数据挖掘分类实验详细报告概论

合集下载

数据分析与挖掘实验报告

数据分析与挖掘实验报告

《数据挖掘》实验报告目录1.关联规则的基本概念和方法 (1)1.1数据挖掘 (1)1.1.1数据挖掘的概念 (1)1.1.2数据挖掘的方法与技术 (1)1.2关联规则 (2)1.2.1关联规则的概念 (2)1.2.2关联规则的实现——Apriori算法 (3)2.用Matlab实现关联规则 (5)2.1Matlab概述 (5)2.2基于Matlab的Apriori算法 (6)3.用java实现关联规则 (10)3.1java界面描述 (10)3.2java关键代码描述 (13)4、实验总结 (18)4.1实验的不足和改进 (18)4.2实验心得 (19)1.关联规则的基本概念和方法1.1数据挖掘1.1.1数据挖掘的概念计算机技术和通信技术的迅猛发展将人类社会带入到了信息时代。

在最近十几年里,数据库中存储的数据急剧增大。

数据挖掘就是信息技术自然进化的结果。

数据挖掘可以从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中,提取隐含在其中的,人们事先不知道的但又是潜在有用的信息和知识的过程。

许多人将数据挖掘视为另一个流行词汇数据中的知识发现(KDD)的同义词,而另一些人只是把数据挖掘视为知识发现过程的一个基本步骤。

知识发现过程如下:·数据清理(消除噪声和删除不一致的数据)·数据集成(多种数据源可以组合在一起)·数据转换(从数据库中提取和分析任务相关的数据)·数据变换(从汇总或聚集操作,把数据变换和统一成适合挖掘的形式)·数据挖掘(基本步骤,使用智能方法提取数据模式)·模式评估(根据某种兴趣度度量,识别代表知识的真正有趣的模式)·知识表示(使用可视化和知识表示技术,向用户提供挖掘的知识)。

1.1.2数据挖掘的方法与技术数据挖掘吸纳了诸如数据库和数据仓库技术、统计学、机器学习、高性能计算、模式识别、神经网络、数据可视化、信息检索、图像和信号处理以及空间数据分析技术的集成等许多应用领域的大量技术。

数据挖掘分类算法实验报告

数据挖掘分类算法实验报告

数据挖掘分类算法实验报告数据挖掘分类算法实验报告一、引言数据挖掘是一种通过从大量数据中发现模式、规律和知识的过程。

在现代社会中,数据挖掘已经成为了一项重要的技术,广泛应用于各个领域。

其中,分类算法是数据挖掘中的一种重要技术,它可以将数据集中的样本分为不同的类别,从而实现对数据的有效分类和预测。

二、实验目的本实验旨在比较和评估常见的数据挖掘分类算法,包括决策树、朴素贝叶斯和支持向量机。

通过对多个数据集的实验,对这些算法的分类性能进行评估,并分析其适用场景和优缺点。

三、实验方法1. 数据集选择本实验选择了三个不同类型的数据集,包括鸢尾花数据集、心脏病数据集和手写数字数据集。

这些数据集代表了常见的分类问题,具有不同的特征和类别分布。

2. 特征选择和预处理在进行分类算法之前,需要对原始数据进行特征选择和预处理。

特征选择是为了从原始数据中选择出最具有代表性和区分度的特征,以提高分类算法的效果。

预处理包括数据清洗、缺失值处理和数据标准化等步骤,以确保数据的质量和一致性。

3. 算法实现和评估在实验中,我们使用Python编程语言实现了决策树、朴素贝叶斯和支持向量机三种分类算法。

对于每个数据集,我们将数据集划分为训练集和测试集,使用训练集对分类模型进行训练,然后使用测试集评估分类算法的性能。

评估指标包括准确率、召回率和F1值等。

四、实验结果与分析1. 鸢尾花数据集实验结果在对鸢尾花数据集进行分类实验时,我们发现决策树算法表现最好,准确率达到了95%以上,而朴素贝叶斯算法和支持向量机算法的准确率分别为90%和93%。

这说明决策树算法在处理鸢尾花数据集时具有较好的分类能力。

2. 心脏病数据集实验结果对于心脏病数据集,朴素贝叶斯算法表现最好,准确率超过了90%,而决策树算法和支持向量机算法的准确率分别为85%和88%。

这说明朴素贝叶斯算法在处理心脏病数据集时具有较好的分类效果。

3. 手写数字数据集实验结果在对手写数字数据集进行分类实验时,支持向量机算法表现最好,准确率超过了98%,而决策树算法和朴素贝叶斯算法的准确率分别为90%和92%。

数据挖掘实验报告二

数据挖掘实验报告二

实验二
一、基本原理
分类算法是解决分类问题的方法,是数据挖掘、机器学习和模式识别中一个重要的研究领域。

分类算法通过对已知类别训练集的分析,从中发现分类规则,以此预测新数据的类别。

分类算法的应用非常广泛,银行中风险评估、客户类别分类、文本检索和搜索引擎分类、安全领域中的入侵检测以及软件项目中的应用等。

二、实验目的:
掌握CART决策树构建分类模型。

三、实验内容
对所有窃漏电用户及真诚用户的电量、告警及线损数据和该用户在当天是否窃漏电的标识,按窃漏电评价指标进行处理并选取其中291个样本数据,得到专家样本,使用CART 决策树实现分类预测模型。

注意:数据的80%作为训练样本,剩下的20%作为测试样本。

四、实验步骤
1、对数据进行预处理
2、把数据随机分为两部分,一部分用于训练,一部分用于测试。

分成testData和trainData文件即测试数据和训练数据数据的80%作为训练样本,剩下的20%作为测试样本。

和构建的CART决策树模型分别对训练数据和测试数据进行分类。

构建的神经网络模型分别对训练数据和测试数据进行分类。

5、对比分析CART决策树和神经网络模型对数据处理的结果。

五、实验结果
六、思考与分析
尝试采用神经网络对数据进行分类,并与CART决策树的结果进行比较。

答:与神经网络相比,决策树可以很好地处理非数值型的数据,但是决策树对连续的数据(比如连续的数值型数据)不太擅长。

数据挖掘实验报告结论(3篇)

数据挖掘实验报告结论(3篇)

第1篇一、实验概述本次数据挖掘实验以Apriori算法为核心,通过对GutenBerg和DBLP两个数据集进行关联规则挖掘,旨在探讨数据挖掘技术在知识发现中的应用。

实验过程中,我们遵循数据挖掘的一般流程,包括数据预处理、关联规则挖掘、结果分析和可视化等步骤。

二、实验结果分析1. 数据预处理在实验开始之前,我们对GutenBerg和DBLP数据集进行了预处理,包括数据清洗、数据集成和数据变换等。

通过对数据集的分析,我们发现了以下问题:(1)数据缺失:部分数据集存在缺失值,需要通过插补或删除缺失数据的方法进行处理。

(2)数据不一致:数据集中存在不同格式的数据,需要进行统一处理。

(3)数据噪声:数据集中存在一些异常值,需要通过滤波或聚类等方法进行处理。

2. 关联规则挖掘在数据预处理完成后,我们使用Apriori算法对数据集进行关联规则挖掘。

实验中,我们设置了不同的最小支持度和最小置信度阈值,以挖掘出不同粒度的关联规则。

以下是实验结果分析:(1)GutenBerg数据集在GutenBerg数据集中,我们以句子为篮子粒度,挖掘了林肯演讲集的关联规则。

通过分析挖掘结果,我们发现:- 单词“the”和“of”在句子中频繁出现,表明这两个词在林肯演讲中具有较高的出现频率。

- “and”和“to”等连接词也具有较高的出现频率,说明林肯演讲中句子结构较为复杂。

- 部分单词组合具有较高的置信度,如“war”和“soldier”,表明在林肯演讲中提到“war”时,很可能同时提到“soldier”。

(2)DBLP数据集在DBLP数据集中,我们以作者为单位,挖掘了作者之间的合作关系。

实验结果表明:- 部分作者之间存在较强的合作关系,如同一研究领域内的作者。

- 部分作者在多个研究领域均有合作关系,表明他们在不同领域具有一定的学术影响力。

3. 结果分析和可视化为了更好地展示实验结果,我们对挖掘出的关联规则进行了可视化处理。

通过可视化,我们可以直观地看出以下信息:(1)频繁项集的分布情况:通过柱状图展示频繁项集的分布情况,便于分析不同项集的出现频率。

数据挖掘实验报告三

数据挖掘实验报告三

实验三一、实验原理K-Means算法是一种 cluster analysis 的算法,其主要是来计算数据聚集的算法,主要通过不断地取离种子点最近均值的算法。

在数据挖掘中,K-Means算法是一种cluster analysis的算法,其主要是来计算数据聚集的算法,主要通过不断地取离种子点最近均值的算法。

算法原理:(1) 随机选取k个中心点;(2) 在第j次迭代中,对于每个样本点,选取最近的中心点,归为该类;(3) 更新中心点为每类的均值;(4) j<-j+1 ,重复(2)(3)迭代更新,直至误差小到某个值或者到达一定的迭代步数,误差不变.空间复杂度o(N)时间复杂度o(I*K*N)其中N为样本点个数,K为中心点个数,I为迭代次数二、实验目的:1、利用R实现数据标准化。

2、利用R实现K-Meams聚类过程。

3、了解K-Means聚类算法在客户价值分析实例中的应用。

三、实验内容依据航空公司客户价值分析的LRFMC模型提取客户信息的LRFMC指标。

对其进行标准差标准化并保存后,采用k-means算法完成客户的聚类,分析每类的客户特征,从而获得每类客户的价值。

编写R程序,完成客户的k-means聚类,获得聚类中心与类标号,并统计每个类别的客户数四、实验步骤1、依据航空公司客户价值分析的LRFMC模型提取客户信息的LRFMC指标。

2、确定要探索分析的变量3、利用R实现数据标准化。

4、采用k-means算法完成客户的聚类,分析每类的客户特征,从而获得每类客户的价值。

五、实验结果客户的k-means聚类,获得聚类中心与类标号,并统计每个类别的客户数六、思考与分析使用不同的预处理对数据进行变化,在使用k-means算法进行聚类,对比聚类的结果。

kmenas算法首先选择K个初始质心,其中K是用户指定的参数,即所期望的簇的个数。

这样做的前提是我们已经知道数据集中包含多少个簇.1.与层次聚类结合经常会产生较好的聚类结果的一个有趣策略是,首先采用层次凝聚算法决定结果粗的数目,并找到一个初始聚类,然后用迭代重定位来改进该聚类。

数据挖掘分类实验详细报告

数据挖掘分类实验详细报告

《数据挖掘分类实验报告》信息安全科学与工程学院1120362066 尹雪蓉数据挖掘分类过程(1)数据分析介绍本次实验为典型的分类实验,为了便于说明问题,弄清数据挖掘具体流程,我们小组选择了最经典的决策树算法进行具体挖掘实验。

(2)数据准备与预处理在进行数据挖掘之前,我们首先要对需要挖掘的样本数据进行预处理,预处理包括以下步骤:1、数据准备,格式统一。

将样本转化为等维的数据特征(特征提取),让所有的样本具有相同数量的特征,同时兼顾特征的全面性和独立性2、选择与类别相关的特征(特征选择)3、建立数据训练集和测试集4、对数据集进行数据清理在本次实验中,我们选择了ILPD (Indian Liver Patient Dataset) 这个数据集,该数据集已经具有等维的数据特征,主要包括Age、Gender、TB、DB、Alkphos、Sgpt、Sgot、TP、ALB、A/G、classical,一共11个维度的数据特征,其中与分类类别相关的特征为classical,它的类别有1,2两个值。

详见下表:本实验的主要思路是将该数据集分成训练集和测试集,对训练集进行训练生成模型,然后再根据模型对测试集进行预测。

数据集处理实验详细过程:●CSV数据源处理由于下载的原始数据集文件Indian Liver Patient Dataset (ILPD).csv(见下图)中间并不包含属性项,这不利于之后分类的实验操作,所以要对该文件进行处理,使用Notepad文件,手动将属性行添加到文件首行即可。

●平台数据集格式转换在后面数据挖掘的实验过程中,我们需要借助开源数据挖掘平台工具软件weka,该平台使用的数据集格式为arff,因此为了便于实验,在这里我们要对csv文件进行格式转换,转换工具为weka自带工具。

转换过程为:1、打开weka平台,点击”Simple CLI“,进入weka命令行界面,如下图所示:2、输入命令将csv文件导成arff文件,如下图所示:3、得到arff文件如下图所示:内容如下:建立数据训练集、校验集和测试集通过统计数据信息,可知整个数据集带有classical标号的数据一共有583行,为了避免数据的过度拟合,我们要把数据训练集、校验集、测试集分开。

数据挖掘分类实验报告

数据挖掘分类实验报告

数据挖掘分类实验报告《数据挖掘分类实验报告》数据挖掘是一门利用统计学、机器学习和人工智能等技术,从大量的数据中发现隐藏的模式和知识的学科。

在数据挖掘中,分类是一种常见的任务,它通过对数据进行分析和学习,将数据划分到不同的类别中。

本文将通过一个数据挖掘分类实验报告,介绍数据挖掘分类的实验过程和结果。

实验数据集选取了一个包含多个特征和标签的数据集,以便进行分类任务。

首先,我们对数据集进行了数据预处理,包括数据清洗、特征选择、特征变换等步骤,以确保数据的质量和适用性。

接着,我们将数据集划分为训练集和测试集,用训练集训练分类模型,并用测试集评估模型的性能。

在实验中,我们尝试了多种分类算法,包括决策树、支持向量机、朴素贝叶斯等。

通过对比不同算法的准确率、精确率、召回率和F1值等指标,我们评估了各个算法在该数据集上的表现。

实验结果显示,不同算法在不同数据集上表现出不同的性能,决策树算法在某些数据集上表现较好,而支持向量机在另一些数据集上表现更优秀。

此外,我们还进行了特征重要性分析,通过对特征的重要性进行排序,找出对分类任务最具有区分性的特征。

这有助于我们理解数据集的特点,并为进一步优化分类模型提供了指导。

综合实验结果,我们得出了一些结论和启示。

首先,不同的分类算法适用于不同的数据集和任务,需要根据具体情况选择合适的算法。

其次,特征选择和特征重要性分析对于提高分类模型的性能至关重要,需要充分利用数据挖掘技术进行特征工程。

最后,数据挖掘分类实验是一个迭代的过程,需要不断尝试和调整,以优化分类模型的性能。

通过本次数据挖掘分类实验报告,我们深入了解了数据挖掘分类的实验过程和方法,对数据挖掘技术有了更深入的理解,也为实际应用中的分类任务提供了一定的指导和启示。

希望本文能够对读者有所启发,促进数据挖掘领域的研究和实践。

数据挖掘分类实验详细报告

数据挖掘分类实验详细报告

数据挖掘分类实验详细报告一、引言数据挖掘是从大量数据中提取隐藏在其中的有价值信息的过程。

数据挖掘分类实验是数据挖掘领域中的一项重要任务,其目标是根据已有的数据样本,构建一个能够准确分类未知数据的分类模型。

本报告旨在详细描述数据挖掘分类实验的过程、方法和结果。

二、实验背景本次实验的数据集是一个关于电子商务的数据集,包含了一些与电子商务相关的特征和一个分类标签。

我们的任务是根据这些特征,预测一个电子商务网站上的用户是否会购买某个产品。

三、数据预处理在进行数据挖掘实验之前,我们需要对数据进行预处理。

首先,我们检查数据集是否存在缺失值或异常值。

对于缺失值,我们可以选择删除含有缺失值的样本,或者使用插补方法进行填充。

对于异常值,我们可以选择删除或者进行修正。

其次,我们对数据进行特征选择,选择与分类目标相关性较高的特征。

最后,我们对数据进行归一化处理,以消除不同特征之间的量纲差异。

四、特征工程特征工程是指根据领域知识和数据分析的结果,构建新的特征或者对原有特征进行转换,以提高分类模型的性能。

在本次实验中,我们根据电子商务领域的经验,构建了以下特征:1. 用户年龄:将用户的年龄分为青年、中年和老年三个年龄段,并进行独热编码。

2. 用户性别:将用户的性别进行独热编码。

3. 用户所在地区:将用户所在地区进行独热编码。

4. 用户购买历史:统计用户过去一段时间内的购买次数、购买金额等指标。

五、模型选择与训练在本次实验中,我们选择了三种常用的分类模型进行训练和比较:决策树、支持向量机和随机森林。

1. 决策树:决策树是一种基于树结构的分类模型,通过划分特征空间,将数据样本划分到不同的类别中。

2. 支持向量机:支持向量机是一种通过在特征空间中构建超平面,将不同类别的样本分开的分类模型。

3. 随机森林:随机森林是一种基于决策树的集成学习方法,通过构建多个决策树,最终根据投票结果进行分类。

我们将数据集划分为训练集和测试集,使用训练集对模型进行训练,使用测试集评估模型的性能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《数据挖掘分类实验报告》
信息安全科学与工程学院
1120362066 尹雪蓉数据挖掘分类过程
(1)数据分析介绍
本次实验为典型的分类实验,为了便于说明问题,弄清数据挖掘具体流程,我们小组选择了最经典的决策树算法进行具体挖掘实验。

(2)数据准备与预处理
在进行数据挖掘之前,我们首先要对需要挖掘的样本数据进行预处理,预处理包括以下步骤:
1、数据准备,格式统一。

将样本转化为等维的数据特征(特征提取),让所有的样
本具有相同数量的特征,同时兼顾特征的全面性和独立性
2、选择与类别相关的特征(特征选择)
3、建立数据训练集和测试集
4、对数据集进行数据清理
在本次实验中,我们选择了ILPD (Indian Liver Patient Dataset) 这个数据集,该数据集已经具有等维的数据特征,主要包括Age、Gender、TB、DB、Alkphos、Sgpt、Sgot、TP、ALB、A/G、classical,一共11个维度的数据特征,其中与分类类别相关的特征为classical,它的类别有1,2两个值。

详见下表:
本实验的主要思路是将该数据集分成训练集和测试集,对训练集进行训练生成模型,然后再根据模型对测试集进行预测。

数据集处理实验详细过程:
●CSV数据源处理
由于下载的原始数据集文件Indian Liver Patient Dataset (ILPD).csv(见下图)中间并不包含属性项,这不利于之后分类的实验操作,所以要对该文件进行处理,使用Notepad文件,手动将属性行添加到文件首行即可。

●平台数据集格式转换
在后面数据挖掘的实验过程中,我们需要借助开源数据挖掘平台工具软件weka,该平台使用的数据集格式为arff,因此为了便于实验,在这里我们要对csv文件进行格式转换,转换工具为weka自带工具。

转换过程为:
1、打开weka平台,点击”Simple CLI“,进入weka命令行界面,如下图所示:
2、输入命令将csv文件导成arff文件,如下图所示:
3、得到arff文件如下图所示:
内容如下:
建立数据训练集、校验集和测试集
通过统计数据信息,可知整个数据集带有classical标号的数据一共有583行,为了避免数据的过度拟合,我们要把数据训练集、校验集、测试集分开。

在本次实验中,我们的拆分
策略是训练集500行,校验集和测试集83行,由于数据集中有416行的classical标识为1,167行的classical标识为2,为了能在训练分类模型时有更加全面的信息,我们将167条classical标识为2与333行classical标识为1的数据全部作为模型训练集,而剩下的83条classical为1的数据将全部用于测试集,这是因为在校验的时候,两种类标号的数据作用区别不大,但是在训练数据模型是,需要更加全面的信息,特别是不同类标号的数据的合理比例对训练模型的质量有较大的影响。

在做预测测试之前,需要将测试集的分类标号去掉作为预测数据集。

数据训练集、校验集和测试集建立步骤:
1、复制原始数据集arff文件,作为总的训练数据集,文件名称改为build_model.arff。

如下图所示:
2、根据拆分策略,从原始数据集DataSet_original.arff文件中的数据里面,选取分类
标号为1的数据83作为校验数据集,该数据集文件名为validate_data.arff。

3、将剩下的DataSet_orginal.arff文件改名为train_data.arff
4、由于原始数据集都是有类标号的数据集,为了方便进行预测测试,我们将校验数
据集复制一份后,将分类标号去掉加入?,作为预测数据集。

如图所示:
数据清理
在进行数据搜集和整理的过程中,我们发现如果属性的类型为数值型的话,在做关联分析时将不能得到结果,因为关联分析无法处理数值型数据。

由于现实世界中数据大体上都是不完整,不一致的脏数据,无法直接进行数据挖掘或挖掘结果差强人意。

为了提高数据挖掘的质量,需要对数据进行预处理,预处理有多种方法:数据清理、数据集成、数据变换、数据归约等。

常用的数据清理主要分为两类:空缺值的处理和噪声数据处理。

空缺值处理主要是使用最可能的值填充空缺值,比如可以用回归、贝叶斯形式化方法工具或判定树归纳等确定空缺值。

这类方法依靠现有的数据信息来推测空缺值,使空缺值有更大的机会保持与其他属性之间的联系。

同时还可以用一个全局常量替换空缺值、使用属性的平均值填充空缺值或将所有元组按某些属性分类,然后用同一类中属性的平均值填充空缺值。

不过这些方法有局限性,当空缺值很多的情况下,这些方法的使用可能会误导挖掘结果;除了空缺值处理还有噪声数据处理,噪声是一个测量变量中的随机错误或偏差,包括错误的值或偏离期望的孤立点值。

常用分箱、回归、计算机检查和人工检查结合、聚类等方法进行噪音处理。

在本次试验中,我们对数据集进行了数据处理后使得需要分析的数据变为分类型,这样就可以关联分析得以顺利进行,在具体执行的过程中我们利用了weka平台自带的数据预处理库实现数据预处理。

具体实验过程见下文。

(3)实验过程
A、环境搭建
本实验的数据集选择Indian Liver Patient Dataset (ILPD),借助数据挖掘平台Weka3.6.9,编程环境为Eclipse + JDK7
1、数据集获取
选择Indian Liver Patient Dataset (ILPD)这个数据集,进入下载页面下载数据集
(详见下图)
2、Weka安装
下载Weka安装包weka-3-6-9-x64.exe,运行安装即可。

(如下图)安装界面:
安装完成:
Weka工作界面:
B、实验步骤
1、开发平台搭建
打开eclipse,点击File->New->Project…,新建Java Project工程,如下图所示:
新建一个java工程dataminingtest,配置build path将所需要的weka.jar和其它一些需要的jar包,导入该工程,如下图所示:
备注:由于调用weka算法时候可能会产生jar包依赖关系错误,需要额外加入一些jar包。

2、导入数据
将数据准备时的arff文件导入,数据打印出来后,如下图所示:
3、数据预处理
在本次试验中,我们使用weka的Filter作为数据预处理工具,该工具的一般流程是:实例化过滤器->传入过滤器参数->通过eFilter使用过滤器。

由于本实验采用的决策树J48算法的数据集需要离散化,故采用离散化过滤。

实现结果如下图所示:
过滤完成后的数据集变化情况如下图所示:
备注:由于最后一列classical的类型为Numeric,在weka平台上需要进行nominal类型转换。

转换方式也是使用Filter,效果如下图所示:
4、选择算法,建立模型
为了获取最优化的模型,需要对决策的参数进行配置,这里我们借助weka平台
通过修改树的实例/叶子节点数来获取最优的模型。

实验步骤如下所示:
1、打开weka软件平台,点击进入Explorer,选择open file…,打开train_data.arff
文件,如下图所示:
2、在Filter区域选择choose,在unsupervised节点下选择attribute下的
NumericToNominal与Discretize,选择后点击“Apply”,即可完成数据预处理,结果如下图所示:
3、点击进入classify页面,在classifier区域选择trees下的J48算法,Test Options
中选择cross-validation ,在Folds框里填上10,如下所示:
4、使用默认配置,点击start,得到结果如下图所示:
5、由结果可知,在默认配置下,分类的正确率为62.4%,为了获取最优化模型,
我们修改树的节点和实例数来进行测试,测试结果如下表所述:
从表格可知当实例数为20的时候,正确率最高,所以我们将该配置作为标准生成模型,模型生成方式为,在Result list区域,右键点击实例为20的那条记录,出现右键菜单,选择save model生成模型即可。

步骤如下所示:
(4)模型评估
为了评估该模型的正确性,我们使用测试集进行校验。

校验结果如下所示:
从预测结果来看,83个数据里面,只有4个值预测错误,其他皆预测正确,实际测试结果正确率为95.2%。

代码实现附录:1、数据导入:
2、数据离散化预处理:
3、数据类型转换
4、创建模型
5、导出模型
6、导入模型
7、数据预测。

相关文档
最新文档