山东省济宁市中考数学试题含解析
山东济宁中考数学试题及答案解析

山东济宁中考数学试题及答案解析一、选择题1. 下列哪个数不是32的约数?A) 2 B) 4 C) 5 D) 8【答案解析】C) 5解析:32除以5等于6余2,因此5不是32的约数。
2. 若一椭圆的长轴长为10,短轴长为6,则其离心率为()。
A) 1 B) 2 C) 3 D) 4【答案解析】B) 2解析:根据离心率的定义,离心率等于长轴与短轴的比值(e=a/b),所以离心率为10/6=2。
3. 已知函数f(x) = 3x^2 - 5x + 2,则f(-1)的值等于()。
A) -6 B) -4 C) -2 D) 0【答案解析】A) -6解析:将x替换为-1,代入函数f(x)中计算,f(-1) = 3*(-1)^2 - 5*(-1) + 2 = 3 + 5 + 2 = 10,所以f(-1)的值为-6。
4. 若A∪B={1, 2, 3, 4, 5},A∩B={2, 3, 4},则A的补集为()。
A) {1, 2, 3, 4, 5} B) {2, 3, 4, 5} C) {1, 5} D) {1}【答案解析】C) {1, 5}解析:A的补集即A中没有而A∪B中有的元素,即{1, 5}。
5. 已知a:b=3:5,b:x=4:7,则a:x=()。
A) 6:7 B) 9:20 C) 12:14 D) 15:20【答案解析】B) 9:20解析:根据比例的性质,a:x=(a:b)(b:x)=(3:5)(4:7)=(3*4:5*7)=12:35,则化简得到9:20。
二、填空题1. 化简:(3x^2y^3)(5x^4y^5)(-2xy)^3。
【答案解析】-120x^11y^14解析:将指数相乘,系数相乘,得到-120x^11y^14。
2. 三角形ABC,∠B = 90°,AC = 10,BC = 24,若CD ⊥ AB于D,求CD的长度。
【答案解析】CD = 8解析:根据勾股定理,AC^2 = AD^2 + CD^2,代入已知条件可得10^2 = AD^2 + CD^2,化简得100 = AD^2 + CD^2。
初中毕业升学考试(山东济宁卷)数学(解析版)(初三)中考真卷.doc

初中毕业升学考试(山东济宁卷)数学(解析版)(初三)中考真卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)【题文】在:0,﹣2,1,这四个数中,最小的数是()A.0 B.﹣2 C.1 D.【答案】B.【解析】试题分析:根据正数都大于0,负数都小于0,正数大于一切负数即可判定在0,﹣2,1,这四个数中,最小的数是-2,故答案选B.考点:有理数的大小比较.【题文】下列计算正确的是()A.x2•x3=x5 B.x6+x6=x12 C.(x2)3=x5 D.x﹣1=x 【答案】A.【解析】试题分析:选项A,根据同底数幂的乘法可得原式=x5,正确;选项B,根据合并同类项法则可得原式=2x6,错误;选项C,根据幂的乘方可得原式=x6,错误;选项D,根据负整数指数幂法则原式=,错误,故答案选A.考点:负整数指数幂;合并同类项;同底数幂的乘法;幂的乘方.【题文】如图,直线a∥b,点B在直线b上,且AB⊥BC,∠1=55°,那么∠2的度数是()A. 20°B. 30°C. 35°D. 50°【答案】C【解析】试题分析:由垂线的性质可得∠ABC=90°,所以∠3=180°﹣90°﹣∠1=35°,又因∵a∥b,再由平行线的性质可得∠2=∠3=35°.故答案选C.评卷人得分考点:平行线的性质.【题文】如图,几何体是由3个大小完全一样的正方体组成的,它的左视图是()A. B. C. D.【答案】D.【解析】试题分析:观察几何体,可知该几何体是由3个大小完全一样的正方体组成的,它的左视图是,故答案选D.考点:简单几何体的三视图.【题文】如图,在⊙O中,=,∠AOB=40°,则∠ADC的度数是()A.40° B.30° C.20° D.15°【答案】C.【解析】试题分析:已知,在⊙O中,=,∠AOB=40°,根据同圆或等圆中,同弧或等弧所对的圆周角相等,并且都等于所对圆周角的一半可得∠ADC=∠AOB=20°,故答案选C.考点:圆周角定理.【题文】已知x﹣2y=3,那么代数式3﹣2x+4y的值是()A.﹣3 B.0 C.6 D.9【答案】A.【解析】试题分析:已知x﹣2y=3,所以3﹣2x+4y=3﹣2(x﹣2y)=3﹣2×3=﹣3;故答案选A.考点:求代数式的值.【题文】如图将△ABE向右平移2cm得到△DCF,如果△ABE的周长是16cm,那么四边形ABFD的周长是()A. 16cmB. 18cmC. 20cmD. 21cm【答案】C【解析】试题分析:已知,△ABE向右平移2cm得到△DCF,根据平移的性质得到EF=AD=2cm,AE=DF,又因△ABE的周长为16cm,所以AB+BC+AC=16cm,则四边形ABFD的周长=AB+BC+CF+DF+AD=16cm+2cm+2cm=20cm .故答案选C.考点:平移的性质.【题文】在学校开展的“争做最优秀中学生”的一次演讲比赛中,编号1,2,3,4,5的五位同学最后成绩如下表所示:参赛者编号12345成绩/分9688869386那么这五位同学演讲成绩的众数与中位数依次是()A.96,88, B.86,86 C.88,86 D.86,88【答案】D.【解析】试题分析:这五位同学演讲成绩为96,88,86,93,86,按照从小到大的顺序排列为86,86,88,93,96,86出现两次,次数最多,是众数,中位数是中间的数为88,故答案选D.考点:中位数;众数.【题文】如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是()A. B. C. D.【答案】B.【解析】试题分析:根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有13个,而能构成一个轴对称图形的有5个情况(如下图所示),所以使图中黑色部分的图形仍然构成一个轴对称图形的概率是.故答案选B.考点:轴对称图形的概念;概率.【题文】如图,O为坐标原点,四边形OACB是菱形,OB在x轴的正半轴上,sin∠AOB=,反比例函数y=在第一象限内的图象经过点A,与BC交于点F,则△AOF的面积等于()A.60 B.80 C.30 D.40【答案】D.【解析】试题分析:过点A作AM⊥x轴于点M,过点F作FN⊥x轴于点N,如图所示.设OA=a,在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB=,可求得AM=OA•sin∠AOB=a,OM=a,所以点A的坐标为(a,a).因点A 在反比例函数y=的图象上,所以a×a=48,解得:a=10,或a=﹣10(舍去).即AM=8,OM=6.再由四边形OACB是菱形,OA=OB=10.所以S△AOF=S菱形AOBC=×OB×AM=×10×8=40.故答案选D.考点:反比例函数的综合题.【题文】若式子有意义,则实数x的取值范围是.【答案】x≥1.【解析】试题分析:根据二次根式的性质可得x﹣1≥0,即x≥1.考点:二次根式有意义的条件.【题文】如图,△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,请你添加一个适当的条件:,使△AEH≌△CEB.【答案】AH=CB或EH=EB或AE=CE.(添加其中任意一个即可)【解析】试题分析:根据AAS添加AH=CB或EH=EB;根据ASA添加AE=CE.可证△AEH≌△CEB.考点:全等三角形的判定.【题文】如图,AB∥CD∥EF,AF与BE相交于点G,且AG=2,GD=1,DF=5,那么的值等于.【答案】.【解析】试题分析:已知AG=2,GD=1,可得AD=3,再由AB∥CD∥EF,根据平行线分线段成比例定理可得. 考点:平行线分线段成比例定理.【题文】已知A,B两地相距160km,一辆汽车从A地到B地的速度比原来提高了25%,结果比原来提前0.4h 到达,这辆汽车原来的速度是 km/h.【答案】80.【解析】试题分析:设这辆汽车原来的速度是xkm/h,由题意得方程,解得x=80,经检验,x=80是原方程的解,所以这辆汽车原来的速度是80km/h.考点:分式方程的应用.【题文】按一定规律排列的一列数:,1,1,□,,,,…请你仔细观察,按照此规律方框内的数字应为.【答案】.【解析】试题分析:把整数1化为,得,,,(),,,…可以发现后一个数的分子恰是前面数的分母,所以,第4个数的分子是2,分母是9,所以此规律方框内的l【题文】2016年6月15日是父亲节,某商店老板统计了这四年父亲节当天剃须刀销售情况,以下是根据该商店剃须刀销售的相关数据所绘制统计图的一部分.请根据图1、图2解答下列问题:(1)近四年父亲节当天剃须刀销售总额一共是5.8万元,请将图1中的统计图补充完整;(2)计算该店2015年父亲节当天甲品牌剃须刀的销售额.【答案】(1)图见解析;(2)0.221万元.【解析】试题分析:(1)将销售总额减去2012、2014、2015年的销售总额,即可求得2013年的销售额,补全条形统计图即可;(2)将2015年的销售总额乘以甲品牌剃须刀所占百分比即可.试题解析:解:(1)2013年父亲节当天剃须刀的销售额为5.8﹣1.7﹣1.2﹣1.3=1.6(万元),补全条形图如图:(2)1.3×17%=0.221(万元).答:该店2015年父亲节当天甲品牌剃须刀的销售额为0.221万元.考点:条形统计图;折线统计图.【题文】某地的一座人行天桥如图所示,天桥高为6米,坡面BC的坡度为1:1,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为1:.(1)求新坡面的坡角a;(2)原天桥底部正前方8米处(PB的长)的文化墙PM是否需要拆桥?请说明理由.【答案】(1)30°;(2)文化墙PM不需要拆除,理由详见解析.【解析】试题分析:(1)由新坡面的坡度为1:,由特殊角的三角函数值,即可求得新坡面的坡角;(2)过点C作CD⊥AB于点D,由坡面BC的坡度为1:1,新坡面的坡度为1:.即可求得AD,BD的长,继而求得AB 的长,则可求得答案.试题解析:(1)∵新坡面的坡度为1:,∴tanα=tan∠CAB==,∴∠α=30°.答:新坡面的坡角a为30°;(2)文化墙PM不需要拆除.过点C作CD⊥AB于点D,则CD=6,∵坡面BC的坡度为1:1,新坡面的坡度为1:,∴BD=CD=6,AD=6,∴AB=AD﹣BD=6﹣6<8,∴文化墙PM不需要拆除.考点:解直角三角形的应用.【题文】某地2014年为做好“精准扶贫”,授入资金1280万元用于一滴安置,并规划投入资金逐年增加,2016年在2014年的基础上增加投入资金1600万元.(1)从2014年到2016年,该地投入异地安置资金的年平均增长率为多少?(2)在2016年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天补助5元,按租房400天计算,试求今年该地至少有多少户享受到优先搬迁租房奖励?【答案】(1)50%;(2)今年该地至少有1900户享受到优先搬迁租房奖励.【解析】试题分析:(1)设年平均增长率为x,根据“2014年投入资金给×(1+增长率)2=2016年投入资金”列出方程,解方程即可;(2)设今年该地有a户享受到优先搬迁租房奖励,根据“前1000户获得的奖励总数+1000户以后获得的奖励总和≥500万”列不等式求解即可.试题解析:(1)设该地投入异地安置资金的年平均增长率为x,根据题意,得:1280(1+x)2=1280+1600,解得:x=0.5或x=﹣2.25(舍),答:从2014年到2016年,该地投入异地安置资金的年平均增长率为50%;(2)设今年该地有a户享受到优先搬迁租房奖励,根据题意,得:1000×8×400+(a﹣1000)×5×400≥5000000,解得:a≥1900,答:今年该地至少有1900户享受到优先搬迁租房奖励.考点:一元二次方程的应用;一元一次不等式的应用.【题文】如图,正方形ABCD的对角线AC,BD相交于点O,延长CB至点F,使CF=CA,连接AF,∠ACF的平分线分别交AF,AB,BD于点E,N,M,连接EO.(1)已知BD=,求正方形ABCD的边长;(2)猜想线段EM与CN的数量关系并加以证明.【答案】(1)1;(2)CN=CM,理由详见解析.【解析】试题分析:(1)根据正方形的性质可得△ABD是等腰直角三角形,再由勾股定理可得2AB2=BD2,即可求得AB=1;(2)根据等腰三角形的性质可得CE⊥AF,再证得∠BAF=∠BCN,利用AAS证得△ABF≌△CBN,根据全等三角形的性质可得AF=CN,再证△ABF∽△COM,根据相似三角形的性质和正方形的性质即可证得CN=CM.试题解析:(1)∵四边形ABCD是正方形,∴△ABD是等腰直角三角形,∴2AB2=BD2,∵BD=,∴AB=1,∴正方形ABCD的边长为1;(2)CN=CM.证明:∵CF=CA,AF是∠ACF的平分线,∴CE⊥AF,∴∠AEN=∠CBN=90°,∵∠ANE=∠CNB,∴∠BAF=∠BCN,在△ABF和△CBN中,,∴△ABF≌△CBN(AAS),∴AF=CN,∵∠BAF=∠BCN,∠ACN=∠BCN,∴∠BAF=∠OCM,∵四边形ABCD是正方形,∴AC⊥BD,∴∠ABF=∠COM=90°,∴△ABF∽△COM,∴=,∴==,即CN=CM.考点:四边形综合题.【题文】已知点P(x0,y0)和直线y=kx+b,则点P到直线y=kx+b的距离证明可用公式d=计算.例如:求点P(﹣1,2)到直线y=3x+7的距离.解:因为直线y=3x+7,其中k=3,b=7.所以点P(﹣1,2)到直线y=3x+7的距离为:d====.根据以上材料,解答下列问题:(1)求点P(1,﹣1)到直线y=x﹣1的距离;(2)已知⊙Q的圆心Q坐标为(0,5),半径r为2,判断⊙Q与直线y=x+9的位置关系并说明理由;(3)已知直线y=﹣2x+4与y=﹣2x﹣6平行,求这两条直线之间的距离.【答案】(1);(2)相切,理由见解析;(3).【解析】试题分析:(1)根据点P到直线y=kx+b的距离公式直接计算即可;(2)先利用点到直线的距离公式计算出圆心Q到直线y=x+9的距离,然后根据切线的判定方法可判断⊙Q与直线y=x+9相切;(3)利用两平行线间的距离定义,在直线y=﹣2x+4上任意取一点,然后计算这个点到直线y=﹣2x﹣6的距离即可.试题解析:(1)因为直线y=x﹣1,其中k=1,b=﹣1,所以点P(1,﹣1)到直线y=x﹣1的距离为:d====;(2)⊙Q与直线y=x+9的位置关系为相切.理由如下:圆心Q(0,5)到直线y=x+9的距离为:d===2,而⊙O的半径r为2,即d=r,所以⊙Q与直线y=x+9相切;(3)当x=0时,y=﹣2x+4=4,即点(0,4)在直线y=﹣2x+4,因为点(0,4)到直线y=﹣2x﹣6的距离为:d===2,因为直线y=﹣2x+4与y=﹣2x﹣6平行,所以这两条直线之间的距离为2.考点:一次函数综合题;阅读理解题.【题文】如图,已知抛物线m:y=ax2﹣6ax+c(a>0)的顶点A在x轴上,并过点B(0,1),直线n:y=﹣x+与x轴交于点D,与抛物线m的对称轴l交于点F,过B点的直线BE与直线n相交于点E(﹣7,7).(1)求抛物线m的解析式;(2)P是l上的一个动点,若以B,E,P为顶点的三角形的周长最小,求点P的坐标;(3)抛物线m上是否存在一动点Q,使以线段FQ为直径的圆恰好经过点D?若存在,求点Q的坐标;若不存在,请说明理由.【答案】(1)y=x2﹣x+1;(2)点P坐标为(3,);(3)点Q坐标为(9,4)或(15,16).【解析】试题分析:(1)抛物线顶点在x轴上则可得出顶点纵坐标为0,将解析式进行配方就可以求出a的值,继而得出函数解析式;(2)作出B点关于l的对称点B′,连接EB′交l于点P,如图所示,,三角形BEP为顶点的三角形的周长最小,再求出直线B′E的解析式,进而得出P点坐标;(3)先求出直线FD的解析式,结合以线段FQ为直径的圆恰好经过点D这个条件,明确∠FDG=90°,得出直线DG解析式的k值与直线FD解析式的k值乘积为﹣1,利用D点坐标求出直线DG解析式,将点Q坐标用抛物线解析式表示后代入DG 直线解析式可求出点Q坐标.试题解析:(1)∵抛物线y=ax2﹣6ax+c(a>0)的顶点A在x轴上∴配方得y=a(x﹣3)2﹣9a+1,则有﹣9a+1=0,解得a=∴A点坐标为(3,0),抛物线m的解析式为y=x2﹣x+1;(2)∵点B关于对称轴直线x=3的对称点B′为(6,1)∴连接EB′交l于点P,如图所示设直线EB′的解析式为y=kx+b,把(﹣7,7)(6,1)代入得解得,则函数解析式为y=﹣x+把x=3代入解得y=,∴点P坐标为(3,);(3)∵y=﹣x+与x轴交于点D,∴点D坐标为(7,0),∵y=﹣x+与抛物线m的对称轴l交于点F,∴点F坐标为(3,2),求得FD的直线解析式为y=﹣x+,若以FQ为直径的圆经过点D,可得∠FDQ=90°,则DQ的直线解析式的k 值为2,设DQ的直线解析式为y=2x+b,把(7,0)代入解得b=﹣14,则DQ的直线解析式为y=2x﹣14,设点Q的坐标为(a,),把点Q代入y=2x﹣14得=2a﹣14解得a1=9,a2=15.∴点Q坐标为(9,4)或(15,16).考点:二次函数综合题.。
山东省济宁市2021年中考:数学考试真题与答案解析

山东省济宁市2021年中考:数学考试真题与答案解析一、选择题本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求。
1. 若盈余2万元记作万元,则万元表示( )2+2-A. 盈余2万元 B. 亏损2万元C. 亏损万元D. 不盈余也不亏损2-答案:B2. 一个圆柱体如图所示,下面关于它的左视图的说法,其中正确的是()A. 既是轴对称图形,又是中心对称图形B. 既不是轴对称图形,又不是中心对称图形C. 是轴对称图形,但不是中心对称图形D. 是中心对称图形,但不是轴对称图形答案:A3. 下列各式中,正确的是( )A. B. 223x x x +=()x y x y --=--C. D. ()325x x=532x x x ÷=答案:D4. 如图,,,若,那么的度数是()//AB CD //BC DE 7228B '∠=︒D ∠A. B. C. D. 7228'︒10128'︒10732'︒12732'︒答案:C5. 计算的结果是( )2454(1a a a a a --÷+-A.B.C.D.22a a +-22a a -+()()222a a a-+2a a+答案:A6. 不等式组的解集在数轴上表示正确的是()32122x x x +≥⎧⎪⎨-->⎪⎩A.B.C.D. 答案:D7. 如图,正五边形中,的度数为()ABCDE CAD ∠A. B. C. D. 72︒45︒36︒35︒答案:C8. 已知,是一元二次方程的两个实数根,则代数式的值等于m n 220210x x +-=22m m n ++()A. 2019B. 2020C. 2021D. 2022答案:B9. 如图,已知.ABC (1)以点A 为圆心,以适当长为半径画弧,交于点M ,交于点N .AC AB (2)分别以M ,N 为圆心,以大于的长为半径画弧,两弧在的内部相交于点12MN BAC ∠P .(3)作射线交于点D .AP BC (4)分别以A ,D 为圆心,以大于的长为半径画弧,两弧相交于G ,H 两点.12AD (5)作直线,交,分别于点E ,F .GH AC AB 依据以上作图,若,,,则的长是( )2AF =3CE =32BD =CDA.B. 1C.D. 451094答案:C10. 按规律排列的一组数据:,,□,,,,…,其中□内应填的数是( )12357179261137A.B.C.D.235115912答案:D二、填空题11. 数字5100000用科学记数法表示是____.答案:5.1×106.12. 如图,四边形中,,请补充一个条件____,使.ABCD BAC DAC ∠=∠ABC ADC △≌△答案:(答案不唯一)D B ∠=∠13. 已知一组数据0,1,,3,6的平均数是,则关于的函数解析式是____.x y y x 答案:125y x =+14. 如图,中,,,,点O 为的中点,以O 为圆心,ABC 90ABC ∠=︒2AB =4AC =BC 以为半径作半圆,交于点D ,则图中阴影部分的面积是____.OB AC2π-15. 如图,二次函数的图象与轴的正半轴交于点A ,对称轴为直线,()20y ax bx c a =++≠x 1x =下面结论:①;0abc <②;20a b +=③;30a c +>④方程必有一个根大于且小于0.()20y ax bx c a =++≠1-其中正确的是____(只填序号).答案:①②④.三、解答题:本大题共7小题,共55分.16. 21cos 45--+︒-+32-17. 某校为了解九年级学生体质健康情况,随机抽取了部分学生进行体能测试,根据测试结果绘制了不完整的条形统计图和扇形统计图,请回答下列问题:(1)在这次调查中,“优秀”所在扇形的圆心角的度数是 ;(2)请补全条形统计图;(3)若该校九年级共有学生1200人,则估计该校“良好”的人数是 ;(4)已知“不合格”的3名学生中有2名男生、1名女生,如果从中随机抽取两名同学进行体能加试,请用列表法或画树状图的方法,求抽到两名男生的概率多少?答案:(1);108︒(2)略;(3)510;(4)1318. 如图,中,,,点,点,反比例函数Rt ABC △90ACB ∠=︒AC BC =()2,0C ()0,4B 的图象经过点A .()0ky x x=>(1)求反比例函数的解析式;(2)将直线向上平移个单位后经过反比例函数,图象上的点,求,的值.OA m ()1,n m n 答案:(1);12y x=(2),12n =353m =19. 如图,点C 在以为直径的上,点D 是的中点,连接并延长交于点E ,AB O BC OD O 作,交的延长线于点P .EBP EBC ∠=∠BP OE(1)求证:是的切线;PB O (2)若,,求的半径.2AC =6PD =O 答案:(1)略;(2.20. 某商场购进甲、乙两种商品共100箱,全部售完后,甲商品共盈利900元,乙商品共盈利400元,甲商品比乙商品每箱多盈利5元.(1)求甲、乙两种商品每箱各盈利多少元?(2)甲、乙两种商品全部售完后,该商场又购进一批甲商品,在原每箱盈利不变的前提下,平均每天可卖出100箱.如调整价格,每降价1元,平均每天可以多卖出20箱,那么当降价多少元时,该商场利润最大?最大利润是多少?答案:(1)甲种商品每箱盈利15元,则乙种商品每箱盈利10元;(2)当降价5元时,该商场利润最大,最大利润是2000元.21. 研究立体图形问题的基本思路是把立体图形问题转化为平面图形问题.(1)阅读材料立体图形中既不相交也不平行的两条直线所成的角,就是将直线平移使其相交所成的角.例如,正方体(图1).因为在平面中,,与相交于ABCD A B C D ''''-AA C C ''//CC AA ''AA 'AB 点A ,所以直线与所成的就是既不相交也不平行的两条直线与所成的AB AA 'BAA '∠AB CC '角.解决问题如图1,已知正方体,求既不相交也不平行的两条直线与所成角的大ABCD A B C D ''''-BA 'AC 小.(2)如图2,M ,N 是正方体相邻两个面上的点.①下列甲、乙、丙三个图形中,只有一个图形可以作为图2的展开图,这个图形是;②在所选正确展开图中,若点M 到,的距离分别是2和5,点N 到,的距离AB BC BD BC 分别是4和3,P 是上一动点,求的最小值.AB PM PN +答案:(1);60︒(2)①丙;②1022. 如图,直线分别交轴、轴于点A ,B ,过点A 的抛物线与1322y x =-+x y 2y x bx c =-++x轴的另一交点为C ,与轴交于点,抛物线的对称轴交于E ,连接交于点y ()0,3D l AD OE AB F .(1)求抛物线解析式;(2)求证:;OE AB ⊥(3)P 为抛物线上的一动点,直线交于点M ,是否存在这样的点P ,使以A ,O ,M PO AD 为顶点的三角形与相似?若存在,求点P 的横坐标;若不存在,请说明理由.ACD △答案:(1);2y x 2x 3=-++(2)证明略;(3)存在,点P 的横坐标为x =。
2024年山东省济宁市中考数学试卷正式版含答案解析

绝密★启用前学校:___________姓名:___________班级:___________考号:___________一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.−3的绝对值是( )A. 3B. −13C. −3 D. 132.如图是一个正方体的展开图,把展开图折叠成正方体后,有“建”字一面的相对面上的字是( )A. 人B. 才C. 强D. 国3.下列运算正确的是( )A. √ 2+√ 3=√ 5B. √ 2×√ 5=√ 10C. 2÷√ 2=1D. √ (−5)2=−54.如图,菱形ABCD的对角线AC,BD相交于点O,E是AB的中点,连接OE.若OE=3,则菱形的边长为( )A. 6B. 8C. 10D. 125.为了解全班同学对新闻、体育、动画、娱乐、戏曲五类节目的喜爱情况,班主任对全班50名同学进行了问卷调查(每名同学只选其中的一类),依据50份问卷调查结果绘制了全班同学喜爱节目情况扇形统计图(如图所示).下列说法正确的是( )A. 班主任采用的是抽样调查B. 喜爱动画节目的同学最多C. 喜爱戏曲节目的同学有6名D. “体育”对应扇形的圆心角为72°6.如图,边长为2的正六边形ABCDEF内接于⊙O,则它的内切圆半径为( )A. 1B. 2C. √ 2D. √ 37.已知点A(−2,y1),B(−1,y2),C(3,y3)在反比例函数y=kx(k<0)的图象上,则y1,y2,y3的大小关系是( ) A. y1<y2<y3 B. y2<y1<y3 C. y3<y1<y2 D. y3<y2<y18.解分式方程1−13x−1=−52−6x时,去分母变形正确的是( )A. 2−6x+2=−5B. 6x−2−2=−5C. 2−6x−1=5D. 6x−2+1=59.如图,分别延长圆内接四边形ABCD的两组对边,延长线相交于点E,F.若∠E=54°41′,∠F=43°19′,则∠A的度数为( )A. 42°B. 41°20′C. 41°D. 40°20′10.如图,用大小相等的小正方形按照一定规律拼正方形.第一幅图有1个正方形,第二幅图有5个正方形,第三幅图有14个正方形……按照此规律,第六幅图中正方形的个数为( )A. 90B. 91C. 92D. 93二、填空题:本题共5小题,每小题3分,共15分。
2022年中考必做真题:山东省济宁市中考数学试卷含解析

2022年中考必做真题:山东省济宁市中考数学试卷(含答案)一、 挑选题(本大题共10小题, 每小题3分, 共30分)1值是 ( ) .A .1B .﹣1C .3D .﹣32.为贯彻落实觉中央、 国务院关于推进城乡义务教育一体化发展的 部署, 教育部会同有关部门近五年来共新建、 改扩建校舍186000000平方米, 其中数据186000000用科学记数法表示是 ( ) .A .1. 86×107B .186×106C .1. 86×108D .0. 186×109 3.下列运算正确的 是 ( ) .A .a 8÷a 4=a 2B .(a 2) 2=a 4C .a 2•a 3=a 6D .a 2+a 2=2a 44.如图, 点B , C , D 在⊙O 上, 若∠BCD=130°, 则∠BOD 的 度数是 ( ) . A .50° B .60° C .80° D .100°5.多项式4a ﹣a 3分解因式的 结果是 ( ) . A .a (4﹣a 2) B .a (2﹣a ) (2+ a ) C .a (a ﹣2) ( a +2) D .a (a ﹣2) 26.如图, 在平面直角坐标系中, 点A , C 在x 轴上, 点C 的 坐标为(﹣1, 0) , AC=2.将Rt △ABC 先绕点C 顺时针旋转90°, 再向右平移3个单位长度, 则变换后点A 的 对应点坐标是 ( ) . A .(2, 2) B .(1, 2) C .(﹣1, 2)D .(2, ﹣1)7.在一次数学答题比赛中, 五位同学答对题目的 个数分别为7、 5、 3、 5、 10, 则关于这组数据的 说法不正确的 是 ( ) . A .众数是 5B .中位数是 5C .平均数是 6D .方差是 3. 68.如图, 在五边形ABCDE 中, ∠A+∠B+∠E=300°, DP 、 CP 分别平分∠EDC 、 ∠BCD , 则∠P=( ) . A .50° B .55° C .60° D .65°9.一个几何体的 三视图如图所示, 则该几何体的 表面积是 ( ) . A .24+2π B .16+4πC .16+8πD .16+12π10.如图, 小正方形是 按一定规律摆放的 , 下面四个选项中的 图片, 适合填补图中空白处的 是 ( ) .第4题第6题第8题第9题二、 填空题(本大题共5小题, 每小题3分, 共15分)11.则x 的 取值范围是 . 12.在平面直角坐标系中, 已知一次函数y=﹣2x +1的 图象经过P 1(x 1, y 1) 、 P 2(x 2, y 2) 两点, 若x 1<x 2, 则y 1_______y 2.(填“>”“<”“=”)13.在△ABC 中, 点E , F 分别是 边AB , AC 的 中点, 点D 在BC 边上, 连接DE , DF , EF , 请你添加一个条件, 使△BED 与△FDE 全等.14.如图, 在一笔直的 海岸线l 上有相距2km 的 A , B 两个观测站, B 站在A 站的 正东方向上, 从A 站测得船C 在北偏东60°的 方向上, 从B 站测得船C 在北偏东30°的 方向上, 则船C 到海岸线l 的 距离是 _________km . 15.如图, 点A 是 反比例函数y=4x(x >0) 图象上一点, 直线y=kx +b 过点A 并且与两坐标轴分别交于点B , C , 过点A 作AD ⊥x 轴, 垂足为D , 连接DC , 若△BOC 的 面积是 4, 则△DOC 的 面积是 .三、 解答题(本大题共7小题, 共55分)16.(6分) 化简: (y+2) (y ﹣2) ﹣(y ﹣1) (y+5) 17.(7分) 某校开展研学旅行活动, 准备去的 研学基地有A (曲阜) 、 B (梁山) 、 C (汶上) , D (泗水) , 每位学生只能选去一个地方, 王老师对本全体同学选取的 研学基地情况进行调查统计, 绘制了两幅不完整的 统计图(如图所示) . (1) 求该班的 总入数, 并补全条形统计图. (2) 求D (泗水) 所在扇形的 圆心角度数; (3) 该班班委4人中, 1人选去曲阜, 2人 选去梁山, 1人选去汶上, 王老师要从这 4人中随机抽取2人了解他们对研学基地 的 看法,请你用列表或画树状图的 方法, B . A. C. D.第13题第14题第15题求所抽取的 2人中恰好有1人选去曲阜,1人选去梁山的概率.18.(7分)在一次数学活动课中,某数学小组探究求环形花坛(如图所示)面积的方法,现有以下工具;①卷尺;②直棒EF;③T型尺(CD所在的直线垂直平分线段AB).(1)在图1中,请你画出用T形尺找大圆圆心的示意图(保留画图痕迹,不写画法);(2)如图2,小华说:“我只用一根直棒和一个卷尺就可以求出环形花坛的面积,具体做法如下:将直棒放置到与小圆相切,用卷尺量出此时直棒与大圆两交点M,N之间的距离,就可求出环形花坛的面积”加入测得MN=10m,请你求出这个环形花坛的面积.19.(7分) “绿水青山就是 金山银山”, 为爱护生态环境, A , B 两村准备各自清理所属区域(1) 若两村清理同类渔具的 人均支出费用一样, 求清理养鱼网箱和捕鱼网箱的 人均支出费用各是 几 元;(2) 在人均支出费用不变的 情况下, 为节省开支, 两村准备抽调40人人共同清理养鱼网箱和捕鱼网箱, 要使总支出不超过102000元, 且清理养鱼网箱人数小于清理捕鱼网箱人数, 则有哪几种分配清理人员方案?20.(8分) 如图, 在正方形ABCD 中, 点E , F 分别是 边AD , BC 的 中点, 连接DF , 过点E 作EH ⊥DF , 垂足为H , EH 的 延长线交DC 于点G . (1) 猜想DG 与CF 的 数量关系, 并证明你的 结论;(2) 过点H 作MN ∥CD , 分别交AD 、 BC 于点M 、 N , 若正方形ABCD 的 边长为10, 点P 是 MN 上一点, 求△PDC 周长的 最小值.21.(9分) 知识背景当a >0且x >0时, 因为(x –xa ) 2≥0, 所以x ﹣a x ≥0, 从而x +ax(当x .设函数y =x +ax(a >0, x >0) 由上述结论可知: 当x 该函数有最小值为 应用举例已知函数为y 1=x (x >0) 与函数y 2==4x (x >0) , 则当x 时, y 1+y 2=x+4x有最小值为. 解决问题(1) 已知函数为y 1=x +3(x >﹣3) 与函数y 2=(x +3) 2+9(x >﹣3) , 当x 取何值时,21y y 有最小值? 最小值是 几 ?(2) 已知某设备租赁使用成本包含以下三部分: 一是 设备的 安装调试费用, 共490元;二是 设备的 租赁使用费用, 每天200元;三是 设备的 折旧费用, 它与使用天数的 平方成正比, 比例系数为0. 001, 若设该设备的 租赁使用天数为x 天, 则当x 取何值时, 该设备平均每天的 租货使用成本最低?最低是 几 元?22.(11分) 如图, 已知抛物线y=ax 2+bx +c (a ≠0) 经过点A(3, 0) , B(﹣1, 0) , C(0, ﹣3) . (1) 求该抛物线的 解析式;(2) 若以点A 为圆心的 圆与直线BC 相切于点M , 求切点M 的 坐标;(3) 若点Q 在x 轴上, 点P 在抛物线上, 是 否存在以点B , C , Q , P 为顶点的 四边形是平行四边形?若存在, 求点P 的 坐标;若不存在, 请说明理由.山东省济宁市中考数学试卷参考答案试题解析一、挑选题:1. B.2.C.3.B.4.D.5.B 6.A. 7.D.8.C. 9. D. 10.C.二、填空题:11 x≥1 .12.y1>y2.13. D是 BC的中点,14.315. 2﹣23【解答】解:设A(a,)(a>0),∴AD=, OD=a,∵直线y=kx+b过点A并且与两坐标轴分别交于点B, C,∴C(0, b), B(﹣, 0),∵△BOC的面积是 4,∴S△BOC=OB×OC=××b=4,2=8k,∴b∴k=①∴AD⊥x轴,∴OC∥AD,∴△BOC∽△BDA,∴,∴,2k+ab=4②,联立①②得, ab=﹣4﹣4(舍)或∴aab=4﹣4,∴S△DOC=OD•OC=ab=2 ﹣2故答案为2﹣2.三、解答题16.(6分)化简:(y+2)(y﹣2)﹣(y﹣1)(y+5)【解答】解:原式=y2﹣4﹣y2﹣5y+y+5=﹣4y+1,17.(7. 00分)某校开展研学旅行活动,准备去的研学基地有A(曲阜)、B(梁山)、C (汶上), D(泗水),每位学生只能选去一个地方,王老师对本全体同学选取的研学基地情况进行调查统计,绘制了两幅不完整的统计图(如图所示).(1)求该班的总入数,并补全条形统计图.(2)求D(泗水)所在扇形的圆心角度数;(3)该班班委4人中, 1人选去曲阜, 2人选去梁山, 1人选去汶上,王老师要从这4人中随机抽取2人了解他们对研学基地的看法,请你用列表或画树状图的方法,求所抽取的2人中恰好有1人选去曲阜, 1人选去梁山的概率.【解答】解:(1)该班的人数为=50人,则B基地的人数为50×24%=12人,补全图形如下:(2) D(泗水)所在扇形的圆心角度数为360°× =100. 8°;(3)画树状图为:共有12种等可能的结果数,其中所抽取的 2人中恰好有1人选去曲阜, 1人选去梁山的占4种,所以所抽取的 2人中恰好有1人选去曲阜, 1人选去梁山的概率为=.18.(7. 00 分)在一次数学活动课中,某数学小组探究求环形花坛(如图所示)面积的方法,现有以下工具;①卷尺;②直棒EF;③T型尺(CD所在的直线垂直平分线段AB).(1)在图1中,请你画出用T形尺找大圆圆心的示意图(保留画图痕迹,不写画法);(2)如图2,小华说:“我只用一根直棒和一个卷尺就可以求出环形花坛的面积,具体做法如下:将直棒放置到与小圆相切,用卷尺量出此时直棒与大圆两交点M,N之间的距离,就可求出环形花坛的面积”加入测得MN=10m,请你求出这个环形花坛的面积.【解答】解:(1)如图点O即为所求;(2)设切点为C,连接OM, OC.∵MN是切线,∴OC⊥MN,∴CM=CN=5,2﹣OC2=CM2=25,∴OM2﹣π•OC2=25π.∴S圆环=π•O M19.(7. 00分)“绿水青山就是金山银山”,为爱护生态环境, A, B两村准备各自清理所属区域养鱼网箱和捕鱼网箱,每村参加清理人数及总开支如下表:(1)若两村清理同类渔具的人均支出费用一样,求清理养鱼网箱和捕鱼网箱的人均支出费用各是几元;(2)在人均支出费用不变的情况下,为节省开支,两村准备抽调40人共同清理养鱼网箱和捕鱼网箱,要使总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数,则有哪几种分配清理人员方案?【解答】解:(1)设清理养鱼网箱的人均费用为x元,清理捕鱼网箱的人均费用为y元,根据题意,得:,解得:,答:清理养鱼网箱的人均费用为2000元,清理捕鱼网箱的人均费用为3000元;(2)设m人清理养鱼网箱,则(40﹣m)人清理捕鱼网箱,根据题意,得:,解得: 18≤m<20,∵m为整数,∴m=18或m=19,则分配清理人员方案有两种:方案一: 18人清理养鱼网箱, 22人清理捕鱼网箱;方案二: 19人清理养鱼网箱, 21人清理捕鱼网箱.20.(8. 00分)如图,在正方形ABCD中,点E, F分别是边AD, BC的中点,连接DF,过点E作EH⊥DF,垂足为H, EH的延长线交DC于点G.(1)猜想DG与CF的数量关系,并证明你的结论;(2)过点H作MN∥CD,分别交AD, BC于点M, N,若正方形ABCD的边长为10,点P是 MN上一点,求△PDC周长的最小值.【解答】解:(1)结论: CF=2DG.理由:∵四边形ABCD是正方形,∴AD=BC=CD=AB,∠ADC=∠C=90°,∵DE=AE,∴AD=CD=2DE,∵EG⊥DF,∴∠DHG=90°,∴∠CDF+∠DGE=90°,∠DGE+∠DEG=90°,∴∠CDF=∠DEG,∴△DEG∽△CDF,∴==,∴CF=2DG.(2)作点C关于NM的对称点K,连接DK交MN于点P,连接PC,此时△PDC 的周长最短.周长的最小值=CD+PD+PC=CD+PD+PK=CD+DK.由题意: CD=AD=10,ED=AE=5, DG=, EG=, DH== ,∴EH=2DH=2,∴HM==2,∴DM=CN=NK==1,在Rt△DCK 中, DK== =2,∴△PCD的周长的最小值为10+2.21.(9. 00分)知识背景当a>0且x>0时,因为(﹣)2≥0,所以x﹣2 +≥0,从而x+(当x=时取等号).设函数y=x+(a>0, x>0),由上述结论可知:当x= 时,该函数有最小值为2.应用举例已知函数为y1=x(x>0)与函数y2=(x>0),则当x= =2时, y1+y2=x+有最小值为2=4.解决问题(1)已知函数为y1=x+3(x>﹣3)与函数y2=(x+3)2+9(x>﹣3),当x取何值时,有最小值?最小值是几?(2)已知某设备租赁使用成本包含以下三部分:一是设备的安装调试费用,共490元;二是设备的租赁使用费用,每天200元;三是设备的折旧费用,它与使用天数的平方成正比,比例系数为0. 001.若设该设备的租赁使用天数为x天,则当x取何值时,该设备平均每天的租货使用成本最低?最低是几元?【解答】解:(1)==(x+3) +,∴当x+3=时,有最小值,∴x=0或﹣6(舍弃)时,有最小值=6.(2)设该设备平均每天的租货使用成本为w元.则w==+0. 001x+200,∴当=0. 001x时, w有最小值,∴x=700或﹣700(舍弃)时, w 有最小值,最小值=201. 4元.22.(11. 00分)如图,已知抛物线y=ax2+bx+c(a≠0)经过点A(3, 0), B(﹣1, 0),C(0,﹣3).(1)求该抛物线的解析式;(2)若以点A为圆心的圆与直线BC相切于点M,求切点M的坐标;(3)若点Q在x轴上,点P在抛物线上,是否存在以点B, C, Q, P为顶点的四边形是平行四边形?若存在,求点P的坐标;若不存在,请说明理由.【解答】解:(1)把A(3, 0), B(﹣1, 0), C(0,﹣3)代入抛物线解析式得:,解得:,则该抛物线解析式为y=x2﹣2x﹣3;(2)设直线BC解析式为y=kx﹣3,把B(﹣1, 0)代入得:﹣k﹣3=0,即k=﹣3,∴直线BC解析式为y=﹣3x﹣3,∴直线AM解析式为y=x+m,把A(3, 0)代入得: 1+m=0,即m=﹣1,∴直线AM解析式为y=x﹣1,联立得:,解得:,则M(﹣,﹣);(3)存在以点B, C, Q, P为顶点的四边形是平行四边形,分两种情况考虑:设Q(x, 0), P(m, m2﹣2m﹣3),当四边形BCQP为平行四边形时,由B(﹣1, 0), C(0,﹣3),根据平移规律得:﹣1+x=0+m, 0+0=﹣3+m2﹣2m﹣3,解得: m=1±,x=2±,当m=1+时, m2﹣2m﹣3=8+2﹣2﹣2﹣3=3,即P(1+, 2);当m=1﹣时, m2﹣2m﹣3=8﹣2﹣2+2﹣3=3,即P(1﹣,2);当四边形BCPQ 为平行四边形时,由B(﹣1, 0), C(0,﹣3),根据平移规律得:﹣1+m=0+x, 0+m2﹣2m﹣3=﹣3+0,解得: m=0或2,当m=0时, P(0,﹣3)(舍去);当m=2时, P(2,﹣3),综上,存在以点B,C,Q,P为顶点的四边形是平行四边形,P的坐标为(1+,2)或(1﹣, 2)或(2,﹣3).。
山东省济宁市中考数学试卷

山东省济宁市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项符合题目要求)1.(3分)的倒数是()A.6 B.﹣6 C.D.﹣2.(3分)单项式9x m y3与单项式4x2y n是同类项,则m+n的值是()A.2 B.3 C.4 D.53.(3分)下列图形中是中心对称图形的是()A.B.C.D.4.(3分)某桑蚕丝的直径约为0.000016米,将0.000016用科学记数法表示是()A.1.6×10﹣4B.1.6×10﹣5C.1.6×10﹣6D.16×10﹣45.(3分)下列几何体中,主视图、俯视图、左视图都相同的是()A.B.C.D.6.(3分)若++1在实数范围内有意义,则x满足的条件是()A.x≥B.x≤C.x=D.x≠7.(3分)计算(a2)3+a2•a3﹣a2÷a﹣3,结果是()A.2a5﹣a B.2a5﹣C.a5D.a68.(3分)将分别标有“孔”“孟”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀,随机摸出一球,不放回;再随机摸出一球,两次摸出的球上的汉字组成“孔孟”的概率是()A.B.C.D.9.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,将Rt△ABC绕点A逆时针旋转30°后得到Rt△ADE,点B经过的路径为,则图中阴影部分的面积是()A.B. C.﹣D.10.(3分)如图,A,B是半径为1的⊙O上两点,且OA⊥OB,点P从点A出发,在⊙O上以每秒一个单位长度的速度匀速运动,回到点A运动结束,设运动时间为x(单位:s),弦BP的长为y,那么下列图象中可能表示y与x函数关系的是()A.①B.③C.②或④D.①或③二、填空题(本大题共5小题,每小题3分,共15分)11.(3分)分解因式:ma2+2mab+mb2= .12.(3分)请写出一个过点(1,1),且与x轴无交点的函数解析式:.13.(3分)《孙子算经》是中国古代重要的数学著作,其中有一段文字的大意是:甲、乙两人各有若干钱,如果甲得到乙所有钱的一半,那么甲共有钱48文;如果乙得到甲所有钱的,那么乙也共有钱48文,甲、乙两人原来各有多少钱?设甲原有x文钱,乙原有y文钱,可列方程组是.14.(3分)如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧在第二象限内交于点P(a,b),则a与b的数量关系是.15.(3分)如图,正六边形A1B1C1D1E1F1的边长为1,它的六条对角线又围成一个正六边形A2B2C2D2E2F2,如此继续下去,则正六边形A4B4C4D4E4F4的面积是.三、解答题(本大题共7小题,共55分)16.(5分)解方程:=1﹣.17.(7分)为了参加学校举行的传统文化知识竞赛,某班进行了四次模拟训练,将成绩优秀的人数和优秀率绘制成如下两个不完整的统计图:请根据以上两图解答下列问题:(1)该班总人数是;(2)根据计算,请你补全两个统计图;(3)观察补全后的统计图,写出一条你发现的结论.18.(7分)某商店经销一种双肩包,已知这种双肩包的成本价为每个30元.市场调查发现,这种双肩包每天的销售量y(单位:个)与销售单价x(单位:元)有如下关系:y=﹣x+60(30≤x≤60).设这种双肩包每天的销售利润为w元.(1)求w与x之间的函数解析式;(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种双肩包的销售单价不高于48元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?19.(8分)如图,已知⊙O的直径AB=12,弦AC=10,D是的中点,过点D作DE⊥AC,交AC的延长线于点E.(1)求证:DE是⊙O的切线;(2)求AE的长.20.(8分)实验探究:(1)如图1,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展开;再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN,MN.请你观察图1,猜想∠MBN的度数是多少,并证明你的结论.(2)将图1中的三角形纸片BMN剪下,如图2,折叠该纸片,探究MN与BM的数量关系,写出折叠方案,并结合方案证明你的结论.21.(9分)已知函数y=mx2﹣(2m﹣5)x+m﹣2的图象与x轴有两个公共点.(1)求m的取值范围,并写出当m取范围内最大整数时函数的解析式;(2)题(1)中求得的函数记为C1,①当n≤x≤﹣1时,y的取值范围是1≤y≤﹣3n,求n的值;②函数C2:y=m(x﹣h)2+k的图象由函数C1的图象平移得到,其顶点P落在以原点为圆心,半径为的圆内或圆上,设函数C1的图象顶点为M,求点P与点M距离最大时函数C2的解析式.22.(11分)定义:点P是△ABC内部或边上的点(顶点除外),在△PAB,△PBC,△PCA中,若至少有一个三角形与△ABC相似,则称点P是△ABC的自相似点.例如:如图1,点P在△ABC的内部,∠PBC=∠A,∠PCB=∠ABC,则△BCP∽△ABC,故点P是△ABC的自相似点.请你运用所学知识,结合上述材料,解决下列问题:在平面直角坐标系中,点M是曲线y=(x>0)上的任意一点,点N是x轴正半轴上的任意一点.(1)如图2,点P是OM上一点,∠ONP=∠M,试说明点P是△MON的自相似点;当点M的坐标是(,3),点N的坐标是(,0)时,求点P的坐标;(2)如图3,当点M的坐标是(3,),点N的坐标是(2,0)时,求△MON的自相似点的坐标;(3)是否存在点M和点N,使△MON无自相似点?若存在,请直接写出这两点的坐标;若不存在,请说明理由.山东省济宁市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项符合题目要求)1.(3分)(•济宁)的倒数是()A.6 B.﹣6 C.D.﹣【分析】根据乘积为1的两个数互为倒数,可得答案.【解答】解:的倒数是6.故选:A.【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.2.(3分)(•济宁)单项式9x m y3与单项式4x2y n是同类项,则m+n的值是()A.2 B.3 C.4 D.5【分析】根据同类项的定义,可得m,n的值,根据有理数的加法,可得答案.【解答】解:由题意,得m=2,n=3.m+n=2+3=5,故选:D.【点评】本题考查了同类项,利用同类项的定义得出m,n的值是解题关键.3.(3分)(•济宁)下列图形中是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、是中心对称图形,故本选项正确;D、不是中心对称图形,故本选项错误.故选C.【点评】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.(3分)(•济宁)某桑蚕丝的直径约为0.000016米,将0.000016用科学记数法表示是()A.1.6×10﹣4B.1.6×10﹣5C.1.6×10﹣6D.16×10﹣4【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000016=1.6×10﹣5;故选;B.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.5.(3分)(•济宁)下列几何体中,主视图、俯视图、左视图都相同的是()A.B.C.D.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:A、三棱柱的主视图是长方形,左视图是长方形,俯视图是三角形,故此选项不符合题意;B、球的主视图、左视图、俯视图都是半径相同的圆,故此选项符合题意;C、圆锥体的主视图是三角形,左视图是三角形,俯视图是圆及圆心,故此选项不符合题意;D、长方体的主视图是长方形,左视图是长方形,俯视图是长方形,但是每个长方形的长与宽不完全相同,故此选项不符合题意;故选:B.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.6.(3分)(•济宁)若++1在实数范围内有意义,则x满足的条件是()A.x≥B.x≤C.x=D.x≠【分析】根据二次根式有意义的条件即可求出x的值.【解答】解:由题意可知:解得:x=故选(C)【点评】本题考查二次根式有意义的条件,解题的关键是正确理解二次根式有意义的条件,本题属于基础题型.7.(3分)(•济宁)计算(a2)3+a2•a3﹣a2÷a﹣3,结果是()A.2a5﹣a B.2a5﹣C.a5D.a6【分析】直接利用幂的乘方运算法则以及同底数幂的乘除运算法则化简求出答案.【解答】解:(a2)3+a2•a3﹣a2÷a﹣3=a6+a5﹣a5=a6.故选:D.【点评】此题主要考查了幂的乘方运算以及同底数幂的乘除运算,正确掌握运算法则是解题关键.8.(3分)(•济宁)将分别标有“孔”“孟”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀,随机摸出一球,不放回;再随机摸出一球,两次摸出的球上的汉字组成“孔孟”的概率是()A.B.C.D.【分析】画树状图展示所以12种等可能的结果数,再找出两次摸出的球上的汉字组成“孔孟”的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有12种等可能的结果数,其中两次摸出的球上的汉字组成“孔孟”的结果数为2,所以两次摸出的球上的汉字组成“孔孟”的概率==.故选B.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.9.(3分)(•济宁)如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,将Rt△ABC绕点A逆时针旋转30°后得到Rt△ADE,点B经过的路径为,则图中阴影部分的面积是()A.B. C.﹣D.【分析】先根据勾股定理得到AB=,再根据扇形的面积公式计算出S扇形ABD,由旋转的性质得到Rt△ADE≌Rt△ACB,于是S阴影部分=S△ADE+S扇形ABD﹣S△ABC=S扇形ABD.【解答】解:∵∠ACB=90°,AC=BC=1,∴AB=,∴S扇形ABD==.又∵Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,∴Rt△ADE≌Rt△ACB,∴S阴影部分=S△ADE+S扇形ABD﹣S△ABC=S扇形ABD=.故选:A.【点评】本题主要考查的是旋转的性质、扇形的面积公式,勾股定理的应用,将阴影部分的面积转化为扇形ABD的面积是解题的关键.10.(3分)(•济宁)如图,A,B是半径为1的⊙O上两点,且OA⊥OB,点P从点A出发,在⊙O上以每秒一个单位长度的速度匀速运动,回到点A运动结束,设运动时间为x(单位:s),弦BP 的长为y,那么下列图象中可能表示y与x函数关系的是()A.①B.③C.②或④D.①或③【分析】分两种情形讨论当点P顺时针旋转时,图象是③,当点P逆时针旋转时,图象是①,由此即可解决问题.【解答】解:当点P顺时针旋转时,图象是③,当点P逆时针旋转时,图象是①,故答案为①③,故选D.【点评】本题考查动点问题函数图象、圆的有关知识,解题的关键理解题意,学会用分类讨论的思想思考问题,属于中考常考题型.二、填空题(本大题共5小题,每小题3分,共15分)11.(3分)(•济宁)分解因式:ma2+2mab+mb2= m(a+b)2.【分析】原式提取m,再利用完全平方公式分解即可.【解答】解:原式=m(a2+2ab+b2)=m(a+b)2,故答案为:m(a+b)2【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.12.(3分)(•济宁)请写出一个过点(1,1),且与x轴无交点的函数解析式:y=(答案不唯一).【分析】反比例函数的图象与坐标轴无交点.【解答】解:反比例函数图象与坐标轴无交点,且反比例函数系数k=1×1=1,所以反比例函数y=(答案不唯一)符合题意.故答案可以是:y=(答案不唯一).【点评】本题考查了反比例函数的性质,此题属于开放题,答案不唯一,若是二次函数也符合题意.13.(3分)(•济宁)《孙子算经》是中国古代重要的数学著作,其中有一段文字的大意是:甲、乙两人各有若干钱,如果甲得到乙所有钱的一半,那么甲共有钱48文;如果乙得到甲所有钱的,那么乙也共有钱48文,甲、乙两人原来各有多少钱?设甲原有x文钱,乙原有y文钱,可列方程组是.【分析】根据甲、乙两人各有若干钱,如果甲得到乙所有钱的一半,那么甲共有钱48文;如果乙得到甲所有钱的,那么乙也共有钱48文,可以列出方程组,从而可以解答本题.【解答】解:由题意可得,,故答案为:.【点评】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.14.(3分)(•济宁)如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧在第二象限内交于点P(a,b),则a与b的数量关系是a+b=0 .【分析】根据作图方法可得点P在第二象限的角平分线上,根据角平分线的性质和第二象限内点的坐标符号,可得a与b的数量关系为互为相反数.【解答】解:根据作图方法可得,点P在第二象限角平分线上,∴点P到x轴、y轴的距离相等,即|b|=|a|,又∵点P(a,b)第二象限内,∴b=﹣a,即a+b=0,故答案为:a+b=0.【点评】此题主要考查了角平分线的性质以及坐标与图形的性质,解题时注意:第二象限内的点的横坐标为负,纵坐标为正,得出P点位置是解题关键.15.(3分)(•济宁)如图,正六边形A1B1C1D1E1F1的边长为1,它的六条对角线又围成一个正六边形A2B2C2D2E2F2,如此继续下去,则正六边形A4B4C4D4E4F4的面积是.【分析】由正六边形的性质得:∠A1B1B2=90°,∠B1A1B2=30°,A1A2=A2B2,由直角三角形的性质得出B1B2=A1B1=,A2B2=A1B2=B1B2=,由相似多边形的性质得出正六边形A2B2C2D2E2F2的面积:正六边形A1B1C1D1E1F1的面积=,求出正六边形A1B1C1D1E1F1的面积=,得出正六边形A2B2C2D2E2F2的面积,同理得出正六边形A4B4C4D4E4F4的面积.【解答】解:由正六边形的性质得:∠A1B1B2=90°,∠B1A1B2=30°,A1A2=A2B2,∴B1B2=A1B1=,∴A2B2=A1B2=B1B2=,∵正六边形A1B1C1D1E1F1∽正六边形A2B2C2D2E2F2,∴正六边形A2B2C2D2E2F2的面积:正六边形A1B1C1D1E1F1的面积=()2=,∵正六边形A1B1C1D1E1F1的面积=6××1×=,∴正六边形A2B2C2D2E2F2的面积=×=,同理:正六边形A4B4C4D4E4F4的面积=()3×=;故答案为:.【点评】本题考查了正六边形的性质、相似多边形的性质、正六边形面积的计算等知识;熟练掌握正六边形的性质,由相似多边形的性质得出规律是关键.三、解答题(本大题共7小题,共55分)16.(5分)(•济宁)解方程:=1﹣.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x=x﹣2+1,移项合并得:x=﹣1,经检验x=﹣1是分式方程的解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.17.(7分)(•济宁)为了参加学校举行的传统文化知识竞赛,某班进行了四次模拟训练,将成绩优秀的人数和优秀率绘制成如下两个不完整的统计图:请根据以上两图解答下列问题:(1)该班总人数是40 ;(2)根据计算,请你补全两个统计图;(3)观察补全后的统计图,写出一条你发现的结论.【分析】(1)利用折线统计图结合条形统计图,利用优秀人数÷优秀率=总人数求出即可;(2)分别求出第四次模拟考试的优秀人数以及第三次的优秀率即可得出答案;(3)利用已知条形统计图以及折线统计图分析得出答案.【解答】解:(1)由题意可得:该班总人数是:22÷55%=40(人);故答案为:40;(2)由(1)得,第四次优秀的人数为:40×85%=34(人),第三次优秀率为:×100%=80%;如图所示:;(3)答案不唯一,如优秀人数逐渐增多,增大的幅度逐渐减小等.【点评】此题主要考查了条形统计图以及折线统计图,利用图形获取正确信息是解题关键.18.(7分)(•济宁)某商店经销一种双肩包,已知这种双肩包的成本价为每个30元.市场调查发现,这种双肩包每天的销售量y(单位:个)与销售单价x(单位:元)有如下关系:y=﹣x+60(30≤x≤60).设这种双肩包每天的销售利润为w元.(1)求w与x之间的函数解析式;(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种双肩包的销售单价不高于48元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?【分析】(1)每天的销售利润W=每天的销售量×每件产品的利润;(2)根据配方法,可得答案;(3)根据自变量与函数值的对应关系,可得答案.【解答】解:(1)w=(x﹣30)•y=(﹣x+60)(x﹣30)=﹣x2+30x+60x﹣1800=﹣x2+90x﹣1800,w与x之间的函数解析式w=﹣x2+90x﹣1800;(2)根据题意得:w=﹣x2+90x﹣1800=﹣(x﹣45)2+225,∵﹣1<0,当x=45时,w有最大值,最大值是225.(3)当w=200时,﹣x2+90x﹣1800=200,解得x1=40,x2=50,∵50>48,x2=50不符合题意,舍,答:该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为40元.【点评】本题考查了二次函数的应用;得到每天的销售利润的关系式是解决本题的关键;利用配方法或公式法求得二次函数的最值问题是常用的解题方法.19.(8分)(•济宁)如图,已知⊙O的直径AB=12,弦AC=10,D是的中点,过点D作DE⊥AC,交AC的延长线于点E.(1)求证:DE是⊙O的切线;(2)求AE的长.【分析】(1)连接OD,由D为弧BC的中点,得到两条弧相等,进而得到两个同位角相等,确定出OD与AE平行,利用两直线平行同旁内角互补得到OD与DE垂直,即可得证;(2)过O作OF垂直于AC,利用垂径定理得到F为AC中点,再由四边形OFED为矩形,求出FE的长,由AF+EF求出AE的长即可.【解答】(1)证明:连接OD,∵D为的中点,∴=,∴∠BOD=∠BAE,∴OD∥AE,∵DE⊥AC,∴∠ADE=90°,∴∠AED=90°,∴OD⊥DE,则DE为圆O的切线;(2)解:过点O作OF⊥AC,∵AC=10,∴AF=CF=AC=5,∵∠OFE=∠DEF=∠ODE=90°,∴四边形OFED为矩形,∴FE=OD=AB,∵AB=12,∴FE=6,则AE=AF+FE=5+6=11.【点评】此题考查了切线的性质与判定,勾股定理,以及垂径定理,熟练掌握各自的性质及定理是解本题的关键.20.(8分)(•济宁)实验探究:(1)如图1,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展开;再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN,MN.请你观察图1,猜想∠MBN的度数是多少,并证明你的结论.(2)将图1中的三角形纸片BMN剪下,如图2,折叠该纸片,探究MN与BM的数量关系,写出折叠方案,并结合方案证明你的结论.【分析】(1)猜想:∠MBN=30°.只要证明△ABN是等边三角形即可;(2)结论:MN=BM.折纸方案:如图,折叠△BMN,使得点N落在BM上O处,折痕为MP,连接OP.由折叠可知△MOP≌△MNP,只要证明△MOP≌△BOP,即可推出MO=BO=BM;【解答】解:(1)猜想:∠MBN=30°.理由:如图1中,连接AN,∵直线EF是AB的垂直平分线,∴NA=NB,由折叠可知,BN=AB,∴AB=BN=AN,∴△ABN是等边三角形,∴∠ABN=60°,∴NBM=∠ABM=∠ABN=30°.(2)结论:MN=BM.折纸方案:如图2中,折叠△BMN,使得点N落在BM上O处,折痕为MP,连接OP.理由:由折叠可知△MOP≌△MNP,∴MN=OM,∠OMP=∠NMP=∠OMN=30°=∠B,∠MOP=∠MNP=90°,∴∠BOP=∠MOP=90°,∵OP=OP,∴△MOP≌△BOP,∴MO=BO=BM,∴MN=BM.【点评】本题考查翻折变换、矩形的性质、剪纸问题、等边三角形的判定和性质、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会理由翻折变换添加辅助线,属于中考常考题型.21.(9分)(•济宁)已知函数y=mx2﹣(2m﹣5)x+m﹣2的图象与x轴有两个公共点.(1)求m的取值范围,并写出当m取范围内最大整数时函数的解析式;(2)题(1)中求得的函数记为C1,①当n≤x≤﹣1时,y的取值范围是1≤y≤﹣3n,求n的值;②函数C2:y=m(x﹣h)2+k的图象由函数C1的图象平移得到,其顶点P落在以原点为圆心,半径为的圆内或圆上,设函数C1的图象顶点为M,求点P与点M距离最大时函数C2的解析式.【分析】(1)函数图形与x轴有两个公共点,则该函数为二次函数且△>0,故此可得到关于m 的不等式组,从而可求得m的取值范围;(2)先求得抛物线的对称轴,当n≤x≤﹣1时,函数图象位于对称轴的左侧,y随x的增大而减小,当当x=n时,y有最大值﹣3n,然后将x=n,y=﹣3n代入求解即可;(3)先求得点M的坐标,然后再求得当MP经过圆心时,PM有最大值,故此可求得点P的坐标,从而可得到函数C2的解析式.【解答】解:(1)∵函数图象与x轴有两个交点,∴m≠0且[﹣(2m﹣5)]2﹣4m(m﹣2)>0,解得:m<且m≠0.∵m为符合条件的最大整数,∴m=2.∴函数的解析式为y=2x2+x.(2)抛物线的对称轴为x=﹣=﹣.∵n≤x≤﹣1<﹣,a=2>0,∴当n≤x≤﹣1时,y随x的增大而减小.∴当x=n时,y=﹣3n.∴2n2+n=﹣3n,解得n=﹣2或n=0(舍去).∴n的值为﹣2.(3)∵y=2x2+x=2(x+)2﹣,∴M(﹣,﹣).如图所示:当点P在OM与⊙O的交点处时,PM有最大值.设直线OM的解析式为y=kx,将点M的坐标代入得:﹣k=﹣,解得:k=.∴OM的解析式为y=x.设点P的坐标为(x,x).由两点间的距离公式可知:OP==,解得:x=2或x=﹣2(舍去).∴点P的坐标为(2,1).∴当点P与点M距离最大时函数C2的解析式为y=2(x﹣2)2+1.【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用一元二次方程根的判别式,二次函数的图象和性质,勾股定理的应用,待定系数法求一次函数的解析式,找出PM取得最大值的条件是解题的关键.22.(11分)(•济宁)定义:点P是△ABC内部或边上的点(顶点除外),在△PAB,△PBC,△PCA中,若至少有一个三角形与△ABC相似,则称点P是△ABC的自相似点.例如:如图1,点P在△ABC的内部,∠PBC=∠A,∠PCB=∠ABC,则△BCP∽△ABC,故点P是△ABC的自相似点.请你运用所学知识,结合上述材料,解决下列问题:在平面直角坐标系中,点M是曲线y=(x>0)上的任意一点,点N是x轴正半轴上的任意一点.(1)如图2,点P是OM上一点,∠ONP=∠M,试说明点P是△MON的自相似点;当点M的坐标是(,3),点N的坐标是(,0)时,求点P的坐标;(2)如图3,当点M的坐标是(3,),点N的坐标是(2,0)时,求△MON的自相似点的坐标;(3)是否存在点M和点N,使△MON无自相似点?若存在,请直接写出这两点的坐标;若不存在,请说明理由.【分析】(1)由∠ONP=∠M,∠NOP=∠MON,得出△NOP∽△MON,证出点P是△MON的自相似点;过P作PD⊥x轴于D,则tan∠POD=,求出∠AON=60°,由点M和N的坐标得出∠MNO=90°,由相似三角形的性质得出∠NPO=∠MNO=90°,在Rt△OPN中,由三角函数求出OP=,OD=,PD=,即可得出答案;(2)作MH⊥x轴于H,由勾股定理求出OM=2,直线OM的解析式为y=x,ON=2,∠MOH=30°,分两种情况:①作PQ⊥x轴于Q,由相似点的性质得出PO=PN,OQ=ON=1,求出P的纵坐标即可;②求出MN==2,由相似三角形的性质得出,求出PN=,在求出P的横坐标即可;(3)证出OM=2=ON,∠MON=60°,得出△MON是等边三角形,由点P在△MON的内部,得出∠PON≠∠OMN,∠PNO≠∠MON,即可得出结论.【解答】解:(1)∵∠ONP=∠M,∠NOP=∠MON,∴△NOP∽△MON,∴点P是△MON的自相似点;过P作PD⊥x轴于D,则tan∠POD=,∴∠AON=60°,∵当点M的坐标是(,3),点N的坐标是(,0),∴∠MNO=90°,∵△NOP∽△MON,∴∠NPO=∠MNO=90°,在Rt△OPN中,OP=ONcos60°=,∴OD=OPcos60°=×=,PD=OP•sin60°=×=,∴P(,);(2)作MH⊥x轴于H,如图3所示:∵点M的坐标是(3,),点N的坐标是(2,0),∴OM==2,直线OM的解析式为y=x,ON=2,∠MOH=30°,分两种情况:①如图3所示:∵P是△MON的相似点,∴△PON∽△NOM,作PQ⊥x轴于Q,∴PO=PN,OQ=ON=1,∵P的横坐标为1,∴y=×1=,∴P(1,);②如图4所示:由勾股定理得:MN==2,∵P是△MON的相似点,∴△PNM∽△NOM,∴,即,解得:PN=,即P的纵坐标为,代入y=得:=x,解得:x=2,∴P(2,);综上所述:△MON的自相似点的坐标为(1,)或(2,);(3)存在点M和点N,使△MON无自相似点,M(,3),N(2,0);理由如下:∵M(,3),N(2,0),∴OM=2=ON,∠MON=60°,∴△MON是等边三角形,∵点P在△MON的内部,∴∠PON≠∠OMN,∠PNO≠∠MON,∴存在点M和点N,使△MON无自相似点.【点评】本题是反比例函数综合题目,考查了相似三角形的性质、相似点的判定与性质、三角函数、坐标与图形性质、勾股定理、等边三角形的判定与性质、直线解析式的确定等知识;本题综合性强,有一定难度,熟练掌握相似点的判定与性质是解决问题的关键.。
2020年山东省济宁市中考数学试卷和答案解析

2020年山东省济宁市中考数学试卷和答案解析一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求.1.(3分)﹣的相反数是()A.﹣B.﹣C.D.解析:直接利用相反数的定义分析得出答案.参考答案:解:﹣的相反数是:.故选:D.点拨:此题主要考查了相反数,正确把握定义是解题关键.2.(3分)用四舍五入法将数3.14159精确到千分位的结果是()A.3.1B.3.14C.3.142D.3.141解析:把万分位上的数字5进行四舍五入.参考答案:解:3.14159精确到千分位的结果是3.142.故选:C.点拨:本题考查了近似数和有效数字:“精确到第几位”和“有几个有效数字”是精确度的两种常用的表示形式,它们实际意义是不一样的,前者可以体现出误差值绝对数的大小,而后者往往可以比较几个近似数中哪个相对更精确一些.3.(3分)下列各式是最简二次根式的是()A.B.C.D.解析:利用最简二次根式定义判断即可.参考答案:解:A、是最简二次根式,符合题意;B、=2,不是最简二次根式,不符合题意;C、=a,不是最简二次根式,不符合题意;D、=,不是最简二次根式,不符合题意.故选:A.点拨:此题考查了最简二次根式,熟练掌握最简二次根式的定义是解本题的关键.4.(3分)一个多边形的内角和是1080°,则这个多边形的边数是()A.9B.8C.7D.6解析:多边形的内角和可以表示成(n﹣2)•180°,依此列方程可求解.参考答案:解:设所求正n边形边数为n,则1080°=(n﹣2)•180°,解得n=8.故选:B.点拨:本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.5.(3分)一条船从海岛A出发,以15海里/时的速度向正北航行,2小时后到达海岛B处.灯塔C在海岛A的北偏西42°方向上,在海岛B的北偏西84°方向上.则海岛B到灯塔C的距离是()A.15海里B.20海里C.30海里D.60海里解析:根据题意画出图形,根据三角形外角性质求出∠C=∠CAB =42°,根据等角对等边得出BC=AB,求出AB即可.参考答案:解:如图.根据题意得:∠CBD=84°,∠CAB=42°,∴∠C=∠CBD﹣∠CAB=42°=∠CAB,∴BC=AB,∵AB=15×2=30,∴BC=30,即海岛B到灯塔C的距离是30海里.故选:C.点拨:本题考查了解直角三角形的应用﹣方向角问题,等腰三角形的判定和三角形的外角性质,关键是求出∠C=∠CAB,题目比较典型,难度不大.6.(3分)下表中记录了甲、乙、丙、丁四名运动员跳远选拔赛成绩(单位:cm)的平均数和方差,要从中选择一名成绩较高且发挥稳定的运动员参加决赛,最合适的运动员是()甲乙丙丁平均数376350376350方差s212.513.5 2.4 5.4A.甲B.乙C.丙D.丁解析:首先比较平均数,平均数相同时选择方差较小的运动员参加.参考答案:解:∵乙和丁的平均数最小,∴从甲和丙中选择一人参加比赛,∵丙的方差最小,∴选择丙参赛.故选:C.点拨:此题考查了平均数和方差,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.7.(3分)数形结合是解决数学问题常用的思想方法.如图,直线y =x+5和直线y=ax+b相交于点P,根据图象可知,方程x+5=ax+b 的解是()A.x=20B.x=5C.x=25D.x=15解析:两直线的交点坐标为两直线解析式所组成的方程组的解.参考答案:解:∵直线y=x+5和直线y=ax+b相交于点P(20,25)∴直线y=x+5和直线y=ax+b相交于点P为x=20.故选:A.点拨:本题主要考查了一次函数与一元一次方程:任何一元一次方程都可以转化为ax+b=0 (a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b确定它与x 轴的交点的横坐标的值.8.(3分)如图是一个几何体的三视图,根据图中所示数据计算这个几何体的侧面积是()A.12πcm2B.15πcm2C.24πcm2D.30πcm2解析:由几何体的三视图可得出原几何体为圆锥,根据图中给定数据求出母线l的长度,再套用侧面积公式即可得出结论.参考答案:解:由三视图可知,原几何体为圆锥,∵l==5(cm),∴S侧=•2πr•l=×2π××5=15π(cm2).故选:B.点拨:本题考查了由三视图判断几何体、圆锥的计算以及勾股定理,由几何体的三视图可得出原几何体为圆锥是解题的关键.9.(3分)如图,在△ABC中,点D为△ABC的内心,∠A=60°,CD =2,BD=4.则△DBC的面积是()A.4B.2C.2D.4解析:过点B作BH⊥CD于点H.由点D为△ABC的内心,∠A =60°,得∠BDC=120°,则∠BDH=60°,由BD=4,求得BH,根据三角形的面积公式即可得到结论.参考答案:解:过点B作BH⊥CD于点H.∵点D为△ABC的内心,∠A=60°,∴∠DBC+∠DCB=(∠ABC+∠ACB)=(180°﹣∠A),∴∠BDC=90°+∠A=90°+×60°=120°,则∠BDH=60°,∵BD=4,∴DH=2,BH=2,∵CD=2,∴△DBC的面积=CD•BH==2,故选:B.点拨:本题考查了三角形内心的相关计算,熟练运用含30°角的直角三角形的性质是解题的关键.10.(3分)小明用大小和形状都完全一样的正方体按照一定规律排放了一组图案(如图所示),每个图案中他只在最下面的正方体上写“心”字,寓意“不忘初心”.其中第(1)个图案中有1个正方体,第(2)个图案中有3个正方体,第(3)个图案中有6个正方体,…按照此规律,从第(100)个图案所需正方体中随机抽取一个正方体,抽到带“心”字正方体的概率是()A.B.C.D.解析:先根据已知图形得出第100个图形中,正方体一共有1+2+3+……+99+100=5050(个),再用带“心”字的正方体个数除以总个数即可得.参考答案:解:∵第1个图形中正方体的个数为1,第2个图形中正方体的个数3=1+2,第3个图形中正方体的个数6=1+2+3,∴第100个图形中,正方体一共有1+2+3+……+99+100==5050(个),其中写有“心”字的正方体有100个,∴抽到带“心”字正方体的概率是=,故选:D.点拨:本题主要考查概率公式及图形的变化规律,解题的关键是得出第n个图形中正方体个数和概率公式.二、填空题:本大题共5小题,每小题3分,共15分.11.(3分)分解因式a3﹣4a的结果是a(a+2)(a﹣2).解析:原式提取公因式,再利用平方差公式分解即可.参考答案:解:原式=a(a2﹣4)=a(a+2)(a﹣2).故答案为:a(a+2)(a﹣2).点拨:此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.12.(3分)已知三角形的两边长分别为3和6,则这个三角形的第三边长可以是4(写出一个即可).解析:根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于三边”,求得第三边的取值范围,即可得出结果.参考答案:解:根据三角形的三边关系,得第三边应大于6﹣3=3,而小于6+3=9,故第三边的长度3<x<9,这个三角形的第三边长可以,4.故答案为:4.点拨:此题主要考查了三角形的三边关系,根据三角形三边关系定理列出不等式,然后解不等式,确定取值范围即可.13.(3分)已如m+n=﹣3,则分式÷(﹣2n)的值是.解析:根据分式运算法则即可求出答案.参考答案:解:原式=÷=•=,当m+n=﹣3时,原式=故答案为:点拨:本题考查分式,解题的关键是熟练运用分式的运算法则,本题属于基础题型.14.(3分)如图,小明在距离地面30米的P处测得A处的俯角为15°,B处的俯角为60°.若斜面坡度为1:,则斜坡AB的长是20米.解析:如图所示:过点A作AF⊥BC于点F,根据三角函数的定义得到∠ABF=30°,根据已知条件得到∠HPB=30°,∠APB=45°,求得∠HBP=60°,解直角三角形即可得到结论.参考答案:解:如图所示:过点A作AF⊥BC于点F,∵斜面坡度为1:,∴tan∠ABF===,∴∠ABF=30°,∵在P处进行观测,测得山坡上A处的俯角为15°,山脚B处的俯角为60°,∴∠HPB=30°,∠APB=45°,∴∠HBP=60°,∴∠PBA=90°,∠BAP=45°,∴PB=AB,∵PH=30m,sin60°===,解得:PB=20,故AB=20(m),答:斜坡AB的长是20m,故答案为:20.点拨:此题主要考查了解直角三角形的应用﹣仰角俯角问题,解直角三角形的应用﹣坡度坡角问题,正确得出PB=AB是解题关键.15.(3分)如图,在四边形ABCD中,以AB为直径的半圆O经过点C,D.AC与BD相交于点E,CD2=CE•CA,分别延长AB,DC相交于点P,PB=BO,CD=2.则BO的长是4.解析:由CD2=CE•CA和∠ACD=∠DCE,可判断△CAD∽△CDE,得到∠CAD=∠CDE,再根据圆周角定理得∠CAD=∠CBD,所以∠CDB=∠CBD,于是利用等腰三角形的判定可得BC=DC,连结OC,如图,设⊙O的半径为r,先证明OC∥AD,利用平行线分线段成比例定理得到=2,则PC=2CD=4,然后证明△PCB ∽△PAD,利用相似比得,再利用比例的性质可计算出r 的值.参考答案:解:连结OC,如图,∵CD2=CE•CA,∴,而∠ACD=∠DCE,∴△CAD∽△CDE,∴∠CAD=∠CDE,∵∠CAD=∠CBD,∴∠CDB=∠CBD,∴BC=DC;设⊙O的半径为r,∵CD=CB,∴,∴∠BOC=∠BAD,∴OC∥AD,∴,∴PC=2CD=4,∵∠PCB=∠PAD,∠CPB=∠APD,∴△PCB∽△PAD,∴,即,∴r=4,∴OB=4,故答案为4.点拨:本题考查了相似三角形的判定与性质:三角形相似的判定一直是中考考查的热点之一,在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;或依据基本图形对图形进行分解、组合;或作辅助线构造相似三角形,判定三角形相似的方法有时可单独使用,有时需要综合运用,无论是单独使用还是综合运用,都要具备应有的条件方可.也考查了圆周角定理.三、解答题:本大题共7小题,共55分.16.(6分)先化简,再求值:(x+1)(x﹣1)+x(2﹣x),其中x=.解析:直接利用乘法公式以及单项式乘以多项式运算法则计算得出答案.参考答案:解:原式=x2﹣1+2x﹣x2=2x﹣1,当x=时,原式=2×﹣1=0.点拨:此题主要考查了整式的混合运算,正确掌握相关运算法则是解题关键.17.(7分)某校举行了“防溺水”知识竞赛.八年级两个班各选派10名同学参加预赛,依据各参赛选手的成绩(均为整数)绘制了统计表和折线统计图(如图所示).班级八(1)班八(2)班最高分10099众数a98中位数96b平均数c94.8(1)统计表中,a=96,b=96,c=94.5;(2)若从两个班的预赛选手中选四名学生参加决赛,其中两个班的第一名直接进入决赛,另外两个名额在成绩为98分的学生中任选两个,求另外两个决赛名额落在不同班级的概率.解析:(1)根据平均数和众数、中位数的定义分别求解可得;(2)先设(1)班学生为A1,A2,(2)班学生为B1,B2,B3,根据题意画出树形图,再根据概率公式列式计算即可.参考答案:解:(1)八(1)班的成绩为:88、89、92、92、96、96、96、98、98、100,八(2)班成绩为89、90、91、93、95、97、98、98、98、99,所以a=96、c=×(88+89+92+92+96+96+96+98+98+100)=94.5,b==96,故答案为:96、96、94.5;(2)设(1)班学生为A1,A2,(2)班学生为B1,B2,B3,一共有20种等可能结果,其中2人来自不同班级共有12种,所以这两个人来自不同班级的概率是=.点拨:本题考查了用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.18.(7分)如图,在△ABC中,AB=AC,点P在BC上.(1)求作:△PCD,使点D在AC上,且△PCD∽△ABP;(要求:尺规作图,保留作图痕迹,不写作法)(2)在(1)的条件下,若∠APC=2∠ABC.求证:PD∥AB.解析:(1)尺规作图作出∠APD=∠ABP,即可得到∠DPC=∠PAB,从而得到△PCD∽△ABP;(2)根据题意得到∠DPC=∠ABC,根据平行线的的道理即可证得结论.参考答案:解:(1)如图:作出∠APD=∠ABP,即可得到△PCD∽△ABP;(2)证明:如图,∵∠APC=2∠ABC,∠APD=∠ABC,∴∠DPC=∠ABC∵∴PD∥AB.点拨:本题考查了作图﹣相似变换,等腰三角形的性质,平行线的判定等,熟练掌握性质定理和判定定理是解题的关键.19.(8分)在△ABC中,BC边的长为x,BC边上的高为y,△ABC 的面积为2.(1)y关于x的函数关系式是y=,x的取值范围是x>0;(2)在平面直角坐标系中画出该函数图象;(3)将直线y=﹣x+3向上平移a(a>0)个单位长度后与上述函数图象有且只有一个交点,请求出此时a的值.解析:(1)根据三角形的面积公式即可得到结论;(2)根据题意在平面直角坐标系中画出该函数图象即可;(3)将直线y=﹣x+3向上平移a(a>0)个单位长度后解析式为y=﹣x+3+a,根据一元二次方程根的判别式即可得到结论.参考答案:解:(1)∵在△ABC中,BC边的长为x,BC边上的高为y,△ABC的面积为2,∴xy=2,∴xy=4,∴y关于x的函数关系式是y=,x的取值范围为x>0,故答案为:y=,x>0;(2)在平面直角坐标系中画出该函数图象如图所示;(3)将直线y=﹣x+3向上平移a(a>0)个单位长度后解析式为y=﹣x+3+a,解,整理得,x2﹣(3+a)x+4=0,∵平移后的直线与上述函数图象有且只有一个交点,∴△=(3+a)2﹣16=0,解得a=1,a=﹣7(不合题意舍去),故此时a的值为1.点拨:本题考查了反比例函数的应用,一次函数的性质,一次函数与几何变换,正确的理解题意是解题的关键.20.(8分)为加快复工复产,某企业需运输一批物资.据调查得知,2辆大货车与3辆小货车一次可以运输600箱;5辆大货车与6辆小货车一次可以运输1350箱.(1)求1辆大货车和1辆小货车一次可以分别运输多少箱物资;(2)计划用两种货车共12辆运输这批物资,每辆大货车一次需费用5000元,每辆小货车一次需费用3000元.若运输物资不少于1500箱,且总费用小于54000元.请你列出所有运输方案,并指出哪种方案所需费用最少.最少费用是多少?解析:(1)设1辆大货车一次运输x箱物资,1辆小货车一次运输y箱物资,由“2辆大货车与3辆小货车一次可以运输600箱;5辆大货车与6辆小货车一次可以运输1350箱”,可列方程组,即可求解;(2)设有a辆大货车,(12﹣a)辆小货车,由“运输物资不少于1500箱,且总费用小于54000元”可列不等式组,可求整数a的值,即可求解.参考答案:解:(1)设1辆大货车一次运输x箱物资,1辆小货车一次运输y箱物资,由题意可得:,解得:,答:1辆大货车一次运输150箱物资,1辆小货车一次运输100箱物资,(2)设有a辆大货车,(12﹣a)辆小货车,由题意可得:,∴6≤a<9,∴整数a=6,7,8;当有6辆大货车,6辆小货车时,费用=5000×6+3000×6=48000元,当有7辆大货车,5辆小货车时,费用=5000×7+3000×5=50000元,当有8辆大货车,4辆小货车时,费用=5000×8+3000×4=52000元,∵48000<50000<52000,∴当有6辆大货车,6辆小货车时,费用最小,最小费用为48000元.点拨:本题考查了一元一次不等式的应用,列二元一次方程组解实际问题的运用,总运费=每吨的运费×吨数的运用,解答时求出1辆大货车与1辆小货车一次运货的数量是关键.21.(9分)我们把方程(x﹣m)2+(y﹣n)2=r2称为圆心为(m,n)、半径长为r的圆的标准方程.例如,圆心为(1,﹣2)、半径长为3的圆的标准方程是(x﹣1)2+(y+2)2=9.在平面直角坐标系中,⊙C与轴交于点A,B,且点B的坐标为(8,0),与y 轴相切于点D(0,4),过点A,B,D的抛物线的顶点为E.(1)求⊙C的标准方程;(2)试判断直线AE与⊙C的位置关系,并说明理由.解析:(1)如图,连接CD,CB,过点C作CM⊥AB于M.设⊙C 的半径为r.在Rt△BCM中,利用勾股定理求出半径以及等C的坐标即可解决问题.(2)结论:AE是⊙C的切线.连接AC,CE.求出抛物线的解析式,推出点E的坐标,求出AC,AE,CE,利用勾股定理的逆定理证明∠CAE=90°即可解决问题.参考答案:解:(1)如图,连接CD,CB,过点C作CM⊥AB于M.设⊙C的半径为r.∵与y轴相切于点D(0,4),∴CD⊥OD,∵∠CDO=∠CMO=∠DOM=90°,∴四边形ODCM是矩形,∴CM=OD=4,CD=OM=r,∵B(8,0),∴OB=8,∴BM=8﹣r,在Rt△CMB中,∵BC2=CM2+BM2,∴r2=42+(8﹣r)2,解得r=5,∴C(5,4),∴⊙C的标准方程为(x﹣5)2+(y﹣4)2=25.(2)结论:AE是⊙C的切线.理由:连接AC,CE.∵CM⊥AB,∴AM=BM=3,∴A(2,0),B(8,0)设抛物线的解析式为y=a(x﹣2)(x﹣8),把D(0,4)代入y=a(x﹣2)(x﹣8),可得a=,∴抛物线的解析式为y=(x﹣2)(x﹣8)=x2﹣x+4=(x﹣5)2﹣,∴抛物线的顶点E(5,﹣),∵AE==,CE=4+=,AC=5,∴EC2=AC2+AE2,∴∠CAE=90°,∴CA⊥AE,∴AE是⊙C的切线.点拨:本题属于二次函数综合题,考查了矩形的判定和性质,解直角三角形,圆的方程,切线的判定等知识,解题的关键是理解题意,学会利用参数构建方程解决问题,属于中考压轴题.22.(10分)如图,在菱形ABCD中,AB=AC,点E,F,G分别在边BC,CD上,BE=CG,AF平分∠EAG,点H是线段AF上一动点(与点A不重合).(1)求证:△AEH≌△AGH;(2)当AB=12,BE=4时.①求△DGH周长的最小值;②若点O是AC的中点,是否存在直线OH将△ACE分成三角形和四边形两部分,其中三角形的面积与四边形的面积比为1:3.若存在,请求出的值;若不存在,请说明理由.解析:(1)先判断出△ABC是等边三角形,进而判断出∠ACD=∠ABC,判断出△ABE≌△ACG,即可得出结论;(2)①先判断出EH+DH最小时,△AEH的周长最小,在Rt△DCM 中,求出CM=6,DM=6,在Rt△DME中,根据勾股定理得,DE=4,即可得出结论;②分两种情况:Ⅰ、当OH与线段AE相交时,判断出点N是AE 的中点,即可得出结论;Ⅱ、当OH与CE相交时,判断出点Q是CE的中点,再构造直角三角形,即可得出结论.参考答案:(1)证明:∵四边形ABCD是菱形,∴AB=BC,∵AB=AC,∴AB=BC=AC,∴△ABC是等边三角形,∴∠ABC=60°,∴∠BCD=120°,∵AC是菱形ABCD的对角线,∴∠ACD=∠BCD=60°=∠ABC,∵BE=CG,∴△ABE≌△ACG(SAS),∴AE=AG,∵AF平分∠EAG,∴∠EAF=∠GAF,∵AH=AH,∴△AEH≌△AGH(SAS);(2)①如图1,过点D作DM⊥BC交BC的延长线于M,连接DE,∵AB=12,BE=4,∴CG=4,∴CE=DG=12﹣4=8,由(1)知,△AEH≌△AGH,∴EH=HG,∴l△DGH=DH+GH+DG=DH+HE+8,要是△AEH的周长最小,则EH+DH最小,最小为DE,在Rt△DCM中,∠DCM=180°﹣120°=60°,CD=AB=12,∴CM=6,∴DM=CM=6,在Rt△DME中,EM=CE+CM=14,根据勾股定理得,DE===4,∴△DGH周长的最小值为4+8;②Ⅰ、当OH与线段AE相交时,交点记作点N,如图2,连接CN,∴点O是AC的中点,∴S△AON=S△CON=S△ACN,∵三角形的面积与四边形的面积比为1:3,∴=,∴S△CEN=S△ACN,∴AN=EN,∵点O是AC的中点,∴ON∥CE,∴;Ⅱ、当OH与线段CE相交时,交点记作Q,如图3,连接AQ,FG,∵点O是AC的中点,∴S△AOQ=S△COQ=S△ACQ,∵三角形的面积与四边形的面积比为1:3,∴,∴S△AEQ=S△ACQ,∴CQ=EQ=CE=(12﹣4)=4,∵点O是AC的中点,∴OQ∥AE,设FQ=x,∴EF=EQ+FQ=4+x,CF=CQ﹣FQ=4﹣x,由(1)知,AE=AG,∵AF是∠EAG的角平分线,∴∠EAF=∠GAF,∵AF=AF,∴△AEF≌△AGF(SAS),∴FG=EF=4+x,过点G作GP⊥BC交BC的延长线于P,在Rt△CPG中,∠PCG=60°,CG=4,∴CP=CG=2,PG=CP=2,∴PF=CF+CP=4﹣x+2=6﹣x,在Rt△FPG中,根据勾股定理得,PF2+PG2=FG2,∴(6﹣x)2+(2)2=(4+x)2,∴x=,∴FQ=,EF=4+=,∵OQ∥AE,∴==,即的值为或.。
2024年山东省济宁市中考数学试卷(附答案)

2024年山东省济宁市中考数学试卷(附答案)一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项符合题目要求。
1.(3分)﹣3的绝对值是()A.3B.C.﹣3D.﹣【分析】根据一个负数的绝对值是它的相反数进行解答即可.【解答】解:|﹣3|=3,故选:A.【点评】本题考查的是绝对值的性质,掌握一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0是解题的关键.2.(3分)如图是一个正方体的展开图,把展开图折叠成正方体后,有“建”字一面的相对面上的字是()A.人B.才C.强D.国【分析】根据正方体表面展开图的特征进行判断即可.【解答】解:由正方体表面展开图的“相间、Z端是对面”可知,“建”与“国”是对面,故选:D.【点评】本题考查正方体相对两个面上的文字,掌握正方体表面展开图的“相间、Z端是对面”是正确解答的关键.3.(3分)下列运算正确的是()A.B.C.D.【分析】根据每一选项依次计算判断即可得解.【解答】选项A:和不是同类二次根式,不能合并,不合题意;选项B:,正确,符合题意;选项C:=≠1,所以C错误,不合题意;选项D:∵≥0,∴=5,故D错误,不合题意.故选:B.【点评】本题主要考查了二次根式的运算,熟练掌握相关知识是解题的关键.4.(3分)如图,菱形ABCD的对角线AC,BD相交于点O,E是AB的中点,连接OE.若OE=3,则菱形的边长为()A.6B.8C.10D.12【分析】根据菱形对角线互相垂直得到△AOB是直角三角形,再利用直角三角形斜边上的中线等于斜边的一半即可求解.【解答】∵四边形ABCD是菱形,∴AC⊥BD,∴△AOB是直角三角形,∵E是AB的中点,∴OE=AB,∵OE=3,∴AB=6,即菱形的边长为6.故选:A.【点评】本题主要考查了菱形的性质和直角三角形斜边上的中线等于斜边的一半,熟练掌握相关知识是解题的关键.5.(3分)为了解全班同学对新闻、体育、动画、娱乐、戏曲五类节目的喜爱情况,班主任对全班50名同学进行了问卷调查(每名同学只选其中的一类),依据50份问卷调查结果绘制了全班同学喜爱节目情况扇形统计图(如图所示).下列说法正确的是()A.班主任采用的是抽样调查B.喜爱动画节目的同学最多C.喜爱戏曲节目的同学有6名D.“体育”对应扇形的圆心角为72°【分析】根据全面调查和抽样调查的定义以及扇形统计图中各个部分所表示的数量和所占的百分比解答即可.【解答】解:班主任采用的是全面调查,故选项A说法错误,不符合题意;喜爱娱乐节目的同学最多,故选项B说法错误,不符合题意;喜爱戏曲节目的同学有:50×6%=3(名),故选项C说法错误,不符合题意;“体育”对应扇形的圆心角为:360°×20%=72°,故选项D说法错误,不符合题意;故选:D.【点评】本题考查扇形统计图以及全面调查和抽样调查,理解扇形统计图表示各个部分所占整体的百分比是正确判断的关键.6.(3分)如图,边长为2的正六边形ABCDEF内接于⊙O,则它的内切圆半径为()A.1B.2C.D.【分析】根据正六边形的性质以及勾股定理进行计算即可.【解答】解:如图,连接OA,OB,过点O作OM⊥AB,垂足为点M,∵六边形ABCDEF是正六边形,点O是它的中心,∴∠AOB==60°,∵OA=OB,∴△AOB是正三角形,∵OM⊥AB,∴AM=BM=AB=1,在Rt△AOM中,OA=2,AM=1,∴OM==,即它的内切圆半径为,故选:D.【点评】本题考查正多边形和圆,掌握正六边形的性质以及勾股定理是正确解答的关键.7.(3分)已知点A(﹣2,y1),B(﹣1,y2),C(3,y3)在反比例函数y=(k<0)的图象上,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y3<y2<y1【分析】根据反比例函数图象上点的坐标特征及反比例函数性质解答即可.【解答】解:在反比例函数y=中k<0,反比例函数图象分布在第二、四象限,在每个象限内,y随x的增大而增大,∵C(3,y3)在第四象限,∴y3<0,∵﹣2<﹣1,∴0<y1<y2,∴y3<y1<y2,故选:C.【点评】本题考查了反比例函数图象上点的坐标特征,熟练掌握反比例函数性质是关键.8.(3分)解分式方程时,去分母变形正确的是()A.2﹣6x+2=﹣5B.6x﹣2﹣2=﹣5C.2﹣6x﹣1=5D.6x﹣2+1=5【分析】原方程两边同乘2(3x﹣1)去分母即可.【解答】解:原方程两边同乘2(3x﹣1)得2(3x﹣1)﹣2=5,即6x﹣2﹣2=5故选:A.【点评】本题考查解分式方程﹣去分母,找到正确的最简公分母是解题的关键.9.(3分)如图,分别延长圆内接四边形ABCD的两组对边,延长线相交于点E,F.若∠E=54°41',∠F=43°19',则∠A的度数为()A.42°B.41°20'C.41°D.40°20'【分析】根据圆内接四边形对角互补得出∠A+∠BCD=180°,再根据三角形外角的性质得出∠CDF=∠A+∠E,∠BCD=∠F+∠CDF,由此得到2∠A+∠F+∠E=180°,即可求解.【解答】解:∵四边形ABCD是圆内接四边形,∴∠A+∠BCD=180°,∵∠CDF是△ADE的外角,∴∠CDF=∠A+∠E,∵∠BCD是△CDF的外角,∴∠BCD=∠F+∠CDF,∴∠BCD=∠F+∠A+∠E,∴∠A+∠F+∠A+∠E=180°,∴2∠A+∠F+∠E=180°,∵∠E=54°41',∠F=43°19',∴2∠A+54°41'+43°19'=180°,∴∠A=41°,故选:C.【点评】本题考查了圆内接四边形的性质及三角形外角的性质,度分秒的换算,熟练掌握这些知识点是解题的关键.10.(3分)如图,用大小相等的小正方形按照一定规律拼正方形.第一幅图有1个正方形,第二幅图有5个正方形,第三幅图有14个正方形……按照此规律,第六幅图中正方形的个数为()A.90B.91C.92D.93【分析】根据所给图形,依次求出图形中正方形的个数,发现规律即可解决问题.【解答】解:由所给图形可知,第一幅图中正方形的个数为:1=12;第二幅图中正方形的个数为:5=12+22;第三幅图中正方形的个数为:14=12+22+32;第四幅图中正方形的个数为:30=12+22+32+42;…,所以第n幅图中正方形的个数为:12+22+32+…+n2,当n=6时,12+22+32+…+62=91(个),即第六幅图中正方形的个数为91个.故选:B.【点评】本题主要考查了图形变化的规律,能根据所给图形发现正方形个数变化的规律是解题的关键.二、填空题:本大题共5小题,每小题3分,共15分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
山东省济宁市2018年中考数学试卷
一、选择题:本大题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项符合题目要求。
1.的值是()
A.1B.﹣1C.3D.﹣3
【解答】
解:=-1.故选B.
2.为贯彻落实觉中央、国务院关于推进城乡义务教育一体化发展的部署,教育部会同有关部门近五年来共新建、改扩建校舍186000000平方米,其中数据186000000用科学记数法表示是()
A.1.86×107B.186×106C.1.86×108D.0.186×109
【解答】解:将186000000用科学记数法表示为:1.86×108.故选:C.
3.下列运算正确的是()
A.a8÷a4=a2B.(a2)2=a4C.a2•a3=a6D.a2+a2=2a4
【解答】解:A、a8÷a6=a4,故此选项错误;
B、(a2)2=a4,故原题计算正确;
C、a2•a3=a5,
故此选项错误;D、a2+a2=2a2,故此选项错误;
故选:B.
4.如图,点B,C,D在⊙O上,若∠BCD=130°,则∠BOD的度数是
()
A.50°B.60°C.80°D.100°
【解答】解:圆上取一点A,连接AB,AD,
∵点A、B,C,D在⊙O上,∠BCD=130°,
∴∠BAD=50°,
∴∠BOD=100°,故选:D.
5.多项式4a﹣a3分解因式的结果是()
A.a(4﹣a2)B.a(2﹣a)(2+a)C.a(a﹣2)(a+2)D.a(2﹣a)2
【解答】解:4a﹣a3
=a(4﹣a2)=a(2-a)(2+a).故选:B.
6..如图,在平面直角坐标系中,点A,C在x轴上,点C的坐标为
(﹣1,0),AC=2.将Rt△ABC先绕点C顺时针旋转90°,再向右平移3个单位长度,则变换后点A的对应点坐标是()
A.(2,2)B.(1,2)C.(﹣1,2)D.(2,﹣1)
【解答】解:∵点C的坐标为(﹣1,0),AC=2,
∴点A的坐标为(﹣3,0),
如图所示,将Rt△ABC先绕点C顺时针旋转90°,则点A′的
坐标为(﹣1,2),
再向右平移3个单位长度,则变换后点A′的对应点坐标为(2,2),故选:
A.。