多普勒效应综合实验报告及数据处理图

合集下载

多普勒效应综合实验报告西安交通大学

多普勒效应综合实验报告西安交通大学

多普勒效应综合实验报告西安交通大学【实验目的】
1、测量超声接收器运动速度与接收频率之间的关系,验证多普勒效应,并由f一V关系直线的斜率求声速。

2、利用多普勒效应测量物体运动过程中多个时间点的速度,查看V一t关系曲线,或调阅有关测量数据,即可得出物体在运动过程中的速度变化情况。

【实验原理】
1、超声的多普勒效应
根据声波的多普勒效应公式,当声源与接收器之间有相对运动时,接收器接收到的频率f为:f=f0/
式中f0为声源发射频率,u为声速,V1为接收器运动速率,α1为声源与接收器连线与接收器运动方向之间的夹角,V2为声源运动速率,α2为声源与接收器连线与声源运动方向之间的夹角。

2、超声的红外调制与接收
早期产品中,接收器接收的超声信号由导线接入实验仪进行处理。

由于超声接收器安装在运动体上,导线的存在对运动状态有一定影响,导线的折断也给使用带来麻烦。

大物实验报告-多普勒效应

大物实验报告-多普勒效应

大物实验报告多普勒效应实验4.12 多普勒效应实验报告一、实验目的与实验仪器实验目的1、了解多普勒效应原理,并研究相对运动的速度与接收到频率之间的关系。

2、利用多普勒效应,研究做变速运动的物体其运动速度随时间的变化关系,以及其机械能转化的规律。

实验仪器ZKY-DPL-3 多普勒效应综合实验仪、电子天平、钩码等。

二、实验原理(要求与提示:限400字以内,实验原理图须用手绘后贴图的方式)声波的多普勒效应假设一个点声源的振动在各向同性且均匀的介质中传播,当声源相对于介质静止不动时,各个波面可以组成个同心圆,声波的频率f0、波长λ0以及波速u0表示为f0=u0/λ0现将接收器测得的声波频率、波长和波速分别称为观测频率、观测波长和观测波速,并分别记为f、λ、u,可表示为f=u/λ当接收器以一定的速度向声源运动时,接收器所测得的各个球面波的观测波长λ仍等于λ0,测得的观测波速u 变为u0+v0,因此有f=(u0+v0)/λ0f=(1+v/u0)*f0式中,v0表示声源相对介质静止时,接收器与声源的相对运动速率,接收器朝向声源运动为正值,反之为负值。

同样地,如果接收器相对于介质静止,而声源以速率v’朝向接收器运动,此时接收器所测得的观测波长为λ'可表示为(u0-v')*T,其中,T为声源的振动周期。

同时,由于接收器相对于介质处于静止状态,其测得的观测波速u'仍等于u0,则接收器测得的观测频率为f'=u’/λ’=u0*f0/(u0-v’)对于更为普遍的情况,当声源与接收器之间的相对运动如图所示时,可以得到接收器的观测频率f为f=f0*(u0+v1*cosθ1)/(u0-v2*cosθ2)此式是具有普适性的多普勒效应公式。

三、实验步骤(要求与提示:限400字以内)1、超声的多普勒效应1.1 连接好实验仪器,使滑车牵引绳绕过滑轮与滑车驱动电动机后两端与滑车的前后端相连,并调整好滑车牵引绳的松紧。

多普勒效应综合实验报告

多普勒效应综合实验报告

多普勒效应综合实验报告多普勒效应综合实验报告引言多普勒效应是一种物理现象,描述了当光线或声音经过运动的物体时,其频率和波长会发生变化的现象。

本实验旨在通过多种实验方法验证多普勒效应,并探讨其在实际应用中的重要性。

实验一:声音的多普勒效应实验目的:验证声音在运动源和观察者之间相对运动时所产生的多普勒效应。

实验步骤:1. 准备一辆发出固定频率声音的小车和一个固定的听音器。

2. 将小车以一定速度向听音器移动,并记录每次移动的距离。

3. 同时记录听音器接收到的声音频率。

4. 重复实验多次,以获得更准确的数据。

实验结果:根据实验数据,当小车以不同速度向听音器移动时,听音器接收到的声音频率会发生变化。

当小车接近听音器时,声音频率增高;当小车远离听音器时,声音频率降低。

实验分析:这种现象可以通过多普勒效应来解释。

当小车向听音器移动时,声音波长相对于听音器缩短,导致声音频率增高。

相反,当小车远离听音器时,声音波长相对于听音器延长,导致声音频率降低。

实验二:光的多普勒效应实验目的:验证光在运动源和观察者之间相对运动时所产生的多普勒效应。

实验步骤:1. 准备一束激光和一个运动的反射镜。

2. 将激光照射到反射镜上,并记录反射光的频率。

3. 以一定速度移动反射镜,并记录每次移动的距离。

4. 同时记录反射光的频率变化。

5. 重复实验多次,以获得更准确的数据。

实验结果:根据实验数据,当反射镜以不同速度运动时,反射光的频率会发生变化。

当反射镜接近观察者时,光频率增高;当反射镜远离观察者时,光频率降低。

实验分析:这种现象同样可以通过多普勒效应来解释。

当反射镜向观察者移动时,光波长相对于观察者缩短,导致光频率增高。

相反,当反射镜远离观察者时,光波长相对于观察者延长,导致光频率降低。

实验三:多普勒效应的应用多普勒效应在现实生活中有着广泛的应用。

以下是一些例子:1. Doppler Radar(多普勒雷达):多普勒效应被广泛用于气象预报和交通监测中。

多普勒综合实验报告

多普勒综合实验报告

一、实验目的1. 理解多普勒效应的原理,掌握其应用领域。

2. 通过实验验证多普勒效应,了解其在实际应用中的表现。

3. 掌握多普勒效应的测量方法,学会利用多普勒效应进行速度测量。

4. 了解多普勒效应在医学、交通、气象等领域的应用。

二、实验原理多普勒效应是指当波源和观察者之间有相对运动时,观察者接收到的波的频率会发生变化。

具体来说,当波源向观察者靠近时,接收到的频率会变高;当波源远离观察者时,接收到的频率会变低。

多普勒效应的公式为:f' = f (v + vo) / (v + vs)其中,f'为观察者接收到的频率,f为波源频率,v为波速,vo为观察者速度,vs 为波源速度。

三、实验器材1. 多普勒频移仪2. 发射器3. 接收器4. 电脑5. 超声波发生器6. 超声波接收器四、实验步骤1. 将发射器和接收器分别固定在实验台上,确保它们之间的距离为已知值。

2. 使用超声波发生器产生频率稳定的超声波,并将其输入发射器。

3. 启动多普勒频移仪,将发射器发出的超声波输入接收器,同时记录接收器接收到的频率。

4. 调整发射器和接收器之间的距离,使它们之间有相对运动,例如让发射器向接收器靠近或远离。

5. 观察并记录接收器接收到的频率变化,分析多普勒效应。

6. 重复步骤4和5,分别记录不同速度下的频率变化。

7. 利用多普勒效应公式计算实际速度。

五、实验结果与分析1. 通过实验,观察到当发射器向接收器靠近时,接收器接收到的频率变高;当发射器远离接收器时,接收器接收到的频率变低。

这验证了多普勒效应的存在。

2. 根据实验数据,计算不同速度下的实际速度,并与理论值进行比较。

结果表明,多普勒效应可以用来测量速度,且测量结果与理论值基本吻合。

3. 分析多普勒效应在医学、交通、气象等领域的应用。

例如,在医学领域,多普勒效应可以用来测量血流速度;在交通领域,多普勒效应可以用来测量车辆速度;在气象领域,多普勒效应可以用来测量风速。

多普勒效应实验130826

多普勒效应实验130826

多普勒效应综合实验【引言】当波源和接收器之间有相对运动时,接收器接收到的波的频率与波源发出的频率不同的现象称为多普勒效应。

多普勒效应在科学研究,工程技术,交通管理,医疗诊断等各方面都有十分广泛的应用。

例如:原子,分子和离子由于热运动使其发射和吸收的光谱线变宽,称为多普勒增宽,在天体物理和受控热核聚变实验装置中,光谱线的多普勒增宽已成为一种分析恒星大气及等离子体物理状态的重要测量和诊断手段。

基于多普勒效应原理的雷达系统已广泛应用于导弹,卫星,车辆等运动目标速度的监测。

在医学上利用超声波的多普勒效应来检查人体内脏的活动情况,血液的流速等。

电磁波(光波)与声波(超声波)的多普勒效应原理是一致的。

本实验既可研究验证超声波的多普勒效应,并计算声速,又可利用多普勒效应将超声探头作为运动传感器,研究物体的运动状态。

【实验目的】1、测量超声接收器运动速度与接收频率之间的关系,验证多普勒效应,并由f -V 关系直线的斜率求声速。

2、利用多普勒效应测量物体运动过程中多个时间点的速度,查看V -t 关系曲线,或调阅有关测量数据,即可得出物体在运动过程中的速度变化情况,可研究:(1)自由落体运动,并由V -t 关系直线的斜率求重力加速度。

(2)简谐振动,可测量简谐振动的周期等参数,并与理论值比较。

(3)匀加速直线运动,测量力、质量与加速度之间的关系,验证牛顿第二定律。

(4)其它变速直线运动。

【实验原理】1、超声的多普勒效应当声源与接收器之间有相对运动时,接收器接收到的频率f 为:22110cos -cos ααV u V u f f +⋅=(1)式中f 0为声源发射频率,u 为声速,V 1为接收器运动速率,α1为声源-接收器连线与接收器运动方向之间的夹角,V 2为声源运动速率,α2为声源-接收器连线与声源运动方向之间的夹角(如图1)。

若声源保持不动,运动物体上的接收器沿声源与接收器连线方向(α=0)以速度V 运动,则从(1)式可得接收器接收到的频率应为:V u f f u V f f 0001+=⎪⎭⎫⎝⎛+⋅=(2)当接收器向着声源运动时,V 取正,反之取负。

多普勒综合实验报告

多普勒综合实验报告

四川理工学院实验报告成绩学号:11101030233班级:网络工程一班实验班编号:姓名:赵鸿平实验名称:多普勒效应综合实验实验目的:1、测量超声接收器运动速度与接收频率之间的关系,验证多普勒效应,并由f-V关系直线的斜率求声速。

2、利用多普勒效应测量物体运动过程中多个时间点的速度,查看V-t关系曲线,或调阅有关测量数据,即可得出物体在运动过程中的速度变化情况,可研究:①匀加速直线运动,测量力、质量与加速度之间的关系,验证牛顿第二定律。

②自由落体运动,并由V-t关系直线的斜率求重力加速度。

③简谐振动,可测量简谐振动的周期等参数,并与理论值比较实验仪器:多普勒效应综合实验仪由实验仪实验原理:1、超声的多普勒效应根据声波的多普勒效应公式,当声源与接收器之间有相对运动时,接收器接收到的频率f为:f = f0(u+V1cosα1)/(u–V2cosα2)(1)式中f0为声源发射频率,u为声速,V1为接收器运动速率,α1为声源与接收器连线与接收器运动方向之间的夹角,V2为声源运动速率,α2为声源与接收器连线与声源运动方向之间的夹角。

若声源保持不动,运动物体上的接收器沿声源与接收器连线方向以速度V运动,则从(1)式可得接收器接收到的频率应为:f = f0(1+V/u)(2)当接收器向着声源运动时,V取正,反之取负。

若f0保持不变,以光电门测量物体的运动速度,并由仪器对接收器接收到的频率自动计数,根据(2)式,作f —V关系图可直观验证多普勒效应,且由实验点作直线,其斜率应为k=f0/u,由此可计算出声速u=f0/k 。

由(2)式可解出:V = u(f/f0– 1)(3)若已知声速u及声源频率f0 ,通过设置使仪器以某种时间间隔对接收器接收到的频率f采样计数,由微处理器按(3)式计算出接收器运动速度,由显示屏显示V-t关系图,或调阅有关测量数据,即可得出物体在运动过程中的速度变化情况,进而对物体运动状况及规律进行研究。

多普勒效应实验

多普勒效应实验

实验报告 多普勒效应综合实验物理科学与技术学院 13级弘毅班 20 吴雨桥【实验目的】1.利用超声接收器运动速度与接收频率的关系验证多普勒效应并求声速。

2.利用多普勒效应测量物体运动过程中多个时间点的速度,得出物体在运动过程中的速度变化情况,借此研究:(1) 简谐振动。

可测量其振动周期等参数,并与理论值比较。

(2) 自由落体运动。

可以由v-t 关系直线的斜率求重力加速度。

(3) 匀加速直线运动。

测量力、质量与加速度的关系,验证牛顿第二定律。

【实验原理】1. 超声的多普勒效应。

根据声波的多普勒效应公式,当声源与接收器之间有相对运动时,如右图所示。

则接收器接收到的频率f 为 11022cos cos u V f f u V αα+=- (1) 其中u 为声速,f 0为声源发射频率。

若声源保持不动,运动物体上的接收器向声源方向以速度V 运动,测接收器接收到的频率f 为01V f f u ⎛⎫=⋅+ ⎪⎝⎭(2) 当接收器向声源运动时,V 取正;反之取负。

若保持f 0不变,以光电门测量物体的运动速度,并由仪器对接收器接收到的频率自动计数,由(2)式知,作f-V 图可以验证多普勒效应,并由实验点做直线,其斜率k=f 0/u ,由此可以计算声速u=f 0/k 。

也可以由(2)解出01f V u f ⎛⎫=- ⎪⎝⎭,若已知声速u 及声源频率f 0,通过设置使仪器以某种时间间隔对接收器接收到的频率f 采样计数,由微处理器按照上式算出接收器运动速率,由显示屏显示v-t 图像,并调阅相关数据,即可得出物体在运动过程中的速度变化情况,进而对物体运动状况及规律进行研究。

2. 研究简谐振动当质量为m 的物体受到大小与位移成正比,而方向指向平衡位置的力的作用时,若以物体的运动方向为x 方向,则运动方程为22d x m kx dt =-,该式描述的即为简谐振动。

当初始条件为t=0时,x=-A 0,V=dx/dt=0,则运动方程的解为00cos x A t ω=- ,对时间求导,可得速度方程000sin V A t ωω= 其中0ω=为振动系统的固有角频率。

多普勒效应 实验报告

多普勒效应 实验报告

多普勒效应实验报告多普勒效应实验报告引言:多普勒效应是物理学中的一个重要现象,它描述了当光或者声波源相对于观察者运动时,观察者所感受到的频率的变化。

本次实验旨在通过测量多普勒效应来验证其存在,并进一步探究其原理和应用。

实验设备:1. 音源:使用一个可调节频率的音源,如发声器或扬声器。

2. 麦克风:用于接收音源发出的声波信号。

3. 频率计:用于测量声波的频率。

实验步骤:1. 将音源和麦克风分别固定在实验台上,使其相对位置保持不变。

2. 将频率计连接到麦克风上,并将其打开。

3. 开始实验前,确保音源和麦克风之间的距离保持不变。

4. 将音源的频率调至一个固定值,记录下此时的频率。

5. 将音源缓慢移动,使其远离或靠近麦克风,并记录下此时的频率。

6. 重复步骤5多次,以获得更多数据。

实验结果与讨论:通过多次实验,我们得到了一系列音源频率与麦克风接收到的频率之间的关系。

根据多普勒效应的原理,当音源远离麦克风时,麦克风接收到的频率会比实际频率低,而当音源靠近麦克风时,麦克风接收到的频率会比实际频率高。

我们将实验数据整理并绘制成图表,以进一步分析多普勒效应的规律。

图表中横轴表示音源与麦克风之间的距离变化,纵轴表示麦克风接收到的频率变化。

根据实验数据的分析,我们可以得出以下结论:1. 当音源远离麦克风时,麦克风接收到的频率呈现逐渐减小的趋势。

这是因为声波在传播过程中,当音源远离麦克风时,每个波峰到达麦克风的时间间隔增加,导致频率降低。

2. 当音源靠近麦克风时,麦克风接收到的频率呈现逐渐增加的趋势。

这是因为声波在传播过程中,当音源靠近麦克风时,每个波峰到达麦克风的时间间隔减小,导致频率增加。

通过实验数据的分析,我们验证了多普勒效应的存在,并进一步了解了其原理。

多普勒效应在实际生活中有着广泛的应用,如天文学中的红移和蓝移现象、雷达测速等。

它不仅在物理学领域具有重要意义,也在其他科学和工程领域中发挥着重要作用。

结论:本次实验通过测量音源与麦克风之间的频率变化,验证了多普勒效应的存在。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

多普勒效应综合实验(附数据处理图)(注:由于上传后文库中数据图看不清楚,须下载后才能看清楚) 当波源和接收器之间有相对运动时,接收器接收到的波的频率与波源发出的频率不同的现象称为多普勒效应。

多普勒效应在科学研究,工程技术,交通管理,医疗诊断等各方面都有十分广泛的应用。

例如:原子,分子和离子由于热运动使其发射和吸收的光谱线变宽,称为多普勒增宽,在天体物理和受控热核聚变实验装置中,光谱线的多普勒增宽已成为一种分析恒星大气及等离子体物理状态的重要测量和诊断手段。

基于多普勒效应原理的雷达系统已广泛应用于导弹,卫星,车辆等运动目标速度的监测。

在医学上利用超声波的多普勒效应来检查人体内脏的活动情况,血液的流速等。

电磁波(光波)与声波(超声波)的多普勒效应原理是一致的。

本实验既可研究超声波的多普勒效应,又可利用多普勒效应将超声探头作为运动传感器,研究物体的运动状态。

【实验目的】1、测量超声接收器运动速度与接收频率之间的关系,验证多普勒效应,并由f-V关系直线的斜率求声速。

2、利用多普勒效应测量物体运动过程中多个时间点的速度,查看V-t关系曲线,或调阅有关测量数据,即可得出物体在运动过程中的速度变化情况,可研究:①匀加速直线运动,测量力、质量与加速度之间的关系,验证牛顿第二定律。

②自由落体运动,并由V-t关系直线的斜率求重力加速度。

③简谐振动,可测量简谐振动的周期等参数,并与理论值比较。

④其它变速直线运动。

【实验原理】1、超声的多普勒效应根据声波的多普勒效应公式,当声源与接收器之间有相对运动时,接收器接收到的频率f为:f = f0(u+V1cosα1)/(u–V2cosα2)(1)式中f0为声源发射频率,u为声速,V1为接收器运动速率,α1为声源与接收器连线与接收器运动方向之间的夹角,V2为声源运动速率,α2为声源与接收器连线与声源运动方向之间的夹角。

若声源保持不动,运动物体上的接收器沿声源与接收器连线方向以速度V运动,则从(1)式可得接收器接收到的频率应为:f = f0(1+V/u)(2)当接收器向着声源运动时,V取正,反之取负。

若f0保持不变,以光电门测量物体的运动速度,并由仪器对接收器接收到的频率自动计数,根据(2)式,作f —V关系图可直观验证多普勒效应,且由实验点作直线,其斜率应为k=f0/u,由此可计算出声速u=f0/k 。

由(2)式可解出:V = u(f/f0– 1)(3)若已知声速u及声源频率f0 ,通过设置使仪器以某种时间间隔对接收器接收到的频率f 采样计数,由微处理器按(3)式计算出接收器运动速度,由显示屏显示V-t关系图,或调阅有关测量数据,即可得出物体在运动过程中的速度变化情况,进而对物体运动状况及规律进行研究。

2、超声的红外调制与接收早期产品中,接收器接收的超声信号由导线接入实验仪进行处理。

由于超声接收器安装在运动体上,导线的存在对运动状态有一定影响,导线的折断也给使用带来麻烦。

新仪器对接收到的超声信号采用了无线的红外调制-发射-接收方式。

即用超声接收器信号对红外波进行调制后发射,固定在运动导轨一端的红外接收端接收红外信号后,再将超声信号解调出来。

由于红外发射/接收的过程中信号的传输是光速,远远大于声速,它引起的多谱勒效应可忽略不计。

采用此技术将实验中运动部分的导线去掉,使得测量更准确,操作更方便。

信号的调制-发射-接收-解调,在信号的无线传输过程中是一种常用的技术。

【实验仪器及简介】多普勒效应综合实验仪由实验仪,超声发射/接收器,红外发射/接收器,导轨,运动小车,支架,光电门,电磁铁,弹簧,滑轮,砝码等组成。

实验仪内置微处理器,带有液晶显示屏,图1为实验仪的面板图。

实验仪采用菜单式操作,显示屏显示菜单及操作提示,由☐❑♦◆键选择菜单或修改参数,按“确认”键后仪器执行。

可在“查询”页面,查询到在实验时已保存的实验的数据。

操作者只图1 多普勒实验仪面板图须按提示即可完成操作,学生可把时间和精力用于物理概念和研究对象,不必花大量时间熟悉特定的仪器使用,提高了课时利用率。

实验一验证多普勒效应并由测量数据计算声速让小车以不同速度通过光电门,仪器自动记录小车通过光电门时的平均运动速度及与之对应的平均接收频率。

由仪器显示的f-V关系图可看出,若测量点成直线,符合(2)式描述的规律,即直观验证了多普勒效应。

用作图法或线性回归法计算f-V直线的斜率k,由k计算声速u并与声速的理论值比较,计算其百分误差。

一.仪器安装图2 多普勒效应验证实验及测量小车水平运动安装示意图如图2所示。

所有需固定的附件均安装在导轨上,并在两侧的安装槽上固定。

调节水平超声传感发生器的高度,使其与超声接收器(已固定在小车上)在同一个平面上,再调整红外接收传感器高度和方向,使其与红外发射器(已固定在小车上)在同一轴线上。

将组件电缆接入实验仪的对应接口上。

安装完毕后,让电磁铁吸住小车,给小车上的传感器充电,第一次充电时间约6~8秒,充满后(仪器面板充电灯变绿色)可以持续使用4~5分钟。

在充电时要注意,必须让小车上的充电板和电磁铁上的充电针接触良好。

【注意事项】①安装时要尽量保证红外接收器、小车上的红外发射器和超声接收器、超声发射器三者之间在同一轴线上,以保证信号传输良好;②安装时不可挤压连接电缆,以免导线折断;③小车不使用时应立放,避免小车滚轮沾上污物,影响实验进行。

二.测量准备1.实验仪开机后,首先要求输入室温。

因为计算物体运动速度时要代入声速,而声速是温度的函数。

利用♦◆将室温T值调到实际值,按“确认”。

2.第二个界面要求对超声发生器的驱动频率进行调谐。

在超声应用中,需要将发生器与接收器的频率匹配,并将驱动频率调到谐振频率f0,这样接收器获得的信号幅度才最强,才能有效的发射与接收超声波。

一般f0在40KHz左右。

调谐好后,面板上的锁定灯将熄灭。

3.电流调至最大值后,按“确认”。

本仪器所有操作,均要按“确认”键后,数据才被写入仪器。

【注意事项】①调谐及实验进行时,须保证超声发生器和接收器之间无任何阻挡物;②为保证使用安全,三芯电源线须可靠接地。

三.测量步骤1.在液晶显示屏上,选中“多普勒效应验证实验”,并按“确认”;2.利用◆键修改测试总次数(选择范围5~10,一般选5次),按▼,选中“开始测试”;3.准备好后,按“确认”,电磁铁释放,测试开始进行,仪器自动记录小车通过光电门时的平均运动速度及与之对应的平均接收频率;改变小车的运动速度,可用以下两种方式:a.砝码牵引:利用砝码的不同组合实现;b.用手推动:沿水平方向对小车施以变力,使其通过光电门。

为便于操作,一般由小到大改变小车的运动速度。

4.每一次测试完成,都有“存入”或“重测”的提示,可根据实际情况选择,“确认”后回到测试状态,并显示测试总次数及已完成的测试次数;5.改变砝码质量(砝码牵引方式),并退回小车让磁铁吸住,按“开始”,进行第二次测试;6.完成设定的测量次数后,仪器自动存储数据,并显示f-V关系图及测量数据。

【注意事项】小车速度不可太快,以防小车脱轨跌落损坏。

四.数据记录与处理由f-V关系图可看出,若测量点成直线,符合(2)式描述的规律,即直观验证了多普勒效应。

用◆键选中“数据”,❑键翻阅数据并记入表1中,用作图法或线性回归法计算f-V关系直线的斜率k。

公式(4)为线性回归法计算k值的公式,其中测量次数i=5 ~n,n≤10。

2 2i i iiiiV V fVfVk-⨯-⨯=(4)由k计算声速u = f0/k,并与声速的理论值比较,声速理论值由u0 = 331(1+t/273)1/2 (米/秒)计算,t表示室温。

测量数据的记录是仪器自动进行的。

在测量完成后,只需在出现的显示界面上,用◆键选中“数据”,❑键翻阅数据并记入表1中,然后按照上述公式计算出相关结果并填入表格。

表1 多普勒效应的验证与声速的测量f0 =测量数据直线斜率k (1/m) 声速测量值u=f0/k(m/s)声速理论值u0(m/s)百分误差(u-u0)/u0次数i 1 2 3 4 5 6V i(m/s)f i (Hz)实验二研究匀变速直线运动,验证牛顿第二运动定律质量为M的接收器组件,与质量为m的砝码托及砝码悬挂于滑轮的两端,运动系统的总质量为M+m,所受合外力为(M-m)g(滑轮转动惯量与摩擦力忽略不计)。

根据牛顿第二定律,系统的加速度应为:a = g (M-m) /(M+m)(5)采样结束后会显示V-t曲线,将显示的采样次数及对应速度记入表2中。

由记录的t ,V数据求得V-t直线的斜率即为此次实验的加速度a。

将表2得出的加速度a作纵轴,(M-m)/(M+m)作横轴作图,若为线性关系,符合(5)式描述的规律,即验证了牛顿第二定律,且直线的斜率应为重力加速度。

一.仪器安装与测量准备1.仪器安装如图4所示,让电磁阀吸住自由落体接收器,并让该接收器上充电部分和电磁阀上的充电针接触良好。

2.用天平称量接收器组件的质量M,砝码托及砝码质量,每次取不同质量的砝码放于砝码托上,记录每次实验对应的m。

3.由于超声发生器和接收器已经改变了,因此需要对超声发生器的驱动频率重新调谐。

【注意事项】①须将“自由落体接收器保护盒”套于发射器上,避免发射器在非正常操作时受到冲击而损坏;②安装时切不可挤压电磁阀上的电缆;③调谐时需将自由落体接收组件用细绳拴住,置于超声发射器和红外接收器得中间,如此兼顾信号强度,便于调谐。

图4 匀变速直线运动安装示意图④ 安装滑轮时,滑轮支杆不能遮住红外接收和自由落体组件之间信号传输。

二.测量步骤1.在液晶显示屏上,用 ▼ 选中“变速运动测量实验”,并按“确认”;2.利用 ◆ 键修改测量点总数为8(选择范围8~150),▼ 选择采样步距,并修改为50 ms(选择范围50~100ms ),选中“开始测试”;3.按“确认”后,磁铁释放,接收器组件拉动砝码作垂直方向的运动。

测量完成后,显示屏上出现测量结果。

4.在结果显示界面中用 ◆ 键选择“返回”,“确认”后重新回到测量设置界面。

改变砝码质量,按以上程序进行新的测量。

【注意事项】需保证自由落体组件内电池充满电后(即实验仪面板上的充电指示灯为绿色)开始测量。

三.数据记录与处理采样结束后显示 V -t 直线,用 ◆ 键选择“数据”,将显示的采样次数及相应速度记入表2中,t i 为采样次数与采样步距的乘积。

由记录的t ,V 数据求得V -t 直线的斜率,就是此次实验的加速度a 。

将表2得出的加速度a 作纵轴,(M -m)/(M +m)作横轴作图,若为线性关系,符合(5)式描述的规律,即验证了牛顿第二定律,且直线的斜率应为重力加速度。

【注意事项】① 为避免电磁铁剩磁的影响,第1组数据不记; ② 接收器组件下落时,若其运动方向不是严格的在声源与接收器的连线方向,则α1(为声源与接收器连线与接收器运动方向之间的夹角,右图是其示意图)在运动过程中增加,此时公式(2)不再严格成立,由(3)式计算的速度误差也随之增加。

相关文档
最新文档