轧制厚度及板型控制

合集下载

轧钢机的弹性变形、轧件厚度及板形控制

轧钢机的弹性变形、轧件厚度及板形控制

1、基本功能和类型 一般称之为板厚自动控制(AGC)系统(Automatic Gauge Control),它包括: 测厚部份 检测轧件的实际厚度 厚度比较及调节系统 与设定值比较得出厚差δh,经计算后得出压下调节量δS。 辊缝调节 根据实际测出的压下量变化△S与计算得出的δS 值进行比较,输出电流信号,使液压侗服阀动作,完成辊缝的调节。 轧件变形区部份 这是厚度控制的对象,也是闭环控制系统中的一环。 根据轧件的测厚方法,厚度AGC系统可分为三种类型: 1)直接测厚的反馈式AGC。由测厚仪直接测得轧机出口的轧件厚度h,与设定值比较后得出偏差δh ,将此反馈给系统变换为辊缝调节量δS ,使压下装置移动相应的值以消除厚差δh 。
α=1,K=∞ 全补偿 α>0 ∞>K>C 硬特性(部份补偿) α=0,K=C 恒原始辊缝控制 不补偿 α>-∞,C>K>0,软特性(反方向部份补偿) α= - ∞ ,K=0,△P =0 恒压力控制(反方向全补偿)
以上控制方式的关系曲线见图示。同时也可以用P-H图表示。
一般在成品机架上为保持出口板厚不变,采用硬特性。而在平整机上,采用恒压力控制保持压力波动为零,使其出口板形良好,同时消除轧辊偏心对板厚的影响。
在压力反馈回路中,给出不同的辊缝调节系数Cp ,就能实现各种控制特性的厚度控制。如果将位置反馈回路断开,只是将轧制力P与给定的轧制力P0相比较,使系统保持P= P0,这就实现了恒压力控制。
从以上分析可知,提高机座的刚度系数C可以减小工作机座的弹性变形从而提高板厚精度。但是刚度的提高是有限的,完全依靠机座刚度系数C的提高来达到板厚精度是不可能实现的。必须通过轧机的板厚自动控制系统,可对板厚变化进行补偿实现高精度轧制。
其物理意义为单位板厚变化所对应的轧制力变化。当厚度变化为零时,这时当量刚度K为∞。以下用弹跳方程来分析实现这一过程的原理。

轧制工艺过程控制原理与方法

轧制工艺过程控制原理与方法

轧机刚度可变的基本方 程:
h h x P C P
Km
Km
P P Km KE
1C
h -轧辊位置补偿之后的带钢轧出厚度偏差; C-轧辊位置补偿系数; KE-等效的轧机刚度系数; x-轧辊位1-104 Davy-Loewy带钢张力控制系统 轧机;2-张力计;3-液压缸位置;4-液压缸;5-张力偏差;
P金 属F(的B,压R,力H方, h程, f:,T, s )
塑性曲线B
金属的压力方程
曲线B的斜率代表轧件塑性 的塑性刚度M :
M P P h
(3)实际轧出厚度随辊缝而变化的规律
轧机的原始预调 辊缝值S0决定着 弹性曲线A的起 始位置。
图1-92 实际轧出厚度随辊缝变化的规律
(4)实际轧出厚度随轧机刚度而变化的规律
1.9 轧制工艺过程控制原理与方法
本节应掌握的知识点: 1.板带厚度控制基本原理; 2.板带宽度控制的基本方式; 3.板形的基本概念
高精度轧制,对板、带钢的要求:
1)板带钢的横向断面厚度分布均匀性; 2)板带钢的纵向断面厚度分布的均匀性 3)板带钢断面宽度在纵向长度上分布的均匀性。
为保证横向断面厚度分布的均匀而提出:
1)辊型及辊型设计; 2)板型及板型控制
为保证纵向厚度分布均匀而提出:
1)自动厚度控制理论; 2)自动厚度控制技术
为保证纵向宽度分布均匀而提出:
1)自由张力连轧; 2)小张力连轧。
1.9.1 厚度控制 (1 )产生板厚变化的原因 1) 轧辊辊型的影响
(a)圆柱形轧辊的空载辊缝;(b)受力过程中产生轧辊挠度
6-位置基准值;7-位置调节器;8-张力基准值
⑥带活套的热带连轧机组中间机架的张力控制系统

铸轧板型控制

铸轧板型控制

一、铸轧产品的板形控制1 常见铸轧板形2 评价铸轧坯料板形的主要指标两边厚差:每块样板距两边部50mm所测厚度的差值,即h1-h2;中凸度:(中间厚度减去两边厚度的平均值/中点厚度)×100%,即[h0-(h1+h2)/2]/h0×100%其中:h0为板样中部的厚度值;h1、h2分别为距带材两边50mm处的厚度值。

例如:WS侧边部厚度值为7.206mm,DS侧边部厚度值为7.234mm,中部厚度值为7.258mm,则根据公式,计算其中凸度为0.52%纵向厚差:在一个轧辊周长沿长度方向上测得的任意两点厚度的最大差值,即沿板材轧制线方向,板材厚度的最大值减去最小值。

同板差:沿宽度方向对称两点差值的最大值的绝对值/中间点厚度值×100%;例如,某板样测量值如下7.206、7.208、7.228、7.236、7.248、7.258、7.246、7.242、7.240、7.238、7.234,则其同板差为(7.238-7.208)/7.258×100%=0.41%3 板形的测量方法每块板样从中点向两侧每隔100mm取一点,距两边部50mm各取一点作为测量点,边部第一、二点之间距离小于100mm。

4 板形调整调整方法如下:1、在线调整两侧预载力,适合于微调(<0.03mm),大约10T=0.01mm左右;2、调整楔块:适合于两边厚差>0.03mm的调整。

调整前适当降低预载力(不能太低,否则漏铝),然后调整牌坊架两侧的楔块摇杆,每调摇杆一个行程厚度变化约0.01 mm,辊缝减小可使板厚减小,板的中凸度增大;反之可增大板的厚度及减小中凸度。

3、调整铸轧区长度:铸嘴后撤加大铸轧区长度,铸轧区长度加大,中凸度增大;反之中凸度减小。

操作时需防止铸嘴与辊的间隙太大造成漏铝。

4、调整速度:速度增大,中凸度减小,同时板的厚度减小;调整速度应点动(提速时,应略提高前箱液面;降速时,应略降低前箱液面),防止粘辊或热带的产生。

热轧带钢生产中的板形控制

热轧带钢生产中的板形控制

热轧带钢生产中的板形控制是指通过有效的生产工艺和控制措施,使得热轧带钢的板形达到设计要求,保证其质量和使用性能。

板形是指热轧带钢在轧制过程中产生的纵横向偏差,包括厚度不均匀、横向偏斜、波浪形状等。

合理的板形控制不仅能提高产品的表面质量、平坦度和尺寸精度,还能减少废品率和提高生产效率。

本文将从板形控制的重要性、主要影响因素和改善措施等方面进行分析和探讨。

一、板形控制的重要性热轧带钢的板形控制对产品质量和性能至关重要,具有以下重要性:1. 保证产品的平整度和尺寸精度。

合理的板形控制可以减少热轧带钢在轧制过程中产生的纵横向偏差,从而提高产品的平整度和尺寸精度,确保产品符合设计要求。

2. 改善产品的表面质量。

板形不均匀会导致带钢表面产生波浪、皱纹等缺陷,降低产品的表面质量。

通过有效的板形控制,可以减少这些缺陷的发生,提高产品的表面光洁度和平坦度。

3. 减少废品率和提高生产效率。

不合格的板形会导致产品剪切不良、卷取不良等问题,增加废品率。

通过优化板形控制,可以减少废品率,提高产品的一次成型合格率,提高生产效率。

二、主要影响因素热轧带钢的板形受到多个因素的影响,主要包括以下几个方面:1. 轧制工艺参数。

轧制工艺参数对板形的影响是最直接和关键的。

包括轧制温度、轧制速度、带材的展宽比、轧辊的形状等。

合理的调整和控制这些参数,可以有效地改善板形。

2. 带钢的翘曲性能。

带钢的翘曲性能取决于材料的力学性能和内应力状态。

当带钢的翘曲性能较差时,易出现板形不佳的现象。

3. 轧机设备的状态。

轧机设备的磨损程度、轧辊的偏差和挠度等都会对板形产生影响。

定期检查和维护轧机设备,保持其正常状态,对于控制板形至关重要。

4. 轧机辊系布置。

轧机辊系布置的合理性会对板形产生直接影响。

轧机辊系的过柱、过程和反曲等布置方式,可以通过对带材的实际形变过程进行控制,达到改善板形的效果。

三、改善措施为了控制热轧带钢的板形,可以采取以下措施:1. 合理调整和控制轧制工艺参数。

轧制工序质量内控标准

轧制工序质量内控标准

轧制工序质量内控标准1.工作准备1.1工作前,主操手及机组人员必须对设备进行全面细致的检查,确认一切正常后,通知电气人员送电。

1.2主操手必须认真检查轧机的自动灭火等自动控制系统,确认信号指示正确,方可起动轧机。

1.3停机超过一周,更换轧辊或检修后,开机前必须空转,确认无异常后,方可准备生产。

1.4开机前认真检查工艺润滑油的温度压力,1#工艺润滑油的温度应控制在30-45℃,压力应控制在0.4-0.5Mpa,2#轧机油温应控制在30-50℃,压力应控制在0.3-0.5Mpa。

1.5认真检查压缩空气,在压力和干燥机不正常时不准开机生产。

1.6认真检查测厚仪,测头必须清洁,通光孔不得有金属及油垢沉积。

1.7认真清理轧机、轧机导辊及铝箔接触件表面上的灰尘和脏物,保证其清洁。

1.8轧制前必须使用工艺润滑油对轧辊清洗,当轧辊是凉辊时,生产前必须进行预热,时间不得少于20min。

1.9按生产卡片认真核对坯料的合金、状态、批号、规格、有问题时应经有关人员处理后方可投产。

1.10落有灰尘、脏物的铝卷外层要清擦干净或扒掉。

2.轧制2.1上卷要平稳、迅速,落卷要对正夹紧,对准机列中心线。

2.2坯料及中间退火卷的表面温度高于40℃时,不得送入轧制。

2.3料头送入要平行,轧辊咬入后,要及时接通张力和工艺润滑油。

2.4缠头前,必须检查料的表面质量,铝箔料头缠好后,要迅速落下压平辊,保证卷取平整,如打底凸起、折印,要扒掉重新缠卷。

2.5轧制时所用套筒,其表面必须清洁、平整,不得存在尖锐凸起及粘附脏物。

2.6轧制过程中,主操手必须密切注意观察轧机运行参数和工艺参数的变化,发现异常情况要立即停机找设备人员处理,不允许在设备不正常的情况下生产。

2.7正常轧制时,1#机最大压力不允许超过350吨,2#机不允许超过500吨。

2.8主操手可以根据轧制时的具体情况控制轧制速度,但成品道次的最大速度1#机≤500米/分,2#机≤600米/分。

轧制厚度及板型控制

轧制厚度及板型控制

4. 张力微调(TV)的运算
张力微调是根据X-射线测厚仪测出的厚度偏差δhx来修正 F6与F7机架之间的活套张力,控制带钢厚度。 5. 速度补偿的计算
速度补偿是当厚度自动控制系统对第i机架给出了δSi的调 节量的同时,为了保持金属秒流量相等,则对第i-1机架 的轧辊线速度应给出相应的调节量,只有这样才能保证作 用于轧件上的张力桓定。
(5)液压式厚度自动控制系统
原理:液压AGC是按照轧机刚性可变控制的原理来实现 厚度的控制。
精选版课件ppt
32
控制原理:液压AGC就是借助于轧机的液压 系统,通过液压伺服阀(能根据位置检测和压力检 测所发出的微弱电信号,精确地控制流入油缸的流 量)调节液压缸的油量和压力来控制轧辊的位置, 对带钢进行厚度自动控制的系统。
6. 带钢尾部补偿值的计算
当带钢尾部每离开一个机架时,由于后张力消失,必然 导致尾部增厚。为了防止尾部增厚的产生,在带钢尾部离 开第i-1机架时,应增大第i机架的压下量,此种方法称作 带钢尾部补偿。
所谓压尾就是在带钢的尾部多压下一些,为了达到此目 的,一般采用将现有的厚度偏差控制信号δh适当放大, 此种放大的厚度偏差信号就是压尾的补偿值δhT。 7. 自动复位
特点
超前的控制手段 用来控制入口厚度波动引起的轧出厚度波动。
(与反馈式配合使用)
(3)厚度计式厚度自动控制系统(厚度计AGC或P-AGC)
控制原理:实际的辊缝值由辊缝仪检测,经自整角机将 信号送给编码器,由编码器将模拟量变为数字量,通过计算 机进行辊缝差的运算。实际的轧制压力由压头检测,经计算 机进行压力差运算。然后再将辊缝S0与轧机的弹跳值相加便 得实际轧出厚度h。再经AGC运算得消除厚差Δh所需的辊 缝调节量ΔS,通过APC和可控硅调速系统,调节辊缝来消 除此时的厚度偏差Δh。

轧机控制系统性能评估在带钢厚度和板形控制方面的应用

轧机控制系统性能评估在带钢厚度和板形控制方面的应用

轧机控制系统性能评估在带钢厚度和板形控制方面的应用Performance assessment of control systems in rolling mills – application to strip thickness and flatness controlMohieddine JelaliDepartment of Plant and System Technology, Betriebsforschungsinstitut (BFI)VDEh-Institut für Angewandte Forschung GmbH, Sohnstr. 65, D-40237 Düsseldorf, Germany摘要:这篇文献将控制系统性能监测(CPM)技术带入了一个它从未进入过的工业领域——金属加工领域,在这个领域里前人的研究成果并不是很多。

金属加工行业对提高控制器性能比较感兴趣,本文展示了如何在在这个领域里寻找尚未发现的机会来提高控制器的性能。

为了解决这个问题,必须予以考虑特殊的方面,包括在线非连续性能评价,基于时间和长度的评估以及振动诊断。

本篇论文提供了两个关于对冷连轧机控制系统性能评价的工业研究案例:(1)前馈/反馈带钢厚度控制器;(2)带钢平坦度内建模型控制器。

通过分析常规操作数据可以得到性能监测指标——最小方差指数和振荡指数,进尔提出改进措施。

一种用于计算和显示系统性能指数的的监测工具被开发出来,经过修改在这个领域得到了应用。

结果表明对个别的产品生产来说调整厚度反馈控制器能够更好的抑制来料厚度扰动。

平坦度控制器的性能是令人满意的,因此不需要采取措施。

关键词:控制系统性能监测;Harris指数;前馈/反馈控制;方差分析;带钢厚度控制;带钢板形控制1、说明为了在获得高质量产品同时减少工业中对原材料和能源的消耗,迅速的发现并解决过程控制中的故障和明确改进方向是必要的。

中板厂粗轧机板型控制的优化

中板厂粗轧机板型控制的优化

立辊 侧 压法通 过展 宽 侧压 、 轧侧 压 及 精 轧 精
阶段液 压 A WC控 制 , 现 钢 板 平 面形 状 矩 形 化 实
控 制 。以钢 板平 面不 均匀 部 分 面 积最 小 为 目标 ,
其中 日 本居领先地位 , 许多板材厂的成材率已达
到 9% , 5 切头 尾 和切 边 量 已降 到 4 。 国外 还 广 % 泛采用 液 压 AG 横 向板 型 控 制 和 计 算 机 控 制 , C、
pa t f i n , a e oo g t y ntec r n s u t n d t mi s jr n u n i c r.Atr a ig印一 l g g m k sa h ru hs d ur t i a o , e r n o f e cn f t s f kn n oJa t u o h e t i e e ma il ga o et
saecn o ara ,dsr e epe n s tso p t saecnr nruhn i em du l emUn lp t l bod eci s h r e t t u f l e hp ot l g i ml i t eim p t l o r b t s a a oo o g lnh a i g
1 1 1 立辊侧 压 法 ..
控制也 是一项 重 要 内容 , 两 项 指 标 除 了用 于表 这
征板材 的外形 质量 外 , 直 接与 负偏 差轧制有 关 , 还
因而 与成材率 密切 相关 。
1 国 内外板 型控 制 的现状 及我 厂现 状分析 1 1 国 内外 板型 控制 的现 状 . 国外不 少厂 家 已普遍 采 用 板 型 控制 新 技 术 ,
p r t o v n mp ae s li gmft r s h mm h p ee t f eta se a r m o s igmi a e e i mv d, h ut g i .. e ,t e d Au '¥ s a e d fc t r frb rf oh n o ru hn l h sb n mp e t e c t n i ls fpa e e h s b e e u e d sg i c te o o c b n f s h v e n a h e e . o so lt d a e n rd c d a inf a c n mi e e t a e b e c iv d n in i Ke wo d P a es a e c n r l Op i z t n, r m s a y rs lt h p o t , t o miai D u h p o e
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

张力AGC在生产中的应用
冷轧生产中:冷连轧机的末机架,为了保证板形,以及 轧制薄而硬的带钢,因轧辊压扁严重等情况,不宜用辊缝 作为调节量,往往是采用张力法来控制厚度。
2、调张力
原 利用前后张力来改变轧件塑性变形曲线的斜率以 理 控制厚度。
举 当来料有厚差ΔH(增加)时,轧件出口厚度出现 例 偏差Δh,如何通过调张力来控制厚度?
调 加大张力,使B’斜率改变(变为B’’),从而可 整 以在S0不变的情况下使h保持不变。
3、调பைடு நூலகம்制速度
轧制速度的变化影响到张力、温度和摩擦系数等因素的 变化。故可通过调速来调张力和温度,从而改变厚度。
3、张力变化的影响
张力↑→变形抗力↓→轧制压力↓→轧机弹跳↓→板厚度变薄↓
张力对轧 出厚度的 影响
4、轧制速度变化的影响
通过影响摩擦系数和变形抗力来改变轧制压力。
摩擦系数↓→变形抗力↓→轧制压力↓→轧机弹跳↓→板厚度变薄↓
摩擦系数 对轧出厚 度的影响
5、原始辊缝的影响 原始辊缝减小,板厚度变薄。
特点 滞后的调节手段; 调整的精确度高。
(2)前馈式厚度自动控制系统(前馈式AGC)
前馈式厚度自动控制
控制原理:测厚仪安装在轧机入口侧,测量出其入口 厚度H,并与给定厚度值H0相比较,当有厚度偏差ΔH时, 便预先估计出可能产生的轧出厚度偏差Δh,确定为消除 此Δh值所需的辊缝调节量ΔS ,当执行机构完成调节时, 检测点正好到达辊缝处,厚差消失。
根据弹跳方程绘制成的曲线(近似一条直线)――轧机弹 性变形曲线,用A 表示。
A
(2)轧件的塑性曲线 根据轧制压力与压下量的关系绘制出的曲线――轧件塑性
变形曲线,用B表示。
B
(3)弹塑性曲线的建立 将轧机弹性变形曲线与轧件塑性变形曲线绘制在一个坐标
系中,称为弹塑性曲线,简称P-h图。
注 A线与 B线交点的纵坐标为轧制力 意 A线与 B线交点的横坐标为板带实际轧出厚度
特点
超前的控制手段 用来控制入口厚度波动引起的轧出厚度波动。
(与反馈式配合使用)
(3)厚度计式厚度自动控制系统(厚度计AGC或P-AGC)
控制原理:实际的辊缝值由辊缝仪检测,经自整角机将 信号送给编码器,由编码器将模拟量变为数字量,通过计算 机进行辊缝差的运算。实际的轧制压力由压头检测,经计算 机进行压力差运算。然后再将辊缝S0与轧机的弹跳值相加便 得实际轧出厚度h。再经AGC运算得消除厚差Δh所需的辊 缝调节量ΔS,通过APC和可控硅调速系统,调节辊缝来消 除此时的厚度偏差Δh。
厚度自动控制和板形控制
板带材轧制中的厚度控制 横向厚差与板形控制技术
项目1 板带材轧制中的厚度控制
一、厚度自动控制的工艺基础
1.p-h图的建立
(1)轧制时的弹性曲线 轧出的带材厚度等于理论空载辊缝加弹跳值。 轧出厚度:h=S0 +P/K―――轧机的弹跳方程
S0 ――空载辊缝 P――轧制压力 K――轧机的刚度系数
2. p-h图的运用
由p-h图看出:无论A线、B线发生变化,实际厚度都要 发生变化。
保证实际厚度不变就要进行调整。
例如:B线发生变化(变为B‘),为保持厚度不变,A线 移值A',是交点的坐标不变。
C线――等厚轧制线
作用:板带厚度控制的工艺基础
板带厚度控制的实质:不管轧制条件如何变化,总要使A 线和B线交到C线上。
克服反馈式AGC的检测滞后; 特点 可以消除轧件及工艺方面等多种原因造成的厚差;
控制精度较低。
(4)张力式厚度自动控制系统(张力AGC) 控制原理:由测厚仪直接测得带钢轧出厚度偏差,改
变张力系统的张力设定值,以改变轧制压力,或直接改变轧 制速度来控制带钢轧出厚度。
使用范围:张力法只用于调节小厚度偏差的情况,作 为精调。
(3)执行机构(主电机、压下装置等):接受控制器输出 的控制信号,及时把控制量调整到位。
(4)被控对象:指轧制变形区、生产设备等。
3. 厚度自动控制系统的基本型式
(1)反馈式厚度自动控制系统(反馈式AGC)
反馈式厚度自动控制
控制原理: 测厚仪安装在轧机出口侧,测量出实际轧出 厚度,并与给定厚度值相比较,当有厚度偏差时,便计算出 所需的辊缝调节量ΔS,然后由执行机构(压下螺丝)作相 应的调节,以消除厚度偏差。
原始辊缝 对轧出厚 度的影响
三、板带厚度控制的方法
1、调压下
原理:改变原 始辊缝
(1)来料厚 度发生变化 的调整
(2)张力、轧制速度、轧制温度及摩擦系数等变化的调整
(3)压下调整量ΔS0的计算
问题一 ΔS0与ΔH的关系
问题二 ΔS0与Δh的关系 提示: K= tanα
M=tanβ
ΔS0与入口厚度偏差ΔH的关系:
干扰
给定 环节
比较 环节
校正 环节
放大 环节
执行 机构
被控 对象
输出量
反馈 回路
检测 装置
厚度自动控制的原理框图
2. 厚度自动控制系统的组成
(1)检测装置(测厚仪、测压仪、张力计等):用来检测 实际值并反馈到系统输入端。 (2)控制器(调节器、放大器、校正器等):根据实测值与 给定值相比较计算被控量,并反馈到系统输出端。
ΔS0 tanα=ΔH tanβ ΔS0=ΔH tanβ/ tanα ΔS0 =ΔH M/K M-轧件的塑性刚度系数(M=tanβ) K-轧机的刚度系数(K= tanα)
ΔS0与出口厚度偏差Δh的关系
Δh tanβ=tanα(ΔS0-Δh)
整理后得:Δh/ΔS0=K/(M+K) ΔS0=Δh(M+K)/ K
p-h图
二、板带厚度变化的原因和特点
影响板带厚度变化的因素: 1、轧件温度、成分和组织性能不均匀的影响 温度↑→变形抗力↓→轧制压力↓→轧机弹跳↓→板厚度变薄↓
变形抗力 对轧出厚 度的影响
2、来料厚度不均匀的影响
来料厚度↓→压下量↓→轧制压力↓→轧机弹跳↓→板厚度变薄↓
来料厚度 对轧出厚 度的影响
在实际生产中为了达到精确控制厚度的目的,往往是将多 种厚控方法有机的结合起来使用,才能取得更好的效果。
注意
最主要、最基本、最常用的是调压下
四、厚度自动控制的原理及基本型式
1.厚度自动控制的基本原理
通过测厚仪或传感器(如辊缝仪和压头等)对带钢实际轧出 厚度连续地进行测量,并根据实测值与给定值相比较后的偏 差信号,借助于控制回路和装置或计算机的功能程序,改变 压下位置、张力或轧制速度,把板带厚度控制在允许偏差范 围之内。
相关文档
最新文档