刚体平面运动瞬心法、加速度(课堂PPT)

合集下载

理论力学06_4刚体平面运动_加速度

理论力学06_4刚体平面运动_加速度

§6.3* 平面运动刚体上点的加速度由于平面运动可以看成是随同基点的牵连平移与绕基点的相对转动的合成运动,于是图形上任一点的加速度可以由加速度合成定理求出。

设已知某瞬时图形内A 点的加速度a A ,图形的角速度为ω,角加速度为α,如图6-13所示。

以A 点为基点,分析图形上任意一点B 的加速度a B 。

因为牵连运动为动坐标系随同基点的平移,故牵连加速度a e =a A 。

相对运动是点B 绕基点A 的转动,故相对加速度a r =a BA ,其中a BA 是点B 绕基点A 的转动加速度。

由式 (5.3.7)可得图6-13 加速度分析的基点法 α (6.3.1) BA A B αα+=由于B 点绕基点A 转动的加速度包括切向加速度和法向加速度a ,故式(6.3.1)可写为t BA a n BAa (6.3.2) n t BA BA A B a a a ++=即平面图形上任意一点的加速度,等于基点的加速度与该点绕基点转动的切向加速度和法向加速度的矢量和。

当基点A 和所求点B 均作曲线运动时,它们的加速度也应分解为切向加速度和法向加速度的矢量和,因此,式(6.3.2)可表示为(6.3.3)n t n t n t BA BA A A B B a a a a a a +++=+在式(6.3.3)中,相对切向加速度与点A 和B 连线方向垂直,相对法向加速度沿点A 和B连线方向从B 指向A ;仅当点A 和B 的运动轨迹已知时,才可以确定点A 和B 的切向加速度a 和及法向加速度和a 。

t BA a n BA a t A t B a n A a n B 在应用式(6.3.2)或(6.3.3)计算平面图形上各点的加速度时,只能求解矢量表达式中的两个要素。

因此在解题时,要注意分析所求问题是否可解。

当问题可解时,将式(6.3.2)或(6.3.3)在平面直角坐标系上投影,即可由两个代数方程联立求得所需的未知量。

例6.3-2:半径为R 的车轮沿直线滚动,某瞬时轮心O 点的速度为v O ,加速度为a O ,如图a 所示。

理论力学10刚体的平面运动

理论力学10刚体的平面运动

vB = v A + vBA
a a ? a
VB VBA
大小 ? 方向 a
B VA
v B = v A ctg φ且 v BA
vA = sin φ
v BA = AB ⋅ ω AB v BA vA ∴ω = = l l sin φ
φ VA
ω A x
14
[例2] 图示机构 端以速度 A沿X轴负向运动,AB=l; 例 图示机构A端以速度 端以速度V 轴负向运动, 轴负向运动 求B端的速度? 端的速度? 端的速度 解:1)分析AB;2)分析A,B两点的速度 在AB直线上的投影相等,可以得到: y B
行移动 刚体简单运动 平行移动 定轴转动 定轴转动 刚体复杂运动 刚体的平面运动
平动 合成? 合成? 转动
刚体平面运动的分解 本章分析 平面运动刚体的角速度 平面运动刚体各点的速度 平面运动刚体各点的速度
1
第十章 刚体的平面运动
§10–1 刚体平面运动的概述 §10–2 平面运动分解为平动和转动 · 刚体的平面运动方程 §10–3 平面图形内各点的速度· 速度投影定理 速度瞬心 §10–4 平面图形内各点的加速度 · 加速度瞬心的概念
20
5.几种确定速度瞬心位置的方法 ①已知图形上一点的速度v A 和图形角速度ω, 可以确定速度瞬心的位置.(P点)
AP = vA , AP⊥v A ,且P在v A 顺ω转向绕A点 ω
转90º的方向一侧. ②已知一平面图形在固定面上作无滑动的滚 动, 则图形与固定面的接触点P为速度瞬 心.
21
③已知某瞬间平面图形上A,B两点速度 v A ,v B 的方向,且 v A 不平行 v B 。 过A , B两点分别作速度 v A ,v B的垂线,交点 P即为该瞬间的速度瞬心。 ④ 已知某瞬时图形上A ,B两点速度 v A , v B 大小,且 v A ⊥AB, vB ⊥AB v A − vB (a) v A 与vB 同向, ω = AB v A + vB (b) v A 与vB 反向, ω = AB 注意:交点可能在刚体的外部) (注意:交点转动· 刚体的平面运动方程

理论力学课件-刚体平面运动

理论力学课件-刚体平面运动

作速度 vA、vB的垂线,交点P即为该瞬时的
速度瞬心。
③ 已知某瞬时图形上两点A 、B 的速度 vA vB且 ⊥连线 AB, 则连线 AB与速度矢 vA、vB 端点连线的交点P即速度瞬心。 (a)
vA vB (a) 若vA 与vB 同向,则 AB
v A vB (b) 若v A 与vB 反向, 则 AB
但各点的加速度并不相等。 设匀角速度为,则 aB aB n AB 2 () 而 ac 的方向沿AC,故
aB ac ,瞬时平动与平动不同。
4. 速度瞬心法 利用速度瞬心求平面图形上点的速度的方法,称速度瞬心法。 平面图形任一瞬时的运动可以视为绕速度瞬心的瞬时转动, 故速度瞬心又称为平面图形的瞬时转动中心。 若P点为速度瞬心,则任意一点A的速度大小为 vA AP , 方向 AP,指向与 一致。 5. 注意的问题 ① 速度瞬心在平面图形上的位置不是固定的,而是随时间 不断变化的。在任一瞬时是唯一存在的。 ② 速度瞬心处速度为零,但加速度不一定为零,不同于定轴 转动。 ③ 刚体作瞬时平动时,虽然各点速度相同,但各点加速度 不一定相同,不同于刚体作平动。
vB v A / sin
在B点做 速度平行四边形,如图示。
l / sin 45 2l ()
vBA vActg l ctg45 l
AB vBA / AB l / l (

根据速度投影定理 vB AB vA AB vB sin vA vB vA / sin
n 其中 aa aB , ae aA , ar aBA aBA aBA
于是
aB a A aBA aBA

n
aB a A aBA aBA n 其中:aBA AB ,方向 AB,指向与 一致; aBA n AB 2,方向沿AB,指向A点。

7刚体的平面运动

7刚体的平面运动

7.2 求平面图形内各点速度的基点法 例题
例7-1 在图所示的曲柄连杆机构中,曲柄OA长r,连
杆AB长l,曲柄以匀角速度转动,当OA与铅垂线的 夹角 = 45时,OA正好与AB垂直,试求此瞬时AB杆
的角速度、AB杆中点C的速度及滑块B的速度。
返回首页
7.2 求平面图形内各点速度的基点法
选速度已知的点A为基点
而vDA =II·r2。
O
vDA
I
所以
II

vDA r2
0 (r1 r2 )
r2
以A为基点, 分析点B的速度。 vB vA vBA
II

vDA r2

0 (r1 r2 )
r2
vBA II BA 0 (r1 r2 ) vA
vBA与vA垂直且相等, 点B的速度
返回首页
7.3 求平面图形内各点速度的瞬心法 7.3.2 速度瞬心法
几点讨论
每瞬时平面图形上都存在唯一的速度瞬心。它可 位于平面图形之内,也可位于图形的延伸部分。 瞬心只是瞬时不动。在不同的瞬时,图形具有不 同的速度瞬心。即速度瞬心的速度等于零,加速度 并不等于零。 平面图形在其自身平面内的运动,也可以看成是 绕一系列的速度瞬心的转动。
返回首页
8.1 刚体平面运动的运动方程 绕基点转动的特点
基点不同转角相同
B
1 2
A
ω1 ω2
B
B

A
A
1 2
结论:任意瞬时,平面图形绕其平面内任意基 点转动的角速度与角加速度都相同。
返回首页
7.1 刚体平面运动的运动方程
讨论
选择不同的基点,平面图形随同基点平移的速度和 加速度不相同。 相对基点转动的角速度、角加速度与基点的选择无 关。于是可以直接称为平面运动的角速度和角加速度 今后标注平面图形的角速度和角加速度时,只需注 明它是哪个刚体的,不必注明它是相对于哪个基点。

用瞬心法求平面运动刚体上各点的加速度

用瞬心法求平面运动刚体上各点的加速度

在 工 程 应 用 中 经 常 要 对 研 究 对 象 进 行 加 速 度 和受 力 分
有 向线 段 A B与 A点 加 速度 a 的夹 角 为 :
仅=a c g rt :a c g r t 。
析 。 体 作平 动 时 , 体 上 的各 点 加速 度 相 等 , 以 参照 速 度 刚 刚 可
A 它们 的 交 点就 是 加 速度 瞬 心 C 见 图 5 。 D, ( )
4、 结论
加 速 度 瞬 心 已知 的 平 面 运 动 的 刚 体 , 用 ( ) ( ) 式 利 1 、2 两 求 刚 体 上 任 意 一 点 的 瞬 时 加 速 度 的 方 法 就 是 本 文 介 绍 的 新 的瞬 时 加 速度 中心法 。 简称 加 速 度瞬 心 法 。
江西 广播 电视 大 学学 报
20 0 8年 第 4期
用瞬心法求平面运动刚体上各点的加速度
付 国 清
( 春 广 播 电视 大 学 江 西 宜 春 宜 36 0 ) 3 0 2

要 : 求 解 平 面运 动 刚 体 上 各 点加 速 度 时 。 在 使 用的 力 学教 材 只讲 授 了加速 度 基 点 法 ( 式 法 ) 本 在 现 公 ,
文介 绍 一 种 简单 方便 快 速 的加 速 度 瞬 心 法 ( 解 法 ) 图 。 关键 词 :平 面运 动 ; 动 分析 ; 速 度 瞬 心 法 运 加
中 图分 类 号 : 6 。 G 45
文 献标 识 码 : A
文章 编 号 :0 8 3 3 (0 8 0 — 1 7 0 10 — 57 2 0 )4 0 0 — 2
‘ 口. . , - 0
. ‘ =一 。 .C .
【 稿 日期 】20 — 9 1 收 o80— 8

理论力学第九章刚体的平面运动

理论力学第九章刚体的平面运动

O 基点
转角
基点的选取是任意的,平面图形的位置可由O’点 坐标及直线O’M与x’的夹角φ 完全确定。 基点的选择不同,其运动方程9-1a不同,平面图形随基 点平移的速度和加速度也不同。但平面图形绕不同基 点转动的角速度和角加速度却完全相同。证明如下
f (t ) f (t ) 3 3
结 论
刚体的平面运动可以简化为平面图形S 在其自身平面L上的运动。
6
2、运动分析
思考
刚体平面运动是复杂运动,考虑是否可以用 简单运动合成来分析?
Oxy 平移坐标系(动系) 平面运动=随 Oxy 的平移+绕 O 点的转动
=
+
7
3 运动方程
xO f1 t 9-1a yO f 2 t f3 t 9-1b

vB AB = vA
OA

vD
vB
vB
cos30 2 CD作定轴转动(C)
0.2309 m s
vE
vA
vB vD CD 3vB 0.6928 m s CB

vD vE DE = vD ,vE cos 30 vD , vE cos 30 0.8 m s
第九章 刚体的平面运动
本章重点:刚体平面运动的基本概念,求平面图形上各 点的速度与加速度的基点法,以及求速度的 速度投影法和瞬心法,运动学的综合应用。
1
刚体平面运动举例:行星齿轮中小齿轮运动情况
2
车轮运动情况
3
观察曲柄滑块机构中连杆AB的运动情况
4
§ 9-1
1、概念
刚体平面运动的概述和运动分解
30

第9章 刚体的平面运动

第9章 刚体的平面运动

例9-1 AB长l ,其两端在直角墙面上滑动。已知 v A 、 ,AM=b 。 求B点和M点的速度、AB的角速度。
解:以A为基点,研究 B点的速度。
v B v A v BA
B
v BA v A cos θ v B v A tan
vBA
vA

v BA l v A
l cos
vA A
A
vA
vB
B
例9-2 曲柄OA的角速度为 ,AB=BC=BD= l ,OA= r 求滑块C的速度。 vA 解: 杆AB、BC为平面运动
v A r
AB杆:
v A cos v B cos
vB cos v A cos
O
A D C
h


对 速 度 瞬 心 的 说 明
刚体作平面运动时,在每一瞬时,图形内(或与图形固结的 扩展平面内)必有一点 成为速度瞬心;但在不同的 瞬时, 速度瞬心的位置是不同的 。——速度瞬心的瞬时性
每一瞬时,平面图形的运动都可看成为绕速度瞬心的瞬时转动
n=6 600
t T 6
n=12 300
t T 12
平面图形相对于任意基点处的平动参考系,其转动运动都是一 样的,角速度、角加速度都是共同的,无须标明绕哪一点转动 或选哪一点为基点。因此,绕任意点转动的角速度、角加速度 就是平面图形的角速度、角加速度。
§9-2 求平面图形上各点速度的基点法
v M (v a )
一、基点法
动点: M结构中的平面运动
例如:基础的沉降造成了结构的移动
C’
C
A
B (B’)
A’
二 、刚体平面运动的简化

第八章:刚体的平面运动

第八章:刚体的平面运动

y
w
M
O
A
B
vA
x
y vMD vM
M
vD O A
D
w vD B
1、求vM
vD= vA= 2m/s vA 基点:D点 x
vMD MD w 2rw 2.12 m S
vM vVM VD O
w VD B
vMD 2.12 m S
vM vM2 x vM2 y 3.8 m
B
C
A II wII
D
wO
O
I
vA wO OA wO (r1 r2 )
分析两轮接触点D
vD=0
vD vA vDA
0 vA vDA
vDA=vA=wO(r1+r2)
wII
vDA DA
wO (r1
r2
r2 )
B
C
vA A II wII
vA D
wO
vDA
O
I
以A为基点,分析点B的速度。
第八章 刚体的平面运动
§8–1 刚体平面运动的概述和运动分解 §8–2 求图形内各点速度的基点法 §8–3 求平面图形内各点速度的瞬心法 §8–4 用基点法求平面图形内各点的加速度 §8–5 运动学综合应用
注重学习分析问题的思想和方法
刚体的平面运动
• 重点 • 刚体平面运动的分解; • 熟练应用各种方法求平面图形上任一 点的速度。 • 求平面图形上任一点的加速度。
3、刚体绕基点转动的角速度ω和角加速度α是刚体自 身的运动量 与基点的选择无关。
注意:
虽然基点可任意选取
选取运动情况已知的点作为基点。
§8-2 求图形内各点速度的基点法
一.基点法
va ve vr
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Chapter 15 Kinematics of Rigid Bodies
2.速度瞬心的推导过程
平面图形S,某瞬时其上一点A速度v A , 图形角速度w,沿v A 方向取半直线AL, 然后
顺w 的转向转90o至AL'的位置,在AL'上取长
度 APvA/w 则: vPvAvPA
w v P A A P v A ,方 P ,恰 向 A v A 反 与 .所 向 以
合成
基 点
绕基点的转动
w、e与
基点无关
运动规律与基 点的选择有关
运动规律与基 点的选择无关
任意选取,通常选取运动情况已知的点作为基点
Chapter 15 Kinematics of Rigid Bodies 3. General plane motion 刚体的平面运动 再例如: 平面图形S在t 时间内从位置I运动到位置II
d d t 1 d d t 2 , 1 2
Chapter 15 Kinematics of Rigid Bodies
w AB
45o
30o
Chapter 15 Kinematics of Rigid Bodies
Method of relative velocity
Page 24
R RO r
Chapter 15 Kinematics of Rigid Bodies
刚体复合运动,基点法的回顾
Chapter 15 Kinematics of Rigid Bodies 3. General plane motion 刚体的平面运动 刚体的平面运动
分解
随基点的平移
平移的速度 和加速度与 基点有关
①以A为基点: 随基点A平移到A'B''后, 绕基点转 1角到A'B';
② 以B为基点: 随基点B平移到A''B'后, 绕基点转 2角到A'B'。
图中看出:AB A'B'' A''B' ,12 ;于是有
ww wwee l i m 1 l i m 2
t 0 t t 0 t
1 2 ;
Chapter 15 Kinematics of Rigid Bodies
(b) Instant center for velocities 瞬心法
The instant center for velocities of a body undergoing plane motion is defined to be the point that has zero velocity at the instant under consideration. This point may be either in a body or outside the body (in the "body extended"). It is often convenient to use the instant center of the body in computing the velocities of points in the body.
(2.6a) (2.6b)
这里 rA/O and rB/O 是A点和B点相对于O点的相对位置向量 Fig. (b).
Chapter 15 Kinematics of Rigid Bodies
We now show that point O is the instant center—that is, that the
Chapter 15 Kinematics of Rigid Bodies
In order to find the instant center for velocities, we construct a line through A that is perpendicular to vA, and a line though B that is perpendicular to vB. These two lines will intersect at a point labeled O in the figure. If point O does not lie in the body, we simply imagine that the body is enlarged to include it, the expanded body being called the body extended
vP 0
因此,可以证明只要角速度w不等于零,
在垂线AL‘总会有一点P,这点的瞬时速度等于零。
Chapter 15 Kinematics of Rigid Bodies
为了找到瞬心,我们做一条直线垂直于速度VA, 另一条直线垂直于速度VB,在图中可看出,两条 直线交汇于一点O,O点便是瞬心。如果O点不位于 刚体的形状当中,我们假设刚体足够大可以包容下 改点,这种情况就叫做Body extended.
Chapter 15 Kinematics of Rigid Bodies
图中可以看出O点为瞬心,且该点的速度为零。 因为 A, B, and O 三点都位于同一个刚体上, (或者刚体外or body extended), 所以我们可以得到以下公式
vAvOωrA/O
vBvOωrB/O
vAωrA/O vB ωrB/O
vPvOvrvOvP O
dr dr ds dt ds dt
lim r
s
vPvOwr
drv wr 确定速度方向?
dt
Y0 Y vr ωr
ωr
O
S vO
P vO
X
结论:平面图形内任一点的速度O0等于基点的速度和该点X0随图形nematics of Rigid Bodies
Instant center for velocities 速度瞬心法
Chapter 15 Kinematics of Rigid Bodies
(b) Instant center for velocities 瞬心法(P26)
概念: 即在某一瞬时必唯一存在一点速度等于零,该点称 为平面图形在该瞬时的瞬时速度中心,简称速度瞬心instant center。该点可位于刚体内或者刚体外body extended,用瞬 心法可以更方便的求解速度问题,但是不使用于加速度的计 算。
相关文档
最新文档