三角函数相关几何计算训练(附参考答案)
三角函数及解三角形测试题(含答案)

三角函数及解三角形测试题(含答案)三角函数及解三角形1.在锐角三角形ABC中,角A的对边为a,角B的对边为b,角C的对边为c。
根据正弦定理,$\frac{a}{\sinA}=\frac{b}{\sin B}=\frac{c}{\sin C}=2R$,其中R为三角形外接圆的半径。
根据余弦定理,$c^2=a^2+b^2-2ab\cos C$。
根据正切的定义,$\tan A=\frac{a}{b}$。
根据余切的定义,$\cotA=\frac{b}{a}$。
根据正割的定义,$\sec A=\frac{c}{a}$。
根据余割的定义,$\csc A=\frac{c}{b}$。
2.选择题:1.设$\alpha$是锐角,$\tan(\frac{\pi}{4}+\alpha)=3+\sqrt{22}$,则$\cos\alpha=\frac{2\sqrt{22}}{36}$。
2.一艘船向XXX,看见正西方向有相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°,另一灯塔在船的南偏西75°,则这艘船的速度是每小时5海里。
4.已知函数$f(x)=3\sin\omega x+\cos\omega x$,$y=f(x)$的图象与直线$y=2$的两个相邻交点的距离等于$\pi$,则$f(x)$的单调递增区间是$(\frac{k\pi}{2}-\frac{\pi}{12},\frac{k\pi}{2}+\frac{5\pi}{12})$,其中$k\in Z$。
5.圆的半径为4,$a,b,c$为该圆的内接三角形的三边,若$abc=162$,则三角形的面积为$22$。
6.已知$\cos\alpha=-\frac{4}{\pi}$,且$\alpha\in(\frac{\pi}{4},\frac{\pi}{2})$,则$\tan(\alpha+\frac{\pi}{4})=-\frac{7}{7}$。
高中数学三角函数专项训练(含答案)

高中数学三角函数专项训练(含答案)一、填空题1.法国著名的军事家拿破仑.波拿巴最早提出的一个几何定理:“以任意三角形的三条边为边向外构造三个等边三角形,则这三个三角形的外接圆圆心恰为另一个等边三角形的顶点”.在三角形ABC 中,角60A =,以,,AB BC AC 为边向外作三个等边三角形,其外接圆圆心依次为123,,O O O ,若三角形123O O OABC 的周长最小值为___________2.在ABC中,AB =BC =1cos 7BAC ∠=,动点D 在ABC 所在平面内且2π3BDC ∠=.给出下列三个结论:①BCD △②线段AD 的长度只有最小值,无最大值,且最小值为1;③动点D 的轨迹的长度为8π3.其中正确结论的序号为______.3.已知函数()sin()(0,)R f x x ωϕωϕ=+>∈在区间75,126ππ⎛⎫⎪⎝⎭上单调,且满足73124f f ππ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭.有下列结论: ①203f π⎛⎫= ⎪⎝⎭; ②若5112f π⎛⎫= ⎪⎝⎭,则函数()f x 的最小正周期为π;③ω的取值范围为(]0,4;④函数()f x 在区间[)0,2π上最多有6个零点.其中所有正确结论的编号为________.4.在ABC 中,角A 、B 、C 的对边a 、b 、c 为三个连续偶数且2C A =,则b =__________.5.ABC 的内角A ,B ,C 所对的边分别是a ,b ,c ,已知cos cos 1C B c b a+=,则A 的取值范围是___________. 6.给出下列命题:①若函数()f x 的定义域为[]0,2,则函数(2)f x 的定义域为[]0,4; ②函数()tan f x x =在定义域内单调递增;③若定义在R 上的函数()f x 满足(1)()f x f x +=-,则()f x 是以2为周期的函数;④设常数a ∈R ,函数2log ,04()10,41x x f x x x ⎧<≤⎪=⎨>⎪-⎩若方程()f x a =有三个不相等的实数根1x ,2x ,3x ,且123x x x <<,则312(1)x x x +的值域为[64,)+∞.其中正确命题的序号为_____.7.已知(sin )21,22f x x x ππ⎛⎫⎡⎤=+∈- ⎪⎢⎥⎣⎦⎝⎭,那么(cos1)f =________.8.设△A n B n C n 的三边长分别为a n ,b n ,c n ,n =1,2,3…,若11b c >,1112b c a +=,11,2n n n n n a c a a b +++==,12n n n a bc ++=,则n A ∠的最大值是________________. 9.已知直线y m =与函数3()sin (0)42f x x πωω⎛⎫=++> ⎪⎝⎭的图象相交,若自左至右的三个相.邻交点...A ,B ,C 满足2AB BC =,则实数m =______. 10.已知1OB →=,,A C 是以O 为圆心,22为半径的圆周上的任意两点,且满足0BA BC →→⋅=,设平面向量OA →与OB →的夹角为θ(π04θ≤≤),则平面向量OA →在BC →方向上的投影的取值范围是_____.二、单选题11.在△ABC 中,24CA CB ==,F 为△ABC 的外心,则CF AB ⋅=( ) A .-6B .-8C .-9D .-1212.若函数()f x 同时满足:①定义域内任意实数x ,都有()()110f x f x ++-=;②对于定义域内任意1x ,2x ,当12x x ≠时,恒有()()()12120x x f x f x -⋅->⎡⎤⎣⎦;则称函数()f x 为“DM 函数”.若“DM 函数”满足()()2sin cos 0f f αα-+>,则锐角α的取值范围为( ) A .0,4π⎛⎫⎪⎝⎭B .0,3π⎛⎫ ⎪⎝⎭C .,43ππ⎛⎫ ⎪⎝⎭D .2,43ππ⎛⎫ ⎪⎝⎭13.如图所示,在直三棱柱111ABC A B C -中,11AA =,3AB BC ==,1cos 3ABC ∠=,P 是1A B 上的一动点,则1AP PC +的最小值为( )A 5B 7C .13D .314.已知函数()()()sin 010f x x ωϕω=+<<,若存在实数1x 、2x ,使得()()122f x f x -=,且12x x π-=,则ω的最大值为( )A .9B .8C .7D .5 15.若对,x y R ∀∈,有()()()4f x y f x f y +=+-,函数2sin ()()cos 1xg x f x x =++在区间[2021,2021]-上存在最大值和最小值,则其最大值与最小值的和为( ) A .4B .8C .12D .1616.如图,将矩形纸片ABCD 折起一角落()EAF △得到EA F '△,记二面角A EF D '--的大小为π04θθ⎛⎫<< ⎪⎝⎭,直线A E ',A F '与平面BCD 所成角分别为α,β,则( ).A .αβθ+>B .αβθ+<C .π2αβ+>D .2αβθ+>17.已知函数()2sin 1,022sin 1,02x x f x x x ππ⎧-≥⎪⎪=⎨⎪--<⎪⎩,()11x g x x -=+,则关于x 的方程()()f x g x =在区间[]8,6-上的所有实根之和为( ) A .10-B .8-C .6-D .4-18.已知函数()2sin cos 3cos2f x x x x =,给出下列结论:①()f x 的图象关于直线π12x =对称;②()f x 的值域为[]22-,;③()f x 在π7π,1212⎡⎤⎢⎥⎣⎦上是减函数;④0是()f x 的极大值点.其中正确的结论有( ) A .①④B .②③C .①②③D .①②④19.在锐角ABC 中,若cos cos sin sin 3sin A C B Ca c A+=3cos 2C C +=,则a b +的取值范围是( ) A .(6,23⎤⎦B .(0,43C .(23,43D .(6,4320.设函数()3xf x mπ,函数()f x 的对称轴为0x x =,若存在0x 满足()22200x f x m +<⎡⎤⎣⎦,则m 的取值范围为( )A .(,6)(6,)-∞-+∞B .(,4)(4,)-∞-⋃+∞C .(,2)(2,)-∞-+∞D .(,1)(1,)-∞-+∞三、解答题21.已知ABC ∆的三个内角、、A B C 的对边分别为a b c 、、,且22b c ac =+, (1)求证:2B C =;(2)若ABC ∆是锐角三角形,求ac的取值范围.22.已知函数()2212cos f x x x +-. (1)求()f x 的对称轴; (2)将()f x 的图象向左平移12π个单位后得到函数()g x 的图象,当0,3x π⎡⎤∈⎢⎥⎣⎦时,求()g x 的值域.23.已知向量33cos ,sin 22x a x ⎛⎫= ⎪⎝⎭,cos ,sin 22x x b ⎛⎫- ⎪⎝=⎭,0,2x π⎡⎤∈⎢⎥⎣⎦.(1)用含x 的式子表示a b ⋅及a b +; (2)求函数的()f x a b a b =⋅-+值域. 24.已知函数()2sin cos cos2x x x x f =+. (1)求()f x 的最小正周期及单调递减区间; (2)求()f x 在区间0,4π⎡⎤⎢⎥⎣⎦上的最大值和最小值.25.已知(1,sin )a x =,(1,cos )b x =,(0,1)e =,且(cos sin )x x -∈. (1)若()//a e b +,求sin cos x x 的值;(2)设()()f x a b me a b =⋅+⋅-,m R ∈,若()f x 的最大值为12-,求实数m 的值.26.已知ABC ∆的三个内角A ,B ,C 的对边分别为a ,b ,c ,函数()()2sin cos sin f x x A x A =-+,且当512x π=时,()f x 取最大值. (1)若关于x 的方程()f x t =,0,2x π⎛⎫∈ ⎪⎝⎭有解,求实数t 的取值范围;(2)若5a =,且sin sin B C +=,求ABC ∆的面积. 27.已知向量()cos sin ,sin a m x m x x ωωω=-,()cos sin ,2cos b x x n x ωωω=--,设函数()()2n f x a b x R =⋅+∈的图象关于点,112π⎛⎫⎪⎝⎭对称,且()1,2ω∈ (I )若1m =,求函数()f x 的最小值;(II )若()4f x f π⎛⎫≤ ⎪⎝⎭对一切实数恒成立,求()y f x =的单调递增区间.28.已知函数())2cos cos 1f x xx x =+-.(1)求函数()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上的最小值;(2)若()85f x =-,2,3x ππ⎡⎤∈⎢⎥⎣⎦,求cos2x 的值;(3)若函数()()0y f x ωω=>在区间,62ππ⎡⎤⎢⎥⎣⎦上是单调递增函数,求正数ω的取值范围.29.已知a ,b ,c 分别为ABC 三个内角A ,B ,C 的对边,S 为ABC 的面积,()222sin SB C a c +=-. (1)证明:2A C =;(2)若2b =,且ABC 为锐角三角形,求S 的取值范围.30.在锐角△ABC 中,a 、b 、c 分别为角A 、B 、C 所对的边,且32sin a c A = (Ⅰ)确定角C 的大小: (Ⅱ)若c =,且△ABC 的面积为,求a +b 的值.【参考答案】一、填空题 1.6 2.①③ 3.①②④ 4.105.(0,]3π6.③④ 7.1π-##1π-+ 8.π3##60°9.1或2##2或1 10.2525⎡⎢⎣⎦二、单选题 11.A 12.A 13.B14.A 15.B 16.A 17.B 18.B 19.D 20.C 三、解答题21.(1)证明见解析;(2)(1,2) 【解析】 【分析】(1)由22b c ac =+,联立2222cos b a c ac B =+-⋅,得2cos a c c B =+⋅,然后边角转化,利用和差公式化简,即可得到本题答案; (2)利用正弦定理和2B C =,得2cos 21aC c=+,再确定角C 的范围,即可得到本题答案. 【详解】解:(1)锐角ABC ∆中,22b c ac =+,故由余弦定理可得:2222cos b a c ac B =+-⋅,2222cos c ac a c ac B ∴+=+-⋅,22cos a ac ac B ∴=+⋅,即2cos a c c B =+⋅,∴利用正弦定理可得:sin sin 2sin cos A C C B =+, 即sin()sin cos sin cos sin 2sin cos B C B C C B C C B +=+=+,sin cos sin sin cos B C C C B ∴=+,可得:sin()sin B C C -=,∴可得:B C C -=,或B C C π-+=(舍去),2B C ∴=.(2)2sin sin()sin(2)2cos cos22cos21sin sin sin a A B C C C C C C c C C C++====+=+A B C π++=,,,A B C 均为锐角,由于:3C A π+=, 022C π∴<<,04C π<<.再根据32C π<,可得6C π<,64C ππ∴<<,(1,2)ac∴∈ 【点睛】本题主要考查正余弦定理的综合应用,其中涉及到利用三角函数求取值范围的问题. 22.(1)23k x ππ=+(k Z ∈)(2)[]0,2 【解析】(1)利用三角恒等变换,化简函数解析式为标准型,再求对称轴; (2)先求平移后的函数解析式,再求值域. 【详解】(1)()222cos 1f x x x =-+2cos 2x x =-2sin 26x π⎛⎫=- ⎪⎝⎭令:262x k πππ-=+,得23k x ππ=+, 所以()f x 的对称轴为23k x ππ=+(k Z ∈). (2)将()f x 的图象向左平移12π个单位后得到函数()g x ,所以()12g x f x π⎛⎫=+ ⎪⎝⎭2sin 22sin 2126x x ππ⎡⎤⎛⎫=+-= ⎪⎢⎥⎝⎭⎣⎦当0,3x π⎡⎤∈⎢⎥⎣⎦时,有220,3x π⎡⎤∈⎢⎥⎣⎦,故[]sin 20,1x ∈, ()g x ∴的值域为[]0,2. 【点睛】本题考查利用三角恒等变换化简函数解析式,求解函数性质,同时涉及三角函数图象的平移,以及值域的求解问题.属三角函数综合基础题.23.(1)cos 2x a b ⋅=;2cos a b x +=,0,2x π⎡⎤∈⎢⎥⎣⎦(2)()3,12f x ⎡⎤∈--⎢⎥⎣⎦【解析】(1)根据平面向量数量积的坐标表示以及三角恒等变换公式可得a b ⋅,根据a b +=2||a b +可求得结果;(2)利用二倍角的余弦公式化为关于cos x 的二次函数可求得结果. 【详解】(1)因为向量33cos ,sin 22x x a ⎛⎫= ⎪⎝⎭,cos ,sin 22x x b ⎛⎫=- ⎪⎝⎭,0,2x π⎡⎤∈⎢⎥⎣⎦, 所以23||cos 1a =,2||cos 12x b ==, 所以333coscos sin sin cos()cos 2222222x a x x b x x xx -=+==⋅, ()2222212cos 2121cos 24cos a a b b x a b x x =+⋅+=++++==,2cos a b x +=,0,2x π⎡⎤∈⎢⎥⎣⎦;(2)()2cos22cos 2cos 2cos 1x x x f x x =-=--,又0,2x π⎡⎤∈⎢⎥⎣⎦,∴[]cos 0,1x ∈,()3,12f x ⎡⎤∈--⎢⎥⎣⎦.【点睛】本题考查了平面向量的数量积的坐标运算,考查了求平面向量的模,考查了二倍角的余弦公式,考查了整体换元化为二次函数求值域,属于基础题.24.(1)最小正周期π;单调递减区间是5,88k k ππππ⎡⎤++⎢⎥⎣⎦,k Z ∈(2)最大值和最小值和1. 【解析】(1)利用二倍角的正弦公式的逆用公式以及两角和的正弦公式的逆用公式化简得()24f x x π⎛⎫+ ⎪⎝⎭,再根据周期公式可得周期,利用正弦函数的递减区间可得()f x 的递减区间;(2)利用正弦函数的性质可求得结果. 【详解】(1)因为()sin 2cos 224x f x x x π⎛⎫=+=+ ⎪⎝⎭.所以()f x 的最小正周期22T ππ==. 由3222242k x k πππππ+≤+≤+,得588k x k ππππ+≤≤+,所以()f x 的单调递减区间是5,88k k ππππ⎡⎤++⎢⎥⎣⎦,k Z ∈. (2)因为0,4x π⎡⎤∈⎢⎥⎣⎦,所以32,444x πππ⎡⎤+∈⎢⎥⎣⎦.所以当242x ππ+=,即8x π=当244x ππ+=或34π,即0x =或4x π=时,函数取得最小值1.所以()f x 在区间0,4⎡⎤⎢⎥⎣⎦π和1.【点睛】本题考查了二倍角的正弦公式,考查了两角和的正弦公式,考查了正弦型函数的周期公式,考查了求三角函数的单调区间和最值,属于基础题. 25.(1)0 (2)32【解析】 【分析】(1)通过()//a e b +可以算出()(1,sin 1)//1,cos cos sin 1x x x x +⇒=+,移项、两边平方即可算出结果.(2)通过向量的运算,解出()()f x a b me a b =⋅+⋅-,再通过最大值根的分布,求出m 的值. 【详解】(1)通过()//a e b +可以算出()(1,sin 1)//1,cos cos sin 1x x x x +⇒=+, 即2cos sin 1(cos sin )112sin cos 1sin cos 0x x x x x x x x -=⇒-=⇒-=⇒= 故答案为0.(2)()1sin cos (sin cos )f x x x m x x =++-,设()cos sin x x t t ⎡-=∈⎣,22112sin cos sin cos 2t x x t x x --=⇒=,22113()()1222t g t f x mt t mt -==+-=--+,即213(),22g t t mt t ⎡=--+∈⎣的最大值为12-; ①当11m m -≤⇒≥-时,max 1313()(1)2222g x g m m ==--+=-⇒=(满足条件);②当11m m <-≤⇒<-时,222max 1311()()22222g x g m m m m =-=-++=-⇒=-(舍);③当m m -><max 131()22222g x g m ==-⨯-=-⇒=(舍)故答案为32m = 【点睛】当式子中同时出现sin cos ,sin cos ,sin cos x x x x x x +-时,常常可以利用换元法,把sin cos x x 用sin cos ,sin cos x x x x +-进行表示,但计算过程中也要注意自变量的取值范围;二次函数最值一定要注意对称轴是否在规定区间范围内,再讨论最后的结果.26.(1)(;(2 【解析】 【分析】(1)利用两角和差的正弦公式整理()f x 可得:()sin(2)A f x x =-,再利用已知可得:522122A k πππ⨯-=+(k Z ∈),结合已知可得:3A π=,求得:(0,)2x π∈时,sin(2)13x π<-≤,问题得解.(2)利用正弦定理可得:sin sin )+=+B C b c ,结合sin sin B C +=可得:8+=b c ,对a 边利用余弦定理可得:2222cos a b c bc A =+-,结合已知整理得:13=bc ,再利用三角形面积公式计算得解. 【详解】解:(1)()2sin()cos sin f x x A x A =-+2sin()cos sin[()]x A x x x A =-+--2sin()cos sin cos()cos sin()x A x x x A x x A =-+---sin cos()cos sin()x x A x x A =-+- sin(2)x A =-.因为()f x 在512x π=处取得最大值, 所以522122A k πππ⨯-=+,k Z ∈, 即2,3A k k Z ππ=-+∈. 因为(0,)A π∈,所以3A π=,所以()sin(2)3f x x π=-.因为(0,)2x π∈,所以22(,)333x πππ-∈-所以sin(2)13x π<-≤,因为关于x 的方程()f x t =有解,所以t 的取值范围为(.(2)因为5a =,3A π=,由正弦定理sin sin sin b c a B C A ==于是sin sin )+=+B C b c .又sin sin B C +=,所以8+=b c . 由余弦定理得:2222cos a b c bc A =+-,整理得:2225=+-b c bc ,即225()3643=+-=-b c bc bc , 所以13=bc ,所以1sin 2ABC S bc A ∆==【点睛】本题主要考查了两角和、差的正弦公式应用,还考查了三角函数的性质及方程与函数的关系,还考查了正弦定理、余弦定理的应用及三角形面积公式,考查计算能力及转化能力,属于中档题.27.(Ⅰ)1()22,31234k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦ 【解析】 【分析】化简()f x 解析式可得()()22n f x x ωϕ=-+;根据图象关于,112π⎛⎫ ⎪⎝⎭可求得n ;(Ⅰ)若1m =,则()()21f x x ωϕ=-+,从而可得函数最小值;(Ⅱ)利用4x π=为对称轴,,112π⎛⎫ ⎪⎝⎭为对称中心可得()*642T T k k N π=+⋅∈,根据周期和ω的范围可求得ω;将,112π⎛⎫ ⎪⎝⎭代入解析式可求得()314f x x π⎛⎫=-+ ⎪⎝⎭,将34x π-整体放入正弦函数的单调递增区间中,解出x 的范围即可.【详解】由题意得:()()22cos sin 2sin cos 2n f x m x x n x x ωωωω=--++()sin 2cos 2222n n n x m x x ωωωϕ=-+=-+ 其中cos ϕ=sin ϕ=图象关于点,112π⎛⎫ ⎪⎝⎭对称 12n ∴=,解得:2n =()()21f x x ωϕ∴=-+(Ⅰ)若1m =,则()()21f x x ωϕ=-+()min 1f x ∴=(Ⅱ)()4f x f π⎛⎪≤⎫ ⎝⎭对一切实数恒成立 ()max 4f x f π⎛⎫∴= ⎪⎝⎭ ()*412642T T k k N πππ∴-==+⋅∈,即:()()*223212T k N k ππω==∈+ ()3212k ω∴=+,又()1,2ω∈ 32ω∴= ()2sin3cos31f x x m x ∴=-+,又图象关于点,112π⎛⎫ ⎪⎝⎭对称 2sin cos 111244f m πππ⎛⎫∴=-+= ⎪⎝⎭,解得:2m = ()2sin 32cos31314f x x x x π⎛⎫∴=-+=-+ ⎪⎝⎭ 令232242k x k πππππ-+≤-≤+,k Z ∈,解得:2212343k k x ππππ-+≤≤+,k Z ∈ ()f x ∴的单调递增区间为:()22,31234k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦ 【点睛】本题考查三角函数图象与性质的综合应用问题,涉及到根据三角函数的性质求解函数解析式的求解、三角函数最值的求解、单调区间的求解问题.28.(I )1-;(II ;(III )10,3⎛⎤ ⎥⎝⎦【解析】【分析】将()f x 整理为2sin 26x π⎛⎫+ ⎪⎝⎭;(I )利用x 的范围求得26x π+的范围,结合sin x 的图象可求得最值;(II )利用()85f x =-可求得sin 26x ;结合角的范围和同角三角函数关系可求得cos 26x π⎛⎫+ ⎪⎝⎭;根据cos 2cos 266x x ππ⎡⎤⎛⎫=+- ⎪⎢⎥⎝⎭⎣⎦,利用两角和差余弦公式可求得结果;(III )利用x 的范围求得26x πω+的范围,从而根据sin x 单调递增区间构造出关于ω的不等式组,解不等式组再结合0>ω即可得到结果.【详解】()2cos 2cos 12cos 22sin 26f x x x x x x x π⎛⎫=+-=+=+ ⎪⎝⎭ (I )0,2x π⎡⎤∈⎢⎥⎣⎦ 72,666x πππ⎡⎤∴+∈⎢⎥⎣⎦[]2sin 21,26x π⎛⎫∴+∈- ⎪⎝⎭ ()f x ∴在区间0,2π⎡⎤⎢⎥⎣⎦上的最小值为:1- (II )由题意得:82sin 265x π⎛⎫+=- ⎪⎝⎭ 4sin 265x π⎛⎫∴+=- ⎪⎝⎭ 2,3x ππ⎡⎤∈⎢⎥⎣⎦ 3132,626x πππ⎡⎤∴+∈⎢⎥⎣⎦ 3cos 265x π⎛⎫∴+= ⎪⎝⎭ cos 2cos 2cos 2cos sin 2sin 666666x x x x ππππππ⎡⎤⎛⎫⎛⎫⎛⎫∴=+-=+++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦341552=⨯(III )()2sin 26f x x πωω⎛⎫=+ ⎪⎝⎭ ,62x ππ⎡⎤∈⎢⎥⎣⎦时,2,6366x πωπππωωπ⎡⎤+∈++⎢⎥⎣⎦ 2622362k k ππωππωππππ⎧+≤+⎪⎪∴⎨⎪+≥-⎪⎩,k Z ∈,解得:12362k k ωω⎧≤+⎪⎨⎪≥-⎩,k Z ∈ 0ω>,可知当0k =时满足题意,即103ω<≤ω∴的取值范围为:10,3⎛⎤ ⎥⎝⎦【点睛】本题考查正弦型函数的值域求解、单调性应用、三角恒等变换公式应用、同角三角函数关系等问题.关键是能够利用二倍角公式和辅助角公式将函数化为()sin A x ωϕ+的形式,从而通过整体对应的方式来研究函数的值域和性质.29.(1)见解析;(2)2⎫⎪⎪⎝⎭【解析】【分析】(1)利用三角形面积公式表示S ,结合余弦定理和正弦定理,建立三角函数等式,证明结论,即可.(2)结合三角形ABC 为锐角三角形,判定tanC 的范围,利用tanC 表示面积,结合S 的单调性,计算范围,即可.【详解】(1)证明:由()222sin S B C a c +=-,即222sin S A a c =-, 22sin sin bc A A a c∴=-,sin 0A ≠,22a c bc ∴-=, 2222cos abc bc A =+-,2222cos a c b bc A ∴-=-,22cos b bc A bc ∴-=,2cos b c A c ∴-=,sin 2sin cos sin B C A C ∴-=,()sin 2sin cos sin A C C A C ∴+-=,sin cos cos sin sin A C A C C ∴-=,()sin sin A C C ∴-=, A ,B ,()0,C π∈,2A C ∴=.(2)解:2A C =,3B C π∴=-,sin sin3B C ∴=. sin sin a b A B =且2b =, 2sin2sin3C a C ∴=, ()212sin2sin 2sin2sin 2tan2tan 4tan 4sin 32sin 2sin2cos cos2sin tan2tan 3tan tan tan C C C C C C C S ab C C C C C C C C C C C C∴======+++--, ABC 为锐角三角形,20,230,20,2A C B C C ππππ⎧⎛⎫=∈ ⎪⎪⎝⎭⎪⎪⎛⎫∴=-∈⎨ ⎪⎝⎭⎪⎪⎛⎫∈⎪ ⎪⎝⎭⎩, ,64C ππ⎛⎫∴∈ ⎪⎝⎭,tan C ⎫∴∈⎪⎪⎝⎭,43tan tan S C C=-为增函数, 2S ⎫∴∈⎪⎪⎝⎭. 【点睛】 考查了正弦定理,考查了余弦定理,考查了三角形面积公式,考查了函数单调性判定,难度偏难.30.(Ⅰ) 3π(Ⅱ)5 【解析】【详解】试题分析:(12sin sin AC A =即可得sin C =60C =︒(2)∵1sin 2S ab C ==a b + 试题解析:解:(12sin sin A C A =,∵,A C 是锐角,∴sin C =60C =︒.(2)∵1sin 2S ab C ==6ab = 由余弦定理得222222cos ()3()187c a b ab C a b ab a b =+-=+-=+-=∴5a b +=点睛:在解三角形问题时多注意正余弦定理的结合运用,正弦定理主要用在角化边和边化角上,而余弦定理通常用来求解边长。
三角函数习题及答案

三角函数习题及答案三角函数是数学中非常重要的一个概念,它在几何学、物理学、工程学等多个学科中都有广泛的应用。
通过解决三角函数习题,我们不仅可以巩固对三角函数的理解,还能培养逻辑思维和问题解决能力。
本文将介绍一些常见的三角函数习题及其答案,希望能对读者有所帮助。
一、正弦函数习题及答案1. 求解sinθ=0.5的解集。
解:根据正弦函数的定义可知,sinθ=0.5对应的角度有两个:30°和150°。
因此,解集为{30°, 150°}。
2. 求解sinθ=1的解集。
解:根据正弦函数的定义可知,sinθ=1对应的角度为90°。
因此,解集为{90°}。
二、余弦函数习题及答案1. 求解cosθ=-0.5的解集。
解:根据余弦函数的定义可知,cosθ=-0.5对应的角度有两个:120°和240°。
因此,解集为{120°, 240°}。
2. 求解cosθ=-1的解集。
解:根据余弦函数的定义可知,cosθ=-1对应的角度为180°。
因此,解集为{180°}。
三、正切函数习题及答案1. 求解tanθ=1的解集。
解:根据正切函数的定义可知,tanθ=1对应的角度为45°。
因此,解集为{45°}。
2. 求解tanθ=0的解集。
解:根据正切函数的定义可知,tanθ=0对应的角度为0°。
因此,解集为{0°}。
四、三角函数综合习题及答案1. 求解sinθ+cosθ=1的解集。
解:将sinθ+cosθ=1转化为sinθ=1-cosθ。
根据正弦函数的定义可知,sinθ=1-cosθ对应的角度为30°和150°。
因此,解集为{30°, 150°}。
2. 求解tanθ+1=0的解集。
解:将tanθ+1=0转化为tanθ=-1。
根据正切函数的定义可知,tanθ=-1对应的角度为135°。
三角函数计算题100道

三角函数计算题100道为了简洁起见,我将为您提供100道三角函数计算题的答案,并附上简要的解释。
1. sin(0) = 0正弦函数在角度为0度时的值等于0。
2. cos(0) = 1余弦函数在角度为0度时的值等于13. tan(45) = 1正切函数在角度为45度时的值等于14. csc(30) = 2余切函数在角度为30度时的值等于25. sec(60) = 2正割函数在角度为60度时的值等于26. cot(60) = 1/√3余割函数在角度为60度时的值等于1/√3,其中√3表示根号下37. sin(90) = 1正弦函数在角度为90度时的值等于18. cos(90) = 0余弦函数在角度为90度时的值等于0。
9. tan(0) = 0正切函数在角度为0度时的值等于0。
10. csc(0) = 未定义余切函数在角度为0度时的值未定义。
11. sec(30) = 2/√3正割函数在角度为30度时的值等于2/√3 12. cot(45) = 1余割函数在角度为45度时的值等于1 13. sin(60) = √3/2正弦函数在角度为60度时的值等于√3/2 14. cos(45) = √2/2余弦函数在角度为45度时的值等于√2/2 15. tan(30) = √3/3正切函数在角度为30度时的值等于√3/3 16. csc(45) = √2余切函数在角度为45度时的值等于√2 17. sec(60) = 2正割函数在角度为60度时的值等于2 18. cot(90) = 0余割函数在角度为90度时的值等于0。
19. sin(180) = 0正弦函数在角度为180度时的值等于0。
20. cos(180) = -1余弦函数在角度为180度时的值等于-1 21. tan(120) = √3正切函数在角度为120度时的值等于√3 22. csc(150) = -2余切函数在角度为150度时的值等于-2 23. sec(240) = -2正割函数在角度为240度时的值等于-2 24. cot(270) = 0余割函数在角度为270度时的值等于0。
高中数学三角函数专项训练(含答案)

高中数学三角函数专项训练(含答案)一、填空题1.如图,在矩形ABCD 中,AB a ,2BC a =,点E 为AD 的中点,将△ABE 沿BE 翻折到△A BE '的位置,在翻折过程中,A '不在平面BCDE 内时,记二面角A DC B '--的平面角为α,则当α最大时,cos α的值为______.2.法国著名的军事家拿破仑.波拿巴最早提出的一个几何定理:“以任意三角形的三条边为边向外构造三个等边三角形,则这三个三角形的外接圆圆心恰为另一个等边三角形的顶点”.在三角形ABC 中,角60A =,以,,AB BC AC 为边向外作三个等边三角形,其外接圆圆心依次为123,,O O O ,若三角形123O O O 的面积为3,则三角形ABC 的周长最小值为___________3.在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c .D 、E 是线段AB 上满足条件1()2CD CB CE =+,1()2CE CA CD =+的点,若2CD CE c λ⋅=,则当角C 为钝角时,λ的取值范围是______________4.如图,某城市准备在由ABC 和以C 为直角顶点的等腰直角三角形ACD 区域内修建公园,其中BD 是一条观赏道路,已知1AB =,3BC =,则观赏道路BD 长度的最大值为______.5.通信卫星与经济、军事等密切关联,它在地球静止轨道上运行,地球静止轨道位于地球赤道所在平面,轨道高度为km h (轨道高度是指卫星到地球表面的距离).将地球看作是一个球(球心为O ,半径为km r ),地球上一点A 的纬度是指OA 与赤道平面所成角的度数,点A 处的水平面是指过点A 且与OA 垂直的平面,在点A 处放置一个仰角为θ的地面接收天线(仰角是天线对准卫星时,天线与水平面的夹角),若点A 的纬度为北纬30,则tan 3θ________.6.已知函数()233cos sin cos 2f x x x x =+-,给出下列结论:①函数()f x 的最小正周期为π;②函数12y f x π⎛⎫=+ ⎪⎝⎭是偶函数;③函数()f x 关于点()026k k Z ππ⎛⎫-∈⎪⎝⎭,成中心对称;④函数()f x 在3,22ππ⎡⎤⎢⎥⎣⎦上是减函数.其中正确的结论是_______.(写出所有正确结论的序号)7.已知函数()sin cos f x x x =+,()sin cos g x x x =:①函数()f x 的图象关于点(,0)4π对称;②函数|()|g x 的最小正周期是2π;③把函数f (2x )图象上所有点向右平移8π个单位长度得到的函数图象的对称轴与函数y=()g x 图象的对称轴完全相同;④函数1()()y f x g x =--在R 上的最大值为2.则以上结论正确的序号为_______________ 8.关于函数()()33sin cos sin 2f x x x x =+-有下列结论:①其表达式可写成()cos 26f x x π⎛⎫=+ ⎪⎝⎭;②直线12x π=-是曲线()y f x =的一条对称轴;③()f x 在区间,63ππ⎡⎤⎢⎥⎣⎦上单调递增;④存在0,2πα⎛⎫∈ ⎪⎝⎭使()()3f x f x αα+=+恒成立.其中正确的是______(填写正确的番号).9.已知P 是直线34130x y ++=上的动点,PA ,PB 是圆()()22111x y -+-=的切线,A ,B 是切点,C 是圆心,那么四边形PACB 面积的最小值是________.10.△ABC 内接于半径为2的圆,三个内角A ,B ,C 的平分线延长后分别交此圆于1A ,1B ,1C .则111coscos cos 222sin sin sin A B CAA BB CC A B C++++的值为_____________.二、单选题11.已知ABC 中,角,,A B C 的对边分别为,,a b c .若2222224cos 4sin 33a B b A b c +=-,则cos A 的最小值为( )A 3B C D .3412.已知函数()21ln e 1xf x x -⎛⎫=+ ⎪+⎝⎭,a ,b ,c 分别为ABC 的内角A ,B ,C 所对的边,且222446,a b c ab +-=则下列不等式一定成立的是( ) A .()()sin cos f A f B ≤ B .f (cos A )≤f (cos B ) C .f (sin A )≥f (sin B ) D .f (sin A )≥f (cos B )13.已知函数()()sin cos sin cos 0f x x x x x ωωωωω=++->,则下列结论错误的是( )①1ω=时,函数()f x 图象关于π4x =对称;②函数()f x 的最小值为-2;③若函数()f x 在π,04⎡⎤-⎢⎥⎣⎦上单调递增,则(]03ω∈,;④1x ,2x 为两个不相等的实数,若()()124f x f x +=且12x x -的最小值为π,则2ω=. A .②③B .②④C .①③④D .②③④14.已知ABC 的内角分别为,,A B C ,2cos 12A A =,且ABC 的内切圆面积为π,则AB AC ⋅的最小值为( ) A .6B .8C .10D .1215.已知(){}|sin ,A y y n n Z ωϕ==+∈,若存在ϕ使得集合A 中恰有3个元素,则ω的取值不可能是( ) A .27π B .25πC .2π D .23π16.若对,x y R ∀∈,有()()()4f x y f x f y +=+-,函数2sin ()()cos 1xg x f x x =++在区间[2021,2021]-上存在最大值和最小值,则其最大值与最小值的和为( )A .4B .8C .12D .1617.在ABC 中,60BAC ∠=,3BC =,且有2CD DB =,则线段AD 长的最大值为( )A B .2 C 1 D .18.()sin()(0)f x x ωφφ=+>的部分图象如图所示,设P 是图象的最高点,A ,B 是图象与x 轴的交点,若tan 2APB ∠=-,则ω的值为( )A .4π B .3π C .2π D .π19.设函数()cos 2sin f x x x =+,下述四个结论: ①()f x 是偶函数; ②()f x 的最小正周期为π; ③()f x 的最小值为0; ④()f x 在[]0,2π上有3个零点 其中所有正确结论的编号是( ) A .①②B .①②③C .①③④D .②③④20.已知函数22sin sin ,[1,1]()22,(1,)x x a a x f x x ax a x ⎧++-∈-=⎨-+∈+∞⎩若关于x 的不等式()0f x 对任意[1,)x ∈-+∞恒成立,则实数a 的范围是( ) A .[0,2]B .(,0][2,)-∞+∞C .(,0][1,2]-∞D .[0,1][2,)⋃+∞三、解答题21.如图,一幅壁画的最高点A 处离地面4米,最低点B 处离地面2米.正对壁画的是一条坡度为1:2的甬道(坡度指斜坡与水平面所成角α的正切值),若从离斜坡地面1.5米的C 处观赏它.(1)若C 对墙的投影(即过C 作AB 的垂线垂足为投影)恰在线段AB (包括端点)上,求点C 离墙的水平距离的范围;(2)在(1)的条件下,当点C 离墙的水平距离为多少时,视角θ(ACB ∠)最大? 22.在直角ABC ∆中,2BAC π∠=,延长CB 至点D ,使得2CB BD =,连接AD .(1)若AC AD =,求CAD ∠的值;(2)求角D 的最大值.23.已知函数()sin(3)(0)f x x ϕϕπ=+<<,其图象的一个对称中心是,09π⎛⎫- ⎪⎝⎭,将()f x 的图象向左平移9π个单位长度后得到函数()g x 的图象. (1)求函数()g x 的解析式;(2)若对任意12,[0,]x x t ∈,当12x x <时,都有()()()()1212f x f x g x g x -<-,求实数t 的最大值;(3)若对任意实数,()(0)a y g x ωω=>在,4a a π⎡⎤+⎢⎥⎣⎦上与直线12y =-的交点个数不少于6个且不多于10个,求实数ω的取值范围.24.已知函数2()2sin cos ()f x x x x a a R =-++∈,且(0)f = (1)求a 的值;(2)若()f x ω在[0,]π上有且只有一个零点,0>ω,求ω的取值范围.25.已知函数()sin()0,0,||2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的最大值是2,函数()f x 的图象的一条对称轴是3x π=,且与该对称轴相邻的一个对称中心是7,012π⎛⎫⎪⎝⎭. (1)求()f x 的解析式;(2)已知DBC △是锐角三角形,向量,,,2124233B B m f f n f f B ππππ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+=++ ⎪ ⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,且3,sin 5m n C ⊥=,求cos D . 26.已知函数1()1xf x x-=+. (1)证明函数()f x 在(1,)-+∞上为减函数;(2)求函数ln (tan )y f x =的定义域,并求其奇偶性;(3)若存在(,)42ππ,使得不等式(tan )tan 0f x a x +≤能成立,试求实数a 的取值范围.27.函数211()sin 2sin cos cos sin 222f x x x πϕϕϕ⎛⎫=⋅+⋅-+ ⎪⎝⎭,22ππϕ⎛⎫-<< ⎪⎝⎭其图像过定点1,64π⎛⎫⎪⎝⎭(1)求ϕ值;(2)将()y f x =的图像左移8π个单位后得到()y g x =,求()g x 在,44ππ⎡⎤-⎢⎥⎣⎦上的最大和最小值及此时对应的x 的取值是多少?28.已知向量a ,b 满足2sin 4a x x π⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭,cos 4b x x π⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,函数()()f x a b x R =⋅∈.(1)求()f x 的单调区间;(2)已知数列()2*11224n n a n f n N ππ⎛⎫=-∈ ⎪⎝⎭,求{}n a 的前2n 项和2n S . 29.已知ABC ∆的外接圆...的半径为2,内角A ,B ,C 的对边分别为a ,b ,c ,又向量()sin sin ,m A C b a =--,2sin sin ,sin 4n A C B ⎛⎫=+ ⎪ ⎪⎝⎭,且m n ⊥. (1)求角C ;(2)求三角形ABC 的面积S 的最大值并求此时ABC ∆的周长.30.在锐角△ABC 中,a 、b 、c 分别为角A 、B 、C 所对的边,且32sin a c A = (Ⅰ)确定角C 的大小: (Ⅱ)若c =,且△ABC 的面积为,求a +b 的值.【参考答案】一、填空题1252.63.12(,)369-461 5.2rr h-+ 6.①②③ 7.②③④ 8.②③91510.4 二、单选题 11.C 12.D 13.B 14.A 15.A16.B 17.C 18.C 19.B 20.C 三、解答题21.(1)点C 离墙的水平距离的范围为:1~5m m ;(2)当点C 离墙的水平距离为1m 时,视角θ(ACB ∠)最大. 【解析】 【分析】(1)如图所示:设(02),BF x x CF y =≤≤=,利用平行线成比例定理,结合锐角三角函数正切的定义进行求解即可;(2)利用两角和的正切公式、结合正切的定义,求出tan θ的表达式,利用换元法、基本不等式进行求解即可. 【详解】(1)如图所示:设(02),BF x x CF y =≤≤=,显然有1tan tan 2FGD α∠==,因此有 2(2)tan DFFG x FGD==+∠,由//GE DF ,可得: 1.52(2)22(2)CE CG x y DF GF x x +-=⇒=++,化简得:21y x =+,因为02x ≤≤,所以15y ≤≤,即点C 离墙的水平距离的范围为:1~5m m ;(2)222tan tan 2tan tan()21tan tan 21x xBCF ACF y y yBCF ACF x x BCF ACF y x x y yθ-+∠+∠=∠+∠===--∠⋅∠-+-⋅,因为21y x =+,所以有12y x -=,代入上式化简得:2222228tan 11522()5622y y y y y x x y y yθ===---+-⋅++-,因为15y ≤≤,所以有55664y y +-≥=(当且仅当55y y =时取等号,即1y =时,取等号),因此有0tan 2θ<≤,因此当点C 离墙的水平距离为1m 时,视角θ(ACB ∠)最大. 【点睛】本题考查两角和的正切公式的应用,考查了基本不等式的应用,考查了平行线成比例定理,考查了数学建模能力,考查了数学运算能力. 22.(1)23CAD π∠=;(2)6π.【解析】 【分析】(1)在ABD ∆中,由正弦定理得,sin sin BD ABDα=,再结合在直角ABC ∆中,sin AB BC C =,然后求解即可;(2)由正弦定理及两角和的余弦可得()2tan tan cos 2sin 22D D αααϕ=+=+,然后结合三角函数的有界性求解即可. 【详解】解:(1)设BAD ∠=α,在ABD ∆中,由正弦定理得,sin sin BD ABDα=, 而在直角ABC ∆中,sin AB BC C =,所以sin sin sin BD BC CDα=, 因为AC AD =,所以C D =, 又因为2CB BD =,所以1sin 2α=,所以6πα=,所以23CAD π∠=;(2)设BAD ∠=α, 在ABD ∆中,由正弦定理得,sin sin BD ABDα=, 而在直角ABC ∆中,()cos cos AB BC ABC BC D α=∠=+, 所以()()cos cos cos sin sin sin sin sin BC D BC D D BDD Dαααα+-==, 因为2CB BD =,所以2sin 2sin cos cos 2sin sin D D D ααα=-, 即22sin cos sin 2tan 12sin 2cos 2D ααααα==+-,即()2tan tan cos 2sin 22D D αααϕ=++,1≤及0,2D π⎛⎫∈ ⎪⎝⎭,解得0tan D <≤所以角D 的最大值为6π. 【点睛】本题考查了正弦定理,重点考查了三角函数的有界性,属中档题. 23.(1)2()sin(3)3g x x π=+;(2)6π;(3)4083ω<≤.【解析】 【分析】(1)根据正弦函数的对称性,可得函数()f x 的解析式,再由函数图象的平移变换法则,可得函数()g x 的解析式;(2)将不等式进行转化,得到函数()()f x g x -在[0,t ]上为增函数,结合函数的单调性进行求解即可;(3)求出()y g x ω=的解析式,结合交点个数转化为周期关系进行求解即可. 【详解】(1)因为函数()sin(3)(0)f x x ϕϕπ=+<<,其图象的一个对称中心是,09π⎛⎫- ⎪⎝⎭,所以有()0sin[3()]0()(0)9933f k k Z ππππϕϕπϕπϕ-=⇒-+=⇒-=∈<<∴=,()f x 的图象向左平移9π个单位长度后得到函数()g x 的图象.所以 2()sin[3()]sin(3)933g x x x πππ=++=+;(2)由()()()()()()()()12121122f x f x g x g x f x g x f x g x -<-⇒-<-,构造新函数为()()()sin3h x f x g x x =-=,由题意可知:任意12,[0,]x x t ∈,当12x x <时,都有()()()()1212f x f x g x g x -<-,说明函数()sin3h x x =在[0,]x t ∈上是单调递增函数,而()sin3h x x =的单调递增区间为:22232()()226363k k k x k k Z x k Z ππππππππ-+≤≤+∈⇒-+≤≤+∈,而[0,]x t ∈, 所以单调递增区间为:06x π≤≤,因此实数t 的最大值为:6π;(3)2()sin(3)3y g x x πωω==+,其最小正周期23T πω=, 而区间,4a a π⎡⎤+⎢⎥⎣⎦的长度为4π,直线12y =-的交点个数不少于6个且不多于10个,则34T π≤,且54T π>,解得:4083ω<≤. 【点睛】本题考查了正弦型函数的对称性和图象变换,考查了正弦型函数的单调性,考查了已知两函数图象的交点个数求参数问题,考查了数学运算能力.24.(1)a =(2)15,36⎡⎫⎪⎢⎣⎭【解析】 【分析】(1)利用降次公式、辅助角公式化简()f x 表达式,利用(0)f =a 的值. (2)令()0f x ω=,结合x 的取值范围以及三角函数的零点列不等式,解不等式求得ω的取值范围. 【详解】(1)2()2sin cos f x x x x a =-++sin 2x x a =+2sin 23x a π⎛⎫=++- ⎪⎝⎭(0)f =(0)2sin3f a π∴=+=即a =(2)令()0f x ω=,则sin 203x πω⎛⎫+= ⎪⎝⎭,[0,]x π∈,2,2333πππωπω⎡⎤∴+∈+⎢⎥⎣⎦,()f x 在[0,]π上有且只有一个零点,223πππωπ∴+<,1536ω∴<, ω∴的取值范围为15,36⎡⎫⎪⎢⎣⎭. 【点睛】本小题主要考查三角恒等变换,考查三角函数零点问题,考查化归与转化的数学思想方法,属于基础题.25.(1)()2sin 26f x x π⎛⎫=- ⎪⎝⎭;(2【解析】(1)根据函数的最值、周期、对称轴待定系数即可求解;(2)由(1)所求,可化简向量坐标,根据向量垂直得到角B ,再利用()cos cosD A B =-+求解. 【详解】(1)设()f x 的最小正周期为T , 依题意得71234T ππ-=,∴T π=,∴22πωπ==. ∵()f x 图象的一条对称轴是3x π=,∴2,32k k Z ππϕπ+=+∈,∴,6k k Z πϕπ=-+∈.∵||2ϕπ<,∴6πϕ=-. 又∵()f x 的最大值是2,∴2A =, 从而()2sin 26f x x π⎛⎫=- ⎪⎝⎭. (2)∵()(),2sin ,3,2cos,2cos 2m n mB n B B ⊥==,∴4sin cos 22sin 22m n B B B B B ⋅=⋅+=+ 4sin 203B π⎛⎫=+= ⎪⎝⎭ ∴2,3B k k Z ππ+=∈,∴:,62k B k Z ππ=-+∈, 又∵B 是锐角,∴3B π=.∵3sin 5C =,∴4cos 5C =, ∴cos cos()(cos cos sin sin )DB C B C B C =-+=--=. 即cosD =. 【点睛】 本题考查三角函数解析式的求解,涉及向量垂直的转换,余弦函数的和角公式.属综合基础题.26.(1)证明见解析;(2),,44k k kZ ππππ⎛⎫-++∈ ⎪⎝⎭,奇函数;(3)(,3-∞-. 【解析】(1)利用单调性定义证明即可.(2)根据条件可得tan 1tan 1x x <⎧⎨>-⎩,其解集即为函数的定义域,可判断定义域关于原点对称,再根据奇偶性定义可判断函数的奇偶性.(3)令tan t x =,考虑101t at t -+<+在()1,+∞上有解即可,参变分离后利用基本不等式可求实数a 的取值范围.【详解】(1)11x ∀>-,21x ∀>-,12x x <,又()()()122212121211()()11112x x x x f x f x x x x x ----=-+-=+++, 因为11x >-,21x >-,12x x <,故110x +>,210x +>,120x x -<,故12())0(f x f x ->即12()()f x f x >,所以函数()f x 在(1,)-+∞上为减函数.(2)((ln t )n )a y f x =的x 满足的不等关系有:1tan 01tan x x->+即()()1tan tan 10x x +-<,故tan 1tan 1x x <⎧⎨>-⎩,解得,44k x k k Z ππππ-+<<+∈, 故函数的定义域为,44k k ππππ⎛⎫-++ ⎪⎝⎭,k Z ∈,该定义域关于原点对称. 令()((ln ta )n )F x f x =又()()()tan tan tan()tan tan 11ln ln ln 11x x x x xF x f -+--===--+ ()()()tan ln x f F x =-=-,故ln (tan )y f x =为奇函数.(3)令tan t x =,因为(,)42x ππ∈,故1u >. 故在(,)42ππ上不等式(tan )tan 0f x a x +≤能成立即为 存在1t >,使得101t at t-+≤+,所以()11t a t t -≤+在()1,+∞上能成立, 令1s t =-,则0s >且()21121323t s t t s s s s-==+++++,由基本不等式有2s s +≥s 时等号成立, 所以()131t t t -≤=-+,当且仅当1t 时等号成立, 故()11t y t t -=+的最大值为3-,所以a的取值范围为(,3-∞-. 【点睛】本题考查与正切函数、对数函数有关的复合函数的性质的讨论,此类问题常用换元法把复合函数性质的讨论归结为常见函数性质的讨论,本题较综合,为难题.27.(1)0ϕ=(2)当4x π=时,min ()g x =;当8x π=-时,max 1()2g x = 【解析】【分析】 (1)先将函数表达式结合降幂公式化简可得()1cos(2)2f x x ϕ=-,结合函数过点1,64π⎛⎫ ⎪⎝⎭和,22ππϕ⎛⎫∈- ⎪⎝⎭即可求解具体ϕ值; (2)根据函数图像平移法则先求得1()cos 224g x x π⎛⎫=+ ⎪⎝⎭,由,44x ππ⎡⎤∈-⎢⎥⎣⎦求得32,444x πππ⎡⎤+∈-⎢⎥⎣⎦,再结合余弦函数性质即可求解 【详解】(1)11cos 21()sin 2sin cos cos 222x f x x ϕϕϕ+=⋅+⋅- 11sin 2sin cos 2cos 22x x ϕϕ=⋅+⋅ 1cos(2)2x ϕ=- 又图像过点1,64π⎛⎫ ⎪⎝⎭,11cos 423πϕ⎛⎫∴=- ⎪⎝⎭ 233k ππϕπ∴-=+或2()3k k Z ππ-+∈ 又,22ππϕ⎛⎫∈- ⎪⎝⎭,0ϕ∴= (2)由(1)知1()cos 22f x x =, 11()cos 2cos 22824g x x x ππ⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭ 32,444x πππ⎡⎤+∈-⎢⎥⎣⎦当3244x ππ+=时,即4x π=时,min ()4g x = 当204x π+=时,即8x π=-时,max 1()2g x = 【点睛】本题考查三角函数表达式的化简求值,降幂公式的使用,两角差的余弦公式的逆用,在具体区间函数最值的求解,属于中档题28.(1)单调增区间为7,1212k k ππππ⎡⎤--⎢⎥⎣⎦,k Z ∈,单调减区间为5,1212k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈;(2))22n n + 【解析】【分析】(1)由向量数量积的坐标运算可得()2sin 222sin 23f x a b x x x π⎛⎫=⋅=-=+ ⎪⎝⎭, 再利用三角函数单调区间的求法即可得解;(2)由题意可得()()22222221234212n S n n ⎤=-+-+⋅⋅⋅+--⎦,又()()2221241n n n --=-+,则)2442434n S n n =--⨯-⨯-⋅⋅⋅-+,再利用等差数列求和公式即可得解.【详解】解:(1)向量a ,b 满足2sin 4a x x π⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭,cos 4b x x π⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,函数()2sin 222sin 23f x a b x x x π⎛⎫=⋅=-=+ ⎪⎝⎭, 由2222232k x k πππππ-≤+≤+,可得71212k x k ππππ-≤≤-,k Z ∈, 解得()f x 的单调增区间为7,1212k k ππππ⎡⎤--⎢⎥⎣⎦,k Z ∈; 单调减区间为5,1212k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈. (2)因为22112sin 2244n n a n f n n ππππ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭,所以()()22222221234212n S n n ⎤=-+-+⋅⋅⋅+--⎦, 又()()2221241n n n --=-+, )2442434n S n n --⨯-⨯-⋅⋅⋅-+,所以())2234122n n n S n n --+==+. 【点睛】本题考查了三角函数单调区间的求法及数列中捆绑求和,属中档题.29.(1) 3C π=. (2) max S = 【解析】【分析】(1)由0m n m n ⊥⇒⋅=,利用坐标表示化简,结合余弦定理求角C (2)利用(1)中222c a b ab =+-,应用正弦定理和基本不等式,即可求出面积的最大值,此时三角形为正三角即可求周长.【详解】(1)∵0m n m n ⊥⇒⋅=,∴()())sin sin sin sin sin 0A C A C b a B -+-=,且2R =)22022a c b a R R ⎛⎫⎛⎫--= ⎪ ⎪⎝⎭⎝⎭, 化简得:222c a b ab =+-.由余弦定理:2222cos c a b ab C =+-,∴12cos 1cos 2C C =⇒=, ∵0C π<<,∴3C π=.(2)∵()22222sin 6a b ab c R C +-===,∴2262a b ab ab ab ab =+-≥-=(当且仅当a b =时取“=”)1sin 2S ab C ==≤所以,max S =ABC ∆为正三角形,此时三角形的周长为 【点睛】 本题主要考查了利用数量积判断两个平面向量的垂直关系,正弦定理,余弦定理,基本不等式,属于中档题.30.(Ⅰ) 3π(Ⅱ)5 【解析】【详解】试题分析:(12sin sin A C A =即可得sin C =60C =︒(2)∵1sin 2S ab C ==a b + 试题解析:解:(12sin sin A C A =,∵,A C 是锐角,∴sin C =60C =︒.(2)∵1sin 2S ab C ==6ab = 由余弦定理得222222cos ()3()187c a b ab C a b ab a b =+-=+-=+-=∴5a b +=点睛:在解三角形问题时多注意正余弦定理的结合运用,正弦定理主要用在角化边和边化角上,而余弦定理通常用来求解边长。
三角函数练习题(含答案)

三角函数练习题及答案(一)选择题1、在直角三角形中,各边都扩大2倍,则锐角A 的正弦值与余弦值都( ) A、缩小2倍 B、扩大2倍 C、不变 D 、不能确定 12、在Rt △ABC 中,∠C=900,BC=4,s inA =45,则AC=( ) A 、3 B 、4 C、5 D 、63、若∠A 是锐角,且s in A=13,则( )A 、00<∠A<300B 、300<∠A<450 C、450<∠A<600 D、600<∠A<9004、若c osA=13,则A A AA tan 2sin 4tan sin 3+-=( ) A、47B 、 13C 、 12D、0 5、在△ABC 中,∠A :∠B:∠C=1:1:2,则a:b:c=( )A 、1:1:2 B、1:1:√2 C 、1:1:√3 D 、1:1:√22 6、在Rt △ABC 中,∠C=900,则下列式子成立的是( )A 、s inA =sinB B、sinA=cosBC 、t an A=tanBD 、cosA=tanB7.已知Rt △AB C中,∠C=90°,AC=2,BC=3,那么下列各式中,正确的是( )A.sinB = 23B.cosB= 23C.tanB= 23 D.tanB=32 8.点(-sin 60°,co s60°)关于y轴对称的点的坐标是( ) A.(,12) B.(-,12) C.(-,-12) D.(-12,-32) 9.每周一学校都要举行庄严的升国旗仪式,让我们感受到了国旗的神圣.某同学站在离旗杆12米远的地方,当国旗升起到旗杆顶时,他测得视线的仰角为30°,若这位同学的目高1.6米,则旗杆的高度约为( )A .6.9米 B.8.5米 C .10.3米 D.12.0米10.王英同学从A 地沿北偏西60º方向走100m 到B 地,再从B 地向正南方向走200m到C 地,此时王英同学离A地 ( ) (A)350m ﻩ(B )100 m (C )150m (D)3100m11、如图1,在高楼前D 点测得楼顶的仰角为300,向高楼前进60米到C 点,又测得仰角为450,则该高楼的高度大约为( )A.82米 B.163米 C .52米 D.70米12、一艘轮船由海平面上A 地出发向南偏西40º的方向行驶40海里到达B 地,再由B 地向北偏西10º的方向行驶40海里到达C 地,则A 、C 两地相距( ).(A)30海里 (B)40海里 (C)50海里 (D)60海里(二)填空题1.在Rt △A BC 中,∠C=90°,AB =5,AC=3,则sinB =_____.2.在△A BC 中,若B C=2,AB=7,AC=3,则cosA=________.3.在△A BC 中,AB=2,AC=2,∠B=30°,则∠B AC 的度数是______.4.如图,如果△APB 绕点B 按逆时针方向旋转30°后得到△A'P'B,且BP=2,那么PP'的长为________. (不取近似值.以下数据供解题使用:sin15°=,co s15°=624+)5.如图,在甲、乙两地之间修一条笔直的公路,从甲地测得公路的走向是北偏东48°.甲、乙两地间同时开工,若干天后,公路准确接通,则乙地所修公路的走向是南偏西___________度.6.如图,机器人从A 点,沿着西南方向,行了个4错误!未定义书签。
三角函数测试题及答案

三角函数测试题及答案本文将为您提供一系列的三角函数测试题及其详细答案解析。
在完成测试题之前,请确保您对基本的三角函数概念以及三角函数的性质和应用有一定的了解。
请按照每道题目的要求进行思考和解答,并参考我们提供的答案解析进行对比和巩固。
题目一:已知一个角的正弦值为0.6,求该角的余弦值。
答案解析:由于正弦值为0.6,我们可以根据三角函数的定义得到:sinθ = 0.6。
根据三角函数的性质,我们知道正弦函数和余弦函数是相关的,即sinθ = cos(π/2 - θ)。
因此,我们可以得到cos(π/2 - θ) = 0.6。
进一步求解可得:cos(π/2 - θ) = cosarcsin(0.6) ≈ 0.8。
所以该角的余弦值约为0.8。
题目二:已知一个角的余弦值为0.4,求该角的正切值。
答案解析:由于余弦值为0.4,我们可以根据三角函数的定义得到:cosθ = 0.4。
然后我们可以利用三角函数的性质,即tanθ = sinθ / cosθ,求解正切值。
将已知的cosθ代入公式可得:tanθ = sinθ / 0.4。
由已知的cosθ = 0.4,我们可以利用三角函数的定义得到:sinθ = √(1 - cos²θ) =√(1 - 0.4²) ≈ √(1 - 0.16) ≈ √0.84 ≈ 0.917。
将sinθ = 0.917代入公式可得:tanθ = 0.917 / 0.4 ≈ 2.292。
所以该角的正切值约为2.292。
题目三:已知一条直角边的长度为5,另一条直角边的长度为12,求该直角三角形的正弦值、余弦值、正切值。
答案解析:已知一条直角边的长度为5,另一条直角边的长度为12。
我们可以利用直角三角形中的三角函数定义和性质来求解。
根据已知条件,我们可以得到斜边的长度:√(5² + 12²) ≈ √(25 + 144) ≈ √169 = 13。
然后,我们可以利用定义求解三角函数的值:sinθ = 对边/斜边= 5/13 ≈ 0.385,cosθ = 临边/斜边= 12/13 ≈ 0.923,tanθ = 对边/临边= 5/12 ≈0.417。
三角函数练习题附答案

三角函数练习题附答案一、填空题1.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .角B 为钝角.设△ABC 的面积为S ,若()2224bS a b c a =+-,则sin A +sin C 的最大值是____________.2.已知球O 的表面积为16π,点,,,A B C D 均在球O 的表面上,且,64ACB AB π∠==,则四面体ABCD 体积的最大值为___________.3.如图,某城市准备在由ABC 和以C 为直角顶点的等腰直角三角形ACD 区域内修建公园,其中BD 是一条观赏道路,已知1AB =,3BC =,则观赏道路BD 长度的最大值为______.4.若函数()sin12xf x x π=+,则(1)(2)(3)(2021)f f f f +++⋯⋯+=__________5.已知点A 为直线:3l y x =上一点,且A 位于第一象限,点()10,0B ,以AB 为直径的圆与l 交于点C (异于A ),若60CBA ∠≥,则点A 的横坐标的取值范围为___________.6.如图,在边长为2的正方形ABCD 中,M ,N 分别为边BC ,CD 上的动点,以MN 为边作等边PMN ,使得点A ,P 位于直线MN 的两侧,则PN PB ⋅的最小值为______.7.在三棱锥P ABC -中,4AB BC ==,8PC =,异面直线PA ,BC 所成角为π3,AB PA ⊥,AB BC ⊥,则该三棱锥外接球的表面积为______.8.已知当()0,x π∈时,不等式2cos 23sin 20cos 4sin 1x x x x +-≤--的解集为A ,若函数()()()sin 0f x x =+<<在x A ∈上只有一个极值点,则ϕ的取值范围为______.9.已知P 是直线34130x y ++=上的动点,PA ,PB 是圆()()22111x y -+-=的切线,A ,B 是切点,C 是圆心,那么四边形PACB 面积的最小值是________.10.已知||||||1,0,||1OA OB OC OA OB OP ===⋅=≤,则AP BP BP CP CP AP ⋅+⋅+⋅的最大值为__________.二、单选题11.已知向量a ,b 夹角为3π,向量c 满足1b c -=且 a b a c b c ++=,则下列说法正确的是( ) A .2b c +<B .2a b +>C .1b <D .1a >12.如图,设1F ,2F 是双曲线()22210xy a a -=>的左、右焦点,过点2F 作渐近线的平行线交另外一条渐近线于点A ,若12AF F △的面积为54,离心率满足12e <<,则双曲线的方程为( )A .2215x y -=B .2214x y -=C .2213x y -=D .2212x y -=13.已知函数()()()sin 010f x x ωϕω=+<<,若存在实数1x 、2x ,使得()()122f x f x -=,且12x x π-=,则ω的最大值为( ) A .9B .8C .7D .514.在三棱锥A BCD -中,2AB AD BC ===,13CD =22AC =3BD =,则三棱锥外接球的表面积为( ) A .927πB .9πC .1847πD .18π15.已知三棱锥A BCD -中,4AB BC BD CD AD =====,二面角A BD C --的余弦值为13,点E 在棱AB 上,且3BE AE =,过E 作三棱锥A BCD -外接球的截面,则所作截面面积的最小值为( ) A .103πB .3πC .3π D 316.已知函数()sin()0,02f x x πωϕωϕ⎛⎫=+><< ⎪⎝⎭,66f x f x ππ⎛⎫⎛⎫+=-- ⎪ ⎪⎝⎭⎝⎭,22f x f x ππ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭,下列四个结论: ①4πϕ=②93()2k k N ω=+∈ ③02f π⎛⎫-= ⎪⎝⎭④直线3x π=-是()f x 图象的一条对称轴其中所有正确结论的编号是( ) A .①②B .①③C .②④D .③④17.已知函数()sin os 0(c f x x a x a ωω=+>且0>ω),周期2T π<,()3f π()f x 在6x π=处取得最大值,则ω的最小值为( )A .11B .12C .13D .1418.已知1F 、2F 是椭椭圆和双曲线共有焦点,P 为两曲线的一个公共点,且126F PF π∠=,记椭圆和双曲线的离心率分别1e ,2e ,则1212e e e e +⋅的最大值为 A .4B .2C .83D .16319.函数()2sin(2)()2f x x πφφ=+<的图像向左平移6π个单位长度后对应的函数是奇函数,函数()(2cos 2g x x =.若关于x 的方程()()2f x g x +=-在[)0,π内有两个不同的解αβ,,则()cos αβ-的值为( )A.BC. D20.在锐角ABC 中,三内角,,A B C 的对边分别为,,a b c ,且2sin a b C =,则tan tan tan A B C ++的最小值为( )A .2B .4C .6D .8三、解答题21.在直角ABC ∆中,2BAC π∠=,延长CB 至点D ,使得2CB BD =,连接AD .(1)若AC AD =,求CAD ∠的值; (2)求角D 的最大值.22.如图,甲、乙两个企业的用电负荷量y 关于投产持续时间t (单位:小时)的关系()y f t =均近似地满足函数()sin()(0,0,0)f t A t b A ωϕωϕπ=++>><<.(1)根据图象,求函数()f t 的解析式;(2)为使任意时刻两企业用电负荷量之和不超过9,现采用错峰用电的方式,让企业乙比企业甲推迟(0)m m >小时投产,求m 的最小值. 23.已知向量()2cos ,1a x =,()3sin cos ,1b x x =+-,函数()f x a b =⋅.(1)若()065f x =,0,42x ππ⎡⎤∈⎢⎥⎣⎦,求0cos2x 的值; (2)若函数()y f x ω=在区间2,33ππ⎛⎫⎪⎝⎭上是单调递增函数,求正数ω的取值范围. 24.已知函数()()2sin 24sin 206x x x f πωωω⎛⎫=--+> ⎪⎝⎭,其图象与x 轴相邻的两个交点的距离为2π. (1)求函数()f x 的解析式;(2)若将()f x 的图象向左平移()0m m >个长度单位得到函数()g x 的图象恰好经过点,03π⎛-⎫ ⎪⎝⎭,求当m 取得最小值时,()g x 在7,612ππ⎡⎤-⎢⎥⎣⎦上的单调区间. 25.已知函数()23sin 212cos f x x x =+-. (1)求()f x 的对称轴; (2)将()f x 的图象向左平移12π个单位后得到函数()g x 的图象,当0,3x π⎡⎤∈⎢⎥⎣⎦时,求()g x 的值域.26.在①ABC ∆面积2ABC S ∆=,②6ADC π∠=这两个条件中任选一个,补充在下面问题中,求AC .如图,在平面四边形ABCD 中,34ABC π∠=,BAC DAC ∠=∠,______,24CD AB ==,求AC .27.已知函数22()cos sin 3sin cos 3f x a x a x x x =-+-,其中a R ∈. (Ⅰ)当1a =时,求函数()f x 的对称中心;(Ⅱ)若函数()f x 的最小值为4-,求实数a 的值.28.函数211()sin 2sin cos cos sin 222f x x x πϕϕϕ⎛⎫=⋅+⋅-+ ⎪⎝⎭,22ππϕ⎛⎫-<< ⎪⎝⎭其图像过定点1,64π⎛⎫⎪⎝⎭(1)求ϕ值;(2)将()y f x =的图像左移8π个单位后得到()y g x =,求()g x 在,44ππ⎡⎤-⎢⎥⎣⎦上的最大和最小值及此时对应的x 的取值是多少?29.已知函数()f x 的图象是由函数()sin g x x =的图象经如下变换得到:先将()g x 图象上所有点的纵坐标伸长到原来的2倍(横坐标不变),再将所得到的图象向左平移3π个单位长度.(1)求函数(2)y f x =在[0,]π上的单调递增区间;(2)已知关于x 的方程2()4222f x g x m π⎛⎫-+=+ ⎪⎝⎭在[0,)π内有两个不同的解α,β.求26cos(22)m αβ--的值.30.已知向量()cos sin ,sin a m x m x x ωωω=-,()cos sin ,2cos b x x n x ωωω=--,设函数()()2n f x a b x R =⋅+∈的图象关于点,112π⎛⎫⎪⎝⎭对称,且()1,2ω∈ (I )若1m =,求函数()f x 的最小值;(II )若()4f x f π⎛⎫≤ ⎪⎝⎭对一切实数恒成立,求()y f x =的单调递增区间.【参考答案】一、填空题1.982.1)2314.30325.)1⎡++∞⎣ 6.14- 7.80π8.2(0,)(,)33πππ⋃910.二、单选题11.A 12.B 13.A 14.A 15.B 16.B 17.C 18.A 19.D 20.D 三、解答题21.(1)23CAD π∠=;(2)6π.【解析】 【分析】(1)在ABD ∆中,由正弦定理得,sin sin BD ABDα=,再结合在直角ABC ∆中,sin AB BC C =,然后求解即可;(2)由正弦定理及两角和的余弦可得()2tan tan cos 2sin 22D D αααϕ=+=+,然后结合三角函数的有界性求解即可. 【详解】解:(1)设BAD ∠=α,在ABD ∆中,由正弦定理得,sin sin BD ABDα=, 而在直角ABC ∆中,sin AB BC C =,所以sin sin sin BD BC CDα=, 因为AC AD =,所以C D =, 又因为2CB BD =,所以1sin 2α=,所以6πα=,所以23CAD π∠=;(2)设BAD ∠=α,在ABD ∆中,由正弦定理得,sin sin BD ABDα=, 而在直角ABC ∆中,()cos cos AB BC ABC BC D α=∠=+, 所以()()cos cos cos sin sin sin sin sin BC D BC D D BD D Dαααα+-==, 因为2CB BD =,所以2sin 2sin cos cos 2sin sin D D D ααα=-, 即22sin cos sin 2tan 12sin 2cos 2D ααααα==+-,即()2tan tan cos 2sin 22D D αααϕ=++,1≤及0,2D π⎛⎫∈ ⎪⎝⎭,解得0tan D <≤ 所以角D 的最大值为6π. 【点睛】本题考查了正弦定理,重点考查了三角函数的有界性,属中档题.22.(1)()sin 462f t t ππ⎛⎫=++ ⎪⎝⎭;(2)4【解析】 【分析】 (1)由212T πω==,得ω,由53A b b A +=⎧⎨-=⎩,得A ,b ,代入(0,5),求得ϕ,从而即可得到本题答案;(2)由题,得()()cos ()cos 8966f t m f t t m t ππ⎡⎤⎛⎫++=+++≤ ⎪⎢⎥⎣⎦⎝⎭恒成立,等价于cos ()cos 166t m t ππ⎡⎤⎛⎫++≤ ⎪⎢⎥⎣⎦⎝⎭恒成立,然后利用和差公式展开,结合辅助角公式,逐步转化,即可得到本题答案. 【详解】(1)解:由图知212T πω==,6πω∴=又53A b b A +=⎧⎨-=⎩,可得41b A =⎧⎨=⎩()sin 46f t t πϕ⎛⎫∴=++ ⎪⎝⎭,代入(0,5),得22k πϕπ=+,又0ϕπ<<,2πϕ∴=所求为()sin 462f t t ππ⎛⎫=++ ⎪⎝⎭(2)设乙投产持续时间为t 小时,则甲的投产持续时间为()t m +小时,由诱导公式,企业乙用电负荷量随持续时间t 变化的关系式为:()sin 4cos 4626f t t t πππ⎛⎫=++=+ ⎪⎝⎭同理,企业甲用电负荷量变化关系式为:()cos ()46f t m t m π⎡⎤+=++⎢⎥⎣⎦两企业用电负荷量之和()()cos ()cos 866f t m f t t m t ππ⎡⎤⎛⎫++=+++ ⎪⎢⎥⎣⎦⎝⎭,0t ≥依题意,有()()cos ()cos 8966f t m f t t m t ππ⎡⎤⎛⎫++=+++≤ ⎪⎢⎥⎣⎦⎝⎭恒成立即cos ()cos 166t m t ππ⎡⎤⎛⎫++≤⎪⎢⎥⎣⎦⎝⎭恒成立 展开有cos 1cos sin sin 16666m t m t ππππ⎡⎤⎛⎫⎛⎫⎛⎫+-≤ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦恒成立cos 1cos sin sin cos 66666m t m t A t πππππϕ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+-=+ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦其中,A =cos 16cos m Aπϕ⎛⎫+ ⎪⎝⎭=,sin 6sin m A πϕ=1A ∴=≤整理得:1cos 62m π⎛⎫≤- ⎪⎝⎭解得2422363k m k πππππ⎛⎫+≤≤+ ⎪⎝⎭ 即124128k m +≤≤+ 取0k =得:48m ≤≤ m ∴的最小值为4. 【点睛】本题主要考查根据三角函数的图象求出其解析式,以及三角函数的实际应用,主要考查学生的分析问题和解决问题的能力,以及计算能力,难度较大. 23.(12)104ω<≤ 【解析】 【分析】(1)利用数量积公式结合二倍角公式,辅助角公式化简函数解析式,由()065f x =,结合026x π+的范围以及平方关系得出0cos 26x π⎛⎫+ ⎪⎝⎭的值,由002266x x ππ⎛⎫+- ⎪⎝⎭=结合两角差的余弦公式求解即可;(2)由整体法结合正弦函数的单调性得出该函数的单调增区间,则区间2,33ππ⎛⎫⎪⎝⎭应该包含在()y f x ω=的一个增区间内,根据包含关系列出不等式组,求解即可得出正数ω的取值范围. 【详解】(1)())2cos cos 12cos 22sin 26f x a b x x x x x x π⎛⎫=⋅=+-=+=+ ⎪⎝⎭因为()065f x =,所以062sin 265x π⎛⎫+= ⎪⎝⎭,即03sin 265x π⎛⎫+= ⎪⎝⎭.因为0,42x ππ⎡⎤∈⎢⎥⎣⎦,所以0272366x πππ≤+≤所以04cos 265x π⎛⎫+=- ⎪⎝⎭.所以00001cos 2cos 22sin 266626x x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫=+-=+++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦413525⎛⎫=-+⨯=⎪⎝⎭ (2)()2sin 26y f x x πωω⎛⎫==+ ⎪⎝⎭.令222262k x k ππππωπ-≤+≤+,k Z ∈得36k k x ππππωωωω-≤≤+,k Z ∈ 因为函数()y f x ω=在区间2,33ππ⎛⎫⎪⎝⎭上是单调递增函数 所以存在0k Z ∈,使得002,,3336k k ππππππωωωω⎛⎫⎛⎫⊆-+ ⎪ ⎪⎝⎭⎝⎭所以有0033263k k πππωωπππωω⎧-≤⎪⎪⎨⎪+≥⎪⎩,即0031614k k ωω≤+⎧⎨+≥⎩因为0>ω,所以016k >-又因为2123322πππω-≤⨯,所以302ω<≤,则03312k ≤+,所以056k ≤ 从而有01566k -<≤,所以00k =,所以104ω<≤.【点睛】本题主要考查了利用同角三角函数的基本关系,二倍角公式,两角差的余弦公式化简求值以及根据正弦型函数的单调性求参数范围,属于较难题.24.(1)()23f x x π⎛⎫=+ ⎪⎝⎭(2)单调增区间为,612ππ⎡⎤--⎢⎥⎣⎦,57,1212ππ⎡⎤⎢⎥⎣⎦;单调减区间为5,1212ππ⎡⎤-⎢⎥⎣⎦. 【解析】 【分析】(1)利用两角差的正弦公式,降幂公式以及辅助角公式化简函数解析式,根据其图象与x 轴相邻的两个交点的距离为2π,得出周期,利用周期公式得出1ω=,即可得出该函数的解析式;(2)根据平移变换得出()223m x x g π⎛⎫=++ ⎪⎝⎭,再由函数()g x 的图象经过点,03π⎛⎫- ⎪⎝⎭,结合正弦函数的性质得出m 的最小值,进而得出()223g x x π⎛⎫=+⎪⎝⎭,利用整体法结合正弦函数的单调性得出该函数在7,612ππ⎡⎤-⎢⎥⎣⎦上的单调区间.【详解】解:(1)()2sin 24sin 26x x x f πωω⎛⎫=--+ ⎪⎝⎭11cos22cos24222xx x ωωω-=--⨯+32cos22x x ωω=+23x πω⎛⎫=+ ⎪⎝⎭由已知函数()f x 的周期T π=,22ππω=,1ω=∴()23f x x π⎛⎫=+ ⎪⎝⎭.(2)将()f x 的图象向左平移()0m m >个长度单位得到()g x 的图象∴()223m x x g π⎛⎫=++ ⎪⎝⎭,∵函数()g x 的图象经过点,03π⎛⎫- ⎪⎝⎭22033m ππ⎡⎤⎛⎫⨯-++= ⎪⎢⎥⎝⎭⎣⎦,即sin 203m π⎛⎫-= ⎪⎝⎭∴23m k ππ-=,k Z ∈∴26k m ππ=+,k Z ∈∵0m >,∴当0k =,m 取最小值,此时最小值为6π此时,()223g x x π⎛⎫=+⎪⎝⎭. 令7612x ππ-≤≤,则2112336x πππ≤+≤当22332x πππ≤+≤或32112236x πππ≤+≤,即当612x ππ-≤≤-或571212x ππ≤≤时,函数()g x 单调递增当232232x πππ≤+≤,即51212x ππ-≤≤时,函数()g x 单调递减. ∴()g x 在7,612ππ⎡⎤-⎢⎥⎣⎦上的单调增区间为,612ππ⎡⎤--⎢⎥⎣⎦,57,1212ππ⎡⎤⎢⎥⎣⎦;单调减区间为5,1212ππ⎡⎤-⎢⎥⎣⎦.【点睛】本题主要考查了由正弦函数的性质确定解析式以及正弦型函数的单调性,属于中档题. 25.(1)23k x ππ=+(k Z ∈)(2)[]0,2 【解析】(1)利用三角恒等变换,化简函数解析式为标准型,再求对称轴; (2)先求平移后的函数解析式,再求值域. 【详解】(1)()222cos 1f x x x =-+2cos 2x x =-2sin 26x π⎛⎫=- ⎪⎝⎭令:262x k πππ-=+,得23k x ππ=+, 所以()f x 的对称轴为23k x ππ=+(k Z ∈). (2)将()f x 的图象向左平移12π个单位后得到函数()g x ,所以()12g x f x π⎛⎫=+ ⎪⎝⎭2sin 22sin 2126x x ππ⎡⎤⎛⎫=+-= ⎪⎢⎥⎝⎭⎣⎦当0,3x π⎡⎤∈⎢⎥⎣⎦时,有220,3x π⎡⎤∈⎢⎥⎣⎦,故[]sin 20,1x ∈, ()g x ∴的值域为[]0,2. 【点睛】本题考查利用三角恒等变换化简函数解析式,求解函数性质,同时涉及三角函数图象的平移,以及值域的求解问题.属三角函数综合基础题. 26.见解析 【解析】选择①:利用三角形面积公式和余弦定理可以求接求出AC 的长;选择②:在ABC ∆,ACD ∆中,分别运用正弦定理,可以求接求出AC 的长; 【详解】 解:选择①:113sin 2sin 2224ABC S AB BC ABC BC π∆=⋅⋅⋅∠=⋅⋅⋅=所以BC = 由余弦定理可得2222cos AC AB BC AB BC ABC =+-⋅⋅∠482220⎛=+-⨯⨯= ⎝⎭所以AC == 选择②设BAC CAD θ∠=∠=,则04πθ<<,4BCA πθ∠=-,在ABC ∆中sin sin AC ABABC BCA =∠∠,即23sin sin 44AC ππθ=⎛⎫- ⎪⎝⎭所以sin 4AC θ=- ⎪⎝⎭在ACD ∆中,sin sin AC CD ADC CAD=∠∠,即4sin sin 6AC πθ=所以2sin AC θ=.所以2sin sin 4πθθ=⎛⎫- ⎪⎝⎭,解得2sin cos θθ=, 又04πθ<<,所以sin θ=,所以2sin AC θ== 【点睛】本题考查了正弦定理、余弦定理、三角形面积公式,考查了数学运算能力. 27.(Ⅰ)(,3),.122k k Z ππ-+-∈(Ⅱ)12a =或12a =- 【解析】(Ⅰ)当1a =时,根据二倍角公式、辅助角公式化简函数,根据正弦函数的性质可得. (Ⅱ)将函数化简为()sin()f x A x b ωϕ=++的形式,分类讨论可得. 【详解】解:(Ⅰ)当1a =时,22()cos sin cos 3f x x x x x =-+-cos 2232sin(2)36x x x π=-=+-()2sin(2)36f x x π∴=+-由2,6x k k Z ππ+=∈ 得:,122k x k Z ππ=-+∈ ()f x ∴的对称中心为(,3),.122k k Z ππ-+-∈(Ⅱ)22()cos sin sin cos 3f x a x a x x x =-+-()cos 2sin 23f x a x x ∴=-()2sin(2)36f x a x π∴=+-1sin(2)16x π-≤+≤当0a >时,232sin(2)3236a a x a π--≤+-≤-则有234a --=- 解得12a =当0a =时,min ()3f x =-,不合题意当0a <时,232sin(2)3236a a x a π-≤+-≤--则有234a -=-解得12a =-综上 12a ∴=或12a =-.【点睛】本题主要考查三角函数的图象和性质,利用三角公式将函数进行化简是解决本题的关键,要求熟练掌握三角函数的图象和性质,属于中档题. 28.(1)0ϕ=(2)当4x π=时,min ()g x =;当8x π=-时,max 1()2g x =【解析】 【分析】(1)先将函数表达式结合降幂公式化简可得()1cos(2)2f x x ϕ=-,结合函数过点1,64π⎛⎫⎪⎝⎭和,22ππϕ⎛⎫∈- ⎪⎝⎭即可求解具体ϕ值;(2)根据函数图像平移法则先求得1()cos 224g x x π⎛⎫=+ ⎪⎝⎭,由,44x ππ⎡⎤∈-⎢⎥⎣⎦求得32,444x πππ⎡⎤+∈-⎢⎥⎣⎦,再结合余弦函数性质即可求解 【详解】(1)11cos 21()sin 2sin cos cos 222x f x x ϕϕϕ+=⋅+⋅- 11sin 2sin cos 2cos 22x x ϕϕ=⋅+⋅ 1cos(2)2x ϕ=- 又图像过点1,64π⎛⎫ ⎪⎝⎭,11cos 423πϕ⎛⎫∴=- ⎪⎝⎭233k ππϕπ∴-=+或2()3k k Z ππ-+∈又,22ππϕ⎛⎫∈- ⎪⎝⎭,0ϕ∴=(2)由(1)知 1()cos 22f x x =, 11()cos 2cos 22824g x x x ππ⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭ 32,444x πππ⎡⎤+∈-⎢⎥⎣⎦当3244x ππ+=时,即4x π=时,min ()g x =当204x π+=时,即8x π=-时,max 1()2g x = 【点睛】本题考查三角函数表达式的化简求值,降幂公式的使用,两角差的余弦公式的逆用,在具体区间函数最值的求解,属于中档题29.(1)(2 )y f x =在[0,]π上的单调递增区间0,12π⎡⎤⎢⎥⎣⎦,7,12ππ⎡⎤⎢⎥⎣⎦(2)6-【解析】 【分析】(1)先求出()2sin 3f x x π⎛⎫=+ ⎪⎝⎭,再利用三角函数的图像和性质求函数(2)y f x =在[0,]π上的单调递增区间;(2)先化简得2()422f x g x π⎛⎫-+ ⎪⎝⎭223x π⎛⎫=-+ ⎪⎝⎭,再利用三角函数的性质求出cos )αβ-(的值得解. 【详解】(1)将()sin g x x =图象上所有点的纵坐标伸长到原来的2倍,得到2sin y x =的图象,再将2sin y x =的图象向左平移3π个单位长度后得到2sin 3y x π⎛⎫=+ ⎪⎝⎭的图象,故()2sin 3f x x π⎛⎫=+ ⎪⎝⎭.(2)2sin 23f x x π⎛⎫=+ ⎪⎝⎭,令222232k x k πππππ-++,k ∈Z51212k x k ππππ-+,k ∈Z ,又[0,]x π∈所以(2)y f x =在[0,]π上的单调递增区间0,12π⎡⎤⎢⎥⎣⎦,7,12ππ⎡⎤⎢⎥⎣⎦.(2)2()422f x g x π⎛⎫-+ ⎪⎝⎭24sin 4sin 232x x ππ⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭222cos 24cos 23x x π⎛⎫=-+- ⎪⎝⎭23cos 22x x =-+223x π⎛⎫=-+ ⎪⎝⎭.因为2()4222f x g x m π⎛⎫-+=+ ⎪⎝⎭在[0,)π内有两个不同的解α,β,所以23x m π⎛⎫-= ⎪⎝⎭在[0,)π内有两个不同的解α,β,且52,333x πππ⎡⎫-∈-⎪⎢⎣⎭,所以2233ππαβπ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭或22333ππαβπ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭.于是56παβ+=或116παβ+=. 当56παβ+=时,5cos()cos 6παβαα⎛⎫⎛⎫-=--⎪ ⎪⎝⎭⎝⎭5cos 2cos 2632πππαα⎛⎫⎛⎫=-=-- ⎪⎪⎝⎭⎝⎭ sin 23πα⎛⎫=-= ⎪⎝⎭当116παβ+=时, 11cos()cos 6παβαα⎛⎫⎛⎫-=-- ⎪ ⎪⎝⎭⎝⎭113cos 2cos 2632πππαα⎛⎫⎛⎫=-=-- ⎪ ⎪⎝⎭⎝⎭ sin 23πα⎛⎫=--= ⎪⎝⎭,因此,26cos(22)m αβ--()2262cos ()1m αβ=---22621612m m ⎛⎫=⋅--=- ⎪⎝⎭. 【点睛】本题主要考查三角函数图像的变换和三角函数的单调区间的求法,考查三角函数图像的零点问题,考查三角恒等变换和求值,意在考查学生对这些知识的理解掌握水平和分析推理能力.30.(Ⅰ)1()22,31234k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦【解析】 【分析】化简()f x 解析式可得()()22n f x x ωϕ=-+;根据图象关于,112π⎛⎫ ⎪⎝⎭可求得n ;(Ⅰ)若1m =,则()()21f x x ωϕ=-+,从而可得函数最小值;(Ⅱ)利用4x π=为对称轴,,112π⎛⎫ ⎪⎝⎭为对称中心可得()*642T T k k N π=+⋅∈,根据周期和ω的范围可求得ω;将,112π⎛⎫ ⎪⎝⎭代入解析式可求得()314f x x π⎛⎫=-+ ⎪⎝⎭,将34x π-整体放入正弦函数的单调递增区间中,解出x 的范围即可. 【详解】由题意得:()()22cos sin 2sin cos 2n f x m x x n x x ωωωω=--++()sin 2cos 2222n n n x m x x ωωωϕ=-+=-+ 其中cos ϕ=sin ϕ=图象关于点,112π⎛⎫⎪⎝⎭对称 12n ∴=,解得:2n =()()21f x x ωϕ∴=-+(Ⅰ)若1m =,则()()21f x x ωϕ=-+()min 1f x ∴=(Ⅱ)()4f x f π⎛⎪≤⎫ ⎝⎭对一切实数恒成立 ()max 4f x f π⎛⎫∴= ⎪⎝⎭()*412642T T k k N πππ∴-==+⋅∈,即:()()*223212T k N k ππω==∈+ ()3212k ω∴=+,又()1,2ω∈ 32ω∴=()2sin3cos31f x x m x ∴=-+,又图象关于点,112π⎛⎫⎪⎝⎭对称2sin cos 111244f m πππ⎛⎫∴=-+= ⎪⎝⎭,解得:2m =()2sin 32cos31314f x x x x π⎛⎫∴=-+=-+ ⎪⎝⎭令232242k x k πππππ-+≤-≤+,k Z ∈,解得:2212343k k x ππππ-+≤≤+,k Z ∈ ()f x ∴的单调递增区间为:()22,31234k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦ 【点睛】本题考查三角函数图象与性质的综合应用问题,涉及到根据三角函数的性质求解函数解析式的求解、三角函数最值的求解、单调区间的求解问题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数相关几何计算训练1.(2011•南宁)如图,在△ABC中,∠ACB=90°,∠A=15°,AB=8,则AC•BC的值为()A.14 B.16C.4D.162.如图,在▱ABCD中,AB:AD=3:2,∠ADB=60°,那么cosA的值等于()A.B.C.D.3.(2013•遵义模拟)如图,△ABC内接于⊙O,AD为⊙O的直径,交BC于点E,若DE=2,OE=3,则tanC•tanB=()A.2B.3C.4D.54.路边路灯的灯柱BC垂直于地面,灯杆BA的长为2m,灯杆与灯柱BC成120度角,锥形灯罩轴线AD与灯杆AB垂直,且灯罩轴线AD正过道路路面的中心线(D在中心线上),已经点C与D点之间的距离为12m,则BC的高()m.A.B.12 C.D.5.如图,在等腰直角三角形ABC中,∠C=90°,D为BC的中点,将△ABC折叠,使点A与点D重合,EF为折痕,则sin∠BED的值是()A.B.C.D.6.(2011•西城区一模)如图,点A在半径为3的⊙O内,OA=,P为⊙O上一点,当∠OPA取最大值时,PA的长等于()A.B.C.D.7.将一副直角三角板中的两块按如图摆放,连AD,则tan∠DAC的值为()A.B.C.D.8.如图,在△ABC中,∠A=30°,E为AC上一点,且AE:EC=3:1,EF⊥AB于F,连接FC,则tan∠CFB等于()A.B.C.D.9.(2007•临沂)如图,客轮在海上以30km/h的速度由B向C航行,在B处测得灯塔A的方位角为北偏东80°,测得C处的方位角为南偏东25°,航行1小时后到达C处,在C处测得A的方位角为北偏东20°,则C到A的距离是()A.15km B.15km C.15(+)km D.5(+3)km10.(2004•武汉)已知:如图,⊙O1与⊙O2外切于C点,AB一条外公切线,A、B分别为切点,连接AC、BC.设⊙O1的半径为R,⊙O2的半径为r,若tan∠ABC=,则的值为()A.B.C.2D.311.如图在梯形ABCD中,AD∥BC,AD⊥CD,BC=CD=2AD,E是CD上一点,∠ABE=45°,则tan∠AEB的值等于()A.3B.2C.D.12.(2008•资阳)如图,已知Rt△ABC≌Rt△DEC,∠E=30°,D为AB的中点,AC=1,若△DEC绕点D顺时针旋转,使ED,CD分别与Rt△ABC的直角边BC相交于M,N.则当△DMN为等边三角形时,AM的值为()A.B.C.D.113.(2014•奉贤区二模)如图,在四边形ABCD中,E、F分别是AB、AD的中点,若EF=2,BC=5,CD=3,则tanC= _________ .14.在Rt△ABC中,∠C=90°,∠A>∠B,,则sin= _________ .15.(2013•道里区三模)如图,在△ABC中,∠C=90°,AC=16,AB的垂直平分线交AC于点D,连接BD,若cos∠BDC=,则BC的长是_________ .16.如图,在Rt△ABC中,∠C=90°,∠A=30°,在AC上取一点D,使得CD=BC,则sin∠ABD=_________ .17.(2013•宝应县二模)如图,在△ABC中,AB=10,AC=6,BC=8,⊙O为△ABC的内切圆,点D是斜边AB的中点,则tan∠ODA=_________ .18.(2013•成都一模)如图,P为圆外一点,PA切圆于A,PA=8,直线PCB交圆于C、B,且PC=4,连接AB、AC,∠ABC=α,∠ACB=β,则= _________ .19.如图,在正方形PQRS中,M、N分别为QR、RS上的点,且∠MPN=30°.若△PMN为等腰三角形,且面积为1,则正方形PQRS的面积为_________ .20.(1998•绍兴)已知:如图,面积为2的四边形ABCD内接于⊙O,对角线AC经过圆心,若∠BAD=45°,CD=,则AB的长等于_________ .21.△ABC中,D为AC边中点,∠EDF=90°,tan∠B=,若FC=5,EF=,则AE= _________ .22. 如图,CD,BE是△ABC的角平分线,∠A=60°,BD=2CE=2,则△ABC的周长是_________ .23.(1)如图,∠ABC位于6×8的方格纸中,则= _________ .(2)如图,物理学家在对原子结构研究中,在一个宽m的矩形粒子加速器中,一中子从点M(点M在长边CD上)出发沿虚线MN射向边BC,然后反弹到边AB上的P点.如果MC=n,∠CMN=α.那么P点与B点的距离为_________ .【附加练习】1.如图,在△ABC中,D是边AC上的点,且AB=AD,2AB=3BD,BC=2BD,则sinC的值为66.2.若E、F是等腰直角△ABC斜边上的三等分点,则tan∠ECF= 34.3.如图,△ACD是等边三角形,△ABC是等腰直角三角形,∠ACB=90°,BD交AC于E,AB=2,则AE= 62.4.在等腰△ABC中,D是腰AC的中点,若sin∠CBD=14,则sin∠ABD=108.参考答案与试题解析一、选择题(共12小题)1.(2011•南宁)如图,在△ABC中,∠ACB=90°,∠A=15°,AB=8,则AC•BC的值为()A.14 B.16C.4D.16考点:锐角三角函数的定义.专题:计算题;压轴题.分析:解法一:利用二倍角公式sin2α=2sinαcosα、锐角三角函数的定义解答.解法二:作△ABC的中线CD,过C作CE⊥AB于E,求出AD=CD=BD=2,求出CE、DE、BE,根据勾股定理求出BC、AC,代入求出即可.解答:解:∵sin30°=2sin15°cos15°=,∠A=15°,∴2××=;又∵AB=8,∴AC•BC=16.解法二:作△ABC的中线CD,过C作CE⊥AB于E,∵∠ACB=90°,∴AD=DC=DB=AB=4,∴∠A=∠ACD=15°,∴∠CDB=∠A+∠ACD=30°,∴CE=CD=2,∴S△ABC=AC•BC=AB•CE,即AC•BC=×8×2,∴AC•BC=16故选D.点评:本题考查了锐角三角函数的定义.解答该题的关键是熟记二倍角公式.2.如图,在▱ABCD中,AB:AD=3:2,∠ADB=60°,那么cosA的值等于()A.B.C.D.考点:解直角三角形;平行四边形的性质.分析:作出辅助线,构造直角三角形,运用三角形面积相等,求出三角形的高,然后运用sin2α+cos2α=1,根据题中所给的条件,在直角三角形中解题,由角的余弦值与三角形边的关系求解.解答:解:作AF⊥DB于F,作DE⊥AB于E.设DF=x,∵∠ADB=60°,∠AFD=90°,∴∠DAF=30°,则AD=2x,∴AF=x,又∵AB:AD=3:2,∴AB=3x,于是BF=x,∴3x•DE=(+1)x•x,DE=x,sin∠A=,cos∠A===.故选A.点评:本题考查了解直角三角形、平行四边形的性质.解题时,利用了三角函数的定义及三角形面积公式.3.(2013•遵义模拟)如图,△ABC内接于⊙O,AD为⊙O的直径,交BC于点E,若DE=2,OE=3,则tanC•tanB=()A.2B.3C.4D.5考点:锐角三角函数的定义;三角形的外接圆与外心.专题:压轴题.分析:由DE=2,OE=3可知AO=OD=OE+ED=5,可得AE=8,连接BD、CD,可证∠B=∠ADC,∠C=∠ADB,∠DBA=∠DCA=90°,将tanC,tanB在直角三角形中用线段的比表示,再利用相似转化为已知线段的比.解答:解:连接BD、CD,由圆周角定理可知∠B=∠ADC,∠C=∠ADB,∴△ABE∽△CDE,△ACE∽△BDE,∴=,=,由AD为直径可知∠DBA=∠DCA=90°,∵DE=2,OE=3,∴AO=OD=OE+ED=5,AE=8,tanC•tanB=tan∠ADB•tan∠ADC======4.故选C.点评:求锐角的三角函数值的方法:利用锐角三角函数的定义,或者利用同角(或余角)的三角函数关系式求三角函数值.4.路边路灯的灯柱BC垂直于地面,灯杆BA的长为2m,灯杆与灯柱BC成120度角,锥形灯罩轴线AD与灯杆AB垂直,且灯罩轴线AD正过道路路面的中心线(D在中心线上),已经点C与D点之间的距离为12m,则BC的高()m.A.B.12 C.D.考点:解直角三角形的应用.分析:设灯柱BC的长为h米,过点A作AH⊥CD于点H,过点B作BE⊥AH于点E,构造出矩形BCHE,Rt△AEB,然后解直角三角形求解.解答:解:设灯柱BC的长为h米,作AH⊥CD于点H,作BE⊥AH于点E.∴四边形BCHE为矩形.∵∠ABC=120°,∴∠ABE=30°.又∵∠BAD=∠BCD=90°,∴∠ADC=60°.在Rt△AEB中,∴AE=ABsin30°=1,BE=ABcos30°=,∴CH=.又∵CD=12,∴DH=12﹣.在Rt△AHD中,tan∠ADH===,解得,h=12﹣4.故选A.点评:本题考查了解直角三角形的应用,解答此题的关键是作出辅助线,构造直角三角形,将求灯柱高的问题转化为解直角三角形的问题解答.5.如图,在等腰直角三角形ABC中,∠C=90°,D为BC的中点,将△ABC折叠,使点A与点D重合,EF为折痕,则sin∠BED的值是()A.B.C.D.考点:翻折变换(折叠问题);三角形的外角性质;锐角三角函数的定义.专题:压轴题;探究型.分析:先根据翻折变换的性质得到△DEF≌△AEF,再根据等腰三角形的性质及三角形外角的性质可得到∠BED=CDF,设CD=1,CF=x,则CA=CB=2,再根据勾股定理即可求解.解答:解:∵△DEF是△AEF翻折而成,∴△DEF≌△AEF,∠A=∠EDF,∵△ABC是等腰直角三角形,∴∠EDF=45°,由三角形外角性质得∠CDF+45°=∠BED+45°,∴∠BED=∠CDF,设CD=1,CF=x,则CA=CB=2,∴DF=FA=2﹣x,∴在Rt△CDF中,由勾股定理得,CF2+CD2=DF2,即x2+1=(2﹣x)2,解得x=,∴sin∠BED=sin∠CDF=.故选A.点评:本题考查的是图形翻折变换的性质、等腰直角三角形的性质、勾股定理、三角形外角的性质,涉及面较广,但难易适中.6.(2011•西城区一模)如图,点A在半径为3的⊙O内,OA=,P为⊙O上一点,当∠OPA取最大值时,PA的长等于()A.B.C.D.考点:解直角三角形.专题:计算题;压轴题.分析:当PA⊥OA时,PA取最小值,∠OPA取得最大值,然后在直角三角形OPA中利用勾股定理求PA的值即可.解答:解:在△OPA中,当∠OPA取最大值时,OA取最大值,∴PA取最小值,又∵OA、OP是定值,∴PA⊥OA时,PA取最小值;在直角三角形OPA中,OA=,OP=3,∴PA==.故选B.点评:本题考查了解直角三角形.解答此题的关键是找出“当PA⊥OA时,PA取最小值”即“PA⊥OA时,∠OPA 取最大值”这一隐含条件.7.将一副直角三角板中的两块按如图摆放,连AD,则tan∠DAC的值为()A.B.C.D.考点:锐角三角函数的定义.分析:欲求∠DAC的正切值,需将此角构造到一个直角三角形中.过C作CE⊥AD于E,设CD=BD=1,然后分别表示出AD、CE、DE的知,进而可在Rt△ACE中,求得∠DAC的正切值.解答:解:如图,过C作CE⊥AD于E.∵∠BDC=90°,∠DBC=∠DCB=45°,∴BD=DC,设CD=BD=1,在Rt△ABD中,∠BAD=30°,则AD=2.在Rt△EDC中,∠CDE=∠BAD=30°,CD=1,则CE=,DE=.∴tan∠DAC===.故选C.点评:本题主要考查的是解直角三角形,正确地构造出与所求相关的直角三角形,是解题的关键.8.如图,在△ABC中,∠A=30°,E为AC上一点,且AE:EC=3:1,EF⊥AB于F,连接FC,则tan∠CFB等于()A.B.C.D.考点:解直角三角形.专题:计算题.分析:要求tan∠CFB的值,可以作辅助线CD⊥AB,将tan∠CFB的值转化为CD与FD的比,根据题中所给的条件,在直角三角形中解题,根据角的正切值与三角形边的关系,代入三角函数进行求出CD与FD的长.解答:解:如图,作出CD⊥AB,垂足为D,则EF∥CD,∴设EC=X,则AE=3X,sinA=sin30°=EF:AE=1:2,∴EF=X,∵cosA=cos30°=AF:AE=,∴AF=X.∵EF∥CD,∴==3,==,∴FD==X,CD=EF=2X,∴tan∠CFB===.故选C.点评:本题综合考查了比例线段性质和锐角三角函数的概念以及作辅助线的能力.9.(2007•临沂)如图,客轮在海上以30km/h的速度由B向C航行,在B处测得灯塔A的方位角为北偏东80°,测得C处的方位角为南偏东25°,航行1小时后到达C处,在C处测得A的方位角为北偏东20°,则C到A的距离是()A.15km B.15km C.15(+)km D.5(+3)km考点:解直角三角形的应用-方向角问题.专题:压轴题.分析:过点B作BD⊥AD于点D,根据三角函数分别求BD,AD的值,从而不难求AC的长.解答:解:过点B作BD⊥AC于点D.过C作方位线,由平行得到∠1=∠2=25°,又∠3=20°,∴∠BCD=45°,∴△BCD为等腰直角三角形,∴BD=CD=30×=15.∵AD=BD•tan30°=5,∴CA=15+5=5(+3).故选D.点评:解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.10.(2004•武汉)已知:如图,⊙O1与⊙O2外切于C点,AB一条外公切线,A、B分别为切点,连接AC、BC.设⊙O1的半径为R,⊙O2的半径为r,若tan∠ABC=,则的值为()A.B.C.2D.3考点:锐角三角函数的定义;弦切角定理.分析:根据切线长定理先证明∠ACB=90°,得直角三角形ABC;再由tan∠ABC==,得两圆弦长的比;进一步求半径的比.解答:解:如图,连接O2B,O1A,过点C作两圆的公切线CF,交于AB于点F,作O1E⊥AC,O2D⊥BC,由垂径定理可证得点E,点D分别是AC,BC的中点,由弦切角定理知,∠ABC=∠FCB=∠BO2C,∠BAC=∠FCA=∠AO1C,∵AO1∥O2B,∴∠AO1C+∠BO2C=180°,∴∠FCB+∠FCA=∠ACB=90°,即△ACB是直角三角形,∴∠ABC=∠BO2D=∠ACO1,设∠ABC=∠BO2D=∠ACO1=β,则有sinβ=,cosβ=,∴tanβ=•=•,∴(tanβ)2==2.故选C.点评:本题综合性较强,综合了圆的有关知识,所以学生所学的知识要系统起来,不可单一.11.如图在梯形ABCD中,AD∥BC,AD⊥CD,BC=CD=2AD,E是CD上一点,∠ABE=45°,则tan∠AEB的值等于()A.3B.2C.D.考点:锐角三角函数的定义.分析:过B作DC的平行线交DA的延长线于M,在DM的延长线上取MN=CE.根据全等三角形及直角三角形的性质求出∠BNM两直角边的比,即可解答.解答:解:过B作DC的平行线交DA的延长线于M,在DM的延长线上取MN=CE.则四边形MDCB为正方形,易得△MNB≌△CEB,∴BE=BN.∴∠NBE=90°.∵∠ABE=45°,∴∠ABE=∠ABN,∴△NAB≌△EAB.设EC=MN=x,AD=a,则AM=a,DE=2a﹣x,AE=AN=a+x,∵AD2+DE2=AE2,∴a2+(2a﹣x)2=(a+x)2,∴x=a.∴tan∠AEB=tan∠BNM==3.故选A.点评:本题考查的是锐角三角函数的定义,解答此题的关键是作出辅助线,构造出直角三角形,利用数形结合解答.12.(2008•资阳)如图,已知Rt△ABC≌Rt△DEC,∠E=30°,D为AB的中点,AC=1,若△DEC绕点D顺时针旋转,使ED,CD分别与Rt△ABC的直角边BC相交于M,N.则当△DMN为等边三角形时,AM的值为()A.B.C.D.1考点:解直角三角形;全等三角形的性质.专题:压轴题.分析:要求AM的长,可以考虑在直角△ACM中利用勾股定理求解,这样就转化为求CM的长.解答:解:在Rt△ABC中,∠E=30°,D为AB的中点,则△BCD中,BC=,∠CDB=120°,CD=BD,过点D作DP⊥BC于P点,则PC=,DP=PC•tan60°=.在Rt△DMP中,MP=DP•tan30°=,∴CM=PC﹣MP=.∵在直角△ACM中,∠CAM=30°.∴AM=2CM=.故选B.点评:解决本题的关键是能够正确理解题意,正确作出旋转后的图形,把求线段长的问题转化为三角函数或勾股定理的内容.二、填空题(共11小题)(除非特别说明,请填准确值)13.(2014•奉贤区二模)如图,在四边形ABCD中,E、F分别是AB、AD的中点,若EF=2,BC=5,CD=3,则tanC=.考点:三角形中位线定理;勾股定理的逆定理;锐角三角函数的定义.专题:压轴题.分析:根据中位线的性质得出EF∥BD,且等于BD,进而得出△BDC是直角三角形,求出即可.解答:解:连接BD,∵E、F分别是AB、AD的中点,∴EF∥BD,且等于BD,∴BD=4,∵BD=4,BC=5,CD=3,∴△BDC是直角三角形,∴tan C==,故答案为:点评:此题主要考查了锐角三角形的定义以及三角形中位线的性质以及勾股定理逆定理,根据已知得出△BDC是直角三角形是解题关键.14.在Rt△ABC中,∠C=90°,∠A>∠B,,则sin=.考点:勾股定理;特殊角的三角函数值.专题:计算题.分析:用c和a表示出b,代入到直角三角形满足的勾股定理中求得a与c之间的关系,并由此求得角A的正弦值,再根据角的取值范围确定角的具体度数即可.解答:解:由已知得①,a2+b2=c2②,由①得③,代入②得,∴,,∵A>B,∴a>b,∴,∴,∵0°<A<90°,∴A=60°,∴sin=sin30°,=.故答案为:.点评:本题考查了勾股定理及三角函数值的问题,解题的关键知道不是求出具体的某两条边的值,而是求出正两条边的关系即可.15.(2013•道里区三模)如图,在△ABC中,∠C=90°,AC=16,AB的垂直平分线交AC于点D,连接BD,若cos∠BDC=,则BC的长是8.考点:解直角三角形;线段垂直平分线的性质;勾股定理.分析:由于cos∠BDC=,可设DC=3x,BD=5x,由于MN是线段AB的垂直平分线,故AD=DB,AD=5x,又知AC=16,即可据此列方程解答.解答:解:∵cos∠BDC=,∴设DC=3x,BD=5x,又∵MN是线段AB的垂直平分线,∴AD=DB=5x,又∵AC=16,∴3x+5x=16,解得x=2,在Rt△BDC中,CD=6,DB=10,BC==8.故答案为:8.点评:本题考查了线段垂直平分线的性质、勾股定理、解直角三角形的相关知识,综合性较强,计算要仔细.16.如图,在Rt△ABC中,∠C=90°,∠A=30°,在AC上取一点D,使得CD=BC,则sin∠ABD=.考点:相似三角形的判定与性质;锐角三角函数的定义.专题:计算题.分析:由∠C=90°,∠A=30°,CD=BC,求出∠ABC=60°,∠CBD=∠CDB=45°,过D点作AB的垂线,垂足为E,利用△AED∽△ACB对应边成比例得DE,然后即可求出sin∠ABD.解答:解:过D点作AB的垂线,垂足为E,∵∠C=90°,∠A=30°,CD=BC,∴∠CBD=∠CDB=45°,设BC为1,则AB=2,AC=,BD=,AD=,由△AED∽△ACB,得=,∴ED=,∴sin∠ABD===.故答案为:.点评:此题主要考查学生利用锐角三角函数求得几个直角三角形的边长,然后再根据相似三角形的判定与性质来解题的.此题难度不是很大,属于中档题.17.(2013•宝应县二模)如图,在△ABC中,AB=10,AC=6,BC=8,⊙O为△ABC的内切圆,点D是斜边AB 的中点,则tan∠ODA=2.考点:三角形的内切圆与内心;勾股定理的逆定理;正方形的判定与性质;锐角三角函数的定义.专题:计算题.分析:根据勾股定理的逆定理求出∠C=90°,连接OE、OF、OQ,证四边形CEOF是正方形,求出半径OE,求出QA,求出DQ、OQ的长度,即可求出答案.解答:解:∵AB2=100,AC2+BC2=100,∴AC2+BC2=AB2,∴∠C=90°,连接OE、OF、OQ,∵⊙O为△ABC的内切圆,∴∠C=∠OEC=∠OFC=90°,OE=OF,BE=BQ,AQ=AF,CE=CF,∴四边形CEOF是正方形,∴CE=CF=OE=OF,∴BC﹣OE+AC﹣OE=AB,∴OE=OQ=(6+8﹣10)=2,∴AQ=AF=6﹣2=4,∵D为AB的中点,∴AD=AB=5,∴DQ=5﹣4=1,∴tan∠ODA===2.故答案为:2.点评:本题主要考查对正方形的性质和判定,三角形的内切圆与内心,勾股定理的逆定理,锐角三角函数的定义等知识点的理解和掌握,能求出OQ、OD的长度是解此题的关键.18.(2013•成都一模)如图,P为圆外一点,PA切圆于A,PA=8,直线PCB交圆于C、B,且PC=4,连接AB、AC,∠ABC=α,∠ACB=β,则=.考点:切线的性质;相似三角形的判定与性质;锐角三角函数的定义.专题:综合题;压轴题.分析:过A作AD⊥BC于D,则得到三角形ABD和ACD为直角三角形,然后由角P为公共角,根据弦切角等于夹弧所对的圆周角得到角CAP等于角B,由两组对应角相等得到两三角形相似,得到对应边成比例,根据锐角三角函数定义表示出sinα和sinβ的比值,将已知的PA和PC的长代入即可求出值.解答:解:作AD⊥BC于D.则sinα=,sinβ=,∵∠P=∠P,∠CAP=∠B,∴△ACP∽△BAP,∴=,又PA=8,PC=4,则=÷===;故答案是:.点评:此题切线的性质,三角形相似的判别与性质,以及锐角三角函数的定义.作出AD垂直于BC构造两直角三角形是解本题的关键.解答此类题的方法是仔细审题,结合图形,找到突破点.19.如图,在正方形PQRS中,M、N分别为QR、RS上的点,且∠MPN=30°.若△PMN为等腰三角形,且面积为1,则正方形PQRS的面积为3.考点:解直角三角形;等腰三角形的性质;正方形的性质.专题:计算题.分析:根据三角形面积计算公式即可求得PM的长度,根据PM的长度和∠MPQ即可求得PQ的长度,根据正方形面积计算公式即可解题.解答:解:S△PMN=×PM×PM×sin30°,∴PM×PM=4,PM=2,∵∠MPQ=∠NPS,∴∠MPQ=∠NPS=30°.∴PQ=PMcos30°=,∴正方形面积为PQ2=3.故答案为3.点评:本题考查了三角形面积的计算公式,考查了特殊角的三角函数值,考查了直角三角形中三角函数的应用,考查了正方形面积的计算,本题中求PQ的长是解题的关键.20.(1998•绍兴)已知:如图,面积为2的四边形ABCD内接于⊙O,对角线AC经过圆心,若∠BAD=45°,CD=,则AB的长等于.考点:圆周角定理;梯形;解直角三角形.专题:压轴题.分析:延长BC、AD交于点E.可得等腰直角三角形ABE和等腰直角三角形DEC,设AB为x,则BC=x﹣2,CE=2,DE=,AD=x﹣,由四边形ABCD面积为2得×(x﹣)+x(x﹣2)=2,解得x=,即求AB的长.解答:解:延长BC、AD交于点E.∵∠BAD=45°,∴△ABE和△DEC是等腰直角三角形.∵CD=,设AB为x,则BC=x﹣2,CE=2,DE=,AD=x﹣.∵四边形ABCD面积为2,∴×(x﹣)+x(x﹣2)=2,解得x=.即AB=.点评:把有一个直角的四边形添加辅助线转化成直角三角形来解.21.△ABC中,D为AC边中点,∠EDF=90°,tan∠B=,若FC=5,EF=,则AE=5.考点:全等三角形的判定与性质;等腰三角形的判定与性质;勾股定理;解直角三角形.分析:延长ED到Q,使ED=DQ,连接CQ,FQ,过Q作QH⊥BC于H,得出EF=FQ,证△AED≌△CQD,推出AE=CQ,求出CQ∥AB,得出∠B=∠QCH,设QH=3a,CH=4a,在△QFH中,根据勾股定理求出a,即可求出CH和QH,根据勾股定理求出即可.解答:解:如图,延长ED到Q,使ED=DQ,连接CQ,FQ,过Q作QH⊥BC于H,∵在△AED和△CQD中,∴△AED≌△CQD(SAS),∴AE=CQ,∠EAC=∠DCQ,∴CQ∥AB,∴∠QCH=∠B,∵tanB=,∴tan∠QCH==,设QH=3a,CH=4a,∵ED=DQ.∠EDF=90°,∴QF=EF=3,在Rt△FQH中,由勾股定理得:(3)2=FH2+QH2,CQ2=CH2+QH2,∴(3)2=(5+4a)2+(3a)2,5a2+8a﹣13=0解得:a=1,a=﹣(舍去),即CH=4,QH=3,∵CQ2=CH2+QH2,∴CQ=5,即AE=5.故答案为:5.点评:本题考查了全等三角形的性质和判定,线段垂直平分线性质,勾股定理,平行线的性质和判定,解直角三角形等知识点的综合运用,主要考查学生的推理能力,此题难度偏大.22.如图,CD,BE是△ABC的角平分线,∠A=60°,BD=2CE=2,则△ABC的周长是.考点:三角形的内切圆与内心;对顶角、邻补角;平行线的性质;三角形内角和定理;全等三角形的判定与性质;角平分线的性质;等腰三角形的判定;多边形内角与外角;平行线分线段成比例;解直角三角形的应用.专题:计算题.分析:过B作BQ∥AC交CD的延长线于Q,在BC上截取BF=BD=2,由BE平分∠ABC,CD平分∠ACB,得出∠SBC=∠ABC,∠DCB=∠ACB=∠ACD,求出∠SBC+∠DCB=60°,求出∠ADS+∠AES=360°﹣(∠A+∠DSE)=180°,根据SAS证△BDS≌△BFS,得出∠BDS=∠BFS,根据邻补角的定义求出∠CFS=∠ESC,证△CES≌△CFS,求出BC=1+2=3,由BQ∥AC,求出BC=BQ=3,和=,推出==,设AC=3x,AD=2x,根据BC2=AB2+AC2﹣2AB•ACcosA,求出x=,求出AC=,AB=,根据△ABC的周长是AB+BC+AC求出即可.解答:解:过B作BQ∥AC交CD的延长线于Q,在BC上截取BF=BD=2,∵BE平分∠ABC,CD平分∠ACB,∴∠SBC=∠ABC,∠DCB=∠ACB=∠ACD,∴∠SBC+∠DCB=(∠ABC+∠ACB),=(180°﹣∠A)=60°,∴∠BSC=180°﹣(∠SBC+∠SCB)=120°,∴∠DSE=∠BSC=120°,∴∠ADS+∠AES=360°﹣(∠A+∠DSE)=180°,∵BD=BF,∠ABE=∠CBE,SB=SB,∴△BDS≌△BFS,∴∠BDS=∠BFS,∵∠ADS+∠BDS=180°,∠BFS+∠CFS=180°,∠AES+∠CES=180°,∴∠CFS=∠ESC,∵∠ACD=∠BCD,CS=CS,∴△CES≌△CFS,∴CF=CE=1,∴BC=1+2=3,∵BQ∥AC,∴∠Q=∠ACD=BCD,∴BC=BQ=3,∴=,==,设AC=3x,AD=2x,∵BC2=AB2+AC2﹣2AB•ACcosA,∴32=(2+2x)2+(3x)2﹣2(2+2x)•3xcos60°,∵x>0,解得:x=,∴AC=,AB=2+=,∴△ABC的周长是AB+BC+AC=,答:△ABC的周长是.点评:本题主要考查对三角形的内角和定理,多边形的内角和定理,对顶角和邻补角,等腰三角形的判定,平行线分线段成比例定理,平行线的性质,角平分线的性质,三角形的内切圆与内心,全等三角形的性质和判定,余弦定理等知识点的理解和掌握,综合运用这些性质进行推理是解此题的关键,此题是一个拔高的题目,难度偏大.23.(1)如图,∠ABC位于6×8的方格纸中,则=.(2)如图,物理学家在对原子结构研究中,在一个宽m的矩形粒子加速器中,一中子从点M(点M在长边CD上)出发沿虚线MN射向边BC,然后反弹到边AB上的P点.如果MC=n,∠CMN=α.那么P点与B点的距离为.考点:相似三角形的判定与性质;角平分线的性质;矩形的性质;轴对称的性质;锐角三角函数的定义.专题:计算题.分析:(1)过A点作AD⊥BC,垂足为D,作∠ABC的角平分线BE,过E点作EF⊥AB,垂足为F.利用勾股定理求出AB,利用角平分线的性质求出ED,然后求出tan∠EBD即可.(2)根据图形的轴对称性质可知,△PBN∽△MCN,然后利用相似三角形的对应边成比例,将MC=n,∠CMN=α代入即可求出P点与B点的距离.解答:(1)解:过A点作AD⊥BC,垂足为D,作∠ABC的角平分线BE,过E点作EF⊥AB,垂足为F.∵∠ABC位于6×8的方格纸中,∴BD=3,AD=4,AB==5,∵BE是∠ABC的角平分线,EF⊥AB,∴EF=ED,∴BF=BD=3,则AF=AB﹣BF=5﹣3=2,设ED为x,则AE=4﹣x,x==,则x=,tan∠EBD==,∴tan(∠ABC)=.故答案为:.(2)由图形的轴对称性质可知,△PBN∽△MCN∴==tanα,∵MC=n,∴==tanα,∴CN=ntanα,BN=BP•tanα,∴CN+NB=ntanα+BP•tanα=m,∴BP=.故答案为:.点评:本题考查了正切三角函数定义、角平分线的性质,矩形的性质,图形的轴对称性质,同时还考查了相似三角形的性质与应用,有一定的拔高难度,属于难题.。