miRNA-ceRNA相互作用

合集下载

miRNA调控机制与蛋白质相互作用研究

miRNA调控机制与蛋白质相互作用研究

miRNA调控机制与蛋白质相互作用研究miRNA(microRNA)是一类长度大约20-24个核苷酸的非编码RNA,它们通过与靶基因mRNA结合来精细调节基因表达水平。

miRNA的研究已经成为了生命科学领域研究的热点之一,因为miRNA在细胞分化、生长、分裂、凋亡和肿瘤发生等生命过程中起到了重要的调节作用。

近年来,越来越多的研究表明miRNA与蛋白质相互作用具有重要的调控作用。

miRNA调控机制主要涉及到两个过程:miRNA的生物合成和miRNA的靶基因mRNA的鉴定与去翻译作用。

miRNA的生物合成分为两个步骤,首先一个长的pri-miRNA会被核酸酶Drosha切割成一个长度约70个核苷酸的pre-miRNA,pre-miRNA会被运送到细胞质中,然后另一个RNaseIII核酸酶Dicer再次对其进行切割,生成一个在两端带有磷酸二酯的miRNA双链,然后miRNA的双链结构被解开并且结合到RISC(RNA诱导的靶向切割复合体)中。

miRNA与蛋白质的相互作用在RISC复合体中发挥重要的调控作用。

RISC复合体主要由RNA诱导的靶向切割酶Ago2(Argonaute2)和miRNA双链组成,Ago2是一个蛋白质,可以直接与miRNA通过碱基配对相互结合。

研究表明,在RISC复合体中,Ago2可以通过与miRNA的5’端结合来识别靶基因mRNA的3’端,并通过碱基互补配对,在靶基因mRNA上产生一个核酸酶类活性中心,导致靶基因mRNA的降解。

研究还发现,一些蛋白质可以与RISC复合体中的miRNA或Ago2相互作用,影响miRNA的稳定性和mRNA的靶向切割作用。

最近,研究人员发现了一个新的miRNA的调控机制——miRNA的激活。

在单细胞生物中,例如酵母和线虫等,miRNA的激活不需要Dicer酶,而是需要一种蛋白质叫做Pasha。

Pasha与Dicer的相似度很高,但是它不能对pre-miRNA进行切割,而是通过结合到pre-miRNA的中部来增加pre-miRNA的开放性,以便其他蛋白质参与到miRNA的生物合成中。

cerna构建的流程

cerna构建的流程

cerna构建的流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!1. 数据收集:收集感兴趣的基因表达数据,例如 RNA-seq 数据或 microarray 数据。

lncRNA与miRNA相互调控作用及其与肿瘤的关系

lncRNA与miRNA相互调控作用及其与肿瘤的关系

lncRNA与miRNA相互调控作用及其与肿瘤的关系一、概述随着生物信息学和分子生物学的飞速发展,长链非编码RNA (lncRNA)和微小RNA(miRNA)在生命活动中的调控作用逐渐受到人们的广泛关注。

这两种非编码RNA在基因表达调控、细胞分化、增殖、凋亡等生命过程中扮演着重要的角色。

近年来,lncRNA与miRNA 之间的相互调控作用及其对肿瘤发生和发展的影响成为了研究的热点。

本文旨在深入探讨lncRNA与miRNA的相互作用机制,以及它们在肿瘤发生、发展中的潜在作用,以期为肿瘤的诊断和治疗提供新的视角和思路。

lncRNA是一类转录本长度大于200bp的非编码RNA,具有相对较长的核苷酸链和特定的二级空间结构,能够提供与蛋白质结合的多个位点,参与形成复杂的基因表达调控网络。

miRNA则是一类长度约为22个核苷酸的非编码单链RNA,通过与靶mRNA的3UTR结合,参与转录后基因表达调控。

在生命活动中,lncRNA和miRNA相互调控,共同维持着细胞的正常生理功能。

在肿瘤研究中,lncRNA和miRNA的异常表达与肿瘤的发生、发展密切相关。

一些lncRNA可以作为miRNA的“分子海绵”,吸附并抑制miRNA的功能,从而调节肿瘤细胞的生长和分化。

同时,miRNA 也可以负调节lncRNA的表达,参与肿瘤转移和耐药性的形成。

深入探讨lncRNA与miRNA的相互调控作用及其对肿瘤的影响,对于理解肿瘤的发病机制、寻找新的治疗靶点具有重要意义。

本文将从lncRNA和miRNA的基本特性及其调控机制出发,详细阐述lncRNA与miRNA之间的相互调控关系,并探讨它们在肿瘤发生、发展中的潜在作用。

通过本文的综述,我们期望能够为肿瘤的诊断和治疗提供新的视角和思路,为未来的生物医学研究提供有益的参考。

1. lncRNA和miRNA的概述长链非编码RNA(lncRNA)和微小RNA(miRNA)是两种重要的非编码RNA,它们在生物体内发挥着广泛的调控作用。

mirna和蛋白共定位

mirna和蛋白共定位

Mirna和蛋白质的共定位是指它们在细胞中同时定位并相互作用,通常与基因表达调控和细胞内信号传导有关。

共定位是一种复杂的细胞生物学现象,需要多方面的因素共同作用。

首先,miRNA是一类内源性小分子RNA,参与调控基因表达的转录后机制。

它们通过与靶mRNA的3'UTR序列结合,抑制蛋白质合成。

而蛋白质是细胞功能的主要执行者,它们在细胞内的定位与其功能密切相关。

为了确定miRNA和蛋白质的共定位,研究人员可以使用荧光共振能量转移(FRET)技术,该技术可以检测蛋白质和miRNA分子在细胞内的空间接近程度。

此外,免疫荧光技术、免疫电镜技术等也是常用的定位方法。

在实验过程中,需要选择适当的细胞模型和条件,确保样本的代表性和稳定性。

同时,需要选择适当的抗体和探针,以准确检测蛋白质和miRNA分子的表达和定位。

成功进行共定位研究,可以提供重要的生物学信息,如蛋白质和miRNA在特定细胞内亚显微结构中的位置及其相互作用的机制。

这有助于理解基因表达调控和细胞内信号传导的复杂网络,并可能为开发新的治疗策略提供基础。

总结来说,miRNA和蛋白质的共定位是一个复杂而关键的生物学现象,需要综合运用多种技术和方法进行研究和探讨。

在未来,随着细胞生物学和生物技术的不断发展,我们期待看到更多有关miRNA和蛋白质相互作用的研究成果。

lncRNA与miRNA相互调控作用及其与肿瘤的关系

lncRNA与miRNA相互调控作用及其与肿瘤的关系
从而对 miRNA 的后续转录后调 [1315 ] . Cesana 等[16]在研究人 控作用发生有效的控制 发现具有 MRE 转录本的 和鼠的骨骼肌分化过程中, lncRNA 可以竞争性结合 miRNA,调控 miRNA 及其 同时也受 miRNA 的调控. 他们通过 靶基因的表达, 高通量转录组学技术筛选并克隆了一个参与骨骼肌 MD1 的 lncRNA, MD1 分化的名为 linc并发 现 linc133 和 miR135 的 ceRNA 与 miR135 可作 为 miR133 分别特异性结合, 及 miR进而保证这两者的靶 基 因,即 肌 细 胞 特 异 性 增 强 因 子 2C ( myocyte enhancer factor 2C ,MEF2C ) 及 决 定 因 子 样 蛋 白1 ( mastermindlike 1 ,MAML1 ) 有机会结合至基因启 动子区, 促进肌母细胞相关基因的转录, 通过上调或 MD1 的表达调控肌母细胞的分化. 下调 linc-
coding RNA, lncRNA ) 是一类转录本长度大于 200 bp 的非编码 摘要 长链非编码 RNA ( long nonRNA, 可作为人类基因组中一类重要的调控分子通过多种方式发挥其生物学功能 . 近年来的研究表 lncRNA 也可以作为一种竞争性内源性 RNA ( competing endogenous RNA,ceRNA) 与 miRNA 相 明, 互作用, 参与靶基因的表达调控, 并在肿瘤的发生发展中发挥重要 的 作 用. 本 综 述 在 简 要 介 绍 lncRNA 功能研究现状和主要研究方法的基础上 , 进一步分析了 lncRNA 与 miRNA 之间的互相调控 关系及其在肿瘤发生发展中的作用 , 以便为后续的研究提供新的思路 . 关键词 长链非编码 RNA ( lncRNA) ; microRNA; 研究方法; 肿瘤 中图分类号 Q1 ; Q3 ; R74 ; Q75

非编码RNA的调控功能

非编码RNA的调控功能

非编码RNA的调控功能随着基因组学的发展,人们对基因的理解越来越深入。

在过去,我们只知道DNA是遗传信息的载体,然而近年来人们发现除了编码蛋白的mRNA之外,还有一类被称为非编码RNA的分子具有重要的调控功能。

本文将从非编码RNA的定义、分类、调控功能以及实际应用等方面探讨这一新颖的生物学概念。

一、非编码RNA的定义和分类所谓非编码RNA,指的是不编码蛋白质的RNA分子。

根据其大小和结构,非编码RNA可以分为多类,其中比较典型的有以下几类:1. 长链非编码RNA(lncRNA):指长度超过200nt的RNA,含有多个可识别结构域,常常调节基因的表达。

2. 小核RNA(snRNA):长度在100nt以下,主要参与转录过程中前体mRNA的剪切。

3. 微小RNA(miRNA):长度约20nt,拮抗基因表达或参与基因沉默调控。

4. 竞争性内源性RNA(ceRNA):即调控RNA,可与mRNA竞争结合相同的miRNA,从而调节基因的表达。

5. 环状RNA(circRNA):形成环状结构的RNA,可作为miRNA的载体,具有调节基因表达的作用。

二、非编码RNA的调控功能与编码蛋白的mRNA不同,非编码RNA无法通过翻译成为蛋白质,因此其调控机制也与编码蛋白的mRNA不同。

非编码RNA的作用主要通过以下机制实现:1. 转录调控:lncRNA可以通过与染色质相互作用,改变染色质的结构,从而影响基因的转录。

2. 剪切调控:snRNA参与剪切转录产物,从而选择性地剪切mRNA的不同部位,影响所产生蛋白的表达。

3. 翻译调控:部分miRNA可以拮抗靶基因的mRNA翻译,从而调节蛋白质表达水平。

4. 竞争性调控:ceRNA与mRNA竞争miRNA的结合位点,从而调节靶基因的表达。

5. 负向调控:miRNA可以与靶基因的mRNA结合,从而促使其降解或抑制翻译。

三、非编码RNA的实际应用非编码RNA的调控作用已经被广泛地应用于基因治疗、癌症治疗等方面。

ceRNA假说即使不编码蛋白RNA们也撕逼得很high

ceRNA假说即使不编码蛋白RNA们也撕逼得很high到了每周综述时间,今天周老师跟大家科普ceRNA假说,那些不编码蛋白的RNA们也是撕逼得很嗨,星球大战既视感。

在上一期的综述阅读分享中,我们提到miRNA在动物和植物体内都可以起到促进靶基因转录本降解或抑制靶基因翻译的作用。

其中,出乎我们常识之外的是,哪怕在动物体内,miRNA降解靶基因依然是主要的调控方式,而不是通常我们认为的翻译抑制。

那么问题来了,miRNA是否会作用于lncRNA?答案是肯定的。

miRNA不但会与lncRNA结合,而且这种结合导致mRNA 和 lncRNA抢夺 miRNA的现象,产生一种特殊的三角调控关系,也就是今天这篇综述所要介绍的一个调控现象——竞争内源RNA(competing endogenous RNA),简称ceRNA现象。

这篇综述是生物大牛 Leonardo Salmena2011年在cell上发表过的一篇综述《A ceRNA Hypothesis: The RosettaStone of a Hidden RNA Language》,翻译过来就是《ceRNA假说,揭开RNA“语言”秘密的罗塞塔石碑》。

听起来来很厉害的样子,什么是罗塞塔,不了解的同学自行百度啊哈。

现在ceRNA已经被大量证实,应该叫现象而不是假说了。

但这篇文章对ceRNA现象的描述直观易懂,值得我们参考。

这篇综述实际上就是说:ceRNA现象要涉及到哪些分子(主角),以及他们如何通过一种语言进行撕逼的。

ceRNA涉及的一门关键语言microRNA反应元件(microRNA response elements),简称MREs(请务必记住这个简写,这个名词是理论的基础)。

主要指的是mRNA或lncRNA上可以被miRNA结合区域,也就是一小段序列。

本来mRNA和lncRNA可能是老死不相往来的,但是它们由于含有同源的MREs,所以它们可以与共同的miRNA结合,从而可以相互影响。

长链非编码RNA通过ceRNA在乳腺癌中的调控机制

网络出版时间:2021-3-235:10网络出版地址:htt p s://ki.oet/kcms/keVil/36.1073.R.02210322.0415.010.htmi 长链非编码RNA通过ceRNA在乳腺癌中的调控机制翟博雅,龚予希,杨野梵,张响,张智弘摘要:长链非编码RNA(loug pon-cohing RNA,lucRNA)是一种长度大于200nt的不具有编码蛋白质功能的RNAo In­cRNA在多种肿瘤中存在差异性表达,通过转录调控、转录后调控等方式影响肿瘤的增殖、侵袭、转移、耐药等。

多项研究表明,lucRNA可通过竞争性内源性RNA(competing euPof-euous RNA,ceRNA)机制与miRNA相互作用,并影响其它RNA、蛋白的表达,影响疾病进程;提示lucRNA可能是一种肿瘤标志物和潜在的治疗靶点。

该文现就lucRNA通过ceRNA调控乳腺癌的研究进展进行综述。

关键词:乳腺肿瘤;长链非编码RNA;竞争性内源性RNA;文献综述中图分类号:R737.9文献标志码:A文章编号:541-7399(242543-4324-46Poi:14.1335/j.c/dP cjcep.2021.03.45乳腺癌是全球女性肿瘤死亡的主要原因之一,其发病的分子机制复杂。

长链非编码RNA((000uou-cohing RNA,lu-cRNA)在很长一段时间内均被认为是一种“转录噪音”,近十年来随着人们对非编码RNA的认知深入,lucRNA在人体内的调控作用才逐渐被重视。

研究发现lucRNA,mRNA、环状RNA(circRNA)、假基因等通过竞争性内源性RNA(com­peting eudoceuous RNA,ceRNA-机制互相作用,形成ceRNA 调控网络,干扰许多因子的表达影响疾病的整体进程。

本文现就lucRNA通过ceRNA调控机制在乳腺癌中发挥作用的研究进展进行综述。

非编码RNA参与调控基因表达机制解析

非编码RNA参与调控基因表达机制解析概述:基因表达是生物体内转录和翻译的过程,能够决定细胞的功能和特性。

近年来,越来越多的研究揭示了非编码RNA在调控基因表达中的重要作用。

非编码RNA是指不参与翻译过程,而在细胞内具有调控功能的RNA分子。

本文将对非编码RNA参与调控基因表达的机制进行解析。

介绍非编码RNA:非编码RNA主要包括长链非编码RNA(lncRNA)、微小RNA (miRNA)和环状RNA(circRNA)等。

它们在细胞内通过与DNA、RNA或蛋白质相互作用,调控基因的表达和功能。

非编码RNA的调控机制:1. lncRNA调控机制:lncRNA可以通过中间过程干扰转录调控,它们与染色质相关复合物相互作用,参与染色质的重塑和启动子区域的辅助元件的招募,从而影响基因的转录水平。

此外,lncRNA还可以调控转录后调节。

例如,一些lncRNA可以与mRNA分子结合,调控转录后的RNA剪接、稳定性和翻译过程。

2. miRNA调控机制:miRNA是一类长度约为20-22个核苷酸的小RNA分子,它们通过与mRNA相互作用,调节基因的表达。

miRNA通过与mRNA 3'非翻译区结合,导致靶基因的降解或抑制其翻译。

这种调控机制在许多生物过程中起到重要作用,如细胞周期调控、细胞分化和肿瘤发生等。

3. circRNA调控机制:circRNA是一种环状RNA分子,其特殊的环状结构使其在细胞中稳定存在。

近年来的研究表明,circRNA可以通过吸附miRNA和调控基因表达的方式参与调控。

circRNA可以通过吸附miRNA,起到竞争性内源性RNA (ceRNA)的角色,从而减少miRNA与靶基因的结合,增加靶基因的表达水平。

非编码RNA参与调控基因表达的功能和作用:1. 调控细胞周期:非编码RNA参与细胞周期的调控。

一些miRNA可以影响细胞周期的进行,通过调控周期检查点蛋白的表达,影响细胞周期的进程。

2. 调控基因转录和翻译:lncRNA可以通过与染色质相关复合物相互作用,影响染色质的结构和启动子的辅助元件的招募,从而影响基因的转录水平。

MicroRNA参与了个体基因表达调控

MicroRNA参与了个体基因表达调控基因表达是指指导蛋白质合成的基因信息被转录和转译的过程。

在这个过程中,许多调控因子参与其中,其中一个重要的调控因子就是MicroRNA(miRNA)。

miRNA是一类非编码RNA,它们起着调控基因表达的重要作用。

本文将探讨miRNA在个体基因表达调控中的功能和机制。

首先,miRNA是如何参与基因表达调控的呢?miRNA作为一种小分子RNA,在细胞中通过与mRNA结合形成RNA-蛋白质复合物,从而在转录或翻译水平上调控特定基因的表达。

miRNA的调控可以通过多种方式实现,包括抑制转录、降解mRNA和抑制蛋白质翻译等。

miRNA的调控机制主要是通过与靶基因的3'非翻译区(3'UTR)结合实现的。

miRNA识别和结合靶基因的方式是通过与靶基因mRNA序列的互补配对。

一旦miRNA与目标mRNA配对,就会产生一系列的生物学效应,导致靶基因的表达受到抑制。

miRNA与3'UTR的结合可以抑制靶基因mRNA的稳定性、导致mRNA降解和阻止翻译等。

miRNA的调控在个体发育和疾病中起着重要的作用。

在个体发育方面,miRNA参与了多种生理过程,如细胞增殖、分化和器官形成等。

miRNA可以通过调控关键基因的表达来影响这些生理过程的进行。

在某些情况下,miRNA甚至可以影响胚胎的干细胞分化,从而影响整个个体的发育进程。

此外,miRNA在疾病的发生和发展中也发挥着重要的作用。

研究表明,miRNA的异常表达与多种疾病的发生和发展密切相关。

例如,某些miRNA的过度表达与癌症的发展有关,而某些miRNA的缺失则与神经系统疾病(如阿尔茨海默病和帕金森病)的发生有关。

因此,miRNA可能成为疾病诊断和治疗的潜在靶点。

近年来,研究人员还发现miRNA的调控网络非常复杂。

miRNA与靶基因之间存在着复杂的相互作用关系,一个miRNA可能同时调控多个靶基因,而一种靶基因可能也受多个miRNA的调控。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

starBase v2.0:decoding miRNA-ceRNA,miRNA-ncRNA and protein–RNA interaction networks from large-scale CLIP-Seq dataJun-Hao Li,Shun Liu,Hui Zhou,Liang-Hu Qu*and Jian-Hua Yang*RNA Information Center,Key Laboratory of Gene Engineering of the Ministry of Education,State Key Laboratory for Biocontrol,Sun Yat-sen University,Guangzhou 510275,PR ChinaReceived September 15,2013;Revised October 28,2013;Accepted November 9,2013ABSTRACTAlthough microRNAs (miRNAs),other non-coding RNAs (ncRNAs)(e.g.lncRNAs,pseudogenes and circRNAs)and competing endogenous RNAs (ceRNAs)have been implicated in cell-fate determin-ation and in various human diseases,surprisingly little is known about the regulatory interaction networks among the multiple classes of RNAs.In this study,we developed starBase v2.0(/)to systematically identify the RNA–RNA and protein–RNA interaction networks from 108CLIP-Seq (PAR-CLIP,HITS-CLIP,iCLIP,CLASH)data sets generated by 37independent studies.By analyzing millions of RNA-binding protein binding sites,we identified $9000miRNA-circRNA,16000miRNA-pseudogene and 285000protein–RNA regulatory rela-tionships.Moreover,starBase v2.0has been updated to provide the most comprehensive CLIP-Seq experi-mentally supported miRNA-mRNA and miRNA-lncRNA interaction networks to date.We identified $10000ceRNA pairs from CLIP-supported miRNA target sites.By combining 13functional genomic annotations,we developed miRFunction and ceRNAFunction web servers to predict the function of miRNAs and other ncRNAs from the miRNA-mediated regulatory networks.Finally,we developed interactive web implementations to provide visualiza-tion,analysis and downloading of the aforementioned large-scale data sets.This study will greatly expand our understanding of ncRNA functions and their coordinated regulatory networks.INTRODUCTIONEukaryotic genomes encode thousands of short and long non-coding RNAs (ncRNAs),such as microRNAs (miRNAs),long non-coding RNAs (lncRNAs),pseudo-genes and circular RNAs (circRNAs).These RNA mol-ecules are emerging as key regulators of diverse cellular processes,including proliferation,apoptosis,differenti-ation and the cell cycle (1–7).Although many studies that address these ncRNAs have focused on defining their protein-coding gene regulatory functions,increasing numbers of researchers are assessing the regulatory interactions between ncRNAs classes,as well as the relationships between RNA-binding proteins (RBP)and ncRNAs.Several well-characterized lncRNAs (e.g.HOTAIR)exert their functions cooperatively with RBPs (e.g.EZH2)in cancers (8,9).Multiple classes of ncRNAs (lncRNAs,circRNAs,pseudogenes)and protein-coding mRNAs function as key competing endogenous RNAs (ceRNAs)and ‘super-sponges’to regulate the expression of mRNAs in plants and mammalian cells (4,6,7,10–14).However,the understanding of ceRNA mechanisms and its consequences are in their infancy,and further experi-mental evidences and large-scale bioinformatic efforts for ceRNAs are needed.Despite these intriguing studies of in-dividual miRNA-ncRNA and protein–RNA interactions,generalizing these findings to thousands of RNAs remains a daunting challenge.Recent advances in high-throughput sequencing of immunoprecipitated RNAs after cross-linking (CLIP-Seq,HITS-CLIP,PAR-CLIP,CLASH,iCLIP)provide powerful ways to identify biologically relevant miRNA-target and RBP–RNA interactions (5,15,16).The applica-tion of CLIP-Seq methods has reliably identified Argonaute (Ago)and other RBP binding sites (5,15,16).We and others have used CLIP-seq data generated from HEK293cells to characterize miRNA-mRNA and miRNA-lncRNA interactions (17–21).With the increasing amount of CLIP-Seq data available,there is a great need to integrate these large-scale data sets to explore the miRNA-pseudogene,miRNA-circRNA and protein–RNA interactions and to further construct ceRNA regu-latory networks involving mRNAs and ncRNAs.*To whom correspondence should be addressed.Tel:+862084112399;Fax:+862084036551;Email:lssqlh@Correspondence may also be addressed to Jian-Hua Yang.Tel:+862084112517;Fax:+862084036551;Email:yangjh7@ D92–D97Nucleic Acids Research,2014,Vol.42,Database issue Published online 1December 2013doi:10.1093/nar/gkt1248ßThe Author(s)2013.Published by Oxford University Press.This is an Open Access article distributed under the terms of the Creative Commons Attribution License (/licenses/by/3.0/),which permits unrestricted reuse,distribution,and reproduction in any medium,provided the original work is properly cited.To facilitate the annotation,visualization,analysis and discovery of these interaction networks from large-scale CLIP-Seq data,we have updated starBase (17)to version 2.0(starBase v2.0)(Figure 1).In starBase v2.0,we performed a large-scale integration of public RBP binding sites generated by high-throughput CLIP-Seq technology and provided the most comprehensive RBP data set for various cell types that are presently available.By analyzing millions of Ago and other RBP binding sites,we constructed the most comprehensive miRNA-lncRNA,miRNA-pseudogene,miRNA-circRNA,miRNA-mRNA and protein–RNA interaction networks.MATERIALS AND METHODSIntegration of Ago and other RBP binding sites from published CLIP dataHITS-CLIP,PAR-CLIP,iCLIP and CLASH data were retrieved from the Gene Expression Omnibus (22),the supplementary data of original references or directly from authors on request (Supplementary Table S1).Although Ago PAR-CLIP raw data were preprocessed with the FASTX-Toolkit v0.0.13and reanalyzed using PARalyzer v1.1(23),other CLIP-identified binding sites clusters/peaks were used directly.All binding sites coordinates were converted to hg19,mm9/mm10andce6/ce10assemblies,respectively,by using the UCSC LiftOver Tool (24).Ago CLIP-supported miRNA target prediction from public databaseConservedmiRNA families were defined as those labeled with ‘highly conserved’or ‘conserved’in TargetScan Release 6.2(25).miRNA IDs from miRBase Release 20were used (26).Genomic coordinates of these conserved miRNAs target sites predicted by TargetScan (25),miRanda/mirSVR (27),PITA (28),Pictar 2.0(19)and RNA22(29)were collected and converted to hg19,mm9/mm10and ce6/ce10assemblies using LiftOver,respectively.The resulting coordinates were intersected with the previ-ously described Ago CLIP clusters using BEDTools v2.16.2(30).The target sites that overlap with any entry of the Ago CLIP clusters were considered as CLIP-supported sites.MicroRNA target scanning in annotated transcripts Human gene annotations were acquired from GENCODE v17(31).Protein-coding transcripts were defined as those with ‘protein_coding’gene biotype and ‘protein_coding’transcript biotype.The lncRNAs transcripts were defined as those with ‘processed_transcript’,‘lincRNA’,‘3prime_overlapping_ncrna’,‘antisense’,‘non_coding’,‘sense_intronic’or ‘sense_overlapping’gene biotype.Figure 1.A system-level overview of the starBase v2.0core framework.A total of 108data sets of CLIP-seq experiments were compiled to achieve various RBP target sites.Interactions between miRNAs and target genes were predicted and used to construct miRNA-mediated ceRNA networks.Functional predictions of miRNAs and associated genes were achieved by enrichment analysis of 13functional genomic annotations.All results generated by starBase were deposited in MySQL relational databases and displayed in the visual browser and web pages.Nucleic Acids Research,2014,Vol.42,Database issueD93Small non-coding RNA(sncRNA)transcripts were defined as those with‘snRNA’,‘snoRNA’,‘rRNA’,‘Mt_tRNA’,‘Mt_rRNA’,‘misc_RNA’or‘miRNA’gene biotype.Pseudogene transcripts were defined as those with ‘polymorphic_pseudogene’,‘pseudogene’,‘IG_C_ pseudogene’,‘IG_J_pseudogene’,‘IG_V_pseudogene’,‘TR_V_pseudogene’or‘TR_J_pseudogene’gene biotype. Mouse and Caenorhabditis elegans gene annotations were extracted from Ensembl Gene Release72and LiftOver to mm9/mm10and ce6/ce10,respectively. Protein-coding,lncRNAs,sncRNAs and pseudogenes were classified using a similar method.Human,mouse and C.elegans circRNA annotations were downloaded from circBase v0.1(6).These transcripts were scanned tofind conserved miRNAs target sites using miRanda v3.3a with the ‘-strict’parameter.The target sites that overlap with any entry of the aforementioned AGO CLIP clusters were con-sidered as the CLIP-supported target sites.Identification of ceRNA pairs with hypergeometric testA hypergeometric test(14)is executed for each ceRNA pair separately,which is defined by four parameters:(i) N is the total number of miRNAs used to predict targets; (ii)K is the number of miRNAs that interact with the chosen gene of interest;(iii)n is the number of miRNAs that interact with the candidate ceRNA of the chosen gene;and(iv)c is the common miRNA number between these two genes.The test calculates the P-value by using the following formula:P¼XminðK,nÞi¼cKiNÀKnÀiNnMultiple miRNAs belonging to the same family were combined into one,and the hypergeometric test counted every miRNA family only once,even if it had multiple binding sites at the same30-UTR of protein-coding genes or transcript of non-coding genes.All P-values were subject to false discovery rate(FDR)cor-rection(32).Enrichment analysis for functional termsGO ontology data(33)for the NCBI RefSeq genes were downloaded from the NCBI ftp site.The Kyoto Encyclopedia of Genes and Genomes(KEGG)pathways (34)were downloaded from the KEGG database.The protein analysis through evolutionary relationships (PANTHER)pathways was downloaded from the PANTHER database(35).The Reactome(36)and other pathways were downloaded from the molecular signatures database(MSigDB)(37).Enrichment ana-lysis for these pathways in the data set was determined using a hypergeometric test with Bonferroni and FDR correction(32).Other RBP binding sites in annotated transcriptsThe aforementioned RBP CLIP clusters were used to intersect with the coordinates of all annotated transcripts tofind their RBP binding sites.Other annotation data setsAll refSeq genes were downloaded from the UCSC bio-informatics Web sites(38).Other known ncRNAs were downloaded from the Ensembl database(39)or the UCSC Web sites(38)The human(UCSC hg19),mouse (UCSC mm9/mm10)and C.elegans(UCSC ce6/ce10) genome sequences were downloaded from the UCSC bioinformatics Web sites(38).DATABASE CONTENTThe genome-wide binding map of Ago and other RBPsTo depict a comprehensive binding map of Ago and other RBP,we integrated108published CLIP-seq data generated from various tissues or cell lines under different treatments in37independent studies(detailed in ‘Materials and Methods’,Supplementary Table S1).For the Ago protein,a total of1007618,26833and4842 unique binding site clusters were compiled in human, mouse and C.elegans,respectively(Table1).These clusters were used in the following analysis to obtain CLIP-supported miRNA target sites of high confidence. Millions of binding site clusters of42other RBPs were also achieved(Supplementary Table S1and Table1). The annotation and identification of miRNA-mRNA and miRNA-ncRNA interactionsTo inspect genome-wide interactions between miRNAs and their target genes,we retrieved the conserved miRNA target sites predicted byfive algorithms (TargetScan,miRanda,Pictar2,PITA and RNA22) from public databases,which were intersected with the aforementioned Ago CLIP clusters to gain CLIP-sup-ported ing this approach,we characterized $500000interactions between818conserved miRNAs and20480protein-coding genes.We also investigated the potential regulatory relation-ships between miRNAs and non-coding RNAs.We performed conserved miRNA target site scanning on the transcripts of lncRNAs,sncRNAs,pseudogenes and circRNAs using miRanda,andfiltered the resulting can-didates with the previously described Ago CLIP clusters. Although less than CLIP-supported miRNA-mRNA interactions,the thousands of CLIP-supported miRNA-ncRNA interactions suggested that miRNAs might regulate other ncRNAs as well.The annotation and identification of miRNA-mediated ceRNA regulatory networksTo construct and characterize the miRNA-mediated ceRNA network,a workflow was developed to identify the ceRNA pairs(Figure1).First,CLIP-supported miRNA-mRNA,miRNA-lncRNA,miRNA-circRNA and miRNA-pseudogene interactions were combined.D94Nucleic Acids Research,2014,Vol.42,Database issueNext,hypergeometric test was used to predict ceRNA pairs among mRNAs,lncRNAs,circRNAs and pseudo-genes.Finally,all ceRNA pairs with FDR<0.05were imported into mySQL database and displayed in a web page.In this study,we identified approximately10000 ceRNA pairs from CLIP-supported miRNA target sites. Surprisingly,many nodes of ceRNA networks are lncRNAs,circRNAs and pseudogenes.Several experimen-tally validated ceRNAs were recaptured in our starBase v2.0,e.g.PTEN ceRNA:DCBLD2(P<0.001),JARID2 (P<0.005),LRCH1(P<0.00005),TNRC6A (P<0.00005)(12–14).WEB INTERFACEThe web-based exploration of miRNA-mRNA,miRNA-ncRNA and protein–RNA regulatory relationships Multiple web interfaces are applied to display three types of regulatory relationships.As an example,we explore miRNA-mRNA interactions to introduce the platform application.In the query page of miRNA-mRNA inter-actions,users can enter a gene symbol and select one miRNA to browse their relationships.The number of sup-porting experiments can be adjusted to control the strin-gency of the predictions.All relationships will be displayed in the results page if users do not submit a con-straint.Once users click on a non-zero number in the table,more details are shown.For instance,users can click the target location to link to the deepView genome browser(17)and view data across the entire genome (Supplementary Figure S1).More information about the platform application is described in the relevant web interfaces.The web-based exploration of ceRNA regulatory networks In the query page,users enter a gene symbol that is used for ceRNAs prediction.The option of‘minimum common miRNA number’denotes the minimum number of miRNAs shared by the input gene and its ceRNA candi-dates.In the results page,users can click on one of the tabular FDR values for details.The web-based functional annotation of genes from miRNA-mediated regulatory networksFor miRNA function predictions,there arefive options on the query page,and the option‘Select one or multiple microRNAs’is required.In contrast from the options earlier in text,it allows users to select one or more miRNAs in the drop-down list.The results page shows the enrichment analysis for13functional prediction categories.The running parameters,selected miRNA target genes and every outcome in the13categories of function prediction are available for users to download. For ceRNA functions prediction,the query page also presents usersfive options and gene symbol is required to enter.The results page is similar to the miRNA function predictions page.EXAMPLE APPLICATIONSIn the following section,example applications of starBase v2.0are illustrated.The targetome of hsa-miR-21-5pAssume that we are interested in the targetome of hsa-miR-21-5p.Given the constraints requiring target sites to have a number of supporting experiments no less than one and to be predicted by at least three of thefive programs(Supplementary Figure S2A),our platform returns173CLIP-supported hsa-miR-21-5p target sites in155protein-coding genes among which ZNF367, RHOB and PELI1rank top three by read numbers (Supplementary Figure S2B).These results coincide with data in an experimentally validated database named miRTarBase(40),suggesting that these genes are likely targeted by hsa-miR-21-5p.The identification of‘super-sponges’of miRNAsInspired by the observation that CDR1as circRNA(6,7) acts as a miR-7super-sponge that contains multiple target sites from the same miRNA at the same transcript or 30-UTR,we tested whether the other class of ncRNAs and protein-coding genes hosted in our database also can act as miRNA super-sponges.We can recapitulate the known CDR1as circRNA as a miR-7super-sponge using the miRNA-circRNA interactions web page (Supplementary Figure S3A and B).The results page sorted by the number of miRNA target sites showed that CDR1as circRNA contains52miR-7target sites overlapped with CLIP-Seq data(Supplementary Figure S3B).The same strategy was applied to search potential super-sponges among mRNAs,lncRNAs and pseudo-genes,resulting in tens of candidates,such as XIST andTable1.The data sets that are incorporated into starBase v2.0Species Experiments RBPs Cell lines/tissuesABSs RBSs miRNA-mRNA miRNA-ncRNA ceRNA protein–RNAHuman853618100761882068844239753545911439242017 Mouse2111162683318571996474923482951542C.elegans22248421360128831402411These statistics show the numbers of sequencing experiments(CLIP-Seq),RNA-binding proteins(RBPs)covered in these experiments,cell lines or tissues used in these experiments,Ago binding sites(ABSs),other RNA-binding protein binding sites(RBSs),miRNA-mRNA interactions,miRNA-ncRNA interactions,ceRNA pairs and protein–RNA interactions that are incorporated into starBase.These data are from three organisms:human (hg19),mouse(mm9)and C.elegans(ce6).Nucleic Acids Research,2014,Vol.42,Database issue D95HOXD-AS1lncRNA genes and ONECUT2and CDK6 mRNAs(Supplementary Figure S3C).ceRNAs of the oncogenesRecently,the ceRNA hypothesis has been proposed(3) and efforts have been made to decipher the roles of ceRNA cross talk in regulating cancer-associated genes such as tumor suppressor PTEN(12–14).Requiring a minimum common miRNA number of ten and a FDR threshold of0.05on the‘ceRNA Network’web page (Supplementary Figure S4A),our platform produced a ceRNA network involving PTEN and123genes,among which the published PTEN ceRNAs LRCH1,TNRC6A and SMAD5(12–14)were recaptured(Supplementary Figure S4B).We were also able to predict a batch of other cancer-associated genes that were entangled within the highly sophisticated networks of ceRNAs.For example,NFIB, an oncogene upregulated in small cell lung cancer(41)and estrogen receptor-negative breast cancer(42),was found in multiple ceRNA pairs with other well-described cancer-related genes,such as MLL and KDSR(Supplementary Figure S4C).CONCLUSIONSBy analyzing a large set of Ago and RBP binding sites derived from all available CLIP-Seq experimental tech-niques(PAR-CLIP,HITS-CLIP,iCLIP,CLASH),we have shown extensive and complex RNA–RNA and protein–RNA interaction networks.Compared with the previous version of starBase(v1.0) and other databases,the distinctive features of starBase v2.0include the following:(i)starBase v2.0is thefirst database that provides the miRNA-pseudogene inter-action networks;(ii)starBase v2.0drafts thefirst inter-action maps between miRNAs and circRNAs;(iii) unlike other databases or tools(12,14,43)that predict ceRNA regulatory networks using computationally pre-dicted miRNA targets,starBase v2.0provides an enhanced resolution to determine ceRNA functional networks based on miRNA-target interactions overlapping with high-throughput CLIP-Seq data;(iv) starBase v2.0provides the most comprehensive miRNA-lncRNA interactions to date;and(v)starBase v2.0 provides a variety of interfaces and graphic visualizations to facilitate analysis of the massive and heterogeneous CLIP-Seq,RBP binding sites,miRNA targets and ceRNA regulatory networks in normal tissues and cancer cells.FUTURE DIRECTIONSAs CLIP-Seq technology is applied to a broader set of species,cell lines,tissues,conditions and RBPs,we will continuously maintain and update the database.starBase will continue to expand the storage space and improve the computer server performance for storing and analyzing these new data,and improve the database to accept new user data uploads.In addition,we intend to integrate the cancer genomics data from the Gene Expression Omnibus (GEO),The Cancer Genome Atlas(TCGA)and International Cancer Genome Consortium(ICGC)into starBase to improve our understanding of miRNA-mediated regulatory networks in developmental,physio-logical and pathological processes.AVAILABILITYstarBase v2.0is freely available at . cn/.The starBase datafiles can be downloaded and used in accordance with the GNU Public License and the license of primary data sources.SUPPLEMENTARY DATASupplementary Data are available at NAR Online.ACKNOWLEDGEMENTSMinistry of Science and Technology of China,National Basic Research Program[No2011CB811300];the National Natural Science Foundation of China [31230042,30900820,81070589,31370791];the funds from Guangdong Province[S2012010010510, S2013010012457];Project of Science and Technology New Star in ZhuJiang Guangzhou city[2012J2200025]; Fundamental Research Funds for the Central Universities[2011330003161070];China Postdoctoral Science Foundation[200902348].This research is sup-ported in part by the Guangdong Province Key Laboratory of Computational Science and the Guangdong Province Computational Science Innovative Research Team.FUNDINGFunding for open access charge:Ministry of Science and Technology of China,National Basic Research Program [No.2011CB811300].Conflict of interest statement.None declared.REFERENCES1.Batista,P.J.and Chang,H.Y.(2013)Long noncoding RNAs:cellular address codes in development and disease.Cell,152,1298–1307.2.Yates,L.A.,Norbury,C.J.and Gilbert,R.J.(2013)The long andshort of microRNA.Cell,153,516–519.3.Salmena,L.,Poliseno,L.,Tay,Y.,Kats,L.and Pandolfi,P.P.(2011)A ceRNA hypothesis:the rosetta stone of a hidden RNAlanguage?Cell,146,353–358.4.Poliseno,L.,Salmena,L.,Zhang,J.,Carver,B.,Haveman,W.J.andPandolfi,P.P.(2010)A coding-independent function of gene and pseudogene mRNAs regulates tumour biology.Nature,465,1033–1038.5.Konig,J.,Zarnack,K.,Luscombe,N.M.and Ule,J.(2011)Protein-RNA interactions:new genomic technologies and perspectives.Nat.Rev.Genet.,13,77–83.6.Memczak,S.,Jens,M.,Elefsinioti,A.,Torti,F.,Krueger,J.,Rybak,A.,Maier,L.,Mackowiak,S.D.,Gregersen,L.H.,D96Nucleic Acids Research,2014,Vol.42,Database issueMunschauer,M.et al.(2013)Circular RNAs are a large class of animal RNAs with regulatory potency.Nature,495,333–338.7.Hansen,T.B.,Jensen,T.I.,Clausen,B.H.,Bramsen,J.B.,Finsen,B.,Damgaard,C.K.and Kjems,J.(2013)Natural RNA circlesfunction as efficient microRNA sponges.Nature,495,384–388. 8.Gupta,R.A.,Shah,N.,Wang,K.C.,Kim,J.,Horlings,H.M.,Wong,D.J.,Tsai,M.C.,Hung,T.,Argani,P.,Rinn,J.L.et al.(2010) Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis.Nature,464,1071–1076.9.Khalil,A.M.,Guttman,M.,Huarte,M.,Garber,M.,Raj,A.,RiveaMorales,D.,Thomas,K.,Presser,A.,Bernstein,B.E.,vanOudenaarden,A.et al.(2009)Many human large intergenicnoncoding RNAs associate with chromatin-modifying complexes and affect gene expression.Proc.Natl A,106,11667–11672.10.Cesana,M.,Cacchiarelli,D.,Legnini,I.,Santini,T.,Sthandier,O.,Chinappi,M.,Tramontano,A.and Bozzoni,I.(2011)A longnoncoding RNA controls muscle differentiation by functioning asa competing endogenous RNA.Cell,147,358–369.11.Franco-Zorrilla,J.M.,Valli,A.,Todesco,M.,Mateos,I.,Puga,M.I.,Rubio-Somoza,I.,Leyva,A.,Weigel,D.,Garcia,J.A.andPaz-Ares,J.(2007)Target mimicry provides a new mechanism for regulation of microRNA activity.Nat.Genet.,39,1033–1037. 12.Tay,Y.,Kats,L.,Salmena,L.,Weiss,D.,Tan,S.M.,Ala,U.,Karreth,F.,Poliseno,L.,Provero,P.,Di Cunto,F.et al.(2011)Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs.Cell,147,344–357.13.Karreth,F.A.,Tay,Y.,Perna,D.,Ala,U.,Tan,S.M.,Rust,A.G.,DeNicola,G.,Webster,K.A.,Weiss,D.,Perez-Mancera,P.A.et al.(2011)In vivo identification of tumor-suppressive PTEN ceRNAs in an oncogenic BRAF-induced mouse model of melanoma.Cell, 147,382–395.14.Sumazin,P.,Yang,X.,Chiu,H.S.,Chung,W.J.,Iyer,A.,Llobet-Navas,D.,Rajbhandari,P.,Bansal,M.,Guarnieri,P.,Silva,J.et al.(2011)An extensive microRNA-mediated network of RNA-RNA interactions regulates established oncogenic pathways inglioblastoma.Cell,147,370–381.15.Darnell,R.B.(2010)HITS-CLIP:panoramic views of protein-RNA regulation in living cells.Wiley Interdiscip.Rev.RNA,1, 266–286.16.Ascano,M.,Hafner,M.,Cekan,P.,Gerstberger,S.and Tuschl,T.(2012)Identification of RNA-protein interaction networks using PAR-CLIP.Wiley Interdiscip.Rev.RNA,3,159–177.17.Yang,J.H.,Li,J.H.,Shao,P.,Zhou,H.,Chen,Y.Q.and Qu,L.H.(2011)starBase:a database for exploring microRNA-mRNAinteraction maps from Argonaute CLIP-Seq and Degradome-Seq data.Nucleic Acids Res.,39,D202–D209.18.Khorshid,M.,Rodak,C.and Zavolan,M.(2011)CLIPZ:adatabase and analysis environment for experimentally determined binding sites of RNA-binding proteins.Nucleic Acids Res.,39,D245–D252.19.Anders,G.,Mackowiak,S.D.,Jens,M.,Maaskola,J.,Kuntzagk,A.,Rajewsky,N.,Landthaler,M.and Dieterich,C.(2012)doRiNA:a database of RNA interactions in post-transcriptional regulation.Nucleic Acids Res.,40,D180–D186.20.Jalali,S.,Bhartiya,D.,Lalwani,M.K.,Sivasubbu,S.and Scaria,V.(2013)Systematic transcriptome wide analysis of lncRNA-miRNA interactions.PLoS One,8,e53823.21.Paraskevopoulou,M.D.,Georgakilas,G.,Kostoulas,N.,Reczko,M.,Maragkakis,M.,Dalamagas,T.M.and Hatzigeorgiou,A.G.(2013) DIANA-LncBase:experimentally verified and computationallypredicted microRNA targets on long non-coding RNAs.Nucleic Acids Res.,41,D239–D245.22.Barrett,T.,Wilhite,S.E.,Ledoux,P.,Evangelista,C.,Kim,I.F.,Tomashevsky,M.,Marshall,K.A.,Phillippy,K.H.,Sherman,P.M., Holko,M.et al.(2013)NCBI GEO:archive for functionalgenomics data sets—update.Nucleic Acids Res.,41,D991–D995.23.Corcoran,D.L.,Georgiev,S.,Mukherjee,N.,Gottwein,E.,Skalsky,R.L.,Keene,J.D.and Ohler,U.(2011)PARalyzer:definition of RNA binding sites from PAR-CLIP short-readsequence data.Genome Biol.,12,R79.24.Meyer,L.R.,Zweig,A.S.,Hinrichs,A.S.,Karolchik,D.,Kuhn,R.M.,Wong,M.,Sloan,C.A.,Rosenbloom,K.R.,Roe,G.,Rhead,B.et al.(2013)The UCSC Genome Browser database:extensions andupdates2013.Nucleic Acids Res.,41,D64–D69.25.Grimson,A.,Farh,K.K.,Johnston,W.K.,Garrett-Engele,P.,Lim,L.P.and Bartel,D.P.(2007)MicroRNA targeting specificity in mammals:determinants beyond seed pairing.Mol.Cell,27,91–105.26.Kozomara,A.and Griffiths-Jones,S.(2011)miRBase:integratingmicroRNA annotation and deep-sequencing data.Nucleic Acids Res.,39,D152–D157.27.Betel,D.,Koppal,A.,Agius,P.,Sander,C.and Leslie,C.(2010)Comprehensive modeling of microRNA targets predictsfunctional non-conserved and non-canonical sites.Genome Biol., 11,R90.28.Kertesz,M.,Iovino,N.,Unnerstall,U.,Gaul,U.and Segal,E.(2007)The role of site accessibility in microRNA target recognition.Nat.Genet.,39,1278–1284.29.Miranda,K.C.,Huynh,T.,Tay,Y.,Ang,Y.S.,Tam,W.L.,Thomson,A.M.,Lim,B.and Rigoutsos,I.(2006)A pattern-based method for the identification of MicroRNA binding sites andtheir corresponding heteroduplexes.Cell,126,1203–1217.30.Quinlan,A.R.and Hall,I.M.(2010)BEDTools:aflexible suiteof utilities for comparing genomic features.Bioinformatics,26,841–842.31.Harrow,J.,Frankish,A.,Gonzalez,J.M.,Tapanari,E.,Diekhans,M.,Kokocinski,F.,Aken,B.L.,Barrell,D.,Zadissa,A., Searle,S.et al.(2012)GENCODE:the reference human genome annotation for The ENCODE Project.Genome Res.,22,1760–1774.32.Benjamini,Y.and Hochberg,Y.(1995)Controlling the falsediscovery rate:a practical and powerful approach to multipletesting.J.R.Stat.Soc.Ser.B,57,289–300.33.Ashburner,M.,Ball,C.A.,Blake,J.A.,Botstein,D.,Butler,H.,Cherry,J.M.,Davis,A.P.,Dolinski,K.,Dwight,S.S.,Eppig,J.T.et al.(2000)Gene Ontology:tool for the unification of biology.Nat.Genet.,25,25–29.34.Kanehisa,M.,Goto,S.,Sato,Y.,Furumichi,M.and Tanabe,M.(2012)KEGG for integration and interpretation oflarge-scale molecular data sets.Nucleic Acids Res.,40,D109–DD114.35.Mi,H.,Lazareva-Ulitsky,B.,Loo,R.,Kejariwal,A.,Vandergriff,J.,Rabkin,S.,Guo,N.,Muruganujan,A.,Doremieux,O.,Campbell,M.J.et al.(2005)The PANTHER database of protein families,subfamilies,functions and pathways.Nucleic Acids Res., 33,D284–D288.36.Matthews,L.,Gopinath,G.,Gillespie,M.,Caudy,M.,Croft,D.,de Bono,B.,Garapati,P.,Hemish,J.,Hermjakob,H.,Jassal,B.et al.(2009)Reactome knowledgebase of human biologicalpathways and processes.Nucleic Acids Res.,37,D619–D622. 37.Liberzon,A.,Subramanian,A.,Pinchback,R.,Thorvaldsdottir,H.,Tamayo,P.and Mesirov,J.P.(2011)Molecular signatures database (MSigDB)3.0.Bioinformatics,27,1739–1740.38.Kuhn,R.M.,Karolchik,D.,Zweig,A.S.,Wang,T.,Smith,K.E.,Rosenbloom,K.R.,Rhead,B.,Raney,B.J.,Pohl,A.,Pheasant,M.et al.(2009)The UCSC Genome Browser Database:update2009.Nucleic Acids Res.,37,D755–D761.39.Hubbard,T.J.,Aken,B.L.,Ayling,S.,Ballester,B.,Beal,K.,Bragin,E.,Brent,S.,Chen,Y.,Clapham,P.,Clarke,L.et al.(2009) Ensembl2009.Nucleic Acids Res.,37,D690–D697.40.Hsu,S.D.,Lin,F.M.,Wu,W.Y.,Liang,C.,Huang,W.C.,Chan,W.L.,Tsai,W.T.,Chen,G.Z.,Lee,C.J.,Chiu,C.M.et al.(2011)miRTarBase:a database curates experimentally validated microRNA-target interactions.Nucleic Acids Res.,39,D163–DD169.41.Dooley,A.L.,Winslow,M.M.,Chiang,D.Y.,Banerji,S.,Stransky,N.,Dayton,T.L.,Snyder,E.L.,Senna,S.,Whittaker,C.A., Bronson,R.T.et al.(2011)Nuclear factor I/B is an oncogene in small cell lung cancer.Gene Dev.,25,1470–1475.42.Moon,H.G.,Hwang,K.T.,Kim,J.A.,Kim,H.S.,Lee,M.J.,Jung,E.M.,Ko,E.,Han,W.and Noh,D.Y.(2011)NFIB is apotential target for estrogen receptor-negative breast cancers.Mol.Oncol.,5,538–544.43.Liu,K.,Yan,Z.,Li,Y.and Sun,Z.(2013)Linc2GO:a humanLincRNA function annotation resource based on ceRNAhypothesis.Bioinformatics,29,2221–2222.Nucleic Acids Research,2014,Vol.42,Database issue D97。

相关文档
最新文档