(完整word版)医学统计学 重点 终极笔记
医学统计学章节重点归纳

医学统计学章节重点归纳第一节概述1、主要内容:a、卫生统计学的基本原理和方法(研究设计和数据处理中的统计理论和方法)b、健康统计(医学人口统计、疾病统计和生长发育统计)c、卫生服务统计(卫生资源、医疗卫生服务的需求和利用、医疗保健制度和管理中的统计问题)。
2、卫生统计工作的步骤:设计、资料的搜集、资料的整理、资料的分析3、医学统计资料主要四个方面:统计报表、报告卡(单)、日常医疗卫生工作记录,专题研究或实验。
4、观察单位:是获得数据的最小单位,观察单位是根据研究目的确定的,观察单位可以是人、标本、家庭、国家等。
5、变异:是指客观事物的多样性和不确定性。
6、变量:观察单位的某种特征,称为变量。
a、数值变量(定量变量)b、分类变量(定型变量或字符变量)。
7、总体:根据研究目的所确定的同质研究对象的全体。
确切的说是性质相同的所有观察单位的某种变量的集合。
8、样本:从总体中随机抽取部分观察单位,其变量值就构成样本,通过样本信息来推断总体特征。
9、概率:事件发生的可能性大小的量度,通常以符号P表示。
10、误差:测量值与真值之差或样本指标和总体指标之差。
分为随机误差和系统误差。
第二节数值资料的统计描述1、频数分布就是观察值在所取得范围内分布的情况。
重要特征:集中趋势和离散趋势。
2、频数分布类型:正态分布型频数、正偏态分布型频数,负偏态分布型频数。
3、集中趋势指标:算术平均数(均数)、几何均数、中位数。
指标使用条件计算公式算术平均数适用于正态或近似正态分布的数值变量资料几何均数①对数正态分布,即数据经过对数变换后呈正态分布的资料;②等比级数资料,即观察值之间呈倍数或近似倍数变化的资料。
中位数①非正态分布资料(对数正态分布除外);②频数分布的一端或两端无确切数据的资料③总体分布不清楚的资料。
为奇数 , 为偶数,4、离散型趋势指标:极差、标准差和变异系数指标计算公式主要优缺点极差R=Xmax-Xmin 计算简单,便于理解;只考虑最大值与最小值之差异,不能反映组内其它观察值的变异度,不稳定,受样本量影响很大。
医学统计学重点总结

(1) 单个样本均数 H0:μ=μ0t= ν=n-1 (小样本)
(已知样本——均数) H1:μ≠μ0
α=u= 或u= (大样本)(2)配对:H0:μ=μ0
H1:μ≠μ0t= ν=对子数-1
α=
(3) 两独立样本均数H0:μ=μ0t= ν=n1+n2-2
(4)(已知样本——样本) H1:μ≠μ0
9.对任何参数μ和σ的正态分布,都可以通过一个简单的变量变换成标准正态分布,即μ=X-μ
σ
9
标准正态分布
正态分布
面积或概率
-1~1
μ σ
%
~
μ σ
%
·
μ σ
%
10.医学参考值范围(reference value range)传统上称作正常值范围,指正常人的解剖、生理、生化、免疫及组织代谢产物的含量等各种数据的波动范围。习惯上是包含95%的参照总体的范围。
实际工作中标准差 σ往往未知,因而通常用样本标准差S代替σ,求得样本均数 准误估计值S ,计算公式为 S = (当n→无穷,S→σ,S →0)
3 95%的可信区间的计算:x (μ,σ ) 1) σ已知,可信区间= σ
2)σ未知,n为小样本: t 3)σ未知,n为大样本:
T变换
μ变换
N (0,1)
3、t分布曲线的形态变化与自由度v=n-1有关。
2.四格表专用公式(
3对于四格表资料,通常规定为:(1)当n≥40且所有的T ≥ 5时,用检验的基本公式或四格表的专用公式;(2)当n ≥ 40 但有1≤T<5时,用四格表资料的校正公式;(3)当n<40,或T<1时,用四格表资料的Fisher确切 概率法。
4 行×列表资料的χ 检验: 自由度:ν=(行数-1)(列数-1)
职称考试卫生统计学重点学习笔记

卫生统计学第一章统计学的基本内容第一节医学统计学的含义1、医学统计学定义医学统计学(statistics)作为一门学科的定义是:关于医学数据收集、表达和分析的普遍原理和方法。
2、医学统计学研究方法:通过大量重复观察,发现不确定的医学现象背后隐藏的统计学规律。
3、医学统计推论的基础:在一定条件下,不确定的医学现象发生可能性,即概率。
第二节、统计学的几个重要概念一.资料的类型1、计量资料(数值变量):对每一观察对象用定量的方法,测定某项指标所得的资料。
一般有度量衡单位,每个对象之间有量的区别。
2、计数资料(分类变量):对观察对象按属性或类型分组计数所得的资料。
每个对象之间没有量的差异,只有质的不同。
3、等级资料(有序分类变量):对观察对象按属性或类型分组计数,但各属性或类型之间又有程度的差别。
注意:不同类型的资料采用的统计分析方法不同;三类资料类型可以相互转化。
二、总体根据研究目的所确定的同质的所有观察对象某项变量值的集合1、有限总体:只包括在确定时间、空间范围内的有限个观察对象。
2、无限总体:没有时间、空间范围的限制,观察对象的数量是不确定的,无限的三、样本从总体中随机抽取部分观察对象,其某项变量值的集合。
从总体中随机抽取样本的目的是: 用样本信息来推断总体特征。
四、随机事件可以发生也可以不发生,可以这样发生也可以那样发生的事件。
亦称偶然事件。
五、概率描述随机事件发生可能性大小的数值,记作P,其取值范围0≤P≤1,一般用小数表示。
P=0,事件不可能发生必然事件(随机事件的特例);P=1,事件必然发生;P→0,事件发生的可能性愈小;P→1,事件发生的可能性愈大六、小概率事件习惯上将P≤0.05或P≤0.01 的随机事件称小概率事件。
表示某事件发生的可能性很小。
七、参数和统计量参数:总体指标,如总体均数、总体率,一般用希腊字母表示统计量:样本指标,如样本均数、样本率,一般用拉丁字母表示八、学习医学统计学的方法1、重点掌握“四基”:基本知识、基本概念、基本原理和基本方法;2、重视统计方法在实际中应用,重视实习和综合训练;注意学习每种统计方法的应用范围、应用条件,大多数公式只要求了解其意义和使用方法,不用记忆和探究数理推导。
医科大学医学统计学重点知识总结

第一章绪论1、统计学的定义:统计学研究数据的收集、整理、分析的一门学科。
医学统计学:医学统计学是以医学理论为指导,应用概率论与数理统计的有关原理、方法,研究医学资料的搜集、整理、分析和推断的一门科学。
2、医学统计研究三个步骤:研究设计、资料分析、结论3、(必考的)几个概念:(1)同质:性质相同异质:性质不同观察单位间的同质性是进行研究的前提同质是相对的(不同研究中或同一研究中不同观察指标对观察对象的同质性的要求不同)(2)个体变异:同质个体间的差异。
变异的两个方面:不同观察单位(个体)间的差别;同一个体在不同阶段的差别(重复测量)个体变异是普遍存在的;个体变异是有规律的。
注意:由于个体变异的存在,同质个体指标的取值会存在差异!(例:体温波动)(3)总体:按研究目的所确定的同质研究对象的全体。
有限总体:有时间、空间的概念,观察单位有限无限总体:无时间、空间的概念(例:某种治疗措施的效果,就包括接受这种治疗措施的所有病人过去、现在、未来,因而观察单位无限)(4)个体:组成总体的基本单位。
样本:从研究总体中随机抽取具有代表性的部分观察单位随机性的三个体现:抽样随机、分组随机、试验顺序随机(5)随机变量:观察对象个体的特征或测量的结果观察结果在一定范围内以一定的概率分布随机取值的变量,表示随机现象。
在一定条件下,并不总是出现相同结果变量值:个体观察指标具体取值(6)总体参数:总体的统计指标或特征值固有的、不变的,但往往是未知的(7)样本统计量:由样本所算出的统计指标或特征值已知的,且随着试验的不同而不同,但分布是有规律的(8)样本含量:样本中包含个体的数量(9)频率f=m/n,f的值随n的增大接近常数p,概率P(A)=p即:频率为一变量,是样本统计量;概率为常数,是一总体参数小概率事件:概率小于等于0.05小概率原理:小概率事件在一次试验中是不会发生的(10)抽样误差:两个表现:样本统计量与总体参数间的差别;不同样本统计量间的差别两个原因:个体变异;抽样过程抽样误差不可避免,但是有规律。
(完整word版)医学统计学符号,公式,重点

(完整word版)医学统计学符号,公式,重点第⼀章医学统计中的基本概念1、医学统计学是研究医学数据的收集、整理、分析、解释和呈现其结果的⼀门学科。
2、个体:研究的基本观察单位。
3、变量:⽤于观察研究对象的指标。
4、观察值:个体变量的数值。
5、资料:⼜称为数据,由变量的观察值构成。
变异:个体观察值之间具有的差异。
变异和同质是对统计学数据的要求!变异是统计学研究的真正对象!统计学是研究变异规律的科学!同质:个体观察值之间的变异在允许范围内。
异质:个体观察值之间的变异超出允许范围。
⼀、总体、抽样、样本、参数、统计量总体:同质的个体所构成的全体研究对象。
总体同时具有同质和变异两个特点。
有限总体:总体中的个体数量是有限的。
⽆限总体:总体中的个体数量是⽆限的。
样本:从总体中随机抽取的部分个体。
样本量:样本所包含的个体数⽬。
参数:刻画总体特征的指标。
统计量:刻画样本特征的指标。
抽样:从总体中随机抽取部分个体的过程。
抽样具有代表性、随机性、可靠性、可⽐性;原则:代表性:样本能充分反映总体特征。
随机性:保证总体中每个个体都有相同的⼏率被抽样。
随机性是代表性的保证;⽣活中随机性的例⼦(思考题);计量资料:由连续变量的观察值构成的资料。
对每个观察对象的观察指标⽤定量⽅法测定其数值⼤⼩所得的资料,⼀般有度量衡单位,例如年龄、⾝⾼、⾎糖。
计数资料:由离散变量的观察值构成的资料。
先将观察对象的观测指标按性质或类别进⾏分组,然后计数各组的数⽬所得的资料,例如性别、患病、⾎型。
等级分组资料:由等级变量的观测值构成的资料。
具有计数资料的特征,同时⼜具有半定量性质的资料,例如细菌培养阳性结果。
⼆、3种设计类型:完全随机设计;配对设计;配伍组设计。
三、抽样误差、概率和⼩概率事件抽样误差:由抽样引起的样本统计量与总体参数之间的差异。
抽样误差的原因;抽样误差是不可避免的。
概率P :表⽰某事件发⽣的可能性⼤⼩的度量。
⼩概率事件:统计学上习惯将P ≤0.05或P ≤0.01的事件称为⼩概率事件,表⽰该事件发⽣的可能性很⼩。
2024年度-医学统计学重点笔记一复习必备

即标准正态分布,当样本量足够大时(n>30),t分布近似u分布。
14
总体均数置信区间估计
置信区间的概念
按一定的置信水平(1-α),根据样 本统计量估计总体参数所在的范围。
置信区间的计算
根据样本均数、标准差和样本量计算 置信区间。常用的置信水平为95%和
99%。
置信区间的意义
表示总体参数有100(1-α)%的可能性 落在此区间内。
适用条件
01
R×C列联表资料,即多行多列列联表,用于分析两个多分类变
量之间的关联。
检验统计量
02
卡方值,计算公式为χ2=∑(O-E)2/E,其中O为观察频数,E为
理论频数。
拒绝域
03
根据自由度和显著性水平确定拒绝域,自由度为(R-1)(C-1)。
29
配对设计四格表资料卡方检验
01
适用条件
配对设计四格表资料,即两个相 关样本的二分类变量之间的关联 分析。
26
06
卡方检验
27
四格表资料卡方检验
适用条件
四格表资料,即2×2列联表,用于分析两个二分类变量之间的关联。
检验统计量
卡方值,计算公式为χ2=(ad-bc)2N/(a+b)(c+d)(a+c)(b+d),其 中N为样本总量。
拒绝域
根据自由度和显著性水平确定拒绝域,自由度为1。
28
R×C列联表资料卡方检验
正态分布在医学中的应用 许多医学指标如身高、体重、血压等服从或近似服从正态 分布;在估计医学参考值范围、质量控制等方面有广泛应 用。
正态性检验方法 图形法(直方图、P-P图、Q-Q图)、计算法(偏度系数 和峰度系数检验、Shapiro-Wilk检验、KolmogorovSmirnov检验等)。
医学统计学章节重点归纳

医学统计学章节重点归纳第一节概述1、主要内容:a、卫生统计学的基本原理和方法(研究设计和数据处理中的统计理论和方法)b、健康统计(医学人口统计、疾病统计和生长发育统计)c、卫生服务统计(卫生资源、医疗卫生服务的需求和利用、医疗保健制度和管理中的统计问题)。
2、卫生统计工作的步骤:设计、资料的搜集、资料的整理、资料的分析3、医学统计资料主要四个方面:统计报表、报告卡(单)、日常医疗卫生工作记录,专题研究或实验。
4、观察单位:是获得数据的最小单位,观察单位是根据研究目的确定的,观察单位可以是人、标本、家庭、国家等。
5、变异:是指客观事物的多样性和不确定性。
6、变量:观察单位的某种特征,称为变量。
a、数值变量(定量变量)b、分类变量(定型变量或字符变量)。
7、总体:根据研究目的所确定的同质研究对象的全体。
确切的说是性质相同的所有观察单位的某种变量的集合。
8、样本:从总体中随机抽取部分观察单位,其变量值就构成样本,通过样本信息来推断总体特征。
9、概率:事件发生的可能性大小的量度,通常以符号P表示。
10、误差:测量值与真值之差或样本指标和总体指标之差。
分为随机误差和系统误差。
第二节数值资料的统计描述1、频数分布就是观察值在所取得范围内分布的情况。
重要特征:集中趋势和离散趋势。
2、频数分布类型:正态分布型频数、正偏态分布型频数,负偏态分布型频数。
3、集中趋势指标:算术平均数(均数)、几何均数、中位数。
指标使用条件计算公式算术平均数适用于正态或近似正态分布的数值变量资料几何均数①对数正态分布,即数据经过对数变换后呈正态分布的资料;②等比级数资料,即观察值之间呈倍数或近似倍数变化的资料。
中位数①非正态分布资料(对数正态分布除外);②频数分布的一端或两端无确切数据的资料③总体分布不清楚的资料。
为奇数 , 为偶数,4、离散型趋势指标:极差、标准差和变异系数指标计算公式主要优缺点极差R=Xmax-Xmin 计算简单,便于理解;只考虑最大值与最小值之差异,不能反映组内其它观察值的变异度,不稳定,受样本量影响很大。
医学统计学重点终极笔记

Medical Statistics【Introduction】医学统计工作的内容⒈实验设计:最关键、最重要⒉收集资料:最基础[原始资料] 实验数据,现场调查资料,医疗卫生工作记录、报告、报表质量控制:精度和偏倚⒊整理资料:资料的逻辑、一致性检查,原始数据的加工(频数分布表)⒋分析资料:统计描述(表、图、离散趋势、集中趋势)和统计推断资料的类型⑴计量资料:定量方法测定数值大小所得的资料⑵计数资料:按性质或类别分组,然后计数⑶等级分组资料:具有计数资料的特性,又有半定量的性质(“+ , -”表示)变异:不同个体在相同环境下,对外界环境因素发生的不同反应,即个体差异总体:同质的个体所构成的全体。
[同质性,大量性,差异性]样本:从总体中抽取部分个体的过程称为抽样,所抽得的部分是样本。
样本包含的个体数目称为样本含量样本的特征:⑴代表性⑵随机性⑶可靠性*抽样的要求:代表性,随机性,可靠性,可比性完全随机设计:将受试对象随机分配到各处理组或对照组中,或分别从不同总体中随机抽样进行研究。
可为两样本或多样本得比较,但样本含量不宜相差太大。
随机区组设计:也称配伍设计,是配对设计的扩展。
配对设计的每一“对子”中的受试对象分别随机分到两个处理组中,而配伍组设计中的每个“配伍组”,包含多个受试对象,要将它们分别随机分到各处理组中。
误差:泛指观测值与真实值之差,以及样本统计量与总体参数之差⑴系统误差:在收集资料过程中,由于仪器调整、试剂校验、医生对疗效的掌握等因素,造成观察结果倾向性的偏大活偏小。
要尽量查明原因,必须克服。
⑵随机测量误差:在收集资料过程中,即使系统误差已经避免,由于各种偶然因素的影响造成对同一对象多次测定的结果不完全一致。
譬如操作员技术、电压、环境温度的差异。
没有固定的倾向,时高时低;应采取措施加以控制。
⑶抽样误差:由抽样不同引起的样本均数与总体均数之间的差异。
原因是个体之间存在变异,抽样时只能抽取总体的一部分作为样本。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Medical Statistics
【Introduction】
医学统计工作的内容
⒈实验设计:最关键、最重要
⒉收集资料:最基础
[原始资料] 实验数据,现场调查资料,医疗卫生工作记录、报告、报表
质量控制:精度和偏倚
⒊整理资料:资料的逻辑、一致性检查,原始数据的加工(频数分布表)
⒋分析资料:统计描述(表、图、离散趋势、集中趋势)和统计推断
资料的类型
⑴计量资料:定量方法测定数值大小所得的资料
⑵计数资料:按性质或类别分组,然后计数
⑶等级分组资料:具有计数资料的特性,又有半定量的性质(“+ , -”表示)
变异:不同个体在相同环境下,对外界环境因素发生的不同反应,即个体差异
总体:同质的个体所构成的全体。
[同质性,大量性,差异性]
样本:从总体中抽取部分个体的过程称为抽样,所抽得的部分是样本。
样本包含的个体数目称为样本含量
样本的特征:⑴代表性
⑵随机性
⑶可靠性
*抽样的要求:代表性,随机性,可靠性,可比性
完全随机设计:将受试对象随机分配到各处理组或对照组中,或分别从不同总体中随机抽样进行研究。
可为两样本或多样本得比较,但样本含量
不宜相差太大。
随机区组设计:也称配伍设计,是配对设计的扩展。
配对设计的每一“对子”中的受试对象分别随机分到两个处理组中,而配伍组设计中的每个
“配伍组”,包含多个受试对象,要将它们分别随机分到各处理
组中。
误差:泛指观测值与真实值之差,以及样本统计量与总体参数之差
⑴系统误差:在收集资料过程中,由于仪器调整、试剂校验、医生对疗效的掌
握等因素,造成观察结果倾向性的偏大活偏小。
要尽量查明原因,必须克服。
⑵随机测量误差:在收集资料过程中,即使系统误差已经避免,由于各种偶然
因素的影响造成对同一对象多次测定的结果不完全一致。
譬如操作员技术、电压、环境温度的差异。
没有固定的倾向,时高时低;应采取措施加以控制。
⑶抽样误差:由抽样不同引起的样本均数与总体均数之间的差异。
原因是个体
之间存在变异,抽样时只能抽取总体的一部分作为样本。
不可避免,要用统计方法进行正确分析。
概率:描写某一事件发生可能性大小的一个度量。
频率:样本实际发生率
小概率事件:P<=0.05(差别有统计学意义)或P<=0.01(差别有高度统计意义)的事件
变量:观察单位的某些特征
变量值:观察、测定的结果
【集中趋势的统计描述】
频数表(计量资料):同时列出观察指标的可能取值区间及各区间的频数
集中趋势:变量值的集中位置
离散趋势:变量值围绕集中位置的分散情况
平均数:描述一组观察值集中位置或平均水平的统计指标。
常作为一组数据的代表值用于分析或进行组间比较。
[适用条件]:对称分布或偏度不大的资料,尤其适合正态分布
算术均数(X):简称均数,说明一组观察值平均水平或集中趋势(描述计量资料)
几何均数(G):描述观察值间按倍数关系变化的资料的平均水平,如滴度、浓度、血清效价、细菌计数。
中位数(M):观察值按从小到大排列时,居于中心位置的数值。
n为奇数时,M=第(n+1)/2项
n为偶数时,M=第n/2项和第(n/2+1)项的平均值
[适用条件]:分布明显呈偏态;频数分布的一端或两端无确切值
百分位数(P):在一组数据中找到一个数值Px,全部观察值的x%小于Px。
P25, P75描述资料的离散程度
P2.5, P97.5规定医学95%的参考值范围
【变异程度的统计描述】
极差(R):即全距,观察值中最大值与最小值之差。
不适用于开口资料。