热电偶工作原理与结构
热电偶的工作原理及结构

热电偶工作原理及结构检修岗位1.懂工作原理1.1热电偶测温原理两种电子密度不同的导体构成闭合回路,如果两接头的温度不同,回路中就有电流产生,这种现象成为热电现象,相应的电动势成为温差电势或热电势,它与温度有一定的函数关系,利用此关系就可测量温度。
这种现象包含的原理有: 帕尔帖定理----不同材料结合在一起,在其结合面产生电势。
汤姆逊定理---由温差引起的电势。
当组成热电偶的导体材料均匀时,其热电势的大小与导体本身的长度和直径大小无关,只与导体材料的成分及两端的温度有关。
因此,用各种不同的导体或半导体可做成各种用途的热电偶,以满足不同温度对象测量的需要。
1.2热电偶三大定律均质导体定律由单一均质金属所形成之封闭回路,沿回路上每一点即使改变温度也不会有电流产生。
亦即,E = 0。
由2种均质金属材料A 与B所形成的热电偶回路中,热电势E与接点处温度t1、t2的相关函数关系,不受A与B之中间温度t3与t4之影响。
中间金属定律在由A与B所形成之热电偶回路两接合点以外的任意点插入均质的第三金属C,C之两端接合点之温度t3若为相同的话,E不受C插入之影响。
在由A与B所形成之热电偶回路,将A与B的接合点打开并插入均质的金属C 时,A与C接合点的温度与打开前接合点的温度相等的话,E不受C插入的影响。
如右图所示,对由A 与B所形成之热电偶插入第3之中间金属C,形成由A 与C、C与B之2组热电偶。
接合点温度保持t1与t2的情况下,E AC + E CB = E AB。
中间温度定律如右图所示任意数的异种金属A、B、C‧‧‧G所形成的封闭回路,封闭回路之全体或是全部的接合点保持在相等的温度时,此回路的E=0。
如右图所示,A与B所形成之热电偶,两接合点之温度为t1与t2时之E为E12,t2与t3时之E为E13的话,E12 + E23 = E13。
此时,称t2为中间温度。
以中间温度t2选择如0℃这样的标准温度,求得相对0℃任意的温度t1、t2、t3‧‧‧tn之热电动势,任意两点间之热电动势便可以计算求得。
热电偶的工作原理及结构

热电偶工作原理及结构检修岗位1.懂工作原理1.1热电偶测温原理两种电子密度不同的导体构成闭合回路,如果两接头的温度不同,回路中就有电流产生,这种现象成为热电现象,相应的电动势成为温差电势或者热电势,它与温度有一定的函数关系,利用此关系就可测量温度。
这种现象包含的原理有:帕尔帖定理----不同材料结合在一起,在其结合面产生电势。
汤姆逊定理---由温差引起的电势。
当组成热电偶的导体材料均匀时,其热电势的大小与导体本身的长度与直径大小无关,只与导体材料的成份及两端的温度有关。
因此,用各种不同的导体或者半导体可做成各种用途的热电偶, 以满足不同温度对象测量的需要。
1.2热电偶三大定律均质导体定律由单一均质金属所形成之封闭回路,沿回路上每一点即使改变温度也不11 会有电流产生。
亦即,E = Oo由2种均质金属材料A与B所形成的热电偶回路中,热电势E与接点处温度t、t的相关函%1 2数关系,不受A与B 之中间温度t与t3 4之影响。
中间金属定律在由A与B所形成之热电偶回路两接合点以外的任意点插入均质的第h三金属C, C之两端接合点之温度七3若为相同的话,E不受c 插入之影响。
在由A 与B 所 形成之热电偶回路, 将A 与B 的接合点 打开并插入均质的 金属C 时,A 与C 接合点的温度与打 开前接合点的温度 相等的话,E 不受C 插入的影响。
之中间金属C,形成C点温度保持t 与t12的情况下,E +ACE = E oCB AB中间温度定律如右图所示, 对由A 与B 所形成 之热电偶插入第3由A 与C 、C 与B 之2组热电偶。
接合 AB如右图所本任意数的异种金属A、B、c・• • G 所形成的封闭回路,封闭回路之全体或者是全部的接合点保持在相等的温度时,此回路的E=0o如右图所示,A与B所形成之热电偶,两接合点之温度为tl与t2时之E门为E12,12与t3时之E 为E13的话,E12 + E23 = E13o此时,称t2为中间温度。
热电偶工作原理

热电偶工作原理
概述
热电偶是一种常用的温度测量装置,它基于热电效应的原理,
并通过测量两个不同材料之间的温差来计算温度。
本文将为您详细
介绍热电偶的工作原理及其应用。
工作原理
热电偶的工作原理基于热电效应,即当两个金属或半导体的接
触处存在温度差时,会产生电势差。
这一原理是由法国科学家阿芬
尼乌斯·欧斯塔德发现并命名的。
组成
热电偶通常由两种不同的金属线材组成,分别称为正、负电极。
常见的材料有铜、铁、镍和铬等。
这两根线材连接在一起,形成一
个热电耦合点。
其中一个端口连接到测量设备,另一个端口则暴露
在待测物体的温度环境中。
工作原理
当热电偶中的热电耦合点暴露在不同温度的环境中时,热量会通过热电偶传导到热电耦合点。
由于两种不同金属材料的热导率和电子迁移率不同,热电耦合点会产生一个电势差。
这个电势差被称为热电势,并与温度差成正比。
测量方法
为了测量热电势,需要将热电偶的正、负电极连接到一个测量仪器上。
这个仪器可以测量热电势并将其转换成温度值。
常见的温度转换方法是使用查表法或校准法。
查表法是根据热电偶的材料以及其与温度之间的关系,使用预先制定的热电势-温度关系表来进行转换。
这种方法简单易行,适用于大多数工业应用。
校准法基于实际测量的电势差和已知的温度值之间的关系来进行转换。
这种方法需要对热电偶进行校准,以确定其特定温度下的电势差。
校准可以使用标准温度源(如冰点或沸点)进行,也可以使用精确的温度测量设备进行。
应用。
热电偶测温基本原理

热电偶测温基本原理热电偶是一种常用的温度测量仪器,它通过测量金属导体的热电势来确定被测温度。
热电偶的工作原理是基于两种不同金属导体之间产生的热电势,从而实现温度的测量。
热电偶的基本原理可以追溯到1821年,当时德国科学家Seebeck首次发现了两种不同金属导体在形成闭合回路时产生热电势的现象。
由于两种金属导体的热电势是温度的函数,所以只要知道两种金属导体的温度,就可以通过测量热电势来确定被测温度。
热电偶的测温原理是基于热电效应,即当金属导体的两端温度不同时,就会产生热电势。
热电偶由两种不同的金属导体组成,在两种金属导体的连接处形成一个接点。
当接点处温度不同,就会产生热电势。
这种热电势是由于两种金属导体的电子云密度不同、电子结构不同,导致它们在不同温度下形成的热电势也不同。
热电偶的测温原理是基于Seebeck效应,即当两种不同金属导体的温度不同时,就会产生热电势。
这种热电势可以通过连接到一个电路中的毫伏表或其他测量设备来测量。
从而可以根据热电势的大小来确定被测温度。
热电偶的测温原理可以通过热电势和温度的关系来解释。
热电势E和温度T之间的关系可以使用如下公式表示:E = S(T2 - T1)其中,E为热电势,S为热电偶的热电系数,T2和T1分别为两种金属导体的温度。
从这个公式可以看出,热电势和温度之间存在线性关系,因此可以通过测量热电势来确定温度。
热电偶的测温原理还可以通过热电势的测量方法来解释。
热电偶的热电势可以通过连接到一个毫伏表或其他测量设备来测量。
当两种金属导体的温度不同时,就会产生热电势,通过测量热电势的大小来确定被测温度。
热电偶的测温原理还可以通过其实际应用来解释。
热电偶可以测量各种各样的温度范围,从室温到高温,从常压到高压都可以使用。
因此,热电偶被广泛应用于化工、冶金、机械制造、能源等领域。
总之,热电偶的测温原理是基于热电势和温度之间的关系。
通过测量热电势来确定被测温度,从而实现温度的测量。
热电偶定律

热电偶定律1. 简介热电偶定律是研究热电效应的基本定律之一。
它描述了在两个不同金属导体的接触点处,由于温度差异而产生的电势差。
这种现象被称为热电效应,可以应用于温度测量和温度控制等领域。
2. 热电效应热电效应是指当两个不同金属导体形成闭合回路,并且在其接触点处存在温度差异时,会产生一个由温差引起的电势差。
这种现象可以用热电偶进行测量和利用。
3. 热电偶的结构与原理热电偶通常由两种不同金属导体构成,它们被连接在一起形成一个闭合回路。
常见的金属组合包括铜-铜镍、铁-铜镍等。
两个导体的连接点称为热敏结。
根据“塔莱法”(Thomson effect)和“西贝克法”(Seebeck effect),当两个导体的接触点存在温度差异时,由于材料的特性不同,会产生一个由温差引起的电势差。
这个电势差可以通过连接导线和测量仪器来测量和记录。
4. 热电偶的工作原理热电偶的工作原理基于两个基本定律:塔莱法和西贝克法。
•塔莱法:当两个导体的接触点存在温度差异时,会在导体内产生一种称为热流的能量传递。
这种热流是由热运动引起的,从高温端向低温端传递。
在热电偶中,这种热流会改变导体内部的载流子分布,从而产生一个由温差引起的电势差。
•西贝克法:当两个导体形成闭合回路后,在接触点处存在温度差异时,由于两个导体材料的不同特性,将会产生一个由温差引起的电势差。
这个电势差可以通过连接导线和测量仪器来测量和记录。
根据以上原理,热电偶可以将温度转化为电压信号,进而进行测量和控制。
5. 热电偶的应用5.1 温度测量由于热电偶能够将温度转化为电压信号,因此广泛应用于温度测量领域。
常见的应用包括工业过程控制、实验室研究、环境监测等。
热电偶具有快速响应、高精度和较宽的测量范围等优点,因此被广泛使用。
5.2 温度控制热电偶还可以用于温度控制系统中。
通过将热电偶与温度控制器相连,可以实现对温度的精确控制。
在工业生产中,可以利用热电偶测量物体的温度,并根据测量结果来调节加热或冷却设备的运行。
热电偶报告

热电偶报告目录1. 热电偶的定义和原理1.1 热电偶的基本原理1.2 热电偶的结构和工作原理2. 热电偶的应用领域2.1 工业领域中的应用2.2 实验室中的应用3. 热电偶的优点和缺点3.1 优点3.2 缺点4. 热电偶的选型和安装要点4.1 选型要点4.2 安装要点5. 热电偶的维护和保养5.1 维护方法5.2 保养注意事项6. 结语1. 热电偶的定义和原理1.1 热电偶的基本原理热电偶是一种利用热电效应测量温度的传感器。
当两种不同金属的导线连接在一起形成回路时,当接触点温度不同时,就会产生热电流,从而产生电动势。
1.2 热电偶的结构和工作原理热电偶通常由两种不同金属的导线连接在一起制成,常见的有铂铑热电偶、镍铬铝热电偶等。
工作时,热电偶的一端暴露在测量的环境中,另一端连接到测量仪器上,通过测量热电势差来确定温度。
2. 热电偶的应用领域2.1 工业领域中的应用热电偶在工业领域中广泛应用于温度测量和控制,如炼油、化工、电力等领域。
热电偶可以在高温、高压等恶劣环境下正常工作。
2.2 实验室中的应用在实验室中,热电偶常用于科学实验和研究中,用于测量反应温度、加热温度等各种温度参数。
3. 热电偶的优点和缺点3.1 优点- 测量范围广- 响应速度快- 结构简单3.2 缺点- 精度较低- 受到外界干扰较大- 需要定期校准4. 热电偶的选型和安装要点4.1 选型要点- 根据测量温度范围和环境条件选择合适的热电偶类型- 选择可靠的品牌和质量可靠的产品4.2 安装要点- 确保热电偶的暴露部分与被测物贴合良好- 避免热电偶与其他金属接触5. 热电偶的维护和保养5.1 维护方法- 定期检查热电偶的连接是否松动- 清洁热电偶表面5.2 保养注意事项- 避免受力过大造成损坏- 避免潮湿环境影响热电偶性能6. 结语热电偶作为一种常用的温度传感器,在各个领域都有重要的应用价值。
在选择和使用热电偶时,需要注意其特点和要点,保证其准确可靠地工作。
热电偶的结构和工作原理

热电偶的结构和工作原理
热电偶是工业上zui常用的温度检测元件之一,热电偶工作原理是基于赛贝克(seeback)效应,即两种不同成分的导体两端连接成回路,如两连接端温度不同,则在回路内产生热电流的物理现象。
作为工业测温中zui广泛使用的温度传感器之一~热电偶,与铂热电阻一起,约占整个温度传感器总量的60%,热电偶通常和显示仪表等配套使用,直接测量各种生产过程中-40~1800℃范围内的液体、蒸气和气体介质以及固体的表面温度。
其优点是:
①测量精度高;②测量范围广;③构造简单,热电偶使用方便。
热电偶测温基本原理
热电偶是一种感温元件,是一次仪表,它直接测量温度,并把温度信号转换成热电动势信号, 再通过电气仪表(二次仪表)转换成被测介质的温度。
热电偶测温的基本原理是两种不同成份的材质导体组成闭合回路,当两端存在温度梯度时,回路中就会有电流通过,此时两端之间就存在电动势热电动势,这就是所谓的塞贝克效应。
两种不同成份的均质导体为热电极,温度较高的一端为工作端,温度较低的一端为自由端,自由端通常处于某个恒定的温度下。
根据热电动势与温度的函数关系, 制成热电偶分度表; 分度表是自由端温度在0℃时的条件下得到的,不同的热电偶具有不同的分度表。
在热电偶回路中接入第三种金属材料时, 只要该材料两个接点的温度相同, 热电偶所产生的热电势将保持不变,即不受第三种金属接入回路中的影响。
因此, 在热电偶测温时, 可接入测量仪表, 测得热电动势后, 即可知道被测介质的温度。
热电偶工作原理与结构

热电偶工作原理与结构热电偶是一种基于热电效应原理的温度测量设备。
热电效应是指当两个不同金属接触形成闭合回路时,在两个接点之间会产生一定的温差,从而产生电势差。
热电偶通过测量这个电势差来确定温度。
热电偶的结构主要由两个不同材料的导线组成,这两个导线被接合在一起形成一个交点,被称为测量端点或热电偶的节。
通常情况下,两个导线的连接点通常被封装在一个金属保护管内,以保护导线免受外部环境的影响。
热电偶的工作原理是基于热电效应的。
当热电偶的测量端点暴露在不同温度的环境中时,两个导线之间将产生温差。
由于导线的材料不同,它们的电子能级结构不同,因此会产生不同的电子浓度。
这种不同的电子浓度会导致导电子流的差异,从而产生一个电势差。
根据热电效应原理,热电偶的电势差与温度之间存在一定的线性关系。
因此,通过测量热电偶的电势差,可以确定测量端点暴露的环境的温度。
热电偶的性能主要受到两个因素的影响:热电效应和材料选择。
热电效应是指导线材料产生的电势差与温度差之间的关系。
在不同的工作温度范围内,不同的热电偶材料具有不同的热电效应特性。
导线材料的选择通常是根据需要测量的温度范围来确定的。
常见的热电偶材料包括K型、N型、E型、T型等。
K型热电偶具有广泛的应用范围,适用于温度范围在-200°C至+1400°C之间的测量。
而N型热电偶适用于高温环境,温度范围可达到+1300°C至+1600°C。
E型热电偶适用于低温环境,温度范围可达到-200°C至+900°C。
T型热电偶适用于低温环境,温度范围可达到-200°C至+300°C。
除了热电偶材料的选择,热电偶的性能还与导线的直径、长度和连接方式等因素有关。
通常情况下,导线越粗,测量的温度范围越广。
导线的长度也会影响热电偶的响应速度,较短的导线响应速度更快。
总结起来,热电偶是一种基于热电效应原理的温度测量设备,利用两个不同材料的导线在不同温度环境中产生的电势差来确定温度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
热电偶工作原理及结构检修岗位1.懂工作原理1.1热电偶测温原理两种电子密度不同的导体构成闭合回路,如果两接头的温度不同,回路中就有电流产生,这种现象成为热电现象,相应的电动势成为温差电势或热电势,它与温度有一定的函数关系,利用此关系就可测量温度。
这种现象包含的原理有: 帕尔帖定理----不同材料结合在一起,在其结合面产生电势。
汤姆逊定理---由温差引起的电势。
当组成热电偶的导体材料均匀时,其热电势的大小与导体本身的长度和直径大小无关,只与导体材料的成分及两端的温度有关。
因此,用各种不同的导体或半导体可做成各种用途的热电偶,以满足不同温度对象测量的需要。
1.2热电偶三大定律均质导体定律由单一均质金属所形成之封闭回路,沿回路上每一点即使改变温度也不会有电流产生。
亦即,E = 0。
由2种均质金属材料A与B所形成的热电偶回路中,热电势E与接点处温度t1、t2的相关函数关系,不受A与B之中间温度t3与t4之影响。
中间金属定律在由A与B所形成之热电偶回路两接合点以外的任意点插入均质的第三金属C,C之两端接合点之温度t3若为相同的话,E不受C插入之影响。
在由A与B所形成之热电偶回路,将A与B的接合点打开并插入均质的金属C 时,A与C接合点的温度与打开前接合点的温度相等的话,E不受C插入的影响。
如右图所示,对由A 与B所形成之热电偶插入第3之中间金属C,形成由A与C、C与B之2组热电偶。
接合点温度保持t1与t2的情况下,E AC + E CB = E AB。
中间温度定律的异种金属A、B、C‧‧‧G所形成的封闭回路,封闭回路之全体或是全部的接合点保持在相等的温度时,此回路的E=0。
如右图所示,A与B 所形成之热电偶,两接合点之温度为t1与t2时之E为E12,t2与t3时之E为E13的话,E12 + E23 = E13。
此时,称t2为中间温度。
以中间温度t2选择如0℃这样的标准温度,求得相对0℃任意的温度t1、t2、t3‧‧‧tn之热电动势,任意两点间之热电动势便可以计算求得。
如右图所示,对于使用补偿导线之热电偶回路适用以上之观念。
A与B为热电偶,C 与D为A、B用之补偿导线,M为数字电压计,计算后可得下面关系式:E = E AB (t1) - E AB (t3)也就是说,M 所测定之电位差是由t1、t3所决定,不受t2之影响。
2.懂设备结构2.1热电偶的结构热电偶是有两根不同导体(或称电极)构成的.这两根导体一端焊接在一起,成为热端(或称工作端),测温时将此端处于被测介质中。
另一端称为冷端(或自由端),接入二次仪表(显示仪表)或电测设备。
a、普通型热电偶:是应用最多的,主要用来测量气体、蒸汽和液体等介质的温度。
根据测温范围及环境的不同,所用的热电偶电极和保护套管的材料也不同,但因使用条件基本类似,所以这类热电偶已标准化、系列化。
按其安装时的连接方法可分为螺纹连接合法兰连接两种。
b、铠装热电偶:又称缆式热电偶,是由热电极(多数采用的是铂丝,也有用镍丝的)、绝缘材料(通常为氧化镁粉末)和金属保护管三者结合,经拉制而成一个坚实的整体。
铠装热电偶有单支(双芯)和双支(四芯)之分,其测量端有露头型、接壳型和绝缘型三种基本形式。
铠装热电偶的参比端(接线盒)形式有简易式、防水式、防溅式、接插式和小接线盒式等。
铠装热电偶具有体积小、精度高、反应迅速、耐震动、耐冲击、机械强度高、可绕性好、寿命长、便于安装等优点。
外形尺寸有φ5、φ6、φ8多种,长度为10~1000mm。
2.2、常用热电偶种类(八种)B型------铂铑30-铂铑6 R型-----铂铑13-铂S型------铂铑10-铂 E型------镍铬-康铜J型------铁-康铜K型------镍铬-镍铝T型------铜-康铜N型------镍铬硅-镍硅其中:B、R、S属于贵金属热电偶;K、E、N、J属于廉金属热电偶; T型热电偶用于测量低温。
3.会异常分析3.1热电偶测温系统常见故障原因及处理方法4.能遵守工艺纪律4.1热电偶安装及注意事项a在管道安装中,感温元件的工作端应置于管道中流速最大处。
热电偶的保护套管的末端应越过流束中心线5~10mm。
b感温元件与被测介质形成逆流,应迎着气流流向插入,至少应与被测介质流束方向成90°。
特别情况下也不能顺流安装测温元件,否则会产生测温误差。
c 插深一般不应小于300mm,如果插入深度不够,外露部分又空气流通,这样所测出的温度比实际温度低3~4度。
d在测温元件安装时,应防止电磁场干扰的引入而影响准确测量。
在接线时一定要确保良好接触,拧紧空心螺栓,然后盖紧接线盒盖子,对不得不露在空中的热电偶最好加防雨措施,以防雨淋损坏元件。
为保护补偿导线不受外来的机械损伤和由于外磁场而造成对仪表的影响,补偿导线应加以屏蔽,并且不准有曲折迂回的情况。
e热电偶和热电阻应尽量垂直装在水平或垂直管道上,安装时应有保护套管,以方便检修和更换。
f测量管道内温度时,元件长度应在管道中心线上(即保护管插入深度应为管径的一半)。
g热电偶的冷端应处在同一环境温度下,应使用同型号的补偿导线,且正负要接对。
h高温区使用耐高温电缆或耐高温补偿线。
4.2必须遵守的工艺纪律如何正确使用热电偶补偿导线摘要:在使用热电偶进行温度测量中,热电偶补偿导线的使用比较普遍。
但经调查发现,很多地方由于没有正确使用补偿导线而出现很多问题。
本文介绍了补偿导线的原理,对常见错误使用的形式进行归纳,同时从理论上分析所产生的偏差,指出正确使用方法和注意事项。
关键词热电偶补偿导线使用方法误差热电偶补偿导线已经广泛用于热电偶温度测量中。
如果了解了热电偶补偿导线的原理、功能、作用方法和注意事项,就能充分发挥热电偶补偿导线的作用,否则就会适得其反。
某钢管生产企业新引进的一套球化炉装置,装置的二十多个测温点由于设备安装人员将热电偶正负极接反,且补偿导线还存在多接头现象,再加上设备使用人员对此知识的贫乏,在工作中因炉温不正确导致炉内产品报废,直接经济损失达一百多万元,教训不可谓不深刻。
实际上在众多热电偶测温现场,笔者发现用普通铜导线作连线的占40%,而使用补偿导线作连接线的仅占60%。
究其原因有二:一是由于热电偶设备使用操作人员不了解补偿导线功能,认为既然只要起到连接作用,普通导线即可。
二是设备制造商在安装热电偶时,用的连接线即为普通导线,而在使用者角度总认为设备安装人员都是专业人员,做法总是正确的,没能引起应有的怀疑。
在工业生产中,虽然热电偶作为温度传感器,已经广泛使用于温度测量和控制,人们对此也比较熟悉,但如果在使用中不注意正确的使用方法,就会给测温和控温造成很大的偏离,严重时会直接造成经济损失,所以应该引起重视。
一、热电偶的测温原理简介由2种不同均质材料a、b组成的回路(见图1)称为热电偶。
a、b材料2端连接的接点分别用j1、j2表示,如果j1、j2的接点温度t1和t2不一样,在回路中就会产生电势,通常称为热电势。
当a、b的材料一定时,热电势的大小取决于t1、t2之间的温度差,用公式表示为eab(t1,t2)=eab(t1)+eba(t2)=eab(t1)-eab(t2) (1)式中:eab(t1,t2)———材料为a、b的热电偶,接点温度t1、t2之间的温差电势。
eab(t1)———a、b接点温度为t1时的电势。
eab(t2)、eba(t1)———a、b接点温度为t2时的电势,这2项大小相等,符号相反。
为了统一热电偶材料并进行规范,国家有关标准规定了组成热电偶材料a、b的成分、纯度,并且给出了a、b材料的组合形式,统一用一个字母命名型号,如k型、s型等。
为了使用方便,将各种型号的热电偶温度值与电势关系,统一为相对于0℃时的电势值,这里用t0表示,制成各种型号的热电偶分度表,便于查阅和计算。
这样相对于图1中的形式,公式(1)转化为eab(t1,t2)=eab(t1,t0)-eab(t2,t0) (2)公式(2)就是我们目前使用的实用公式,只要知道t1、t2,可以从分度表中查出eab(t1,t0)和eab(t2,t0)。
图1中左图为原理图,该图中对于热电势无法测量;右图为目前实际使用的测量电路,在热电偶的2极用测量导线连接,根据热电偶中间导体定律,只要右图中接点j2、j3的温度相同,均为t2,并且连接导线均为同种均质材料,图1中的右图与左图是等效的。
二热电偶补偿导线1. 连接导体定律和中间温度定律首先我们来分析热电偶的连接导体定律和中间温度定律,如图2。
实际应用中,测量和控制仪表与热电偶总是有一段距离,如图2所示。
c、d也是2种均质材料,根据热电偶的中间导体定律,可以导出测量的总电势ez的表达式为:ez=eab(t1,t3)+ecd(t3,t2) (3)式(3)就是热电偶连接导体定律。
如果连接的不是一段,总电势ez同样为各个部分之和。
在图2的测量中,我们希望测量端的总电势为热电偶eab(t1,t2),便于控制仪表测量中不至于中间连接产生附加电势,表达式为:eab(t1,t2)=ez=eab(t1,t3)+eab(t3,t2) (4)式(4)中t3称为中间温度,所以也称为中间温度定律。
这样就要求我们找到某种材料c、d,他的特性为:ecd(t3,t2)=eab(t3,t2)(5)满足式(5)的材料我们称为热电偶的补偿导线。
因为热电偶的种类较多,所以热电偶补偿导线的种类也较多。
2. 在工业温度测量和温度控制中正确使用补偿导线工业温度测量、控制中,热电偶使用的位置总是距测量、控制表(下面简称仪表)有一定的距离,因而从热电偶的输出端到测量、控制表的输入端,需使用补偿导线连接。
由于热电偶和补偿导线均有正负极,故接线时应该正极与正极连接,负极与负极连接。
见图3所示。
图3中由于t3和t2的温度差会给测量带来误差,补偿导线的作用就是补偿t3和t2,不同种类的热电偶,要使用相应型号的补偿导线,不同型号的补偿导线不能混用。
三、常见补偿导线使用中的错误和产生的误差1. 热电偶补偿导线正负极与热电偶接反如果将热电偶补偿导线的正负极与热电偶正负极接反,而热电偶的正负极与仪表的正极连接是正确的,以k型偶为例见图4所示。
这种错误在应用中比较普遍,因为连接后,被控制对象的温度变化趋势与显示仪表是一致的。
加之目前热电偶补偿导线产品很多标注不规范,难以辨认;有些甚至是生产厂家将颜色标错。
下面分析由于这种情况所产生的误差。
如果正确连接,仪表所接收的总热电势为ez=ek(t1,t3)+ekx(t3,t2)=ek(t1,t3)+ek(t3,t2)=ek(t1,t2)(6)因为连接的错误,根据中间导体定律,仪表所接收的总热电势为e′z=ek(t1,t3)+ekx(t3,t2)(7)对于kx延伸型补偿导线,有e′kx(t3,t2)=-ekx(t3,t2)=-ek(t3,t2)(8)计算,仪表测量值由此产生误差为ez′-ez=ek(t1,t3)-ek(t3,t2)-ek(t1,t3)-ek(t3,t2)=2ek(t3,t2)(9)一般工业炉附近的温度,至少比控制间的温度高8℃。