压控振荡器

合集下载

压控振荡器的定义控振荡器工作原理及应用

压控振荡器的定义控振荡器工作原理及应用

压控振荡器的定义控振荡器工作原理及应用压控振荡器(Voltage Controlled Oscillator,VCO)是一种电子振荡器,它的振荡频率可以通过外部施加的电压进行控制。

VCO在电子设备中广泛应用于频率合成器、频率调制器、时钟源等领域。

VCO的工作原理如下:VCO的核心组件是一个电压控制的振荡电路,通常包含一个可变电容器或电感和运放或其他放大器。

这个电路根据控制电压的变化而变化,进而产生不同频率的输出信号。

最常见的VCO实现方式是利用电容变化来改变振荡频率。

当一个电压施加在可变电容上时,电容的值会发生变化,从而导致振荡频率的变化。

这种方式可以通过改变电压控制电容器的工作点来实现。

另一种实现方式是利用电感。

当电流通过电感时,会产生磁场,磁场的变化又导致电感的电流变化。

通过改变控制电压,可以改变电感上的电流,从而改变振荡频率。

VCO的应用非常广泛,在通信领域中,VCO经常用于频率合成器。

频率合成器通过将一个基准频率乘以一个整数倍数来产生期望的输出频率。

VCO作为频率合成器的核心部件,可以根据控制电压的变化实现多样化的输出频率。

VCO也常用于频率调制器中。

在调制过程中,VCO的频率会根据调制信号的变化而相应地发生调制。

这样一来,VCO可以将调制信号的信息嵌入到振荡信号中。

此外,VCO还被广泛应用于时钟源。

时钟源是计算机系统、通信系统、音频系统等电子设备中不可或缺的组成部分。

VCO可以根据控制电压的变化来调整时钟源的频率,从而满足不同系统的要求。

总结起来,VCO是一种通过控制电压来调整振荡频率的电子振荡器。

它通过改变电容或电感的工作状态,实现对振荡频率的调节。

VCO在频率合成器、频率调制器、时钟源等方面都起到重要作用,是现代电子设备中不可或缺的关键组件之一。

压控振荡器

压控振荡器

压控振荡器一.基本原理信号的频率取决于输入信号电压的大小,因此称为“压控振荡器”。

其它影响压控振荡器输出信号的参数还VCO(Voltage ControlledOscillator)(压控振荡器)是指输出信号的频率随着输入信号幅度的变化而发生相应变化的设备,它的工作原理可以通过公式(5-1)来描述。

(5-1)其中,u(t)表示输入信号,y(t)表示输出信号。

由于输入信号的频率取决与输入信号的电压的变化,因此称为“压控振荡器”。

其他影响压控振荡器输出信号的参数还有信号的幅度Ac ,振荡频率fc,输入信号灵敏度kc,以及初始相位。

压控振荡器的特性用输出角频率ω0与输入控制电压uc之间的关系曲线(图1)来表示。

图中,uc为零时的角频率ω0,0称为自由振荡角频率;曲线在ω0,0处的斜率K0称为控制灵敏度。

使振荡器的工作状态或振荡回路的元件参数受输入控制电压的控制,就可构成一个压控振荡器。

在通信或测量仪器中,输入控制电压是欲传输或欲测量的信号(调制信号)。

人们通常把压控振荡器称为调频器,用以产生调频信号。

在自动频率控制环路和锁相环环路中,输入控制电压是误差信号电压,压控振荡器是环路中的一个受控部件。

压控振荡器的类型有LC压控振荡器、RC压控振荡器和晶体压控振荡器。

对压控振荡器的技术要求主要有:频率稳定度好,控制灵敏度高,调频范围宽,频偏与控制电压成线性关系并宜于集成等。

晶体压控振荡器的频率稳定度高,但调频范围窄,RC压控振荡器的频率稳定度低而调频范围宽,LC 压控振荡器居二者之间。

在MATLAB中压控振荡器有两种:离散时间压控振荡器和连续时间压控振荡器,这两种压控振荡器的差别在于,前者对输入信号采用离散方式进行积分,而后者则采用连续积分。

本书主要讨论连续时间压控振荡器。

为了理解压控振荡器输出信号的频率与输入信号幅度之间的关系,对公式(5-1)进行变换,取输出信号的相角Δ为对输出信号的相角Δ求微分,得到输出信号的角频率ω和频率f分别为:ω=2πf c+2πk c u(t) (5-3)(5-4)从式(5-4)中可以清楚地看到,压控振荡器输出信号的频率f与输入信号幅度u(t)成正比。

压控振荡器

压控振荡器

压控振荡器压控振荡器(Voltage Controlled Oscillator,简称VCO)是一种电路,可以根据输入电压的变化而生成相应频率的信号。

VCO广泛应用于通信系统、雷达、无线电发射器等领域,是现代电子设备中不可或缺的组成部分。

方案一:基于电感-电容(LC)谐振电路的压控振荡器设计1.电路原理在LC谐振电路中,电感和电容的组合能够形成一个谐振回路。

当LC 电路中的电感和电容数值合适时,谐振电路会产生一个稳定的频率。

我们可以通过改变电容的值来改变谐振频率,从而实现压控振荡。

可将VCO分为两大模块,即振荡器电路和调谐电路。

振荡器电路:包括LC电路、放大器和反馈网络。

LC电路是谐振结构的核心,放大器用于提供振荡电路的增益,反馈网络将部分振荡输出信号输入到放大器的输入端。

2.电路实现首先,需要确定振荡器的工作频率范围和中心频率。

选择合适的电感和电容数值,使得振荡器在预期频率范围内正常工作。

接下来,设计放大器的增益和反馈网络的增益,以保证正反馈的存在,使振荡器能够自持振荡。

3.压控调谐(VCT)技术压控振荡器要能够实现频率的可调,需要采用压控调谐(Voltage Control Tuning,简称VCT)技术。

常见的VCT技术包括改变电容值、改变电感值和改变电源电压。

在本方案中,我们采用改变电容值的方法来实现压控调谐。

4.控制电路为了实现对电容值的控制,需要设计一个控制电路。

控制电路可以根据输入的电压信号来改变电容值,从而实现对振荡器频率的调节。

控制电路通常由一个比较器和一个电压-电容转换电路组成。

比较器将输入信号与参考电压进行比较,输出响应的电平控制电容值的改变。

5.特性和性能压控振荡器的性能指标包括频率稳定度、调谐范围、调谐灵敏度、输出功率等。

频率稳定度是指振荡器频率的稳定性,调谐范围是指振荡器的工作频率范围,调谐灵敏度是指输入电压变化与频率变化的关系,输出功率是指输出信号的幅值。

总结方案一是基于LC谐振电路的压控振荡器设计。

压控振荡器的指标

压控振荡器的指标

压控振荡器(VCO)的主要指标包括:
1. 频率:振荡器的输出信号的重复率,以赫兹(Hz)为单位,即每秒所包含的周期数。

频率稳定性是振荡器的基本性能指标之一,参考额定输出频率通常以百万分率(parts per million,ppm)或十亿分率(parts per billion,ppb)计。

2. 调谐范围:调节输出频率的变化范围,即振荡器的最大调谐频率和最小调谐频率的差值。

压控振荡器要有足够大的调谐范围才能满足输出频率达到所需要的值。

3. 调谐增益:即压控振荡器的灵敏度,是指单位的输入电压与输出频率的变化,一般用Kv表示,单位是Hz/V。

在实际应用上讲,压控器的灵敏度越高,噪声响应在控制线路上越强,结果干扰输出频率就越大,就会使压控振荡器的噪声性能降低。

所以需要寻找VCO的增益和噪声性能的平衡。

除此之外,压控振荡器的中心频率指的是频率调节范围的中间值,即振荡器频率的最大值和最小值的中间值,中心频率的大小取决于振荡器的结构和元器件参数,而且还随着工艺和温度相应改变。

以上内容仅供参考,如需了解更多信息,建议咨询专业人士。

压控振荡器

压控振荡器
延迟时间,实现对频率的控制 优点:无调谐回路,易于集成 缺点:频谱纯度不够好
射频通信电路
7.4.2 变容二极管压控振荡器
变容二极管——势垒电容随外加电压而变化 工作时的基本要点
① 二极管反向偏置,
外加电压变化时二极管应始终保持不导通
~
② 结电容
C j 与外加电压的变化规律
C j0
n
Cj
VD 1 VB
结果: 将晶体呈电感的范围从
fq ~ f p
fS ~ f p
则振荡器的可调频率范围 也相应展制带宽——允许控制电压变化的最大速率 (5)工作电压——振荡器工作电压和控制电压
(6)噪声——主要是相位噪声小
构成VCO的一般方法 ① LC振荡器——改变回路电抗元件值,实现频率控制 需用压控电抗元件 优点:带有选频回路,频谱较纯,相位噪声较小
② 多谐振荡器——用改变电容充放电电流大小或各级的
(VD 0)
射频通信电路
变容二极管压控振荡器典型电路举例
交流通路图
电路分析:
PNP管,电源+5V 偏置电阻: 4.7k ,16k ,3.3k 旁路电容: 0.01 F , 0.001 F
变容二极管控制电压 VC ( 正电压)
电路特征: ① 晶体管共基组态 ② 两只二极管串联 ③ 振荡频率由四个 电抗元件共同决定
射频通信电路
石英晶体压控振荡器 交流通路图
电路原理: ① 并联型晶体振荡器——晶体呈感性
② 晶体的负载电容为: C1 // C2 // C j
③ 控制电压 v c 改变 C j ,从而改变晶体振荡器的频率
射频通信电路
晶体压控振荡器的压控特点——可调频率变化范围很小 原因:晶体呈感性的区域( f q ~ f p )很小 展宽频率范围方法——串联电感

简述压控振荡器的原理

简述压控振荡器的原理

简述压控振荡器的原理压控振荡器(Voltage-Controlled Oscillator,简称VCO)是一种根据输入的电压信号来调整输出频率的电子设备。

它是现代电子领域中广泛应用的重要部件,被广泛用于通信系统、雷达、电视、射频和微波设备等领域。

压控振荡器的工作原理非常精妙,下面我们来生动、全面地介绍一下。

压控振荡器的工作原理是基于振荡器的自激振荡原理。

简单来说,压控振荡器通过输入的电压信号来改变其谐振回路的频率从而改变输出的频率。

在压控振荡器中,通常采用谐振回路作为振荡源,谐振回路由电感和电容构成。

当输入直流电压信号加到电容上时,会改变电容的等效电容值,从而改变谐振回路的频率。

具体来说,压控振荡器通常采用LC谐振回路或者RC谐振回路作为振荡源。

当谐振回路中的电感和电容组成的共振频率与输出频率一致时,谐振回路就会处于自激振荡状态,输出连续的高频信号。

而压控振荡器的关键是如何通过输入的电压信号来改变谐振回路的频率。

这里引入了一个关键的部件,即压控元件。

压控元件通常采用变容二极管或者压控电容二极管。

当电压信号加到变容二极管上时,将改变其电容值,进而改变谐振回路的频率。

过高的电压信号会使变容二极管的电容值变小,频率也随之增加。

而过低的电压信号则会使变容二极管的电容值变大,频率也随之减小。

除了压控元件,压控振荡器还需要一个控制电路来将输入的电压信号转化成与谐振回路频率相关的电压。

控制电路通常由运算放大器、滤波器和反馈网络组成。

运算放大器会将输入的电压信号放大并传递给谐振回路。

滤波器则起到滤除杂散信号的作用,确保输出的信号纯净。

反馈网络则用于将输出的高频信号反馈到谐振回路,维持振荡器持续振荡。

综上所述,压控振荡器的工作原理是通过压控元件和控制电路来改变谐振回路的频率,从而调整输出的频率。

压控振荡器在现代电子通信领域有着广泛的应用,例如在射频和微波通信系统中,压控振荡器常常被用作频率合成器,产生稳定、高精度的频率信号。

压控振荡器实验报告

压控振荡器实验报告

压控振荡器实验报告
本次实验是压控振荡器实验。

压控振荡器是一种能够通过改变外部电压控制输出频率
的振荡器,应用广泛,例如电子钟、电视调谐器、微波接收机等领域。

本实验旨在了解压
控振荡器的基本原理,掌握其工作方式与性能特点。

实验仪器:
1.压控振荡器电路板
2.示波器
3.万用表
4.直流电源
实验步骤:
1. 将压控振荡器电路板连接至电源,注意正确接线。

2. 将示波器接入电路中,测量输出波形频率和幅值,并记录数据。

实验结果:
当外部电压变化时,输出波形的频率会相应改变,这是因为压控振荡器中的电压控制
振荡器作用。

当外加电压增加,振荡器频率也增加。

输出波形的幅值也受电压变化的影响,当外接电压增加时,输出波形幅值增加。

更改电容和电阻值也会影响输出波形频率和幅值,此时需要重新调整电路参数以达到所需频率和幅值。

实验分析:
本次实验通过实际操作和测量,从理论上验证了压控振荡器的工作原理。

当外接电压
变化时,输出波形频率和幅值随之改变。

因此,在实际应用中,可以通过改变外部电压来
控制振荡器的频率和幅值,进而实现多种信号的产生和调节。

在更改电容和电阻值时,需要根据实际情况选择合适的值以达到所需的输出波形效果,这需要对振荡器的特性有一定的了解和掌握。

总结:
本次实验使我对压控振荡器的工作原理有了深刻的理解,同时也掌握了该器件的基本
特性和应用场景。

此外,通过实际的操作和测量,也提高了我的实验技能和实际应用能力,这对我今后的学习和工作都将有很大的帮助。

压控振荡器(VCO)

压控振荡器(VCO)

压控振荡器(VCO)一应用范围用于各种发射机载波源、扩频通讯载波源或作为混频器本振源。

二基本工作原理利用变容管结电容Cj随反向偏置电压VT变化而变化的特点(VT=0V时Cj是最大值,一般变容管VT落在2V-8V压间,Cj呈线性变化,VT在8-10V则一般为非线性变化,如图1所示,VT在10-20V时,非线性十分明显),结合低噪声振荡电路设计制作成为振荡器,当改变变容管的控制电压,振荡器振荡频率随之改变,这样的振荡器称作压控振荡器(VCO)。

压控振荡器的调谐电压VT要针对所要求的产品类别及典型应用环境(例如用户提供调谐要求,在锁相环使用中泵源提供的输出控制电压范围等)来选择或设计,不同的压控振荡器,对调谐电压VT有不同的要求,一般而言,对调谐线性有较高要求者,VT选在1-10V,对宽频带调谐时,VT则多选择1-20V或1-24V。

图1为变容二极管的V-C特性曲线。

(V)T图1变容二极管的V-C特性曲线三压控振荡器的基本参数1 工作频率:规定调谐电压范围内的频率范围称作工作频率,通常单位为“MHz”或“GHz”。

2 输出功率:在工作频段内输出功率标称值,用Po表示。

通常单位为“dBmw”。

3 输出功率平稳度:指在输出振荡频率范围内,功率波动最大值,用△P表示,通常单位为“dBmw”。

4 调谐灵敏度:定义为调谐电压每变化1V时,引起振荡频率的变化量,用MHz/ △VT表示,在线性区,灵敏度最高,在非线性区灵敏度降低。

5 谐波抑制:定义在测试频点,二次谐波抑制=10Log(P基波/P谐波)(dBmw)。

6 推频系数:定义为供电电压每变化1V时,引起的测试频点振荡频率的变化量,用MHz/V表示。

7 相位噪声:可以表述为,由于寄生寄相引起的杂散噪声频谱,在偏移主振f0为fm的带内,各杂散能量的总和按fin平均值+15f0点频谱能量之比,单位为dBC/Hz;相位噪声特点是频谱能量集中在f0附近,因此fm越小,相噪测量值就越大,目前测量相噪选定的fm有离F0 1KHz、10KHz和100KHz几种,根据产品特性作相应规定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

压控振荡器
3(15 压控振荡器
一. 实验目的
1. 了解压控振荡器的组成、工作原理。

2. 进一步掌握三角波、方波与压控振荡器之间的关系。

3. 掌握压控振荡器的基本参数指标及测试方法。

二. 设计原理
电压控制振荡器简称为压控振荡器,通常由VCO(Voltage Controlled Oscillator)表示。

是一种将电平变换为相应频率的脉冲变换电路,或者说是输出脉冲频率与输入信号电平成比例的电路。

它被广泛地应用在自动控制,自动测量与检测等技术领域。

压控振荡器的控制电压可以有不同的输入方式。

如用直流电压作为控制电压,电路可制成频率调节十分方便的信号源;用正弦电压作为控制电压,电路就成为调频振荡器;而用锯齿电压作为控制电压,电路将成为扫频振荡器。

压控振荡器由控制部分、方波、三角波发生器组成框图如下:
反相器 1
模拟方波、三角波发生器三角波方波开关
反相器 2
3-15-1
1. 方波、三角波发生器
我们知道,方波的产生有很多种方法,而用运算放大器的非线性应用电路--- 电压比较器是一种产生方波的最简单的电路之一。

而三角波可以通过方波信号积
分得到。

电路如图3.15.2所示:
C
8
RR3A1
A2
R2
R1R’Uz
3-15-2
8
设t=0,Uc=0,Uo1=+Uz,则Uo=-Uc=0,运放A1的同相端对地电压为:
URURo2z1U+’= ,R,RR,R1212
此时,Uo1通过R向C恒流充电,Uc线性上升,Uo线性下降,则U+’下降,由于运放反相端接地,因此当U+’下降略小于0时,A1翻转,Uo1跳变为-Uz 见土
3.7.2中t=t1时的波形。

根据式3.7.1可知,此时Uo略小于-R1×U2/R2。

在t=t1时,Uc=-Uo=R1×U2/R2,Uo1=-Uz.运放A1的同相端对地电压为:
UzRUoR12U,',,, R,RR,R1212
此时,电容C恒流放电,Uc线性下降,Uo线性上升,则U+’也上升。

当U+’上升到略大于0时,A1翻转,Uo跳变为Uz,如此周而复始,就可在Uo端输出幅
度为R1×U2/R2的三角波。

同时在Uo1端得到幅度为Uz的方波。

T/2T/2
tt12
+(R/R)U12z
-(R/R)U12z
图 3-15-3
在图3.15.3中,t1,t2期间,电容C上的电压变化量为
2R1c(,Uz)RRc,Uc21,,2Rc 放电时间T1=t2-t1为 UicR22,R
t2,t3期间,电容C恒流充电,同理可得放电时间T2=t3-t2,与充电为Rc成正
R1Rc比T2=2 R2
R14Rc T=T1+T2= (3.7.2) R2
R12 f=,T4RcR1
2(锯齿波
若上升时间与下降时间不同,一般下降时间远小于上升时间,如图3.15.4 RCD4
8R3
R
R’R2R1
图. 3-15-4
只要R4远小于R,就可得到如图所示的锯齿波
8
Uo
Uz
-Uz
(R//R)U12z
(-R//R)U12z
3.15.5
3(压控振荡器
(1) 工作原理
C
R
8R3
U-Uii
R2
UzR1
3-15-6 压控振荡器的原理图
如前所述三角波发生器的振荡频率与积分器的电容充放电时间有关。

而充放8电时间与放电电流大小有关,ic=?Uz/R,因此改变Uz大小可以调节振荡频率。

假如积分器的输入端不与迟滞比较器的输出端相连,开关的另两个触点分别与?Ui之间的转接是受控于迟滞比较器的输出电压,当其输出电压为-Uz,则开关S 接向+Ui。

此时积分器输出的三角波,迟滞比较器输出方波的频率均受输入电压Ui 的控制。

典型电路如图3.15.7
R8
方波输出R8三角波输出RU1o88UUioD3AC3R7Uo3
RR2AR14
AR82DzR8R5R4D4AR4fUo4
R6
8
3-15-7 由集成运算放大器组成压控方波-三角波产生电路
由图3.13.1可知,如果除去D3、D4左边的部分,则图中A1、A2构成的为一8
方波-三角波产生电路。

由于电路中电容C的充放电时间相等,因此求出电容C 的放电时间即可得到电路的振荡周期,从而得到振荡频率。

电容的放电电流为1,t2放电期间,电容上的电压变化量为,由此可得放ic=-Ui/R,在t
R21cUz(,)RcRUz2cUc,R21电时间T1=t2-t1为: T,,,1UiicRzUi,R
RcRUz41因此电路的振荡周期为:TT ,2,1RUi2
R12fUi相应的振荡频率为;,, T4RCRUz1
由上式可知,Ui改变时,f随Ui的改变而成正比例地变化,但不影响三角波
和方波的幅值。

如果Ui为直流电压,则电路振荡频率的调节十分容易;当Ui的频率远小于f的正弦信号,则压控振荡器就成为调频振荡器,它能输出抗干扰能力很强的调频波。

图中A3,Au是两个互相串联的反相器,它们的输出电压相等,相位相反,即有Uo4=-Uo3=Ui图中D2、D4状态受A2输出控制,当A2输出高电位时,其值大于
Uo4(ui),D3截止,D4导通,积分器A1对Uo4(ui)积分。

反之,当A2输出为低电位时,其值小于Uo3(-ui), 则D3导通,D4截止,积分器A1对Uo3(-ui)积分。

D3、
D4在电路中起一个开关的作用。

R2Uo1m,,Uom方波输出幅值为?Uz,三角波输出幅度 R2
当改变控制电压Ui时,三角波将上升,下降的斜率随之变化,即振荡频率随
之变化,从而实现电压控制振荡频率的目的。

TR1UiT41Uo1,Uo,Uidt,由图可知: ,0RRC4RC2
RUi1f,即振荡频率 4RRcUom2
(2)。

参数确定与元件选择
1)。

确定积分时间常数R、C
由式(3.13.6)可知,振荡频率f与积分电容C、积分电阻R的取值有关,当电容C或电阻R 增大时,振荡频率f将随之减小。

在进行电路设计时,我们可以先设定一个C值,然后再选取R.
2)。

确定正反馈回路电阻R1、R2
由式(3.13.4)和(3.13.6) 可知,正反馈回路电阻R1与R2的取值不但与输出三角波的峰值有关,而且与振荡频率的大小有关。

因此在选取R1、R2的阻值时,应同时兼顾二方面的因素;首先根据设计所要求的三角波的输出幅度和运算放大器的最大输出电压Uom由式(3.13.4)式确定R1/R2的比值,然后再选定R1和R2 ,最后应将各参数的设定值代入(3.13.6),复算是否满足设计要求。

3)。

R6、R7、R8的确定
3、A4为反相器,故R6=R7=R8/2. 由于A
三(设计任务
1( 设计一压控振荡器
可控电压范围0,10V,频率200Hz,10kHz.
方波Vom=?6V.
三角波Vom=?3V.
2( 提高题
若在上题基础上,需输出一正弦波,频率范围,输出电压大小与三角波相同。

四(实验步骤
1(根据设计电路,连接好元器件。

2(示波器观察输出波形,并调节输入信号,输出信号频率应随输入信号的变化而
变化。

3( 自拟输入电压测试点,记录对应输出波形频率、幅度。

五(实验报告要求1( 绘出实验电路图。

简要叙述电路工作原理。

2( 整理实验数据,并对实验数据进行误差分析。

3( 绘出实验电压/频率特性曲线。

4( 总结实验过程中的失误与经验。

五(思考题
1( 若控制电压0,5V间变化,输出电压f=200Hz,10kHz电路如何调节, 2( 输出频率能否调得过低(如零伏),
六(实验设备及元器件
仪器
双踪示波器一台
直流稳压电源一台
三用表一只
元器件
通用运算放大器 2只
8V稳压管 2只
电阻、电容若干。

相关文档
最新文档