+=,即1λ=时,方程组有解.此时秩()()23r A r A n ==<=,符合定理的第二种情况,故方程组有无穷多解.由同解方程组 1323 1,21,x x x x +=⎧⎨-=-⎩令3,x t =解得原方程组的通解1231,21,,x t x t x t =-+⎧⎪=-⎨⎪=⎩ (其中t 为任意常数). 【相关知识点】1.非齐次线性方程组有解的判定定理:设A 是m n ⨯矩阵,线性方程组Ax b =有解的充分必要条件是系数矩阵的秩等于增广矩阵()A A b =的秩,即是()()r A r A =(或者说,b 可由A 的列向量12,,,n ααα线表出,亦等同于12,,,n ααα与12,,,,n b ααα是等价向量组)设A 是m n ⨯矩阵,线性方程组Ax b =,则(1) 有唯一解 ⇔ ()().r A r A n == (2) 有无穷多解 ⇔ ()().r A r A n =< (3) 无解 ⇔ ()1().r A r A +=⇔ b 不能由A 的列向量12,,,n ααα线表出.八、(本题满分8分.)【解析】(1)由λ为A 的特征值可知,存在非零向量α使A αλα=,两端左乘1A -,得1A αλα-=.因为0α≠,故0λ≠,于是有11A ααλ-=.按特征值定义知1λ是1A -的特征值.(2)由于逆矩阵的定义1||A A A *-=,据第(1)问有1||||A A A A ααααλλ**=⇒=,按特征值定义,即||A λ为伴随矩阵A *的特征值.【相关知识点】矩阵特征值与特征向量的定义:设A 是n 阶矩阵,若存在数λ及非零的n 维列向量X 使得AX X λ=成立,则称λ是矩阵A 的特征值,称非零向量X 是矩阵A 的特征向量.九、(本题满分9分.)【解析】由球的对称性,不妨设球面∑的球心是(0,0,)a , 于是∑的方程是2222()x y z a R ++-=.先求∑与球面2222x y z a ++=的交线Γ:2222222222(),22,x y z a R a R z a x y z a ⎧++-=-⎪⇒=⎨++=⎪⎩. 代入上式得Γ的方程 422224R x y R a+=-.它在平面xOy 上的投影曲线4222222,(02),40,R x y b b R R a az ⎧+==-<<⎪⎨⎪=⎩相应的在平面xOy 上围成区域设为xy D ,则球面∑在定球面内部的那部分面积22()1xyx y D S R z z dxdy ''=++⎰⎰.将∑的方程两边分别对,x y 求偏导得,z x z y x z a y z a∂∂=-=-∂-∂-, 所以 2222()11()()xyxyx y D D x y S R z z dxdy dxdy a z a z''=++=++--⎰⎰⎰⎰ 222221()()xyxyD D x y dxdy dxdy a z a z R x y =++=----⎰⎰⎰⎰.利用极坐标变换(02,0)b θπρ≤≤≤≤有222222()xybD S R dxdy d R x yR πθρρ=---⎰⎰⎰⎰极坐标变换2222200()2b R d R R πθρρ=---⎰⎰ 222202()2()b R R R R b R πρπ=--=--代入42224R b R a =-,化简得32()2R S R R aππ=-.这是一个关于R 的函数,求()S R 在(0,2)a 的最大值点,()S R 两边对R 求导,并令()0S R '=,得23()40R S R R a ππ'=-=,得43aR =. 且 4()0,034()0,23S R R a S R a R a ⎧'><<⎪⎪⎨⎪'<<<⎪⎩,故43aR =时()S R 取极大值,也是最大值. 因此,当43aR =时球面∑在定球面内部的那部分面积最大.十、填空题(本题满分6分,每小题2分.) (1)【解析】 方法一:()()()()P A B P A P B P AB =+-()()()(|)0.7P A P B P A P B A =+-=. 方法二:()()()P AB P B P AB =+()()(|)0.60.50.20.7P B P A P B A =+=+⨯=.(2)【解析】设事件A =“甲射中”,B =“乙射中”,依题意,()0.6P A =,()0.5P B =,A 与B 相互独立,()()()0.60.50.3P AB P A P B =⋅=⨯=.因此,有 ()()()()P AB P A P B P AB =+-0.60.50.30.8=+-=. (())()(|)0.75()()P A A B P A P A AB P A B P A B ===.(3)【解析】设事件A =“方程有实根”,而方程210x x ξ++=有实根的充要条件是其判别式240ξ∆=-≥,即{}{}22404A ξξ=-≥=≥.随机变量ξ在(1,6)上服从均匀分布,所以其分布函数为0, 1,1(), 16,611, 6.x x F x x x <⎧⎪-⎪=≤<⎨-⎪≥⎪⎩由分布函数的定义()()P x k F k ≤=,{}{}21210.20.8.P P ξξ≥=-<=-= 而{}20.P ξ≤-=所以由概率的可加性,有{}{}{}2()422P A P P ξξξ=≥=≥+≤-0.800.8=+=.【相关知识点】广义加法公式:()()()()P AB P A P B P AB =+-.条件概率:()(|)()P BA P B A P A =,所以()()(|)()P AB P BA P B A P A ==. 十一、(本题满分6分.)【解析】~(1,2)X N ,~(0,1)Y N ,由独立的正态变量X 与Y 的线性组合仍服从正态分布,且235,EZ EX EY =-+=44219DZ DX DY =+=⨯+=,得 ~(5,9)Z N .代入正态分布的概率密度公式,有Z 的概率密度函数为 2(5)18()32z Z f z π--=.【相关知识点】对于随机变量X 与Y 均服从正态分布,则X 与Y 的线性组合亦服从正态分布.若X 与Y 相互独立,由数学期望和方差的性质,有()()()E aX bY c aE X bE Y c ++=++, 22()()()D aX bY c a D X b D Y ++=+,其中,,a b c 为常数.1991年全国硕士研究生入学统一考试数学一试题一、填空题(本题满分15分,每小题3分.)(1) 设21,cos ,x t y t ⎧=+⎨=⎩则22d y dx =__________.(2) 由方程2222xyz x y z ++=(,)z z x y =在点(1,0,1)-处的全微分dz =__________.(3) 已知两条直线的方程是1123:101x y z L ---==-;221:211x y zL +-==,则过1L 且平行于2L 的平面方程是__________.(4) 已知当0x →时,123(1)1ax +-与cos 1x -是等价无穷小,则常数a =__________.(5) 设4阶方阵 5 2 0 02 1 0 00 0 1 20 0 1 1A ⎛⎫ ⎪⎪= ⎪- ⎪⎝⎭,则A 的逆阵1A -=__________.二、选择题(本题满分15分,每小题3分.) (1) 曲线2211x x e y e--+=- ( )(A) 没有渐近线 (B) 仅有水平渐近线(C) 仅有铅直渐近线 (D) 既有水平渐近线又有铅直渐近线 (2) 若连续函数()f x 满足关系式20()ln 22xt f x f dt ⎛⎫=+ ⎪⎝⎭⎰,则()f x 等于 ( ) (A) ln 2xe (B) 2ln 2xe(C) ln 2xe + (D) 2ln 2xe +(3) 已知级数11(1)2n n n a ∞-=-=∑,2115n n a ∞-==∑,则级数1n n a ∞=∑等于 ( )(A) 3 (B) 7 (C) 8 (D) 9(4) 设D 是xOy 平面上以(1,1)、(-1,1)和(-1,-1)为顶点的三角形区域,1D 是D 在第一象限的部分,则(cos sin )Dxy x y dxdy +⎰⎰等于 ( )(A) 12cos sin D x ydxdy ⎰⎰ (B) 12D xydxdy ⎰⎰(C) 14(cos sin )D xy x y dxdy +⎰⎰ (D) 0(5) 设n 阶方阵A 、B 、C 满足关系式ABC E =,其中E 是n 阶单位阵,则必有 ( ) (A) ACB E = (B) CBA E =(C) BAC E = (D) BCA E =三、(本题满分15分,每小题5分.)(1) 求0)x x x π+→. (2) 设n 是曲面222236x y z ++=在点(1,1,1)P 处的指向外侧的法向量,求函数2268x y u +=P 处沿方向n 的方向导数.(3) 22()x y z dV Ω++⎰⎰⎰,其中Ω是由曲线22,0y z x ⎧=⎨=⎩绕z 轴旋转一周而成的曲面与平面4z =所围成的立体.四、(本题满分6分)在过点(0,0)O 和(,0)A π的曲线族sin (0)y a x a =>中,求一条曲线L ,使沿该曲线从O 到A 的积分3(1)(2)Ly dx x y dy +++⎰的值最小.五、(本题满分8分.)将函数()2||(11)f x x x =+-≤≤展开成以2为周期的傅立叶级数,并由此求级数211n n ∞=∑的和.六、(本题满分7分.)设函数()f x 在[0,1]上连续,(0,1)内可导,且1233()(0)f x dx f =⎰,证明在(0,1)内存在一点c ,使()0f c '=.七、(本题满分8分.)已知1(1,0,2,3)α=,2(1,1,3,5)α=,3(1,1,2,1)a α=-+,4(1,2,4,8)a α=+,及(1,1,3,5)b β=+.(1) a 、b 为何值时,β不能表示成1234αααα、、、的线性组合?(2) a 、b 为何值时,β有1234αααα、、、的唯一的线性表示式?并写出该表示式.八、(本题满分6分)设A 为n 阶正定阵,E 是n 阶单位阵,证明A E +的行列式大于1.九、(本题满分8分)在上半平面求一条向上凹的曲线,其上任一点(,)P x y 处的曲率等于此曲线在该点的法线段PQ 长度的倒数(Q 是法线与x 轴的交点),且曲线在点(1,1)处的切线与x 轴平行.十、填空题(本题满分6分,每小题3分.)(1) 若随机变量X 服从均值为2,方差为2σ的正态分布,且{}240.3P X <<=,则{}0P X <=_______.(2) 随机地向半圆202y ax x <<-(a 为正常数)内掷一点,点落在半圆内任何区域的概率与区域的面积成正比,则原点和该点的连线与x 轴的夹角小于4π的概率为_______.十一、(本题满分6分)设二维随机变量(,)X Y 的概率密度为(2)2, 0,0(,)0, x y e x y f x y -+⎧>>=⎨⎩其他, 求随机变量2Z X Y =+的分布函数.1991年全国硕士研究生入学统一考试数学一试题解析一、填空题(本题满分15分,每小题3分.) (1)【答案】3sin cos 4t t tt -【解析】这是个函数的参数方程,满足参数方程所确定函数的微分法,即 如果 ()()x t y t φϕ=⎧⎨=⎩, 则 ()()dy t dx t ϕφ'='.所以 sin 2dydy tdt dx dx tdt-==, 再对x 求导,由复合函数求导法则得22sin 1()()22d y d dy dt d t dx dt dx dx dt t t-=⋅=⋅232cos 2sin 1sin cos 424t t t t t tt t t-+-=⋅=. (2)【答案】2dx dy -【解析】这是求隐函数在某点的全微分,这里点(1,0,1)-的含义是(1,0)1z z ==-. 将方程两边求全微分,由一阶全微分形式不变性得222222()02d xyz x y z+=++,再由全微分四则运算法则得222()()xy dz ydx xdy z x y z++=++,令1,0,1x y z ===-,得2dy =,即2dz dx dy =. (3)【答案】320x y z -++=【解析】所求平面∏过直线1L ,因而过1L 上的点(1,2,3);因为∏过1L 平行于2L ,于是∏平行于1L 和2L 的方向向量,即∏平行于向量1(1,0,1)l =-和向量2(2,1,1)l =,且两向量不共线,于是平面∏的方程1231010211x y z ----=, 即320x y z -++=. (4)【答案】32-【解析】因为当0x →时,11sin ,(1)1nxx x x n+-, 当0x →时20ax →,所以有122223111(1)1,cos 1sin ,322ax ax x x x +--=--所以 12230021(1)123lim lim 1cos 132x x axax a x x →→+-==---. 因为当0x →时,123(1)1ax +-与cos 1x -是等价无穷小,所以213a -=,故32a =-. (5)【答案】12002500120033110033-⎛⎫⎪- ⎪ ⎪ ⎪⎪⎪-⎪⎝⎭. 【解析】为求矩阵的逆可有多种办法,可用伴随,可用初等行变换,也可用分块求逆.根据本题的特点,若知道分块求逆法,则可以简单解答.注意: 1110000A AB B ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭,111000A B B A---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭. 对于2阶矩阵的伴随矩阵有规律:a b A c d ⎛⎫=⎪⎝⎭,则求A 的伴随矩阵*a b d b A c d c a *-⎛⎫⎛⎫== ⎪ ⎪-⎝⎭⎝⎭.如果0A ≠,这样111a b d b d b c d c a c a A ad bc---⎛⎫⎛⎫⎛⎫== ⎪ ⎪⎪---⎝⎭⎝⎭⎝⎭. 再利用分块矩阵求逆的法则:1110000A AB B ---⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭,易见 112002500120033110033A --⎛⎫⎪- ⎪ ⎪= ⎪⎪⎪-⎪⎝⎭.二、选择题(本题共5个小题,每小题3分,满分15分.)(1)【答案】(D)【解析】由于函数的定义域为0x ≠,所以函数的间断点为0x =,222211lim limlim11x x x x x x x e e y ee --→→→++===∞--,所以0x =为铅直渐近线,222211lim limlim111x x x x x x x e e y ee --→∞→∞→∞++====--,所以1y =为水平渐近线.所以选(D).【相关知识点】铅直渐近线:如函数()y f x =在其间断点0x x =处有0lim ()x x f x →=∞,则0x x =是函数的一条铅直渐近线;水平渐近线:当lim (),(x f x a a →∞=为常数),则y a =为函数的水平渐近线.(2)【答案】(B) 【解析】令2tu =,则2,2t u dt du ==,所以 20()ln 22()ln 22x x t f x f dt f u du ⎛⎫=+=+ ⎪⎝⎭⎰⎰,两边对x 求导,得()2()f x f x '=,这是一个变量可分离的微分方程,即[()]2()d f x dx f x =.解之得2()xf x Ce =,其中C 是常数.又因为0(0)2()ln 2ln 2f f u du =+=⎰,代入2()x f x Ce =,得0(0)ln 2f Ce ==,得ln 2C =,即2()ln 2x f x e =⋅.(3)【答案】(C) 【解析】因为112342121(1)n n n n n a a a a a a a ∞--=-=-+-++-+∑1234212()()()n n a a a a a a -=-+-++-+212212111()n n n n n n n aa a a ∞∞∞--====-=-∑∑∑(收敛级数的结合律与线性性质),所以1221111(1)523n nn n n n n aa a ∞∞∞--====--=-=∑∑∑.而12342121()()()nn n n aa a a a a a ∞-==+++++++∑212212111()n n n n n n n aa a a ∞∞∞--====+=+∑∑∑538=+=,故应选(C).(4)【答案】(A)【解析】如图,将区域D 分为1234,,,D D D D 四个子区域. 显然,12,D D 关于y 轴对称,34,D D 关于x 轴对称.令 12cos sin DDI xydxdy I x ydxdy ⎧=⎪⎨=⎪⎩⎰⎰⎰⎰,由于xy 对x 及对y 都是奇函数,所以12340,0D D D D xydxdy xydxdy ++==⎰⎰⎰⎰.而cos sin x y 对x 是偶函数,对y 是奇函数,故有34121cos sin 0,cos sin 2cos sin D D D D D x ydxdy x ydxdy x ydxdy ++==⎰⎰⎰⎰⎰⎰,所以 112(cos sin )2cos sin DD xy x y dxdy II x ydxdy +=+=⎰⎰⎰⎰,故选(A).(5)【答案】(D)【解析】矩阵的乘法公式没有交换律,只有一些特殊情况可以交换.由于A 、B 、C 均为n 阶矩阵,且ABC E =,对等式两边取行列式,据行列式乘法公式||||||1A B C =,得到0A ≠、0B ≠、0C ≠,知A 、B 、C 均可逆,那么,对于ABC E =,先左乘1A -再右乘A 有 1ABC E BC A BCA E -=→=→=,故应选(D).其实,对于ABC E =先右乘1C -再左乘C ,有1ABC E AB C CAB E -=→=→=.三、(本题满分15分,每小题5分.) (1)【解析】这是1∞型未定式求极限.1(cos 1)cos 1lim (cos )lim (1(cos 1))x xx x x x x x ππ++-⋅-→→=+-令1x t =,则0x +→时0t -→,所以1cos 100lim(11))lim(1)x tx t x t e +--→→+=+=, 所以 01(cos 1)(cos 1)(cos 1)limcos 1lim (1lim x x x x xx x x x e e πππ→++---⋅-→→+==.因为当0x →时,sin x x ,所以220002sin 21)limlim lim 2x x x x x x x x x ππππ+++→→→--⎝⎭⎝⎭===-,故 0(cos 1)lim2lim )x x xx x e eπππ→+--→==.(2)【解析】先求方向n 的方向余弦,再求,,u u ux y z∂∂∂∂∂∂,最后按方向导数的计算公式 cos cos cos u u u u n x y zαβγ∂∂∂∂=++∂∂∂∂求出方向导数. 曲面222236x y z ++=在点(1,1,1)P 处的法向量为{}{}{}(1,1,1)4,6,24,6,222,3,1Px y z x y z ±==±,在点(1,1,1)P 处指向外侧,取正号,并单位化得}}{}222,3,12,3,1cos ,cos ,cos .14231n αβγ===++ 又 222222222222226614686888146868686814P P P u x x x z x y z x y u y y y z x y z x y x y x y u z z z ⎧∂⎪===⎪∂++⎪⎪∂⎪===⎨∂++⎪⎪⎪++∂===⎪∂⎪⎩, 所以方向导数cos cos cos u u u u n x y z αβγ∂∂∂∂=++∂∂∂∂ 62831111471414141414=⋅+⋅-⋅=. (3)【解析】由曲线22,0y z x ⎧=⎨=⎩绕z 轴旋转一周而围成的旋转面方程是222x y z +=.于是,Ω是由旋转抛物面221()2z x y =+与平面4z =所围成.曲面与平面的交线是 228,4x y z +==.选用柱坐标变换,令cos ,sin ,x r y r z z θθ===,于是:02,04,02z r z θπΩ≤≤≤≤≤≤,因此 22()I x y z dV Ω=++⎰⎰⎰ 42220()zdz d r z rdr πθ=+⎰⎰⎰24240242r z r r r z dz π==⎡⎤⎛⎫⎢⎥=+ ⎪⎢⎥⎝⎭⎣⎦⎰42025643z dz ππ==⎰.四、(本题满分6分)【解析】曲线sin ,([0,])y a x x π= ∈,则cos dy a xdx =,所以 3(1)(2)LI y dx x y dy =+++⎰3[1(sin )(2sin )cos ]a x x a x a x dx π=+++⋅⎰23301sin 2cos sin 22a a x ax x x dx π⎛⎫=+++ ⎪⎝⎭⎰233sin 2cos sin 22a axdx a x xdx xdx ππππ=+++⎰⎰⎰232(cos 1)cos 2sin sin 224a ax d x a xd x xd x ππππ=+-++⎰⎰⎰[][]2330001cos cos 2sin cos cos 234a a x x a x x x x ππππ⎡⎤=+-+++-⎢⎥⎣⎦3443a a π=+-. 对关于a 的函数3443I a a π=+-两边对a 求导数,其中0a >,并令0,I '=得2440I a '=-=.所以1a =, 且 0,010,1I a I a '<<<⎧⎨'><<+∞⎩.故1a =为函数344,(0)3I a a a π=+->的极小值点,也是最小值点.故所求的曲线为 sin ,([0,])y x x π= ∈.五、(本题满分8分.)【解析】按傅式级数公式,先求()f x 的傅式系数n a 与n b .因()f x 为偶函数,所以1()sin 0(1,2,3,)l n l n b f x xdx n l l π-== =⎰, 012()cos ()cos l l n l n n a f x xdx f x xdx l l l l ππ-==⎰⎰11100022(2)cos 4cos sin x n xdx n xdx xd n x n ππππ=+=+⎰⎰⎰122022(cos 1)sin (1,2,3,)n n xdx n n n ππππ-=-= =⎰, 1002(2)5a x dx =+=⎰.因为()2||f x x =+在区间(11)x -≤≤上满足狄利克雷收敛定理的条件,所以01()2||cos sin 2n n n a n n f x x a x b x l l ππ∞=⎛⎫=+=++ ⎪⎝⎭∑ 22152(cos 1)cos 2n n n x n πππ∞=-=+∑221541cos(21)(11)2(21)n n x x n ππ∞==-- -≤≤-∑. 令0x =,有221541(0)20cos 02(21)n f n π∞==+=--∑,所以,2211(21)8n n π∞==-∑.又 222221111111111(21)(2)(21)4n n n n n n n n n ∞∞∞∞====⎡⎤=+=+⎢⎥--⎣⎦∑∑∑∑, 所以, 2213148n n π∞==∑,即 22116n n π∞==∑.六、(本题满分7分.)【解析】由定积分中值定理可知,对于123()f x dx ⎰,在区间2(,1)3上存在一点ξ使得12321()()(1)()33f x dx f f ξξ=-=⎰,即1233()()(0)f x dx f f ξ==⎰.由罗尔定理可知,在区间(0,1)内存在一点(01)c c ξ<<<,使得()0f c '=.七、(本题满分8分)【解析】设11223344x x x x ααααβ+++=,按分量写出,则有123423341234123412123(2)4335(8)5x x x x x x x x x a x x b x x x a x α+++=⎧⎪-+=⎪⎨++++=+⎪⎪++++=⎩. 对方程组的增广矩阵作初等行变换:第一行分别乘以有()2-、()3-加到第三行和第四行上,再第二行乘以()1-、()2-加到第三行和第四行上,有1111111*********11212324301213518502252A a b a b a a ⎛⎫⎛⎫ ⎪ ⎪--⎪ ⎪=→ ⎪ ⎪+++ ⎪ ⎪+-+⎝⎭⎝⎭ 11111011210010010a b a ⎛⎫ ⎪- ⎪→ ⎪+ ⎪+⎝⎭, 所以,当1,0a b =-≠时,()1()r A r A +=,方程组无解.即是不存在1234x ,x ,x ,x 使得11223344x x x x ααααβ+++=成立,β不能表示成1234αααα、、、的线性组合;当1a ≠-时,()() 4.r A r A ==方程组有唯一解21,,,0111Tb a b b a a a ++⎛⎫- ⎪+++⎝⎭,故β有唯一表达式,且1234210111b a b b a a a βαααα++=-+++⋅+++. 【相关知识点】非齐次线性方程组有解的判定定理:设A 是m n ⨯矩阵,线性方程组Ax b =有解的充分必要条件是系数矩阵的秩等于增广矩阵()A A b =的秩,即是()()r A r A =(或者说,b 可由A 的列向量12,,,n ααα线表出,亦等同于12,,,n ααα与12,,,,n b ααα是等价向量组).设A 是m n ⨯矩阵,线性方程组Ax b =,则 (1) 有唯一解 ⇔ ()().r A r A n == (2) 有无穷多解 ⇔ ()().r A r A n =< (3) 无解 ⇔ ()1().r A r A +=⇔ b 不能由A 的列向量12,,,n ααα线表出.八、(本题满分6分)【解析】方法1:因为A 为n 阶正定阵,故存在正交矩阵Q ,使121T N Q AQ Q AQ λλλ-⎛⎫⎪⎪==Λ= ⎪ ⎪⎝⎭, 其中0(1,2,)i i n λ>=,i λ是A 的特征值.因此 ()TTTQ A E Q Q AQ Q Q E +=+=Λ+两端取行列式得 |||||||||()|||(1)TTiA E Q A E Q Q A E Q E λ+=+=+=Λ+=+∏,从而 ||1A E +>.方法2:设A 的n 个特征值是12n ,,,.λλλ由于A 为n 阶正定阵,故特征值全大于0.由λ为A 的特征值可知,存在非零向量α使A αλα=,两端同时加上α,得()()1A E αλα+=+.按特征值定义知1λ+是A E +的特征值.因为A E +的特征值是12111n ,,,.λλλ+++它们全大于1,根据i A λ=∏,知||(1)1i A E λ+=+>∏.【相关知识点】阵特征值与特征向量的定义:设A 是n 阶矩阵,若存在数λ及非零的n 维列向量X 使得AX X λ=成立,则称λ是矩阵A 的特征值,称非零向量X 是矩阵A 的特征向量.九、(本题满分8分)【解析】曲线()y y x =在点(,)P x y 处的法线方程为1()Y y X x y -=--'(当0y '≠时), 它与x 轴的交点是(,0)Q x yy '+,从而12222||()(1)PQ yy y y y ''=+=+.当0y '=时,有(,0),||Q x PQ y =,上式仍然成立. 因此,根据题意得微分方程3122221(1)(1)y y y y ''=''++,即21yy y '''=+.这是可降阶的高阶微分方程,且当1x =时,1,0y y '==.令()y P y '=,则dP y Pdy ''=,二阶方程降为一阶方程21dP yP P dy =+,即21PdP dyP y=+. 即21y P =+C 为常数.因为当1x =时,1,0y P y '===,所以1C =,即2211y P y '=+=+所以21y y '=-分离变量得21dx y =±-.令sec y t =,并积分,则上式左端变为2sec tan ln sec tan tan 1t tdtt t C ty ==++-⎰22ln sec sec 1ln 1t t C y y C =-+=+-.因曲线在上半平面,所以210y y +->,即(2ln 1y y C x -=±.故 21x y y Ce ±-=.当1x =时,1,y = 当x 前取+时,1C e -=,211x y y e --=, 2211222111(1)(1)1x x y y y y e e y y y y y y -----====+---+-;当x 前取-时,C e =,211x y y e -+-=, 2211222111(1)(1)1x xy y y y e e y y y y y y ------====+---+-;所以 (1)(1)1()2x x y e e ---=+.十、填空题(本题满分6分,每小题3分.)(1)【解析】一般说来,若计算正态分布随机变量在某一范围内取值的概率,应该已知分布的两个参数μ和2σ,否则应先根据题设条件求出μ,2σ,再计算有关事件的概率,本题可从2()0.8σΦ=,通过查()x Φ表求出σ,但是注意到所求概率(0)P x <即是2()σ-Φ与2()σΦ之间的关系,可以直接由2()σΦ的值计算出2()σ-Φ.因为2(2,)X N σ,所以可标准化得2(0,1)X N σ-,由标准正态分布函数概率的计算公式,有4222(24)()()P x σσ--<<=Φ-Φ,2()(24)(0)0.8P x σΦ=<<+Φ=.由正态分布函数的对称性可得到 0222(0)()()1()0.2P x σσσ-<=Φ=Φ-=-Φ=.(2)【解析】设事件A =“掷的点和原点的连线与x 轴的夹角小于4π”, 这是一个几何型概率的计算问题.由几何概率公式()D S P A S =半圆,而 212S a π=半圆, 22141124D OACS SS a a π=+=+圆,yOABDC故 222111124()122a aP A a πππ+==+.十一、(本题满分6分)【解析】二维连续型随机变量的概率等于对应区域的二重积分,所以有{}{}2()2(,)x y zF z P Z z P X Y z f x y dxdy +≤=≤=+≤=⎰⎰.当0z ≤时,()0F z =.因为2x y z +=在直线20x y +=的下方 与0,0x y >>(即第一象限)没有公共区域,所以()0F z =.当0z >时,2x y z +=在直线20x y +=的上方与第一象限相交成一个三角形区域D ,此即为积分区间.(2)20()2()1z x zzx y x z z z F z dx e dy e e dx e ze --+----==-=--⎰⎰⎰.所以2Z X Y =+的分布函数 0, 0,()1, 0. z zz F z e ze z --<⎧=⎨--≥⎩1992年全国硕士研究生入学统一考试数学一试题一、填空题(本题共5个小题,每小题3分,满分15分,把答案填在题中横线上.) (1) 设函数()y y x =由方程cos()0x yexy ++=确定,则dydx=____________. (2) 函数222ln()u x y z =++在点(1,2,2)M -处的梯度M gradu =____________.(3) 设21, <0,()1, 0<,x f x x x ππ--≤⎧=⎨+≤⎩则其以2π为周期的傅里叶级数在点x π=处收敛于____________.(4) 微分方程tan cos y y x x '+=的通解为y =____________.yO20x y +=zD(5) 设111212122212n n n n n n a b a b a b a b a b a b A a b a b a b ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭,其中0,0,1,2.i i a b i n ≠≠=则矩阵A 的秩()r A =____________.二、选择题(本题共5小题,每小题3分,满分15分.在每小题给出的四个选项中,只有一项是符合题目要求的,把所选项前的字母填在题后的括号内.)(1) 当1x →时,函数12111x x e x ---的极限 ( ) (A) 等于2 (B) 等于0 (C) 为∞ (D) 不存在但不为∞ (2) 级数1(1)(1cos )n n n α∞=--∑(常数0α>) ( ) (A) 发散 (B) 条件收敛 (C) 绝对收敛 (D) 收敛性与α有关 (3) 在曲线23,,x t y t z t ==-=的所有切线中,与平面24x y z ++=平行的切线 ( ) (A) 只有1条 (B) 只有2条 (C) 至少有3条 (D) 不存在(4) 设32()3||f x x x x =+,则使(0)nf 存在的最高阶数n 为 ( )(A) 0 (B) 1 (C) 2 (D) 3(5) 要使121 00, 121ξξ⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦都是线性方程组0Ax =的解,只要系数矩阵A 为 ( ) (A) ()2 1 1- (B) 2 0 1 0 1 1-⎛⎫⎪⎝⎭(C) 1 0 2 0 1 1-⎛⎫ ⎪-⎝⎭ (D) 011422011-⎛⎫⎪-- ⎪ ⎪⎝⎭三、(本题共3小题,每小题5分,满分15分.) (1) 求 211x x x→--.。