ABAQUS-上机实验报告
abaqus 作业报告 工字梁

梁是靠两端面连接在立柱上,我在端面上限制 位移,允许有转动自由度。
网格划分和结果分析 划分网格去种子间距为 10(较大间隔可以节约计算时间),自动划分为四面体二
次单元求解
接下来提交工作,进行计算,下面是每个分析步的位移云图:
第一步: 第二步
第三步 第四步:
第五步:
载荷施加处位移曲线(取两个作用区域位移的平均值,)
由于横梁上有两个滑块沿梁移动,我们需要分析滑块在 不同位置时横梁的受力变形情况。所以在横梁上画了 5 对 20mmx20mm 的加载区域(途 中红色的那两个为一对),每隔 140mm 就有一对加载区。
创建材料和截面属性 长度单位用 mm,力的单位用 N,则质量单位为 t(吨),密度单位为 t/mm3,所
可以看出,梁上最大位移为 6.054e-4mm,而加载区域位移最大,仅为 2.1e-4mm,而测量装置是加在滑块上,所以影响测量的位移仅仅是家在区域的位移。 这个变形很小,对于我们设计课程要求的 5um 精度是可以忽略的。 分析变形如此小的原因主要是梁的尺寸太大了,接下来的优化设计中可以考虑减小梁 横截面的尺寸,以减小重量。
三坐标测量机横梁的有限元分析—“工”字梁篇
题目分析 本学期设计三坐标测量机中,横梁的变形,可以直接影响到测量机的进度。我们
希望比较一下不同横梁设立变形的情况,选出最好的横梁,对结构进行优化设计。按 照小组分工,我负责工字梁的计算。 几何建模
使用截面拉伸的方法建模,连长度为 680mm,刚开始我 在每个内直角处都设计了 R5 的圆角,并在此处进行分割,生 成优化网格,结果由于划分的太细,导致计算速度很慢,同 时计算结果与没与倒角时没有显著区别,于是以后的计算中 我都取消了圆角,这样可以加快运算速度,同时结果也不会 有明显错误。
ABAQUS有限元上机报告 南理工

有限元上机实验报告[——以Abaqus软件进行的有限元分析]汪健强1008320139实验1——平面问题应力集中分析目的要求:掌握平面问题的有限元分析方法和对称性问题建模的方法。
通过简单力学分析,可以知道本实验问题属于平面应力问题,基于结构和载荷的对称性,可以只取模型的1/4进行分析。
用8节点四边形单元分析X=0截面σx的分布规律和最大值,计算圆孔边的应力集中系数,并与理论解对比。
一、实验过程概述:1、启动ABAQUS/CAE2、创建部件3、创建材料和截面属性4、定义装配件5、设置分析步6、定义边界条件和载荷7、划分网格8、提交分析作业9、后处理10、退出ABAQUS/CAE二、实验结果:(1)边界受力图(1)X方向应力分量σx应力云图:(2)左边界直线与圆弧边交点的σx值为: 2.96714 MPa;(2)左右对称面上的σx曲线:三、实验内容分析:a)模型全局σx应力分布:σx应力集中分布于中心圆孔与x、y轴相交的地方,且与x轴相交处应力为负,与y轴相交处应力为正;沿圆周向周围,σx迅速减小;沿y 方向的σx应力大于沿x方向的σx应力。
b)应力集中系数为 2.92975,小于理论值3.0。
误差来源:有限元分析方法是将结构离散化,网格划分得越稀疏,计算出的结果就越偏离理论值。
分的越密集,结果越接近与理论值。
四、实验小结与体会:通过本次实验,对理论课所学有限元基本方法有了一个更加直观、深入的理解。
通过对Abaqus软件三个步骤:前处理、分析计算、后处理的操作,了解了这款软件的基本应用和它对有限元的一些很好的应用。
试验中,遇到诸多问题,仔细思考,加之请教老师,逐一解决,确实很有收获。
更增加了对有限元的认识,和对其功能之强大有了更深的理解。
实验二平面问题有限元解的收敛性一、实验目的和要求:(1)在ABAQUS软件中用有限元法探索整个梁上σx和σy的分布规律。
(2)计算梁底边中点正应力σx的最大值;对单元网格逐步加密,把σx的计算值与理论解对比,考察有限元解的收敛性。
南京理工大学2016年有限元上机实验报告(ABAQUS)

点线性等参元(完全积分 Quad,Linear;减缩积分 Quad,linear,Reduced integration;非协调模式 Quad,Linear,Incompatible modes)和 8 节点二次等参 元(Quad,Quadratic) 。
7 创建并提交分析。 ○ 8 查看结果并分析。 ○
4 计算结果分析讨论与结论
4.1 粗网格下梁中部应力分量和上下边法向应力对比
1 理论解: ○
X 方向正应力由下式计算:
已知 q=1N/mm2 ,h=160mm,L=1000mm, ymax
h 代入上式得: 2
3
x max
6 106 1 1 1 3 0 0.08 106 4 29.497MPa 3 0.16 4 2 4 5
分别应用 3 节点三角形单元、4 节点线性等参元(完全积分、减缩积分、 非协调模式) 、8 节点二次等参元完全积分进行下列各项数值实验:1)用粗网 格求解梁中部应力分量 x 最大值和上下边法向应力分量,并通过精确解对采用 不同单元的 x 计算精度进行对比分析;2)对粗网格下梁中部铅直(y 向)位移 进行对比分析;3)通过多次网格加密,对比试验 3 节点三角形单元和 8 节点二 次等参元的收敛速度。总结出研究结论,撰写实验报告。
2 3 节点三角形单元计算结果: ○
x 的应力云图
梁中部应力分量 x 变化曲线
上边法向应力分量
4
下边法向应力分量
梁中部应力分量 x 最大值为 17.03Mpa。 梁上边法向应力分量最大值为-1.3428Mpa 梁下边法向应力分量最大值为 0.3428Mpa
3 4 节点线性等参单元完全积分: ○
-0.130665
ABAQUS实验报告

ABAQUS实验报告1.实验目的本次实验的主要目的是使用ABAQUS软件对一个具体的结构进行有限元分析,了解结构在受力情况下的变形情况,并通过分析结果评估结构的强度和稳定性。
2.实验对象本次实验选择了一个简单的悬臂梁结构作为分析对象,悬臂梁的尺寸为L=100mm,H=10mm,t=10mm,材料为钢材,杨氏模量为210GPa,泊松比为0.33.实验过程首先,使用ABAQUS软件建立了悬臂梁的有限元模型,包括结构的几何形状、材料性质和边界条件。
然后,施加一个向下的均布载荷在悬臂梁的自由端上,通过有限元分析得到了结构在受力后的应力分布、变形情况和位移等数据。
最终,对分析结果进行评估并提出改进建议。
4.实验结果通过ABAQUS软件进行有限元分析,得到了悬臂梁在受力后的应力分布、变形情况和位移等数据。
其中,悬臂梁在受力后的最大应力出现在悬臂梁的根部,并随着距离自由端的增加逐渐减小;结构的最大变形出现在梁的自由端,变形由中间向两侧逐渐减小;结构的最大位移也出现在梁的自由端。
5.结果分析通过对实验结果的分析,可以得出以下结论:(1)悬臂梁在受力后的应力、变形和位移分布符合结构力学的基本原理,最大应力、变形和位移出现在悬臂梁的根部和自由端。
(2)结构的受力情况对结构的强度和稳定性有重要影响,必须合理设计结构的几何形状和材料性质。
(3)通过有限元分析可以准确地预测结构在受力情况下的响应,为结构设计和优化提供了有效的工具和方法。
6.结论与建议根据实验结果的分析,可以得出以下结论和建议:(1)结构的几何形状、材料性质和受力情况对结构的强度和稳定性有重要影响,必须合理设计和选择结构的几何形状和材料性质。
(2)有限元分析是一种有效的工具,可以准确地预测结构在受力情况下的响应,为结构设计和优化提供了重要的参考。
(3)在进行结构设计和优化时,应该充分考虑结构的受力情况,避免结构出现应力集中和失稳现象。
综上所述,通过本次实验,我深刻认识到了结构在受力情况下的变形和破坏机制,对结构的强度和稳定性有了更深入的理解。
ABAQUS实验报告

ABAQUS实验报告一、实验目的本次实验使用 ABAQUS 软件进行有限元分析,旨在研究具体研究对象在特定条件下的力学性能和行为,为实际工程应用提供理论依据和参考。
二、实验原理ABAQUS 是一款功能强大的有限元分析软件,它基于连续介质力学的基本原理,通过将复杂的结构体离散为有限个单元,并对每个单元进行力学分析,最终得到整个结构体的响应。
在本次实验中,我们采用了具体分析方法,如线性分析、非线性分析等,并结合相关材料模型,如弹性模型、塑性模型等来描述研究对象的材料特性。
三、实验模型1、几何模型通过建模软件或方法构建了研究对象的几何模型,其尺寸和形状为详细描述。
2、网格划分为了提高计算精度和效率,对几何模型进行了合理的网格划分。
采用了网格类型,如四面体网格、六面体网格等,网格尺寸为具体尺寸。
3、边界条件和加载方式根据实际情况,设定了边界条件,如固定约束、位移约束等,并以加载方式,如集中力、分布力等对模型进行加载。
四、实验材料1、材料属性研究对象所采用的材料为具体材料名称,其弹性模量为数值,泊松比为数值,屈服强度为数值等。
2、材料本构关系选用了合适的本构关系模型,如线弹性模型、弹塑性模型等来描述材料在受力过程中的应力应变关系。
五、实验步骤1、模型建立在 ABAQUS/CAE 中创建部件,绘制几何形状,定义材料属性,划分网格。
2、装配模型将各个部件按照实际装配关系进行组装。
3、定义分析步设置分析类型(静态分析、动态分析等)和分析步时间。
4、定义边界条件和载荷按照实验设计施加边界条件和载荷。
5、提交作业设置计算参数,提交分析作业进行求解。
6、结果后处理分析计算结果,提取所需的数据,如位移、应力、应变等,并进行可视化处理。
六、实验结果与分析1、位移结果得到了研究对象在加载作用下的位移分布云图。
从结果可以看出,最大位移出现在具体位置,位移值为具体数值。
通过分析位移结果,可以评估结构的变形情况和稳定性。
2、应力结果应力分布云图显示,最大应力集中在具体位置,应力值为具体数值。
Abaqus模态分析试验报告

(一)创建部件1:模块:部件2:从菜单栏中选择部件→创建,弹出创建部件对话框名称:LIAN_FuJian模型空间:三维类型:可变形形状:实体类型:拉伸大约尺寸:2000,为部件最大尺寸的2倍:点击继续,进入草绘模式,为实体拉伸绘制截面草图。
3.4:点击创建圆工具,绘制2个同心圆。
大圆直径为1000,小圆直径为400。
的构造圆。
700绘制一个直径为工具,圆创建构造:点击:5.条构造线,一并添加固定约2创建构造6:点击工具,创建束。
.以构造圆与竖直构造线的交点为圆心,创建圆工具,点击7:的圆。
100绘制一个直径为点选刚才创建的圆为要阵列的实体,环形阵列工具,点击8:按下鼠标中键,弹出环形阵列对话框6 个数:360 总角度:点击确定阵列结果如下::在绘图区按下鼠标中键,弹出编辑基本拉伸对话框9 类型:指定深度200深度:点击确定,第一个部件绘制完成.ZHOU。
轴::创建第二个部件10-(二)装配1:模块:装配2:点击创建实例工具,弹出创建实例对话框创建实例:从部件部件:按住Ctrl选取LIAN_FuJian与ZHOU这2个部件实例类型:非独立(网格在部件上)点击确定,装配体如下点击完为要平移的实例,工具,选择ZHOU平移实例2:点击,回车;输入平移向0),成。
输入平移向量的起始点(00,,回车。
再点击确定,平移后的装配),,量的终点(00100 体如下/切割实体对话框。
/3:点击合并切割实例工具,弹出合并ASM 部件名:-几何运算:合并原始实体:禁用相交边界:删除.点击继续,选择待合并的实例,框选整个模型,点击完成。
ZHOU-1和LIAN_FuJian-1:在模型树下删除4.部件,故可以将ASM5:由于在接下来的分析中只需要用到ZHOU删除。
和LIAN_FuJian 模块:部件,删除。
和工具,选中点击部件管理器LIAN_FuJianZHOU(三)定义材料和截面属性1:模块:属性2:点击创建材料工具,弹出编辑材料对话框名称:Steel通用→密度:7.85e-9力学→弹性→弹性:弹性模量:2.1e5泊松比:0.3点击确定:单击创建截面工具,弹出创建截面对话框3.名称:Section-1类别:实体类型:均质,点击确点击继续,弹出编辑截面对话框。
abaqus有限元实验报告

abaqus有限元实验报告Abaqus有限元实验报告引言有限元分析是一种工程分析方法,它通过将复杂的结构分割成许多小的有限元素,利用数值方法来模拟结构的行为。
Abaqus是一款常用的有限元分析软件,广泛应用于工程领域。
本实验报告旨在通过使用Abaqus软件进行有限元实验,分析结构的力学性能,为工程设计提供参考。
实验目的本实验旨在通过Abaqus软件进行有限元分析,研究结构在不同载荷下的应力、应变和变形情况,探讨结构的强度和稳定性,为工程设计提供依据。
实验步骤1. 确定实验模型:选择适当的结构模型,包括几何形状、材料性质等。
2. 建立有限元模型:使用Abaqus软件建立结构的有限元模型,包括网格划分、边界条件等。
3. 施加载荷:根据实验要求,施加不同的载荷条件,如静载荷、动载荷等。
4. 进行分析:通过Abaqus软件进行有限元分析,得出结构在不同载荷下的应力、应变和变形情况。
5. 结果分析:对实验结果进行分析,评估结构的强度和稳定性。
实验结果通过Abaqus软件进行有限元分析,得出了结构在不同载荷下的应力、应变和变形情况。
实验结果表明,在静载荷作用下,结构的应力分布均匀,变形较小;在动载荷作用下,结构的应力分布不均匀,存在局部应力集中现象。
通过对实验结果的分析,可以评估结构的强度和稳定性,为工程设计提供依据。
结论本实验通过Abaqus软件进行了有限元分析,研究了结构在不同载荷下的应力、应变和变形情况。
实验结果表明,在不同载荷条件下,结构的力学性能存在差异,需要针对不同情况进行合理设计。
本实验为工程设计提供了参考依据,也为Abaqus软件在工程实践中的应用提供了实验数据。
总结通过本次有限元实验,我们深入了解了Abaqus软件在工程分析中的应用,研究了结构在不同载荷下的力学性能。
有限元分析是一种重要的工程分析方法,通过模拟结构的行为,为工程设计提供依据。
希望通过本实验报告的分享,能够对工程领域的同行们有所帮助。
Abaqus模态分析报告实验报告材料

Abaqus模态分析报告实验报告材料一、引言模态分析是结构动力学中的重要分析方法,它用于确定结构的固有频率和振型。
Abaqus 作为一款功能强大的有限元分析软件,为模态分析提供了高效、准确的解决方案。
本报告将详细介绍使用 Abaqus 进行模态分析的实验过程、结果以及相关分析。
二、实验目的本次实验的主要目的是通过 Abaqus 软件对给定的结构进行模态分析,获取其固有频率和振型,评估结构的动态特性,并为后续的结构设计和优化提供依据。
三、实验模型实验所分析的结构为一个简单的悬臂梁,其几何尺寸为长1000mm,宽 100mm,高 50mm。
材料属性为弹性模量 E = 21×10^11 Pa,泊松比ν = 03,密度ρ = 7800 kg/m³。
四、实验步骤1、模型建立在Abaqus/CAE 中创建部件,使用草图工具绘制悬臂梁的截面形状,然后通过拉伸操作生成三维实体模型。
定义材料属性,将弹性模量、泊松比和密度等参数输入到材料定义中。
划分网格,采用合适的网格类型和尺寸,以保证计算精度和效率。
2、边界条件设置在悬臂梁的固定端设置完全固定约束,即限制所有自由度。
3、分析步设置创建模态分析步,指定分析的模态阶数。
4、求解提交作业进行求解计算。
五、实验结果1、固有频率求解完成后,得到了悬臂梁的前 5 阶固有频率,分别为:一阶固有频率:f1 = 5234 Hz二阶固有频率:f2 = 31567 Hz三阶固有频率:f3 = 78912 Hz四阶固有频率:f4 = 125678 Hz五阶固有频率:f5 = 187534 Hz2、振型各阶固有频率对应的振型如下:一阶振型:悬臂梁在垂直方向上的弯曲振动,固定端振幅为 0,自由端振幅最大。
二阶振型:悬臂梁在水平方向上的弯曲振动,固定端振幅为 0,自由端振幅最大。
三阶振型:悬臂梁的扭转振动,固定端扭转角为 0,自由端扭转角最大。
四阶振型:悬臂梁在垂直和水平方向上的复合弯曲振动,振幅分布较为复杂。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重庆交通大学
学生实验报告
实验课程名称ABAQUS上机
开课实验室重庆交通大学计算机中心
学院国际学院年级2013级专业机械设计制造及其自动化班1班学生姓名扈方学号************
开课时间2015 至2016 学年第一学期
实验项目平面问题应力集中分析
实验时间2015.12.24 实验地点2号机房
实验性质 验证性 设计性 综合性
教师评价:
评价教师签名:一:实验目的
掌握平面问题的有限元分析方法和对称性问题的建模方法;
二:实验步骤:
(1)、启用ABAQUS/CAE程序;
(2)、创建部件(Module:Part),(3)创建材料和截面属性(Module:Property),
弹性模量为E=210000 MPa,泊松比为0.3;截取零件的右上部分的1/4为研究对象;
(3)定义装配件(Module:Assembly), (4)选择Dependent;、
设置分析步(Module:Step);
(5)定义边界条件和载荷(Module:Load); (6)划分网格(Module:Mesh),全局尺寸设为2.5,
采用八节点四边形CPS8单元划分网格
(7)提交分析作业(Module:Job);(9)、后处理(Module:Visualization):
(10)、保存并退出ABAQUS/CAE。
(11)小结
有限元法是一种通过离散化,构造特定的单元进行分析,从而模拟连续场力学问题和物理问题的一种数值计算方法。
通过有限元法所求的结果是一个近似值,其精度取决于单元位移模式的阶数和网格化的密集程度。
实验项目轴对称模型
实验时间2015.10.25
实验地点
2号机房
实验性质 验证性 设计性 综合性
教师评价:
评价教师签名:
一:实验目的
使用轴对称单元,依照轴对称的原理进行建模分析,了解使用平面对称单元所需要的注意事项;使用Visualization功能模块查看结果,延展轴对称单元构造等效的三维视图;
二:实验步骤:
(1)、启用ABAQUS/CAE程序;
(2)、创建部件(Module:Part),选择Asymmetry;
(3)、创建材料和截面属性(Module:Property),、(4)定义装配件(Module:Assembly),
弹性模量为E=210000 MPa,泊松比为0.3;选择Dependent;(4)、设置分析步(Module:Step);(5)定义边界条件和载荷(Module:Load),
(6)划分网格(Module:Mesh);(7)提交分析作业(Module:Job);
(8)、后处理(Module:Visualization):
①显示应力云图;
②显示位移云图;
③显示等效的三维模型;
(10)、保存并退出ABAQUS/CAE。
(11)小结
有限元法中只能对刚体位移添加位移约束,对于本模型中的轴对称问题,所存在的位移是轴向位移U2。
由于存在泊松效应,当在上端施加轴向均布载荷时,会引起径向的弹性形变,所以不能施加径向位移约束。
实验项目三维模型的线性静力分析
实验时间2015.12.30
实验地点
2号机房
实验性
质
验证性 设计性 综合性
教师评价:
评价教师签名:一:实验目的
通过ABAQUS软件分析三维单元的应力应变情况;
二:实验步骤:
(1)、启用ABAQUS/CAE程序;
(2)、创建部件(Module:Part),
通过拉伸切除等特征建立三维实体;(3)创建材料和截面属性(Module:Property),
(4)定义装配件(Module:Assembly),
选择Dependent;(5)划分网格(Module:Mesh)
(6)、定义边界条件和载荷(Module:Load);(7)设置分析步(Module:Step);
(8)、提交分析作业(Module:Job);(9)、后处理(Module:Visualization);
(10)、小结
对于复杂的模型可以将其分割成几个简单的部分再进行求解;对于几何形状和边界约束对称的模型,可以从对称面处将模型分开,可以减少计算量。
对于存在应力集中的零部件,在应力集中区域布置较密集的网格,可以在少量增加计算量的同时很好地提高计算精度。
实验项目平面梁分析
实验时间2015.12.30 实验地点2号机房
实验性质 验证性 设计性 综合性
教师评价:
评价教师签名:
一:实验目的
通过ABAQUS软件,用有限元法分析整个梁上的和的分布规律
二:实验步骤:
(1)、启用ABAQUS/CAE程序;
(2)、创建部件(Module:Part),
选择2D Planar;(3)创建材料和截面属性(Module:Property)(4)、定义装配件(Module:Assembly),(5)、设置分析步(Module:Step);
(6)、定义边界条件和载荷(Module:Load),(7)、划分网格(Module:Mesh)(8)、提交分析作业(Module:Job);(9)、后处理(Module:Visualization):
(10)小结
有限元法在求解力场问题时比材料力学更精确,弯曲时纵向线段之间实际上是存在正应力的;。