三角函数常用公式
初中三角函数常用公式大全

初中三角函数常用公式大全一、基本关系式:1. 正弦定理:在任意三角形ABC中,有a/sinA=b/sinB=c/sinC=2R,其中a,b,c分别为三角形ABC的三边,A,B,C为对应的角,R为三角形的外接圆半径。
2. 余弦定理:在任意三角形ABC中,有c²=a²+b²-2abcosC。
3. 正弦公式:在任意三角形ABC中,有sinA/a=sinB/b=sinC/c。
4. 余弦公式:在任意三角形ABC中,有cosA=(b²+c²-a²)/2bc,cosB=(c²+a²-b²)/2ac,cosC=(a²+b²-c²)/2ab。
二、常用比值关系:1. 任意角的正弦公式:在直角三角形中,sinθ=对边/斜边。
2. 任意角的余弦公式:在直角三角形中,cosθ=邻边/斜边。
3. 任意角的正切公式:在直角三角形中,tanθ=对边/邻边。
4. 任意角的余切公式:在直角三角形中,cotθ=邻边/对边。
5. 任意角的正割公式:在直角三角形中,secθ=斜边/邻边。
6. 任意角的余割公式:在直角三角形中,cscθ=斜边/对边。
三、特殊角的值:1. π/6的正弦和余弦值:sin(π/6)=1/2,cos(π/6)=√3/22. π/4的正弦和余弦值:sin(π/4)=cos(π/4)=√2/23. π/3的正弦和余弦值:sin(π/3)=√3/2,cos(π/3)=1/24. π/2的正弦和余弦值:sin(π/2)=1,cos(π/2)=0。
四、和差化积公式:1. sin(A±B)=sinAcosB±cosAsinB。
2. cos(A±B)=cosAcosB∓sinAsinB。
3. tan(A±B)=(tanA±tanB)/(1∓tanAtanB)。
(完整版)三角函数三角函数公式表

(完整版)三角函数公式表1. 正弦函数 (sin):定义:正弦函数是直角三角形中对边与斜边的比值。
公式:sin(θ) = 对边 / 斜边范围:1 ≤ sin(θ) ≤ 1特殊值:sin(0°) = 0, sin(30°) = 1/2, sin(45°) = √2/2, sin(60°) = √3/2, sin(90°) = 12. 余弦函数 (cos):定义:余弦函数是直角三角形中邻边与斜边的比值。
公式:cos(θ) = 邻边 / 斜边范围:1 ≤ cos(θ) ≤ 1特殊值:cos(0°) = 1, cos(30°) = √3/2, cos(45°) = √2/2, cos(60°) = 1/2, cos(90°) = 03. 正切函数 (tan):定义:正切函数是直角三角形中对边与邻边的比值。
公式:tan(θ) = 对边 / 邻边范围:tan(θ) 可以取任意实数值特殊值:tan(0°) = 0, tan(30°) = 1/√3, tan(45°) = 1, tan(60°)= √3, tan(90°) 不存在(无穷大)4. 余切函数 (cot):定义:余切函数是直角三角形中邻边与对边的比值。
公式:cot(θ) = 邻边 / 对边范围:cot(θ) 可以取任意实数值特殊值:cot(0°) 不存在(无穷大), cot(30°) = √3, cot(45°) = 1, cot(60°) = 1/√3, cot(90°) = 05. 正割函数 (sec):定义:正割函数是直角三角形中斜边与邻边的比值。
公式:sec(θ)= 1 / cos(θ)范围:sec(θ) 可以取任意实数值特殊值:sec(0°) = 1, sec(30°) = 2, sec(45°) = √2, sec(60°) = 2/√3, sec(90°) 不存在(无穷大)6. 余割函数 (csc):定义:余割函数是直角三角形中斜边与对边的比值。
三角函数公式表大全

三角函数公式表大全以下是常用的三角函数公式表:1. 正弦函数(Sine Function):- 正弦函数的定义:sinθ = 对边/斜边- 余弦函数与正弦函数的关系:cosθ = 邻边/斜边- 正弦函数的倒数:cosecθ = 1/sinθ- 余弦函数的倒数:secθ = 1/cosθ- 正弦函数的平方:sin^2θ + cos^2θ = 1- 正弦函数的和差公式:sin(α ± β) = sinαcosβ ± cosαsinβ- 正弦函数的倍角公式:sin2θ = 2sinθcosθ2. 余弦函数(Cosine Function):- 余弦函数的定义:cosθ = 邻边/斜边- 正弦函数与余弦函数的关系:sinθ = 对边/斜边- 余弦函数的倒数:secθ = 1/cosθ- 正弦函数的倒数:cosecθ = 1/sinθ- 余弦函数的平方:cos^2θ + sin^2θ = 1- 余弦函数的和差公式:cos(α ± β) = cosαcosβ ∓sinαsinβ- 余弦函数的倍角公式:cos2θ = cos^2θ - sin^2θ3. 正切函数(Tangent Function):- 正切函数的定义:tanθ = 对边/邻边= sinθ/cosθ- 正切函数的倒数:cotθ = 1/tanθ = cosθ/sinθ- 正切函数与正弦、余弦的关系:tanθ = sinθ/cosθ = (对边/斜边) / (邻边/斜边) = 对边/邻边- 正切函数的和差公式:tan(α ± β) = (tanα ± tanβ) / (1 ∓tanαtanβ)4. 反三角函数:- 反正弦函数(Arcsine Function):sin⁻¹(x) = θ,其中-π/2 ≤ θ ≤ π/2- 反余弦函数(Arccosine Function):cos⁻¹(x) = θ,其中0 ≤ θ ≤ π- 反正切函数(Arctangent Function):tan⁻¹(x) = θ,其中-π/2 < θ < π/2这些是常用的三角函数公式,可以根据具体的问题和需要,灵活运用这些公式进行计算和推导。
常用的三角函数公式

三角函数公式一、三角函数的和差公式1、cos(A-B)=cosAcosB+sinAsinB2、cos(A+B)=cosAcosB-sinAsinB3、sin(A+B)=sinAcosB+cosAsinB4、sin (A-B)= sinAcosB-cosAsinB5、tan(A+B)=tan A+tanB 1tan AtanB- 6、tan(A-B)=tan A-tanB 1tan AtanB+ 二、倍角公式7、sin2A= 2sinAcosB8、cos2A=cos 2A-sin 2A (变形形式cos2A=1-2sin 2A ;cos2A=2cos 2A-1)9、tan2A=22tan A 1tan A- 三、积化和差公式10、sinAcosB=12[sin(A+B) +sin (A-B)] 证:右=12[sin(A+B) +sin (A-B)] =12[ (sinAcosB+cosAsinB) + (sinAcosB-cosAsinB)] = sinAcosB=左11、cosAsinB=12[sin(A+B) -sin (A-B)]证:右=12[sin(A+B) -sin (A-B)]=12[ (sinAcosB+cosAsinB) - (sinAcosB-cosAsinB)]= cosAsinB =左12、cosAcosB=12[cos(A+B)+cos (A-B)]证:右=12[cos(A+B)+cos (A-B)]=12[ (cosAcosB-sinAsinB)+ (cosAcosB+sinAsinB)]= cosAcosB =左13、sinAsinB=12[cos(A-B)-cos (A+B)]证:右=12[cos(A+B)+cos (A-B)]=12[ (cosAcosB+sinAsinB)+ (cosAcosB-sinAsinB)]= sinAsinB =左四、和差化积公式14、sinA+sinB=2sin A B2+cosA B2-加=加,减证:令X=A B2+,Y=A B2-,则A=X+Y,B=X-Y左= sinA+sinB= sin(X+Y)+sin(X-Y)=( sinXcosY+cosXsinY)+( sinXcosY-cosXsinY)=2 sinXcosY=2sin A B2+cosA B2-=右15、sinA-sinB=2sin A B 2-cos A B 2+ 减=减,加 证:左= sinA-sinB= sinA+sin(-B)= 2sin A+(B)2-cos A-(-B)2 =右 16、cosA+cosB=2cos A B 2+cos A B 2- 加=cos 证:令X=A B 2+,Y=A B 2-,则A=X+Y ,B=X-Y 左= cosA+cosB = cos(X+Y)+cos(X-Y)=( cosXcosY-sinXsinY)+( cosXcosY+sinXsinY) =2cosXcosY=2cos A B 2+cos A B 2-=右 17、cosA-cosB=-2sin A B 2+sin A B 2- 减=sin 证:令X=A B 2+,Y=A B 2-,则A=X+Y ,B=X-Y 左= cosA-cosB = cos(X+Y)-cos(X-Y)=( cosXcosY-sinXsinY)-( cosXcosY+sinXsinY) =-2sinXsinY=-2sin A B 2+sin A B 2-=右 补充:18、sin2A=22tan A 1tan A+ 证:左=22222sin A 22tan A 2sin A cos A sin 2A cos A sin 2A=sin A 1tan A sin A cos A 11cos A⋅====+++右19、cos2A=221tan A 1tan A-+ 证:左=2222222222sin A 11tan A sin A cos A cos 2A cos A cos 2A=sin A 1tan A sin A cos A 11cos A---====+++右 五、万能公式令t=tan A2,则 sinA=221tt +(公式18的变形); cosA=2211t t -+(公式19的变形); tanA=221tt -(公式9的变形)。
三角函数公式大全

三角函数公式大全1.三角函数的基本定义:- 正弦函数:sinθ = 对边/斜边- 余弦函数:cosθ = 邻边/斜边- 正切函数:tanθ = 对边/邻边- 余切函数:cotθ = 1/tanθ- 正割函数:secθ = 1/cosθ- 余割函数:cscθ = 1/sinθ2.三角函数的周期性:- 正弦函数的周期为2π:sin(θ+2π) = sinθ- 余弦函数的周期为2π:cos(θ+2π) = cosθ- 正切函数的周期为π:tan(θ+π) = tanθ3.三角函数的平方和差公式:- 正弦函数的平方和差公式:sin(A±B) = sinAcosB ± cosAsinB - 余弦函数的平方和差公式:cos(A±B) = cosAcosB ∓ sinAsinB - 正切函数的平方和差公式:tan(A±B) = (tanA ± tanB)/(1 ∓tanAtanB)4.三角函数的倍角公式:- 正弦函数的倍角公式:sin2θ = 2sinθcosθ- 余弦函数的倍角公式:cos2θ = cos²θ - sin²θ- 正切函数的倍角公式:tan2θ = (2tanθ)/(1 - tan²θ)5.三角函数的半角公式:- 正弦函数的半角公式:sin(θ/2) = ±√((1 - cosθ)/2)- 余弦函数的半角公式:cos(θ/2) = ±√((1 + cosθ)/2)- 正切函数的半角公式:tan(θ/2) = ±√((1 - cosθ)/(1 +cosθ))6.三角函数的和差化积公式:- 正弦函数的和差化积公式:sinA + sinB = 2sin((A+B)/2)cos((A-B)/2)- 余弦函数的和差化积公式:cosA + cosB = 2cos((A+B)/2)cos((A-B)/2)- 正弦函数的差化积公式:sinA - sinB = 2cos((A+B)/2)sin((A-B)/2)- 余弦函数的差化积公式:cosA - cosB = 2sin((A+B)/2)sin((A-B)/2)7.其他重要公式:- 三角函数的平方公式:sin²θ + cos²θ = 1- 三角函数的倒数公式:sin(π/2 - θ) = cosθ,cos(π/2 - θ) = sinθ,tan(π/2 - θ) = cotθ- 三角函数的和差化差公式:cos(A-B) = cosAcosB + sinAsinB,cos(A+B) = cosAcosB - sinAsinB这些是三角函数中一些重要的公式,对于理解和应用三角函数有很大的帮助。
高中常用三角函数公式大全

高中常用三角函数公式大全一、正弦函数公式:1. 正弦函数的定义:对于任意角θ,在单位圆上,以反时针方向从x轴到点P(1,θ)所划出的弧长与半径1的比值称为角θ的正弦函数。
记作sinθ。
2. 正弦函数的周期性:sin(θ+2πk) = sinθ,其中k为整数。
3. 正弦函数的奇偶性:sin(-θ) = -sinθ,即正弦函数是奇函数。
4. 两角和公式:sin(α±β) = sinαcosβ ± cosαsinβ5. 双角公式:sin2θ = 2sinθcosθ6. 半角公式:sin(θ/2) = ±√[(1-cosθ)/2]二、余弦函数公式:1. 余弦函数的定义:对于任意角θ,在单位圆上,以反时针方向从x轴到点P(1,θ)所划出的弧长与半径1的比值称为角θ的余弦函数。
记作cosθ。
2. 余弦函数的周期性:cos(θ+2πk) = cosθ,其中k为整数。
3. 余弦函数的奇偶性:cos(-θ) = cosθ,即余弦函数是偶函数。
4. 两角和公式:cos(α±β) = cosαcosβ - sinαsinβ5. 双角公式:cos2θ = cos²θ - sin²θ6. 半角公式:cos(θ/2) = ±√[(1+cosθ)/2]三、正切函数公式:1. 正切函数的定义:对于任意角θ,在单位圆上,以反时针方向从x轴到点P(1,θ)所划出的弧长与点P的y坐标的比值称为角θ的正切函数。
记作tanθ。
2. 正切函数的周期性:tan(θ+πk) = tanθ,其中k为整数。
3. 正切函数的奇偶性:tan(-θ) = -tanθ,即正切函数是奇函数。
4. 两角和公式:tan(α±β) = (tanα ± tanβ)/(1 ∓tanαtanβ)5. 双角公式:tan2θ = (2tanθ)/(1 - tan²θ)6. 半角公式:tan(θ/2) = ±√[(1-cosθ)/(1+cosθ)]四、其他常用公式:1. 与正弦函数的关系:sinθ = cos(π/2 - θ)2. 与余弦函数的关系:cosθ = sin(π/2 - θ)3. 正切函数与余切函数的关系:tanθ = 1/cotθ,cotθ =1/tanθ。
常用的三角函数公式

三角函数公式一、三角函数的和差公式1、cos(A-B)=cosAcosB+sinAsinB2、cos(A+B)=cosAcosB-sinAsinB3、sin(A+B)=sinAcosB+cosAsinB4、sin (A-B)= sinAcosB-cosAsinB5、tan(A+B)=tan A +tanB 1tan A tanB -6、tan(A-B)=tan A-tanB1tan AtanB + 二、倍角公式7、sin2A= 2sinAcosB8、cos2A=cos 2A-sin 2A (变形形式cos2A=1-2sin 2A ;cos2A=2cos 2A-1)9、tan2A=22tan A1tan A - 三、积化和差公式10、sinAcosB=12[sin(A+B) +sin (A-B)] 证:右=12[sin(A+B) +sin (A-B)] =12[ (sinAcosB+cosAsinB) + (sinAcosB-cosAsinB)] = sinAcosB=左11、cosAsinB=12[sin(A+B) -sin (A-B)]证:右=12[sin(A+B) -sin (A-B)]=12[ (sinAcosB+cosAsinB) - (sinAcosB-cosAsinB)]= cosAsinB =左12、cosAcosB=12[cos(A+B)+cos (A-B)]证:右=12[cos(A+B)+cos (A-B)]=12[ (cosAcosB-sinAsinB)+ (cosAcosB+sinAsinB)]= cosAcosB =左13、sinAsinB=12[cos(A-B)-cos (A+B)]证:右=12[cos(A+B)+cos (A-B)]=12[ (cosAcosB+sinAsinB)+ (cosAcosB-sinAsinB)]= sinAsinB =左四、和差化积公式14、sinA+sinB=2sin A B2+cosA B2-加=加,减证:令X=A B2+,Y=A B2-,则A=X+Y,B=X-Y左= sinA+sinB= sin(X+Y)+sin(X-Y)=( sinXcosY+cosXsinY)+( sinXcosY-cosXsinY)=2 sinXcosY=2sin A B2+cosA B2-=右15、sinA-sinB=2sin A B2-cos A B2+ 减=减,加证:左= sinA-sinB= sinA+sin(-B)= 2sinA +(B )2-cos A-(-B)2 =右 16、cosA+cosB=2cosA B 2+cos A B 2- 加=cos 证:令X=A B2+,Y=A B2-,则A=X+Y ,B=X-Y左= cosA+cosB = cos(X+Y)+cos(X-Y)=( cosXcosY-sinXsinY)+( cosXcosY+sinXsinY) =2cosXcosY=2cos A B2+cosA B 2-=右 17、cosA-cosB=-2sinA B 2+sin A B2- 减=sin 证:令X=A B2+,Y=A B2-,则A=X+Y ,B=X-Y左= cosA-cosB = cos(X+Y)-cos(X-Y)=( cosXcosY-sinXsinY)-( cosXcosY+sinXsinY) =-2sinXsinY=-2sinA B 2+sin A B 2-=右 补充:18、sin2A=22tan A1tan A +证:左=22222sin A22tan A 2sin A cos A sin 2A cos A sin 2A =sin A 1tan A sin A cos A 11cos A ⋅====+++右19、cos2A=221tan A1tan A-+ 证:左=2222222222sin A 11tan A sin A cos A co s 2A cos A cos 2A =sin A 1tan A sin A cos A 11cos A---====+++右五、万能公式令t=tan A2,则 sinA=221tt +(公式18的变形); cosA=2211t t -+(公式19的变形); tanA=221tt -(公式9的变形)。
三角函数公式大全

三角函数公式大全三角函数公式两角和公式sin(A+B) = sinAcosB+cosAsinBsin(A-B) = sinAcosB-cosAsinBcos(A+B) = cosAcosB-sinAsinBcos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB-1tanB tanA + tan(A-B) =tanAtanB1tanB tanA +- cot(A+B) =cotAcotB 1-cotAcotB + cot(A-B) =cotAcotB 1cotAcotB -+ 倍角公式 tan2A =A tan 12tanA2-Sin2A=2SinA•CosACos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A三倍角公式sin3A = 3sinA-4(sinA)3cos3A = 4(cosA)3-3cosAtan3a = tana ·tan(3π+a)·tan(3π-a) 半角公式 sin(2A )=2cos 1A - cos(2A )=2cos 1A+tan(2A )=AA cos 1cos 1+- cot(2A )=AAcos 1cos 1-+ tan(2A )=A A sin cos 1-=A A cos 1sin + 和差化积 sina+sinb=2sin 2b a +cos 2b a - sina-sinb=2cos 2b a +sin 2b a - cosa+cosb = 2cos 2b a +cos 2b a - cosa-cosb = -2sin 2b a +sin 2b a - tana+tanb=ba b a cos cos )sin(+ 积化和差 sinasinb = -21[cos(a+b)-cos(a-b)] cosacosb =21[cos(a+b)+cos(a-b)] sinacosb =21[sin(a+b)+sin(a-b)] cosasinb =21[sin(a+b)-sin(a-b)] 诱导公式 sin(-a) = -sinacos(-a) = cosa sin(2π-a) = cosa cos(2π-a) = sina sin(2π+a) = cosa cos(2π+a) = -sinasin(π-a) = sinacos(π-a) = -cosasin(π+a) = -sinacos(π+a) = -cosa tgA=tanA =aa cos sin 万能公式 sina=2)2(tan 12tan2a a+ cosa=22)2(tan 1)2(tan 1a a +- tana=2)2(tan 12tan 2a a - 其它公式 a•sina+b•cosa=)b (a 22+×sin(a+c) [其中tanc=ab ] a•sin(a)-b•cos(a) = )b (a 22+×cos(a-c) [其中tan(c)=ba ] 1+sin(a) =(sin 2a +cos 2a )2 1-sin(a) = (sin 2a -cos 2a )2 其他非重点三角函数 csc(a) =asin 1 sec(a) =a cos 1 双曲函数 sinh(a)=2e -e -a acosh(a)=2e e -a a tg h(a)=)cosh()sinh(a a 公式一:设α为任意角,终边相同的角的同一三角函数的值相等: sin (2kπ+α)= sinαcos (2kπ+α)= cosαtan (2kπ+α)= tanαcot (2kπ+α)= cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin (π+α)= -sinαcos (π+α)= -cosαtan (π+α)= tanαcot (π+α)= cotα公式三:任意角α与 -α的三角函数值之间的关系:sin (-α)= -sinαcos (-α)= cosαtan (-α)= -tanαcot (-α)= -cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin (π-α)= sinαcos (π-α)= -cosαtan (π-α)= -tanαcot (π-α)= -co tα公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin (2π-α)= -sinαcos (2π-α)= cosαtan (2π-α)= -tanαcot (2π-α)= -cotα公式六:2π±α及23π±α与α的三角函数值之间的关系: sin (2π+α)= cosαcos (2π+α)= -sinα tan (2π+α)= -cotαcot (2π+α)= -tanα sin (2π-α)= cosα cos (2π-α)= sinαπ-α)= cotα tan(2π-α)= tanα cot(23π+α)= -cosα sin(23π+α)= sinα cos(23π+α)= -cotα tan(23π+α)= -tanα cot(23π-α)= -cosα sin(23π-α)= -sinα cos(23π-α)= cotα tan(23π-α)= tanα cot(2(以上k∈Z)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学必修4三角函数常用公式及结论
一、三角函数与三角恒等变换
2、同角三角函数公式 sin 2α+ cos 2α= 1 α
αcos tan = 3、二倍角的三角函数公式
sin2α= 2sin αcos α cos2α=2cos 2α-1 = 1-2 sin 2α= cos 2α- sin 2α α
α
α2tan 1tan 22tan -=
45、升幂公式 1±sin2α= (sin α±cos α) 2 1 + cos2α=2 cos 2α 1- cos2α= 2 sin 2α 6、两角和差的三角函数公式
sin (α±β) = sin αcos β土cos αsin β cos (α±β) = cos αcos β干sin αsin β
()β
αβαβαtan tan 1tan tan tan μ±=
±
7、两角和差正切公式的变形:
tan α±tan β= tan (α±β) (1干tan αtan β)
ααtan 1tan 1-+=ααtan 45tan 1tan 45tan ︒-+︒= tan (4π+α) ααtan 1tan 1+-=α
α
tan 45tan 1tan 45tan ︒+-︒= tan (4π-α)
8、两角和差正弦公式的变形(合一变形)
10、三角函数的诱导公式 “奇变偶不变,符号看象限。
”
sin (π-α) = sin α, cos (π-α) = -cos α, tan (π-α) = -tan α; sin (π+α) = -sin α cos (π+α) = -cos α tan (π+α) = tan α sin (2π-α) = -sin α cos (2π-α) = cos α tan (2π-α) = -tan α sin (-α) = -sin α cos (-α) = cos α tan (-α) = -tan α sin (2
π-α) = cos α cos (2
π-α) = sin α
sin (2
π+α) = cos α cos (2
π+α) = -sin α
11.三角函数的周期公式
函数sin()y x ωϕ=+,x ∈R 及函数cos()y x ωϕ=+,x ∈R(A,ω,ϕ为常数,且A ≠0,ω>0)的周期2T π
ω
=
;函数
tan()y x ωϕ=+,,2
x k k Z π
π≠+
∈(A,ω,ϕ为常数,且A ≠0,ω>0)的周期T πω
=
. 解三角形知识小结和题型讲解
一、 解三角形公式。
1. 正弦定理
2. 余弦定理
在运用余弦定理的计算要准确,同时合理运用余弦定理的变形公式.
3.三角形中三内角的三角函数关系)(π=++C B A
○).tan(tan ),cos(cos ),sin(sin C B A C B A C B A +-=+-=+=(注:二倍角的关系) ○),2
sin(2cos ),2cos(2sin
C B A C B A +=+=
5.几个重要的结论
○B A B A B A cos cos ,sin sin <>⇔>; ○三内角成等差数列0
120,60=+=⇔C A B
2(ABC )sin sin sin a b c
R R A B C
===∆是的外接圆半径2222222222cos 2cos 2cos a b c bc A b a c ac B c a b ab C
=+-=+-=+-222
222
222
cos 2cos 2cos 2b c a A bc a c b B ac a b c C ab
+-=
+-=
+-=。