模式识别习题参考3-教材第6and7章
模式识别练习题

模式识别练习(1)主题:1.“基于最小错误率的贝叶斯决策”模式识别练习2.“基于最小风险的贝叶斯决策”模式识别练习3.基于“主成分分析”的贝叶斯决策模式识别练习已知训练样本集由“”、“”组成:={(0,0),(0,1),(1,0)};={(4,4),(4,5),(5,4),(5,5)},而测试样本集为C={(2,2),(2.2,2.2),(3,3)}。
(1)利用“基于最小错误率的贝叶斯决策”判别测试集为C中的样本的归类;(2)利用“基于最小风险的贝叶斯决策”判别测试集为C中的样本的归类;(3)在进行“主成分分析”的基础上,采用90%的主成分完成前面的(1)、(2),比较结果的异同。
模式识别练习(2)主题:很多情况下,希望样本维数(特征数)越少越好,降维是解决问题的一个有效的方法。
主成分分析希望得到较少的特征数,而Fisher准则方法则将维数直接降到1维。
一、已知训练样本集由“”、“”组成:={(0,0),(0,1),(1,0)};={(4,4),(4,5),(5,4),(5,5)},而测试样本集为C={(i,i)|i=0:0.005:5}。
分别利用基于最小错误率的贝叶斯决策、基于最小风险的贝叶斯决策、仅使用第一主成分、使用Fisher准则等四种方法(自编函数文件或用书上的函数文件)计算出测试集C中线段(0,0)-(5,5)的临界点;要求:将计算结果自动写入数据文件中二、已知训练样本集为教材上的10类手写数字集。
分别利用基于最小错误率的贝叶斯决策、基于最小风险的贝叶斯决策、仅使用第一主成分、使用Fisher准则等四种方法,统计出各大类的错误率和计算机cpu的计算时间,采用的测试集C依旧是10类手写数字集(虽然分类已知,但用不同的方法实际判别时可能有误判情况!)要求:使用书上的函数文件,并将计算结果自动写入数据文件中模式识别练习(3)一、已知训练样本集由“”、“”组成:={(0,0),(0,1),(1,0)};={(4,4),(4,5),(5,4),(5,5)},而测试样本集为C={(i,i)|i=0:0.01:5}。
模式识别习题集

2.6 简述最小张树算法的优点。
2.7 证明马氏距离是平移不变的、非奇异线性变换不变的。 2.8 设,类 有
p 、 q 的重心分别为 x p 、 xq ,它们分别有样本 n p 、 n q 个。将和 q 合并为 l ,则 l
个样本。另一类
2 Dkl
nl n p nq
k 的重心为 x k 。试证明 k 与 l 的距离平方是
,JH 越(
),说明模式的
)(i=1,2,…,c)时,JH 取极大值。
1.20 Kn 近邻元法较之于 Parzen 窗法的优势在于 ( 上述两种算法的共同弱点主要是( )。 )。
1.21 已知有限状态自动机 Af=(,Q,,q0,F),={0,1};Q={q0,q1}; :(q0,0)= q1,(q0,1)= q1,(q1,0)=q0,(q1,1)=q0;q0=q0;F={q0}。现有输入字符串:(a) 00011101011,(b) 1100110011,(c) 101100111000,(d)0010011,试问,用 Af 对上述字符串进行分类 的结果为( 1.22 句法模式识别中模式描述方法有: (1)符号串 (2)树 (3)图 (4)特征向量 )。 。
《模式识别》习题集
一、基本概念题 1.1 是: 1.2、模式分布为团状时,选用 1.3 欧式距离具有 。 马式距离具有 模 式 识 、 别 的 三 大 、 聚类算法较好。 。 核 心 问 。 题
(1)平移不变性 (2)旋转不变性 (3)尺度缩放不变性 (4)不受量纲影响的特性 1.4 描述模式相似的测度有: (1)距离测度 (2)模糊测度 (3)相似测度 (4)匹配测度 ;(2) 个技术途径。 ; 。
(1)
《模式识别》试题库

《模式识别》试题库一、基本概念题1.1 模式识别的三大核心问题是: 、。
1.2、模式分布为团状时,选用 聚类算法较好。
1.3 欧式距离具有 。
马式距离具有 。
(1)平移不变性 (2)旋转不变性 (3)尺度缩放不变性 (4)不受量纲影响的特性 1.4 描述模式相似的测度有: 。
(1)距离测度 (2)模糊测度 (3)相似测度 (4)匹配测度1.5 利用两类方法处理多类问题的技术途径有:(1) ;(2) ;(3) 。
其中最常用的是第 个技术途径。
1.6 判别函数的正负和数值大小在分类中的意义是: , 。
1.7 感知器算法 。
(1)只适用于线性可分的情况;(2)线性可分、不可分都适用。
1.8 积累位势函数法的判别界面一般为 。
(1)线性界面;(2)非线性界面。
1.9 基于距离的类别可分性判据有: 。
(1)1[]wB Tr S S - (2)B W S S (3)BW BS S S + 1.10 作为统计判别问题的模式分类,在( )情况下,可使用聂曼-皮尔逊判决准则。
1.11 确定性模式非线形分类的势函数法中,位势函数K(x,x k )与积累位势函数K(x)的关系为( )。
1.12 用作确定性模式非线形分类的势函数法,通常,两个n 维向量x 和x k 的函数K(x,x k )若同时满足下列三个条件,都可作为势函数。
①( ); ②( ); ③ K(x,x k )是光滑函数,且是x 和x k 之间距离的单调下降函数。
1.13 散度J ij 越大,说明ωi 类模式与ωj 类模式的分布( )。
当ωi 类模式与ωj 类模式的分布相同时,J ij =( )。
1.14 若用Parzen 窗法估计模式的类概率密度函数,窗口尺寸h1过小可能产生的问题是( ),h1过大可能产生的问题是( )。
1.15 信息熵可以作为一种可分性判据的原因是: 。
1.16作为统计判别问题的模式分类,在( )条件下,最小损失判决规则与最小错误判决规则是等价的。
大学模式识别考试题及答案详解

大学模式识别考试题及答案详解Company number:【0089WT-8898YT-W8CCB-BUUT-202108】一、填空与选择填空(本题答案写在此试卷上,30分)1、模式识别系统的基本构成单元包括:模式采集、特征提取与选择和模式分类。
2、统计模式识别中描述模式的方法一般使用特真矢量;句法模式识别中模式描述方法一般有串、树、网。
3、聚类分析算法属于(1);判别域代数界面方程法属于(3)。
(1)无监督分类 (2)有监督分类(3)统计模式识别方法(4)句法模式识别方法4、若描述模式的特征量为0-1二值特征量,则一般采用(4)进行相似性度量。
(1)距离测度(2)模糊测度(3)相似测度(4)匹配测度5、下列函数可以作为聚类分析中的准则函数的有(1)(3)(4)。
(1)(2) (3)(4)6、Fisher线性判别函数的求解过程是将N维特征矢量投影在(2)中进行。
(1)二维空间(2)一维空间(3)N-1维空间7、下列判别域界面方程法中只适用于线性可分情况的算法有(1);线性可分、不可分都适用的有(3)。
(1)感知器算法(2)H-K算法(3)积累位势函数法8、下列四元组中满足文法定义的有(1)(2)(4)。
(1)({A, B}, {0, 1}, {A01, A 0A1 , A 1A0 , B BA , B 0}, A)(2)({A}, {0, 1}, {A0, A 0A}, A)(3)({S}, {a, b}, {S 00S, S 11S, S 00, S 11}, S)(4)({A}, {0, 1}, {A01, A 0A1, A 1A0}, A)二、(15分)简答及证明题(1)影响聚类结果的主要因素有那些(2)证明马氏距离是平移不变的、非奇异线性变换不变的。
答:(1)分类准则,模式相似性测度,特征量的选择,量纲。
(2)证明:(2分)(2分)(1分)设,有非奇异线性变换:(1分)(4分)三、(8分)说明线性判别函数的正负和数值大小在分类中的意义并证明之。
大学模式识别考试题及答案详解

一、填空与选择填空(本题答案写在此试卷上,30分)1、模式识别系统的基本构成单元包括:模式采集、特征提取与选择和模式分类。
2、统计模式识别中描述模式的方法一般使用特真矢量;句法模式识别中模式描述方法一般有串、树、网。
3、聚类分析算法属于(1);判别域代数界面方程法属于(3)。
(1)无监督分类 (2)有监督分类(3)统计模式识别方法(4)句法模式识别方法4、若描述模式的特征量为0-1二值特征量,则一般采用(4)进行相似性度量。
(1)距离测度(2)模糊测度(3)相似测度(4)匹配测度5、下列函数可以作为聚类分析中的准则函数的有(1)(3)(4)。
(1)(2)(3)(4)6、Fisher线性判别函数的求解过程是将N维特征矢量投影在(2)中进行。
(1)二维空间(2)一维空间(3)N-1维空间7、下列判别域界面方程法中只适用于线性可分情况的算法有(1);线性可分、不可分都适用的有(3)。
(1)感知器算法(2)H-K算法(3)积累位势函数法8、下列四元组中满足文法定义的有(1)(2)(4)。
(1)({A, B}, {0, 1}, {A?01, A? 0A1 , A? 1A0 , B?BA , B? 0}, A) (2)({A}, {0, 1}, {A?0, A? 0A}, A)(3)({S}, {a, b}, {S ? 00S, S ? 11S, S ? 00, S ? 11}, S)(4)({A}, {0, 1}, {A?01, A? 0A1, A? 1A0}, A)二、(15分)简答及证明题(1)影响聚类结果的主要因素有那些?(2)证明马氏距离是平移不变的、非奇异线性变换不变的。
答:(1)分类准则,模式相似性测度,特征量的选择,量纲。
(2)证明:(2分)(2分) (1分)设,有非奇异线性变换:(1分)(4分)三、(8分)说明线性判别函数的正负和数值大小在分类中的意义并证明之。
答:(1)(4分)的绝对值正比于到超平面的距离平面的方程可以写成式中。
(完整word版)模式识别题目及答案(word文档良心出品)

一、(15分)设有两类正态分布的样本集,第一类均值为T1μ=(2,0),方差11⎡⎤∑=⎢⎥⎣⎦11/21/2,第二类均值为T2μ=(2,2),方差21⎡⎤∑=⎢⎥⎣⎦1-1/2-1/2,先验概率12()()p p ωω=,试求基于最小错误率的贝叶斯决策分界面。
解 根据后验概率公式()()()()i i i p x p p x p x ωωω=, (2’)及正态密度函数11/21()exp[()()/2]2T i i i i nip x x x ωμμπ-=--∑-∑ ,1,2i =。
(2’) 基于最小错误率的分界面为1122()()()()p x p p x p ωωωω=, (2’) 两边去对数,并代入密度函数,得1111112222()()/2ln ()()/2ln T T x x x x μμμμ----∑--∑=--∑--∑ (1) (2’)由已知条件可得12∑=∑,114/3-⎡⎤∑=⎢⎥⎣⎦4/3-2/3-2/3,214/3-⎡⎤∑=⎢⎥⎣⎦4/32/32/3,(2’)设12(,)Tx x x =,把已知条件代入式(1),经整理得1221440x x x x --+=, (5’)二、(15分)设两类样本的类内离散矩阵分别为11S ⎡⎤=⎢⎥⎣⎦11/21/2, 21S ⎡⎤=⎢⎥⎣⎦1-1/2-1/2,各类样本均值分别为T 1μ=(1,0),T2μ=(3,2),试用fisher 准则求其决策面方程,并判断样本Tx =(2,2)的类别。
解:122S S S ⎡⎤=+=⎢⎥⎣⎦200 (2’) 投影方向为*112-2-1()211/2w S μμ-⎡⎤⎡⎤⎡⎤=-==⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦1/200 (6’)阈值为[]*0122()/2-1-131T y w μμ⎡⎤=+==-⎢⎥⎣⎦(4’)给定样本的投影为[]*0-12241T y w x y ⎡⎤===-<⎢⎥-⎣⎦, 属于第二类 (3’)三、 (15分)给定如下的训练样例实例 x0 x1 x2 t(真实输出) 1 1 1 1 1 2 1 2 0 1 3 1 0 1 -1 4 1 1 2 -1用感知器训练法则求感知器的权值,设初始化权值为0120w w w ===;1 第1次迭代(4’)2 第2次迭代(2’)3 第3和4次迭代四、 (15分)i. 推导正态分布下的最大似然估计;ii. 根据上步的结论,假设给出如下正态分布下的样本{}1,1.1,1.01,0.9,0.99,估计该部分的均值和方差两个参数。
模式识别练习题

2013模式识别练习题一. 填空题1、模式识别系统的基本构成单元包括: 模式采集、特征选择与提取和模式分类。
2、统计模式识别中描述模式的方法一般使用特征矢量;句法模式识别中模式描述方法一般有串、树、网。
3、影响层次聚类算法结果的主要因素有计算模式距离的测度、聚类准则、类间距离阈值、预定的类别数目。
4、线性判别函数的正负和数值大小的几何意义是正(负)表示样本点位于判别界面法向量指向的正(负)半空间中;绝对值正比于样本点到判别界面的距离。
5、感知器算法1,H-K算法(2)。
(1)只适用于线性可分的情况;(2)线性可分、不可分都适用。
6、在统计模式分类问题中,聂曼—皮尔逊判决准则主要用于某一种判决错误较另一种判决错误更为重要情况;最小最大判别准则主要用于先验概率未知的情况.7、“特征个数越多越有利于分类”这种说法正确吗?错误。
特征选择的主要目的是从n个特征中选出最有利于分类的的m个特征(m<n),以降低特征维数。
一般在可分性判据对特征个数具有单调性和(C n m〉〉n )的条件下,可以使用分支定界法以减少计算量。
8、散度J ij越大,说明ωi类模式与ωj类模式的分布差别越大;当ωi类模式与ωj类模式的分布相同时,J ij= 0 。
二、选择题1、影响聚类算法结果的主要因素有( B C D)。
A.已知类别的样本质量;B。
分类准则;C.特征选取;D。
模式相似性测度2、模式识别中,马式距离较之于欧式距离的优点是( C D)。
A.平移不变性;B。
旋转不变性;C尺度不变性;D。
考虑了模式的分布3、影响基本K-均值算法的主要因素有( D A B)。
A.样本输入顺序;B.模式相似性测度;C。
聚类准则;D。
初始类中心的选取4、位势函数法的积累势函数K(x)的作用相当于Bayes判决中的( B D).A. 先验概率;B. 后验概率;C。
类概率密度;D. 类概率密度与先验概率的乘积5、在统计模式分类问题中,当先验概率未知时,可以使用(B D)。
模式识别课后习题答案

– (1) E{ln(x)|w1} = E{ln+1(x)|w2} – (2) E{l(x)|w2} = 1 – (3) E{l(x)|w1} − E2{l(x)|w2} = var{l(x)|w2}(教材中题目有问题) 证∫ 明ln+:1p对(x于|w(12)),dxE={ln∫(x()∫p(|wp(x(1x|}w|w=1)2))∫n)+nl1nd(xx)所p(x以|w∫,1)Ed{xln=(x∫)|w(1p(}p(x(=x|w|Ew1)2{))ln)n+n+11d(xx)又|wE2}{ln+1(x)|w2} = 对于(2),E{l(x)|w2} = l(x)p(x|w2)dx = p(x|w1)dx = 1
对于(3),E{l(x)|w1} − E2{l(x)|w2} = E{l2(x)|w2} − E2{l(x)|w2} = var{l(x)|w2}
• 2.11 xj(j = 1, 2, ..., n)为n个独立随机变量,有E[xj|wi] = ijη,var[xj|wi] = i2j2σ2,计 算在λ11 = λ22 = 0 及λ12 = λ21 = 1的情况下,由贝叶斯决策引起的错误率。(中心极限 定理)
R2
R1
容易得到
∫
∫
p(x|w2)dx = p(x|w1)dx
R1
R2
所以此时最小最大决策面使得P1(e) = P2(e)
• 2.8 对于同一个决策规则判别函数可定义成不同形式,从而有不同的决策面方程,指出 决策区域是不变的。
3
模式识别(第二版)习题解答
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第5章 句法模式识别习题解答6.1 用链码法描述5~9五个数字。
解:用弗利曼链码表示,基元如解图6.1所示:数字5~9的折线化和量化结果如解图6.2所示:各数字的链码表示分别为:“5”的链码表示为434446600765=x ; “6”的链码表示为3444456667012=x ; “7”的链码表示为00066666=x ; “8”的链码表示为21013457076543=x ; “9”的链码表示为5445432107666=x 。
17解图6.1 弗利曼链码基元 解图6.2 数字5~9的折线化和量化结果6.2 定义所需基本基元,用PDL 法描述印刷体英文大写斜体字母“H ”、“K ”和“Z ”。
解:设基元为:用PDL 法得到“H ”的链描述为)))))(~((((d d c d d x H ⨯+⨯+=;“K ”的链描述为))((b a d d x K ⨯⨯+=; “Z ”的链描述为))((c c g x Z ⨯-=。
6.3 设有文法),,,(S P V V G T N =,N V ,T V 和P 分别为},,{B A S V N =,},{b a V T =:P ①aB S →,②bA S →,③a A →,④aS A →⑤bAA A →,⑥b B →,⑦bS B →,⑧aBB B → 写出三个属于)(G L 的句子。
解:以上句子ab ,abba ,abab ,ba ,baab ,baba 均属于)(G L 。
6.4 设有文法),,,(S P V V G T N =,其中},,,{C B A S V N =,}1,0{=T V ,P 的各生成式为①A S 0→,②B S 1→,③C S 1→bcadeabba abbA abS aB S ⇒⇒⇒⇒ ① ⑦ ② ③ab aB S ⇒⇒ ① ⑥ba bA S ⇒⇒② ③ abab abaB abS aB S ⇒⇒⇒⇒ ① ⑦ ① ⑥baab baaB baS bA S ⇒⇒⇒⇒ ② ④ ① ⑥baba babA baS bA S ⇒⇒⇒⇒② ④ ② ③④A A 0→,⑤B A 1→,⑥1→A ⑦0→B ,⑧B B 0→,⑨C C 0→,⑩1→C问00100=x 是否属于语言)(G L ? 解:由可知00100=x 属于语言)(G L 。
6.5 写出能产生图示树的扩展树文法,设基元a ,b 分别为“→”和“↓”,它所描述的模式是什么?解:1. 写出生成树的扩展树文法生成式集:2. 检查非终止符的等价性。
a$babbab001000010001000⇒⇒⇒⇒⇒B B A A S① ④ ⑤ ⑧ ⑦⑪$A →14A 2A 3⑫a A →2⑬a A →3⑮b A →59A 6A 5⑭b A →4⑿a A →12(6)a A →6A 7A 8⑺a A →7⑻a A →8⑼b A →9A 10⑽b A →10A 11⑾a A →11A 12查得1172A A A ≡≡。
删除7A 和11A 及其后代生成式,其余生成式中的7A 和11A 用2A 代替,合并后得到3. 建立起始产生式。
将⑪中的1A 用S 代替得到:设推断的扩展树文法为),,,(S P r V G t =',由以上推断得:T N V V V =,},,,,,,,{10965432A A A A A A A S V N =,},,{b a $V T =2)(=$r ,}0,1{)(=a r ,}1,2{)(=b rP 的各生成式为当基元a ,b 分别为“→”和“↓”时, 它所描述的模式如解图6.3所示:a ab b b ba aa aa$ $S →4A 2⑮b A →59A 6A 5⑭b A →4(6)a A →6A 2⑼b A →9A 10⑽b A →10A 2⑪$A →14A 2A 3⑫a A →2⑬a A →3⑮b A →59A 6A 5⑭b A →4(6)a A →6A 2⑼b A →9A 10⑽b A →10A 2⑪$S →4A 2A 3⑫a A →2⑬a A →3解图6.3 描述的模式6.6 已知)(G L 的正样本集}0010,111,100,01{=+R ,试推断出余码文法c G 。
解:设余码文法为),,,(S P V V G T N c =。
(1) 由+R 得c G 的终止符集}1,0{=T V 。
(2) 求+R 的全部余码,组成非终止符集N V 。
+R 的全部余码为}0010,111,100,01{=+R D λ,}010,1{0=+R D ,}11,00{1=+R D}{01λ=+R D ,}0{10=+R D ,}1{11=+R D ,}10{00=+R D }{100λ=+R D ,}{111λ=+R D , }0{001=+R D ,}{0010λ=+R D等号右边相同的合并,非空余码标以符号组成非终止符集N V :}0010,111,100,01{==+R D S λ,}010,1{01==+R D U ,}11,00{12==+R D U}0{103==+R D U ,}1{114==+R D U ,}10{005==+R D U所以},,,,,{54321U U U U U S V N =。
(3) 建立生成式集P 。
由10}010,1{U S D ==,有生成式10U S →; 由510}10{U U D ==,有生成式510U U →; 由320}0{U U D ==,有生成式320U U →; 由λ=30U D ,有生成式03→U ;由21}11,00{U S D ==,有生成式21U S →; 由λ=11U D ,有生成式11→U ;由421}1{U U D ==,有生成式421U U →; 由λ=41U D ,有生成式14→U ; 由351}0{U U D ==,有生成式351U U →; 所以余码文法),,,(S P V V G T N c =为},,,,,{54321U U U U U S V N =,}1,0{=T V P :10U S →,510U U →,320U U →,03→U 21U S →,11→U ,421U U →,14→U ,351U U →6.7 设文法),,,(S P V V G T N =,其中},,{B A S V N =,}1,0{=T V ,P 的各生成式为①1→S ,②1B S →,③B S →④A B 1→,⑤A B B 1→,⑥0→A ,⑦0A A →设待识别链1000=x ,试用填充树图法的顶下法分析x 是否属于)(G L ? 解:(1) 从S 开始考察P 中的①、②、③式:若选①,则结果为x =1,排除;若选②,导出的x 末位必为1,与题不符,排除; 选③式,如解图6.4(a)所示。
(2) 填充目标为B ,考察④、⑤均可填充,先试④,如解图6.4(b)所示。
若不行,再返回用⑤式。
(3) 此时填充目标为A ,考察⑥、⑦。
若选⑥,导出的x 为 2位,与题不符,排除。
选⑦式,如解图6.4(c)所示。
(4) 类似地,得到图6.4所示各步结果,树叶为1000。
故x 属于)(G L 。
6.8 设上下文无关文法),,,(S P V V G T N =,},{C S V N =,}1,0{=T V ,P 中生成式的乔姆斯基范式为CC S →,CS S →,1→S ,SC C →,CS C →,0→C用CYK 分析法分析链01001=x 是否为该文法的合法句子。
解图6.4 填充树图过程 S1BAAS1BAAS1BAAS1BAS B (a) (b) (c) (d) (e)解:待识别链为5位,构造5行5列的三角形分析表,如解图6.5所示。
求表中元素ij t 的值:(1) 令1=j ,求1i t ,51≤≤i 。
各子链为0,1,0,0,1。
对于01=a ,C t =11; 对于12=a ,S t =21; 对于03=a ,C t =31; 对于04=a ,C t =41。
对于15=a ,S t =41。
(2) 令2=j ,求2i t ,41≤≤i 。
各子链为01,10,00,01。
对于0121=a a ,因有CS S →和CS C →,0→C ,1→S ,故S C t ,12=; 对于1032=a a ,有SC C →,1→S ,0→C ,故C t =22。
对于0043=a a ,有CC S →,0→C ,0→C ,故S t =32。
对于0154=a a ,有CS S →和CS C →,0→C ,1→S ,故S C t ,42=; (3) 令3=j ,求3i t ,31≤≤i 。
各子链为010,100,001。
对于010321=a a a ,因有CC S →,0→C ,10*⇒C ;和SC C →,01*⇒S , 0→C 。
故S C t ,13=。
类似地有S t =23,S C t ,33=,S C t ,14=,S C t ,24=,S C t ,15=。
填表结果如解图6.6所示。
解图6.5 分析表t 14 t 13 t 12 t 11t 23 t 22 t 21t 32 t 31t 41t 15 t 51t 42 t 33 t 24因为S 在15t 中,所以)(G L x ∈。
6.9 已知正则文法),,,(S P V V G T N =,其中},{B S V N =,},{b a V T =,P 的各生成式为aB S →,aB B →,bS B →,a B →构成对应的有限态自动机,画出自动机的状态转换图。
解:设有限态自动机),,,,(0∑=F q Q A δ,由A 与G 的对应关系得∑==},{b a VT},,{F B S F V Q N ==S q =0δ:由aB S →,有B a S =),(δ;由aB B →,a B →有},{),(F B a B =δ;由bS B →,有S b B =),(δ。
故有限态自动机),,,,(0∑=F q Q A δ为∑=},{b a ,},,{F B S Q =,S q=0δ:B a S =),(δ,},{),(F B a B =δ,S b B =),(δ解图6.6 CYK 分析表填表结果 C,S C,S CS C SS CCC,S SC,S C,S C,S C,S 解图 6.7 自动机的状态转换图6.10 已知有限态自动机),,,,(0∑=F q Q A δ,其中∑=}1,0{,},,,{321q qq q Q =,}{3q F =A 的状态转换图如图6.15所示,求A 对应的正则文法G 。
解:设正则文法为),,,(S P V V G T N =,由G 与A 的对应关系得:},,,{3210q q q q Q V N ==; ∑==}1,0{T V ;0q S =;根据状态转换图有:P :因}{)0,(20q q =δ,有200q q →; 因}{)1,(10q q =δ,有101q q →;因}{)0,(31q q =δ,有310q q →;而F q ∈3,故01→q ; 因}{)1,(01q q =δ,有011q q →; 因}{)0,(02q q =δ,有020q q →;因}{)1,(32q q =δ,有321q q →;而F q ∈3,故12→q ; 因}{)0,(13q q =δ,有130q q →; 因}{)1,(23q q =δ,有231q q →。