初中九年级数学知识点总结

合集下载

最新初三数学知识点全总结

最新初三数学知识点全总结

最新初三数学知识点全总结(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲稿、总结报告、合同协议、方案大全、工作计划、学习计划、条据书信、致辞讲话、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as speech drafts, summary reports, contract agreements, project plans, work plans, study plans, letter letters, speeches, teaching materials, essays, other sample essays, etc. Want to know the format and writing of different sample essays, so stay tuned!最新初三数学知识点全总结九年级的数学越来越有难度,但只要掌握好关键的知识点,考试还是不成问题的。

初三数学全册基本知识点总结

初三数学全册基本知识点总结

初三数学全册基本知识点总结数学是被很多人称之拦路虎的一门科目,同学们在掌握数学知识点方面还很欠缺。

下面是小编为大家整理的关于初三数学基本知识点总结,希望对您有所帮助!初三数学知识总结圆的对称性1、圆的轴对称性圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。

2、圆的中心对称性圆是以圆心为对称中心的中心对称图形。

弧、弦、弦心距、圆心角之间的关系定理1、圆心角顶点在圆心的角叫做圆心角。

2、弦心距从圆心到弦的.距离叫做弦心距。

3、弧、弦、弦心距、圆心角之间的关系定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦想等,所对的弦的弦心距相等。

推论:在同圆或等圆中,如果两个圆的圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。

、圆周角定理及其推论1、圆周角顶点在圆上,并且两边都和圆相交的角叫做圆周角。

2、圆周角定理一条弧所对的圆周角等于它所对的圆心角的一半。

推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。

推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。

推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。

点和圆的位置关系设⊙O的半径是r,点P到圆心O的距离为d,则有:dd=r 点P在⊙O上;d>r 点P在⊙O外。

过三点的圆1、过三点的圆不在同一直线上的三个点确定一个圆。

2、三角形的外接圆经过三角形的三个顶点的圆叫做三角形的外接圆。

3、三角形的外心三角形的外接圆的圆心是三角形三条边的垂直平分线的交点,它叫做这个三角形的外心。

4、圆内接四边形性质(四点共圆的判定条件)圆内接四边形对角互补。

初三数学轴对称知识点归纳1.轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,两个图形中的对应点叫做对称点,对应线段叫做对称线段。

2.轴对称图形:如果一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线就是它的对称轴。

九年级数学知识点总结

九年级数学知识点总结

九年级数学知识点总结
一、整数运算
1. 整数的加法和减法
2. 整数的乘法和除法
3. 整数的混合运算
二、分数与小数
1. 分数的基本概念和运算
2. 分数与整数的转换
3. 小数的基本概念和运算
4. 分数与小数的相互转换
三、代数式与方程式
1. 代数式的定义和运算
2. 一元一次方程式的解法
3. 一元一次方程式的应用
4. 一元一次方程组的解法和应用
四、平面图形的性质与计算
1. 直角三角形、等腰三角形和等边三角形的性质
2. 直角三角形的勾股定理和三角函数
3. 平行线与等角线的基本概念
4. 三角形的相似性质和计算
5. 四边形的性质和计算
6. 圆的性质和计算
五、统计与概率
1. 数据的收集与整理
2. 统计图的绘制和数据的分析
3. 概率的基本概念和计算
六、函数与图像
1. 函数的概念和表示
2. 一次函数和二次函数的图像特征
3. 函数的平移、伸缩和翻转
4. 函数的复合和反函数
七、空间与几何体
1. 空间图形的表示和计算
2. 立体图形的表面积和体积计算
3. 三视图和展开图的绘制
总结:
九年级数学知识点的总结包括了整数运算、分数与小数、代数式与方程式、平面图形的性质与计算、统计与概率、函数与图像,以及空间与几何体等内容。

这些知识点是九年级学生在数学学习中的重要内容,通过掌握这些知识,学生能够提升数学思维能力,应用数学解决实际问题。

在学习过程中,需要理解概念、掌握运算方法,并能够将其应用于实际情境中。

通过不断练习和巩固,九年级学生可以在数学学习中取得较好的成绩。

九年级数学知识点归纳总结

九年级数学知识点归纳总结

九年级数学知识点归纳总结数学是一门重要的学科,九年级数学知识点众多且繁杂。

为了帮助九年级学生更好地理解和掌握数学知识,本文将对九年级数学知识点进行归纳总结,包括代数、几何、概率与统计等方面。

一、代数1. 一次函数:一次函数是形如y=ax+b的函数,其中a和b为常数。

九年级学生需要了解一次函数的图像特征和相关概念,如斜率、截距等。

2. 二次函数:二次函数是形如y=ax²+bx+c的函数,其中a、b、c为常数且a≠0。

学生需要掌握二次函数的图像特征、顶点坐标、对称轴等知识。

3. 指数与对数:九年级学生需要了解指数与对数的基本定义和性质,掌握指数运算和对数运算的基本技巧,以及应用题中的解题方法。

二、几何1. 平面图形:九年级学生需要熟悉常见平面图形的定义、性质和计算方法,如三角形、四边形、多边形等。

2. 空间图形:学生需要了解立方体、球体、圆柱体、圆锥体等常见空间图形的概念、性质和计算方法,并能解决相关的计算题。

3. 相似与全等三角形:学生需要理解相似三角形和全等三角形的定义和判定条件,并能应用相似三角形和全等三角形的性质解决相关题目。

三、概率与统计1. 概率:九年级学生需要了解概率的基本概念和计算方法,包括事件、样本空间、概率的计算公式等。

2. 统计:学生需要学会收集数据、制作数据表、绘制统计图,并能运用统计图像进行数据分析、比较和推理。

通过对九年级数学知识点的归纳总结,我们可以看到数学知识点之间存在着一定的联系和内在的逻辑关系。

掌握这些知识点,有助于学生提高数学解题能力和数学思维能力。

此外,九年级学生在学习数学知识点的过程中,还需注意以下几点:1. 掌握基础:数学是一门建立在基础之上的学科,九年级学生应当扎实掌握前几年的数学知识,因为后续的学习都是在此基础上展开的。

2. 灵活运用:数学是一门灵活的学科,不仅要掌握概念和定理,还要能够灵活运用,解决实际问题。

3. 多练习:数学是通过多做题、多练习才能真正掌握的学科,九年级学生需要进行大量的练习,提高解题的速度和准确性。

九年级数学知识点重点总结

九年级数学知识点重点总结

九年级数学知识点重点总结九年级数学知识点重点总结一、二次根式1、二次根式:一般地,式子叫做二次根式。

注意:(1)若这个条件不成立,则不是二次根式。

(2)是一个重要的非负数,即;≥0。

2、积的算术平方根:积的算术平方根等于积中各因式的算术平方根的积。

3、二次根式比较大小的方法:(1)利用近似值比大小。

(2)把二次根式的系数移入二次根号内,然后比大小。

(3)分别平方,然后比大小。

4、商的算术平方根:商的算术平方根等于被除式的算术平方根除以除式的算术平方根。

5、二次根式的除法法则:(1)分母有理化的方法是:分式的分子与分母同乘分母的有理化因式,使分母变为整式。

6、最简二次根式:(1)满足下列两个条件的二次根式,叫做最简二次根式。

①被开方数的因数是整数,因式是整式。

②被开方数中不含能开的尽的因数或因式。

(2)最简二次根式中,被开方数不能含有小数、分数,字母因式次数低于2,且不含分母。

(3)化简二次根式时,往往需要把被开方数先分解因数或分解因式。

(4)二次根式计算的最后结果必须化为最简二次根式。

7、同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式。

8、二次根式的混合运算:(1)二次根式的混合运算包括加、减、乘、除、乘方、开方六种代数运算,以前学过的,在有理数范围内的一切公式和运算律在二次根式的混合运算中都适用。

(2)二次根式的运算一般要先把二次根式进行适当化简,例如:化为同类二次根式才能合并;除法运算有时转化为分母有理化或约分更为简便;使用乘法公式等。

二、一元二次方程1、一元二次方程的一般形式:a≠0时,ax2+bx+c=0叫一元二次方程的一般形式,研究一元二次方程的有关问题时,多数习题要先化为一般形式,目的是确定一般形式中的a、 b、 c;其中a 、 b,、c可能是具体数,也可能是含待定字母或特定式子的代数式。

2、一元二次方程的解法:一元二次方程的四种解法要求灵活运用,其中直接开平方法虽然简单,但是适用范围较小;公式法虽然适用范围大,但计算较繁,易发生计算错误;因式分解法适用范围较大,且计算简便,是首选方法;配方法使用较少。

九年级上册数学知识点总结

九年级上册数学知识点总结

九年级上册数学知识点总结一、整数和有理数整数是由正整数、负整数和0组成,可以进行加、减、乘、除等运算。

有理数是整数和分数的集合,分数是整数和整数的比值。

整数和有理数的运算规律与整数运算相同,包括加法、减法、乘法和除法。

二、代数与方程1.代数表达式代数表达式是用字母和数字通过运算符号连接起来的数学式子,可以用来表示数值关系和算式运算。

2.方程与不等式方程是等号连接的两个代数表达式,表示两个量相等的关系。

不等式是不等号连接的两个代数表达式,表示两个量大小关系。

3.一元一次方程一元一次方程是只含有一个未知数,并且该未知数的最高次数为1的方程。

可以使用逆运算的原则,通过加减乘除等运算解得未知数的值。

4.二元一次方程组二元一次方程组是包含两个未知数、两个方程的方程组。

可以使用消元法或代入法解方程组。

三、平面图形与坐标系1.平面图形平面图形包括线段、角、三角形、四边形等。

通过计算边长、角度和面积等属性,可以解决与平面图形相关的问题。

2.坐标系与平面直角坐标系坐标系是由两个相互垂直的直线来确定的,用于描述点在平面上的位置。

平面直角坐标系是最常见的坐标系,包括横轴和纵轴,用数字来表示点的位置。

四、利率与利息利率指一定时期内利息与本金的比率,表示资金的增长速度。

利息是利率乘以本金得到的收益。

五、统计与概率1.抽样调查抽样调查是通过从总体中随机选择一部分样本进行调查,从而获得总体特征的方法。

2.频数与频率频数是指某个事件发生的次数或某个数据出现的次数。

频率是指某事件发生的概率或某数据出现的概率。

六、函数与图像1.函数与映射函数是两个集合之间的对应关系,每个自变量都有唯一的函数值与之对应。

2.函数图像函数图像是表达函数在坐标系中的图形,可以通过绘制函数的图像来研究函数的性质和变化规律。

七、几何变换几何变换包括平移、旋转、镜像和放缩等操作,通过改变图形的位置、角度和形状,可以研究图形的性质和变化规律。

八、三角函数三角函数是用来研究角的一种数学函数,包括正弦、余弦、正切等。

九年级数学--初中各种函数知识点总结

九年级数学--初中各种函数知识点总结

初中各种函数知识点陈述总结知识点一、平面直角坐标系1、平面直角坐标系在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。

其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;两轴的交点O(即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。

为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。

注重:x轴和y轴上的点,不属于任何象限。

2、点的坐标的概念点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。

平面内点的坐标是有序实数对,当ba≠时,(a,b)和(b,a)是两个不同点的坐标。

知识点二、不同位置的点的坐标的特征1、各象限内点的坐标的特征点P(x,y)在第一象限0x⇔y,0>>点P(x,y)在第二象限0⇔yx<,0>点P(x,y)在第三象限0⇔yx,0<<点P(x,y)在第四象限0x⇔y,0<>2、坐标轴上的点的特征点P(x,y)在x轴上0⇔y,x为任意实数=点P(x,y)在y轴上0⇔x,y为任意实数=点P(x,y)既在x轴上,又在y轴上⇔x,y同时为零,即点P坐标为(0,0)3、两条坐标轴夹角平分线上点的坐标的特征点P(x,y)在第一、三象限夹角平分线上⇔x与y相等点P(x,y)在第二、四象限夹角平分线上⇔x与y互为相反数4、和坐标轴平行的直线上点的坐标的特征位于平行于x轴的直线上的各点的纵坐标相同。

位于平行于y 轴的直线上的各点的横坐标相同。

5、关于x 轴、y 轴或远点对称的点的坐标的特征点P 与点p ’关于x 轴对称⇔横坐标相等,纵坐标互为相反数 点P 与点p ’关于y 轴对称⇔纵坐标相等,横坐标互为相反数 点P 与点p ’关于原点对称⇔横、纵坐标均互为相反数6、点到坐标轴及原点的距离 点P (x ,y )到坐标轴及原点的距离: (1)点P (x ,y )到x 轴的距离等于y (2)点P (x ,y )到y 轴的距离等于x(3)点P (x ,y )到原点的距离等于22y x +知识点三、函数及其相关概念1、变量与常量在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。

初三数学重要知识点

初三数学重要知识点

初三数学重要知识点初三数学知识点梳理三角形的垂心的性质:1.锐角三角形的垂心在三角形内;直角三角形的垂心在直角顶点上;钝角三角形的垂心在三角形外。

2.三角形的垂心是它垂足三角形的内心;或者说,三角形的内心是它旁心三角形的垂心。

例如在△ABC中3.垂心O关于三边的对称点,均在△ABC的外接圆圆上。

4.△ABC中,有六组四点共圆,有三组(每组四个)相似的直角三角形。

5.H、A、B、C四点中任一点是其余三点为顶点的三角形的垂心(并称这样的四点为一—垂心组)。

6.△ABC,△ABO,△BCO,△ACO的外接圆是等圆。

7.在非直角三角形中,过O的直线交AB、AC所在直线分别于P、Q,则AB/AP?tanB+AC/AQtanC=tanA+tanB+tanC8.三角形任一顶点到垂心的距离,等于外心到对边的距离的2倍。

9.设O,H分别为△ABC的外心和垂心,则∠BAO=∠HAC,∠ABH=∠OBC,∠BCO=∠HCA.10.锐角三角形的垂心到三顶点的距离之和等于其内切圆与外接圆半径之和的2倍。

11.锐角三角形的垂心是垂足三角形的内心;锐角三角形的内接三角形(顶点在原三角形的边上)中,以垂足三角形的周长最短。

12.西姆松(Simson)定理(西姆松线):从一点向三角形的三边所引垂线的垂足共线的重要条件是该点落在三角形的外接圆上。

13.设H为非直角三角形的垂心,且D、E、F分别为H在BC,CA,AB上的射影,H1,H2,H3分别为△AEF,△BDF,△CDE的垂心,则△DEF≌△H1H2H3.14.三角形垂心H的垂足三角形的三边,分别平行于原三角形外接圆在各顶点的切线。

九年级下册数学复习计划一、紧扣大纲,精心编制复习教案初中数学内容多而杂,其基础知识和基本技能又分散覆盖在三年的教科书中,学生往往学了新的,忘了旧的。

因此,必须依据大纲规定的内容和系统化的知识要点,精心编制复习计划。

计划的编写必须切合学生实际。

可采用基础知识习题化的方法,根据平时教学中掌握的学生应用知识的实际,编制一份渗透主要知识点的测试题,让学生在规定时间内独立完成。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学(上)知识点人教版九年级数学上册主要包括了二次根式、二元一次方程、旋转、圆和概率五个章节的内容。

第二十一章二次根式一.知识框架二.知识概念二次根式:一般地,形如√ā(a≥0)的代数式叫做二次根式。

当a>0时,√a表示a的算数平方根,其中√0=0 对于本章内容,教学中应达到以下几方面要求:1. 理解二次根式的概念,了解被开方数必须是非负数的理由;2. 了解最简二次根式的概念;3. 理解并掌握下列结论:1)是非负数;(2);(3);4. 掌握二次根式的加、减、乘、除运算法则,会用它们进行有关实数的简单四则运算;5. 了解代数式的概念,进一步体会代数式在表示数量关系方面的作用。

第二十二章一元二次根式一.知识框架一元二次方程:方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.一般地,任何一个关于x的一元二次方程,•经过整理,•都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.一个一元二次方程经过整理化成a x2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.本章内容主要要求学生在理解一元二次方程的前提下,通过解方程来解决一些实际问题。

(1)运用开平方法解形如(x+m)2=n(n≥0)的方程;领会降次──转化的数学思想.(2)配方法解一元二次方程的一般步骤:现将已知方程化为一般形式;化二次项系数为1;常数项移到右边;方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;变形为(x+p)2=q的形式,如果q≥0,方程的根是x=-p±√q;如果q<0,方程无实根.介绍配方法时,首先通过实际问题引出形如的方程。

这样的方程可以化为更为简单的形如的方程,由平方根的概念,可以得到这个方程的解。

进而举例说明如何解形如的方程。

然后举例说明一元二次方程可以化为形如的方程,引出配方法。

最后安排运用配方法解一元二次方程的例题。

在例题中,涉及二次项系数不是1的一元二次方程,也涉及没有实数根的一元二次方程。

对于没有实数根的一元二次方程,学了“公式法”以后,学生对这个内容会有进一步的理解。

(3)一元二次方程a x2+bx+c=0(a≠0)的根由方程的系数a、b、c而定,因此:解一元二次方程时,可以先将方程化为一般形式ax2+bx+c=0,当b2-4ac≥0时,•将a、b、c代入式子x=242b b aca-±-就得到方程的根.(公式所出现的运算,恰好包括了所学过的六中运算,加、减、乘、除、乘方、开方,这体现了公式的统一性与和谐性。

)这个式子叫做一元二次方程的求根公式.利用求根公式解一元二次方程的方法叫公式法.第二十三章旋转一.知识框架1.旋转:在平面内,将一个图形绕一个图形按某个方向转动一个角度,这样的运动叫做图形的旋转。

这个定点叫做旋转中心,转动的角度叫做旋转角。

(图形的旋转是图形上的每一点在平面上绕着某个固定点旋转固定角度的位置移动,其中对应点到旋转中心的距离相等,对应线段的长度、对应角的大小相等,旋转前后图形的大小和形状没有改变。

)2.旋转对称中心:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角(旋转角小于0°,大于360°)。

3.中心对称图形与中心对称:中心对称图形:如果把一个图形绕着某一点旋转180度后能与自身重合,那么我们就说,这个图形成中心对称图形。

中心对称:如果把一个图形绕着某一点旋转180度后能与另一个图形重合,那么我们就说,这两个图形成中心对称。

4.中心对称的性质:关于中心对称的两个图形是全等形。

关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。

关于中心对称的两个图形,对应线段平行(或者在同一直线上)且相等。

本章内容通过让学生经历观察、操作等过程了解旋转的概念,探索旋转的性质,进一步发展空间观察,培养几何思维和审美意识,在实际问题中体验数学的快乐,激发对学习学习。

第二十四章圆一.知识框架二.知识概念1.圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆。

定点称为圆心,定长称为半径。

2.圆弧和弦:圆上任意两点间的部分叫做圆弧,简称弧。

大于半圆的弧称为优弧,小于半圆的弧称为劣弧。

连接圆上任意两点的线段叫做弦。

经过圆心的弦叫做直径。

3.圆心角和圆周角:顶点在圆心上的角叫做圆心角。

顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。

4.内心和外心:过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。

和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。

5.扇形:在圆上,由两条半径和一段弧围成的图形叫做扇形。

6.圆锥侧面展开图是一个扇形。

这个扇形的半径称为圆锥的母线。

7.圆和点的位置关系:以点P与圆O的为例(设P是一点,则PO是点到圆心的距离),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,PO<r。

8.直线与圆有3种位置关系:无公共点为相离;有两个公共点为相交,这条直线叫做圆的割线;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。

9.两圆之间有5种位置关系:无公共点的,一圆在另一圆之外叫外离,在之内叫内含;有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切;有两个公共点的叫相交。

两圆圆心之间的距离叫做圆心距。

两圆的半径分别为R和r,且R≥r,圆心距为P:外离P>R+r;外切P=R+r;相交R-r<P<R+r;内切P=R-r;内含P<R-r。

10.切线的判定方法:经过半径外端并且垂直于这条半径的直线是圆的切线。

11.切线的性质:(1)经过切点垂直于这条半径的直线是圆的切线。

(2)经过切点垂直于切线的直线必经过圆心。

(3)圆的切线垂直于经过切点的半径。

12.垂径定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。

13.有关定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.在同圆或等圆中,同弧等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.14.圆的计算公式 1.圆的周长C=2πr=πd 2.圆的面积S=πr^2; 3.扇形弧长l=nπr/18015.扇形面积S=π(R^2-r^2) 5.圆锥侧面积S=πrl第二十五章概率知识框架本章内容要求学生了解事件的可能性,在探究交流中学习体验概率在生活中的乐趣和实用性,学会计算概率。

九年级数学(下)知识点人教版九年级数学下册主要包括了二次函数、相似、锐角三角形、投影与视图四个章节的内容。

第二十六章 二次函数一.知识框架二..知识概念1.二次函数:一般地,自变量x 和因变量y 之间存在如下关系:一般式:y=ax^2+bx+c(a≠0,a 、b 、c 为常数),则称y 为x 的二次函数。

2.二次函数的解析式三种形式。

一般式 y=ax 2 +bx+c(a ≠0) 顶点式 2()y a x h k =-+224()24b ac b y a x a a-=-+ 交点式 12()()y a x x x x =-- 3.二次函数图像与性质轴:2b x a=-对称标:24(,)24b ac b a a-- 顶点坐与y 轴交点坐标(0,c )4.增减性:当a>0时,对称轴左边,y 随x 增大而减小;对称轴右边,y 随x 增大而增大 当a<0时,对称轴左边,y 随x 增大而增大;对称轴右边,y 随x 增大而减小5.二次函数图像画法:勾画草图关键点:○1开口方向 ○2对称轴 ○3顶点 ○4与x 轴交点 ○5与y 轴交点 6.图像平移步骤yxO(1)配方 2()y a x h k =-+,确定顶点(h,k ) (2)对x 轴 左加右减;对y 轴 上加下减 7.二次函数的对称性二次函数是轴对称图形,有这样一个结论:当横坐标为x 1, x 2 其对应的纵坐标相等那么对称轴122x x x += 8.根据图像判断a,b,c 的符号 (1)a ——开口方向(2)b ——对称轴与a 左同右异 9.二次函数与一元二次方程的关系抛物线y=ax 2 +bx+c 与x 轴交点的横坐标x 1, x 2 是一元二次方程ax 2 +bx+c=0(a ≠0)的根。

抛物线y=ax 2 +bx+c ,当y=0时,抛物线便转化为一元二次方程ax 2 +bx+c=024b ac ->0时,一元二次方程有两个不相等的实根,二次函数图像与x 轴有两个交点; 24b ac -=0时,一元二次方程有两个相等的实根,二次函数图像与x 轴有一个交点; 24b ac -<0时,一元二次方程有不等的实根,二次函数图像与x 轴没有交点二次函数知识很容易与其它知识综合应用,而形成较为复杂的综合题目。

因此,以二次函数知识为主的综合性题目是中考的热点考题,往往以大题形式出现.教师在讲解本章内容时应注重培养学生数形结合的思想和独立思考问题的能力。

第二十七章 相似一.知识框架二.知识概念:1.相似三角形:对应角相等,对应边成比例的两个三角形叫做相似三角形。

互为相似形的三角形叫做相似三角形2.相似三角形的判定方法:根据相似图形的特征来判断。

(对应边成比例,对应角相等)○1.平行于三角形一边的直线(或两边的延长线)和其他两边相交,所构成的三角形与原三角形相似;○2.如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似;○3.如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似;○4.如果两个三角形的三组对应边的比相等,那么这两个三角形相似;3.直角三角形相似判定定理:○1.斜边与一条直角边对应成比例的两直角三角形相似。

○2.直角三角形被斜边上的高分成的两个直角三角形与原直角三角形相似,并且分成的两个直角三角形也相似。

4.相似三角形的性质:○1.相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比。

○2.相似三角形周长的比等于相似比。

○3.相似三角形面积的比等于相似比的平方。

本章内容通过对相似三角形的学习,培养学生认识和观察事物的能力和利用所学知识解决实际问题的能力。

第二十八章锐角三角函数一.知识框架二.知识概念1.Rt△ABC中(1)∠A的对边与斜边的比值是∠A的正弦,记作sinA=∠A的对边斜边(2)∠A的邻边与斜边的比值是∠A的余弦,记作cosA=∠A的邻边斜边(3)∠A的对边与邻边的比值是∠A的正切,记作tanA=∠A的对边∠A的邻边(4)∠A的邻边与对边的比值是∠A的余切,记作cota=∠A的邻边∠A的对边2.特殊值的三角函数:a sinacosatanacota30°123233345°22221 160°3212 333本章内容使学生了解在直角三角形中,锐角的对边与斜边、邻边与斜边、对边与邻边、邻边与对边的比值是固定的;通过实例认识正弦、余弦、正切、余切四个三角函数的定义。

相关文档
最新文档