八年级数学上册期末复习教案
初二数学上册期末复习一教案

期末复习(第一章 有理数)A .常考题型突破题型一:有理数的有关概念 例1:|-3|的相反数是( A ) A .-3 B .3 C.13 D .-13【方法归纳】此题主要考查了绝对值、相反数的定义,求解时可先求出|-3|的值,然后再根据“只有符号不同的两个数互为相反数”,即可得出答案.变式训练1:如图,如果数轴上A ,B 两点之间的距离是7,那么点B 表示的数是( B )A .-3B .-2C .2D .-1 题型二:有理数的运算例2:计算下列各题,能简算的要简算. (1)1+(-2)+|-2|-5;解:1+(-2)+|-2|-5=1-2+2-5=(1+2)+(-2-5)=3-7=-4. (2)(+23)+(-45)-(+15)-(-13)-(+1);解:(+23)+(-45)-(+15)-(-13)-(+1)=23-45-15+13-1=(23+13)+(-45-15)-1=1-1-1=-1.(3)-14-17×[2-(-4)2];解:-14-17×[2-(-4)2]=-1-17×(2-16)=-1-17×(-14)=-1+2=1.(4)(-370)×(-14)+0.25×24.5-512×(-25%).解:(-370)×(-14)+0.25×24.5-512×(-25%)=370×0.25+0.25×24.5+5.5×0.25=(370+24.5+5.5)×0.25=400×0.25=100.【方法归纳】此题主要考查了有理数的混合运算,要熟练掌握,解答此题的关键是要明确有理数混合运算的顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.同时,乘法的分配律不仅可以正用,而且可以逆用,在解题时要灵活运用.变式训练2:股民李星星在上周星期五以每股11.2元买了一批股票,下表为本周星期一到星期五该股票的涨跌情况(“+”表示上涨,“-”表示下跌).求:(1)本周星期三收盘时,每股的钱数;(2)李星星本周内哪一天把股票抛出比较合算,为什么?解:(1)根据题意,得11.2+0.4+0.45+(-0.2)=11.85(元),答:本周星期三收盘时,该只股票每股为11.85元.(2)本周每天该股票的价格依次为11.2+0.4=11.6(元),11.2+0.4+0.45=12.05(元),11.2+0.4+0.45-0.2=11.85(元),11.2+0.4+0.45-0.2+0.25=12.1(元),11.2+0.4+0.45-0.2+0.25-0.4=11.7(元),因为11.6<11.7<11.85<12.05<12.1,所以本周该股票最高价为12.1元,出现在周四,李星星本周四把股票抛出比较合算.题型三:非负数性质的应用例3:已知|a+1|+(b-2)2=0,求(a+b)2 018+a2 018的值.解:因为|a+1|+(b-2)2=0,|a+1|≥0,(b-2)2≥0,所以a+1=0,b-2=0,所以a=-1,b=2.因此(a+b)2 018+a2 018=(-1+2)2 018+(-1)2 018=2.【方法归纳】非负数的性质:a2≥0,|a|≥0,即一个数的平方和一个数的绝对值均为非负数,当几个非负数的和为0时,这几个非负数都为0.变式训练3:已知(x+3)2与|y-2|互为相反数,z是绝对值最小的有理数,求(x+y)y+xyz的值.解:因为(x+3)2与|y-2|互为相反数,所以(x+3)2+|y-2|=0,又因为(x+3)2≥0,|y-2|≥0,所以x+3=0,y-2=0,所以x=-3,y=2,因为z是绝对值最小的有理数,所以z=0,所以(x+y)y+xyz=(-3+2)2+0=1.题型四:科学记数法与近似数例4:月球的直径约为3 476 000米,将3 476 000用科学记数法表示应为( C ) A .0.347 6×102 B .34.76×104 C .3.476×106 D .3.476×108【方法归纳】此题主要考查了科学记数法的表示方法.科学记数法的表示形式为a ×10n ,其中1≤|a|<10,n 为整数,且n 的值为该数的整数位数减1.例5:用四舍五入法,对下列各数按括号中的要求取近似数: (1)0.632 8(精确到0.01)为0.63; (2)46 021(精确到百位)为4.60×104.变式训练4:(1)用四舍五入法,把130 542精确到千位是1.31×105;(用科学记数法表示)(2)近似数1.5×106精确到十万位. 题型五:探索有理数的规律 例6:请观察下列等式的规律:11×3=12(1-13),13×5=12(13-15),15×7=12(15-17),17×9=12(17-19)……则11×3+13×5+15×7+…+199×101=50101. 【方法归纳】探索数的变化规律要从简单、特殊情形着手,然后猜想一般情形.本题的规律为1n (n +2)=12(1n -1n +2)(n 为非0自然数).变式训练5:观察下列等式: 第1个等式:a 1=31×2×22=11×2-12×22; 第2个等式:a 2=42×3×23=12×22-13×23;第3个等式:a 3=53×4×24=13×23-14×24; 第4个等式:a 4=64×5×25=14×24-15×25.按上述规律,回答以下问题:(1)用含n 的式子表示第n 个等式:a n =n +2n (n +1)·2=1n ·2n -1(n +1)·2;(2)求式子a 1+a 2+a 3+…+a 20的值. 解:(2)a 1+a 2+a 3+…+a 20=11×2-12×22+12×22-13×23+13×23-14×24+…+120×220-121×221=12-121×221. 题型六:新定义运算例7:(2017·石家庄市长安区校级月考)在一个秘密俱乐部中,有一种特殊的算账方式:a*b =3a -4b ,聪明的小明通过计算2*(-4)发现了这一秘密,他是这样计算的:2*(-4)=3×2-4×(-4)=22.假如规定a*b =2a -3b -1,那么2*(-3)=12.【方法归纳】对于新定义运算,一般是给出新定义,再提出新问题,要根据新定义弄清楚新运算是一个什么样的运算,再根据这个算式计算结果.变式训练6a ,b ,ab =a +b-1,a ※b =a ×b -1,则(-8)※(35)=-57.B .考前提分训练 一、选择题1.数学考试成绩85分以上为优秀,以85分为标准,薛老师将某一小组五名同学的成绩简记为:+9,-4,+11,-7,0.这五名同学的实际成绩最高的应是( C )A .93分B .85分C .96分D .78分2.(2018·河北模拟)3-(-2)×4的相反数是( D ) A .5 B .-5 C .11 D .-11 3.下列说法中正确的是( B ) A .一个有理数不是正数就是负数 B .一个有理数不是整数就是分数C .有理数是指整数、分数、正有理数、负有理数和0这五类数D .有理数是指自然数和负整数4.某校师生在为灾区举行的爱心捐款活动中总计捐款18.49万元.把18.49万用四舍五入法取近似值,可以用科学记数法表示为( C )A .1.9×105B .19×104C .1.8×105D .18×1045.有理数-32,(-3)2,|-33|,-13按从小到大的顺序排列是( D )A .-13<-32<(-3)2<|-33|B .|-33|<-32<-13<(-3)2C .-13<-32<|-33|<(-3)2D .-32<-13<(-3)2<|-33|6.下列运算正确的是( D ) A .-22÷(-2)2=1 B .(-213)3=-8127C .-5÷13×35=-25D .314×(-3.25)-634×3.25=-32.57.若x 的相反数是3,|y|=5,则x +y 的值为( C ) A .-8 B .2C .-8或2D .8或-28.a ,b ,c 在数轴上的位置如图所示,则下列结论正确的是( C )A .abc >0B .(a +b)c >0C .a(b -c)>0D .(a -c)b >0 二、填空题9.-23的倒数的绝对值是32.10.数轴上,-3与3之间(不包括-3与3)的整数共有5个. 11.计算:-23=-8,(-23)3=-827.12.用四舍五入法将0.618 033 98…精确到0.001的近似数是0.618.13.观察11×2+12×3+13×4=(11-12)+(12-13)+(13-14)=1-14=34,依照上述方法计算:11×2+12×3+13×4+…+18×9+19×10=910. 14.一个点从数轴的原点开始,向右移动5个单位长度,再向左移动8个单位长度, 到达的终点表示的数是-3.15.大于-3且小于4的所有整数的积为0.16.科学家发现:植物的花瓣、萼片、果实的数目以及其他方面的特征,都非常吻合于一个奇特的数列——著名的裴波那契数列:1,1,2,3,5,8,13,21,34,55……仔细观察以上数列,它的第11个数应该是89.三、解答题 17.计算:(1)[-33×2+(-3)2×4-5×(-2)3]÷(-14)2;解:[-33×2+(-3)2×4-5×(-2)3]÷(-14)2=[-27×2+9×4-5×(-8)]÷116=(-54+36+40)×16=22×16=352.(2)(-137)×35÷137×(0-2)3;解:(-137)×35÷137×(0-2)3=-107×35×710×(-8)=245.(3)991819×(-15);解:991819×(-15)=-(100-119)×15=-(1 500-1519)=-1 499419.(4)(-36)×(-49+56-712).解:(-36)×(-49+56-712)=(-36)×(-49)+(-36)×56+(-36)×(-712)=16-30+21=7.18.已知:a 和b 互为相反数,c 和d 互为倒数,且(y +1)2=0.求(a +b)2 018-(-cd)2017+y 3的值.解:因为a 和b 互为相反数,c 和d 互为倒数,且(y +1)2=0,所以a +b =0,cd =1,y =-1.所以原式=0-(-1)+(-1)=0.19.检查一商店10个水果罐头的重量,超出记为“+”,不足记为“-”,情况如下:-3克,+2克,-1克,-5克,-2克,+3克,-2克,+3克,+1克,-1克.(1)总的情况是超出还是不足? (2)每罐平均超出或不足多少? (3)最多与最少相差多少?解:(1)(-3)+(+2)+(-1)+(-5)+(-2)+(+3)+(-2)+(+3)+(+1)+(-1)=-3+2-1-5-2+3-2+3+1-1=-5.所以总的情况是不足.(2)每罐平均不足为5÷10=0.5(克).(3)最多的一个为+3克,最少的一个为-5克,根据题意,得(+3)-(-5)=3+5=8(克),所以最多与最少相差8克.20.根据如图所示的数值转换机,当输入的x 与y 满足|x +1|+(y -12)2=0时,请列式求出输出的结果.解:因为|x +1|+(y -12)2=0,且|x +1|≥0,(y -12)2≥0,所以x +1=0,y -12=0,所以x=-1,y=12,代入,得[(-1-5)2+12×(-2)]÷2=352.答:输出的结果为352.21.已知点A,B在数轴上分别表示数a,b.(1)对照数轴填写下表:(2)若A,B两点间的距离记为d,d和a,b有何数量关系?(3)写出所有符合条件的整数点P,使它到10和-10的距离之和为20,并求所有这些整数的和;(4)数轴上表示x和-2的两点之间的距离表示为|x+2|;(5)若点C表示的数为x,当点C在什么位置时,|x+1|+|x-2|取得的值最小?解:(2)d=|a-b|.(3)满足条件的整数点为:±10,±9,±8,±7,±6,±5,±4,±3,±2,±1,0;它们的和为零.(5)当点C在-1和2之间时(包括点-1和2),取得的值最小.。
八年级数学第一学期期末复习教学案(10)

八年级数学期末复习教学案(7) -----------平行四边形一、知识点:1、平行四边形的定义:叫做平行四边形。
记作:□ABCD ,读作平行四边形ABCD.平行四边形是中心对称图形,对角线的交点是它的对称中心。
2、平行四边形的性质:①平行四边形的对边 ;②平行四边形的对边 ; ③平行四边形的对角 ;④平行四边形的对角线 。
3、平行四边形的判定:① 的四边形是平行四边形; ② 的四边形是平行四边形; ③ 的四边形是平行四边形; ④ 的四边形是平行四边形; ⑤ 的四边形是平行四边形。
1、矩形的定义: 的平行四边形叫做矩形,通常也叫长方形。
2、矩形的性质:①矩形是特殊的平行四边形,它具有平行四边形的一切性质;②矩形既是 图形也是 图形,对称轴是对边中点连线所在直线,有两条,对称中心是对角线的交点。
③矩形的对角线 ;④矩形的四个角都是 。
3、矩形的判定: ① 的平行四边形是矩形; ② 的平行四边形是矩形; ③ 的四边形是矩形。
4、菱形的定义: 的平行四边形叫做菱形。
5、菱形的性质:①菱形是特殊的平行四边形,它具有平行四边形的一切性质; ②菱形既是轴对称图形也是中心对称图形,对称轴是两条对角线④菱形的对角线互相 ,并且每一条对角线平分一组对角。
6、菱形的判定:①的平行四边形是菱形;DC8、正方形的定义: 有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。
9、正方形的性质:①正方形具有矩形的性质,同时又具有菱形的性质。
②正方形既是轴对称图形也是中心对称图形,对称轴有四条,对称中心是对角线的交点。
10、正方形的判定:①有一组邻边相等并且有一个角是直角的平行四边形是正方形;②有一组邻边相等矩形形是正方形; ③有一个角是直角的菱形是正方形。
11、平行四边形、矩形、菱形、正方形之间的关系:1、三角形的中位线:⑴连结 的线段叫做三角形的中位线. 区别三角形的中位线与三角形的中线。
⑵三角形中位线的性质三角形的中位线 第三边并且等于它的 . 2、梯形的中位线:⑴连结梯形 的线段叫做梯形的中位线。
八年级上册数学期末复习教案

八年级上册数学期末复习教案八年级上册数学期末复习教案1一、内容和内容解析1.内容二次根式的性质。
2.内容解析本节教材是在学生学习二次根式概念的基础上,结合二次根式的概念和算术平方根的概念,通过观察、归纳和思考得到二次根式的两个基本性质.对于二次根式的性质,教材没有直接从算术平方根的意义得到,而是考虑学生的年龄特征,先通过“探究”栏目中给出四个具体问题,让学生学生根据算术平方根的意义,就具体数字进行分析得出结果,再分析这些结果的共同特征,由特殊到一般地归纳出结论.基于以上分析,确定本节课的教学重点为:理解二次根式的性质.二、目标和目标解析1.教学目标(1)经历探索二次根式的性质的过程,并理解其意义;(2)会运用二次根式的性质进行二次根式的化简;(3)了解代数式的概念.2.目标解析(1)学生能根据具体数字分析和算术平方根的意义,由特殊到一般地归纳出二次根式的性质,会用符号表述这一性质;(2)学生能灵活运用二次根式的性质进行二次根式的化简;(3)学生能从已学过的各种式子中,体会其共同特点,得出代数式的概念.三、教学问题诊断分析二次根式的性质是二次根式化简和运算的重要基础.学生根据二次根式的概念和算术平方根的意义,由特殊到一般地得出二次根式的性质后,重在能灵活运用二次根式的性质进行二次根式的化简和解决一些综合性较强的问题.由于学生初次学习二次根式的性质,对二次根式性质的灵活运用存在一定的困难,突破这一难点需要教师精心设计好每一道习题,让学生在练习中进一步掌握二次根式的性质,培养其灵活运用的能力.本节课的教学难点为:二次根式性质的灵活运用.四、教学过程设计1.探究性质1问题1 你能解释下列式子的含义吗?,,, .师生活动:教师引导学生说出每一个式子的含义.【设计意图】让学生初步感知,这些式子都表示一个非负数的算术平方根的平方.问题2 根据算术平方根的意义填空,并说出得到结论的依据.; ; ; .师生活动学生独立完成填空后,让学生展示其思维过程,说出得到结论的依据.【设计意图】学生通过计算或根据算术平方根的意义得出结论,为归纳二次根式的性质1作铺垫.问题 3 从以上的结论中你能发现什么规律?你能用一个式子表示这个规律吗?师生活动:引导学生归纳得出二次根式的性质: ( ≥0).【设计意图】让学生经历从特殊到一般的过程,概括出二次根式的性质1,培养学生抽象概括的能力.例2 计算(1) ;(2) .师生活动:学生独立完成,集体订正.【设计意图】巩固二次根式的性质1,学会灵活运用.2.探究性质2问题4 你能解释下列式子的含义吗?,,, .师生活动:教师引导学生说出每一个式子的含义.【设计意图】让学生初步感知,这些式子都表示一个数的平方的算术平方根.问题5 根据算术平方根的意义填空,并说出得到结论的依据.= , = , = , = .师生活动学生独立完成填空后,让学生展示其思维过程,说出得到结论的依据.【设计意图】学生通过计算或根据算术平方根的意义得出结论,为归纳二次根式的性质2作铺垫.问题 6 从以上的结论中你能发现什么规律?你能用一个式子表示这个规律吗?师生活动:引导学生归纳得出二次根式的性质: ( ≥0)【设计意图】让学生经历从特殊到一般的过程,概括出二次根式的性质2,培养学生抽象概括的能力.例3 计算(1) ;(2) .师生活动:学生独立完成,集体订正.【设计意图】巩固二次根式的性质2,学会灵活运用.3.归纳代数式的概念问题7 回顾我们学过的式子,如,,,,,,, ( ≥0),这些式子有哪些共同特征?师生活动:学生概括式子的共同特征,得出代数式的概念.【设计意图】学生通过观察式子的共同特征,形成代数式的概念,培养学生的概括能力.4.综合运用(1)算一算:; ; ; .【设计意图】设计有一定综合性的题目,考查学生的灵活运用的能力,第(2)、(3)、(4)小题要特别注意结果的符号.(2)想一想:中,的取值范围是什么?当≥0时,等于多少?当时,又等于多少?【设计意图】通过此问题的设计,加深学生对的理解,开阔学生的视野,训练学生的思维.(3)谈一谈你对与的认识.【设计意图】加深学生对二次根式性质的理解.5.总结反思(1)你知道了二次根式的哪些性质?(2)运用二次根式性质进行化简需要注意什么?(3)请谈谈发现二次根式性质的思考过程?(4)想一想,到现在为止,你学习了哪几类字母表示数得到的式子?说说你对代数式的认识.6.布置作业:教科书习题16.1第2,4题.五、目标检测设计1. ; ; .【设计意图】考查对二次根式性质的理解.2.下列运算正确的是( )A. B. C. D.【设计意图】考查学生运用二次根式的性质进行化简的能力.3.若,则的取值范围是 .【设计意图】考查学生对一个数非负数的算术平方根的理解.4.计算: .【设计意图】考查二次根式性质的灵活运用.八年级上册数学期末复习教案2教学目标1.等腰三角形的概念.2.等腰三角形的性质.3.等腰三角形的概念及性质的应用.教学重点: 1.等腰三角形的概念及性质. 2.等腰三角形性质的应用.教学难点:等腰三角形三线合一的性质的理解及其应用.教学过程Ⅰ.提出问题,创设情境在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,•并且能够作出一个简单平面图形关于某一直线的轴对称图形,•还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?有的三角形是轴对称图形,有的三角形不是.问题:那什么样的三角形是轴对称图形?满足轴对称的条件的三角形就是轴对称图形,•也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形.我们这节课就来认识一种成轴对称图形的三角形──等腰三角形.Ⅱ.导入新课:要求学生通过自己的思考来做一个等腰三角形.作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连结AB、BC、CA,则可得到一个等腰三角形.等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角.思考:1.等腰三角形是轴对称图形吗?请找出它的对称轴.2.等腰三角形的两底角有什么关系?3.顶角的平分线所在的直线是等腰三角形的对称轴吗?4.底边上的中线所在的直线是等腰三角形的对称轴吗?•底边上的高所在的直线呢?结论:等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.要求学生把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系.沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,•而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高.由此可以得到等腰三角形的性质:1.等腰三角形的两个底角相等(简写成“等边对等角”).2.等腰三角形的顶角平分线,底边上的中线、•底边上的高互相重合(通常称作“三线合一”).由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程).如右图,在△ABC中,AB=AC,作底边BC的中线AD,因为所以△BAD≌△CAD(SSS).所以∠B=∠C.]如右图,在△ABC中,AB=AC,作顶角∠BAC的角平分线AD,因为所以△BAD≌△CAD.所以BD=CD,∠BDA=∠CDA= ∠BDC=90°.[例1]如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求:△ABC各角的度数.分析:根据等边对等角的性质,我们可以得到∠A=∠ABD,∠ABC=∠C=∠BDC,•再由∠BDC=∠A+∠ABD,就可得到∠ABC=∠C=∠BDC=2∠A.再由三角形内角和为180°,•就可求出△ABC的三个内角.把∠A设为x的话,那么∠ABC、∠C都可以用x来表示,这样过程就更简捷.解:因为AB=AC,BD=BC=AD,所以∠ABC=∠C=∠BDC.∠A=∠ABD(等边对等角).设∠A=x,则∠BDC=∠A+∠ABD=2x,从而∠ABC=∠C=∠BDC=2x.于是在△ABC中,有∠A+∠ABC+∠C=x+2x+2x=180°,解得x=36°. 在△ABC中,∠A=35°,∠ABC=∠C=72°.[师]下面我们通过练习来巩固这节课所学的知识.Ⅲ.随堂练习:1.课本P51练习 1、2、3. 2.阅读课本P49~P51,然后小结.Ⅳ.课时小结这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们.Ⅴ.作业:课本P56习题12.3第1、2、3、4题.板书设计12.3.1.1 等腰三角形一、设计方案作出一个等腰三角形二、等腰三角形性质: 1.等边对等角 2.三线合一八年级上册数学期末复习教案3教学目标1、理解并掌握等腰三角形的判定定理及推论2、能利用其性质与判定证明线段或角的相等关系.教学重点:等腰三角形的判定定理及推论的运用教学难点:正确区分等腰三角形的判定与性质,能够利用等腰三角形的判定定理证明线段的相等关系.教学过程:一、复习等腰三角形的性质二、新授:I提出问题,创设情境出示投影片.某地质专家为估测一条东西流向河流的宽度,选择河流北岸上一棵树(B点)为B标,然后在这棵树的正南方(南岸A点抽一小旗作标志)沿南偏东60°方向走一段距离到C处时,测得∠ACB为30°,这时,地质专家测得AC 的长度就可知河流宽度.学生们很想知道,这样估测河流宽度的根据是什么?带着这个问题,引导学生学习“等腰三角形的判定”.II引入新课1.由性质定理的题设和结论的变化,引出研究的内容——在△ABC中,苦∠B=∠C,则AB= AC吗?作一个两个角相等的三角形,然后观察两等角所对的边有什么关系?2.引导学生根据图形,写出已知、求证.2、小结,通过论证,这个命题是真命题,即“等腰三角形的判定定理”(板书定理名称).强调此定理是在一个三角形中把角的相等关系转化成边的相等关系的重要依据,类似于性质定理可简称“等角对等边”.4.引导学生说出引例中地质专家的测量方法的根据.III例题与练习1.如图2其中△ABC是等腰三角形的是 [ ]2.①如图3,已知△ABC中,AB=AC.∠A=36°,则∠C______(根据什么?).②如图4,已知△ABC中,∠A=36°,∠C=72°,△ABC是______三角形(根据什么?).③若已知∠A=36°,∠C=72°,BD平分∠ABC交AC于D,判断图5中等腰三角形有______.④若已知 AD=4cm,则BC______cm.3.以问题形式引出推论l______.4.以问题形式引出推论2______.例:如果三角形一个外角的平分线平行于三角形的一边,求证这个三角形是等腰三角形.分析:引导学生根据题意作出图形,写出已知、求证,并分析证明.练习:5.(l)如图6,在△ABC中,AB=AC,∠ABC、∠ACB的平分线相交于点F,过F作DE//BC,交AB于点D,交AC于E.问图中哪些三角形是等腰三角形?(2)上题中,若去掉条件AB=AC,其他条件不变,图6中还有等腰三角形吗?练习:P53练习1、2、3。
人教版八年级数学上学期 第十二章 《全等三角形》章末复习名师教案

°.
【知识点】三角形全等的性质;三角形内角和定理. 【思路点拨】由△ABC≌△A′B′C′,其中∠C′=24°可得∠C=24°,所以∠ B=180°-∠A-∠C=180°-36°-24°=1200 【解答过程】解:∵△ABC≌△A′B′C′, ∴∠C=∠C′=24° ∵∠A+∠B+∠C=1800
∠A=36° ∴∠B=180°-∠A-∠C=180°-36°-24°=1200 【答案】1200 14.如图 BC=EF,AC=DF,要证明△ABC≌△DEF,还需添加一个条件: (1)若以“ ”为依据,需添加的条件是 ; (2)若以“ ”为依据,需添加的条件是 .
【考点】全等三角形的判定与性质. 【思路点拨】延长 BA 交 CE 的延长线于 F,证明△BCE≌△BFE,由全等可证 CE=EF, 再证△ACF≌△ABD,可得 BD=CF 【数学思想】截长补短. 【解答过程】 证明:延长 BA 交 CE 的延长线于 F, ∵BE 平分∠ABC,CE⊥BE, ∴△BCE≌△BFE, ∴CE=EF, ∵在△ABC 中,∠BAC=90°,CE⊥BE, ∴∠FCA=∠ABD, 又∵ AB=AC ∠FAC=∠BAD ∴△ACF≌△ABD, ∴BD=CF, ∴BD=2CE.
2
三、章末检测题
一、选择题 (每题 4 分,共 48 分)
1.如图,在△ABC 和△DEF 中,∠B=∠DEF,AB=DE,添加下列一个条件后,仍
然不能证明△ABC≌△DEF,这个条件是( )
A.∠A=∠D
B.BC=EF
C.∠ACB=∠F
D.AC=DF
【知识点】三角形全等的判定 【思路点拨】已知有一条边和相邻的一个角对应相等,可以添∠A=∠D(依据 ASA) 或∠ACB=∠F(依据 AAS),也可以添边 BC=EF(依据 SAS) 【解答过程】选项 A 的依据为 ASA; 选项 B 的依据为 SAS;选项 C 的依据为 AAS; 选项 D 不能判断两个三角形全等. 【答案】D 2.下列说法正确的是( ) A.周长相等的两个三角形全等; B.有两边和其中一边的对角对应相等的两个三角形全等; C.面积相等的两个三角形全等; D.有两角和其中一角的对边对应相等的两个三角形全等. 【知识点】三角形全等的判定和性质. 【思路点拨】三角形全等的判定方法有:SSS;SAS;AAS;ASA;HL. 【解答过程】选项 A 周长相等不能判断三角形全等;选项 B 两边和一个角对应相 等,只能是两边和两边的夹角对应相等才能判定三角形全等;选项 C 面积相等的 两个三角形不一定全等;选项 D 对,依据为 AAS.
八年级上册数学教案 八年级上册数学教案(9篇)

八年级上册数学教案八年级上册数学教案(9篇)作为一名为他人授业解惑的教育工作者,通常需要用到教案来辅助教学,借助教案可以让教学工作更科学化。
那么大家知道正规的教案是怎么写的吗?下面是细致的小编帮大家收集整理的9篇八年级上册数学教案的相关范文,欢迎参考阅读,希望能够帮助到大家。
八年级上册数学教案篇一第11章平面直角坐标系11.1平面上点的坐标第1课时平面上点的坐标(一)教学目标【知识与技能】1.知道有序实数对的概念,认识平面直角坐标系的相关知识,如平面直角坐标系的构成:横轴、纵轴、原点等。
2.理解坐标平面内的点与有序实数对的一一对应关系,能写出给定的平面直角坐标系中某一点的坐标。
已知点的坐标,能在平面直角坐标系中描出点。
3.能在方格纸中建立适当的平面直角坐标系来描述点的位置。
【过程与方法】1.结合现实生活中表示物体位置的例子,理解有序实数对和平面直角坐标系的作用。
2.学会用有序实数对和平面直角坐标系中的点来描述物体的位置。
【情感、态度与价值观】通过引入有序实数对、平面直角坐标系让学生体会到现实生活中的问题的解决与数学的发展之间有联系,感受到数学的价值。
重点难点【重点】认识平面直角坐标系,写出坐标平面内点的坐标,已知坐标能在坐标平面内描出点。
【难点】理解坐标系中的坐标与坐标轴上的数字之间的关系。
教学过程一、创设情境、导入新知师:如果让你描述自己在班级中的位置,你会怎么说?生甲:我在第3排第5个座位。
生乙:我在第4行第7列。
师:很好!我们买的电影票上写着几排几号,是对应某一个座位,也就是这个座位可以用排号和列号两个数字确定下来。
二、合作探究,获取新知师:在以上几个问题中,我们根据一个物体在两个互相垂直的方向上的数量来表示这个物体的位置,这两个数量我们可以用一个实数对来表示,但是,如果(5,3)表示5排3号的话,那么(3,5)表示什么呢?生:3排5号。
师:对,它们对应的不是同一个位置,所以要求表示物体位置的这个实数对是有序的。
八年级上学期期末复习二 教案

期末复习二1适用学科初中数学适用年级初二适用区域人教版课时时长(分钟)120知识点1.同底数幂的乘法;幂的乘方;积的乘方 2.单项式乘以单项式;单项式乘以多项式;多项式乘以多项式 3.同底数幂的除法;零指数指数幂教学目标 1.整式乘法的公式灵活应用2.乘法公式的应用3.掌握因式分解 4.掌握分式的基本概念,性质,及基本运算 5.掌握分式方程的计算及实际应用问题教学重点 整式乘法的公式灵活应用;乘法公式的应用;掌握因式分解;掌握分式的基本概念,性质,及基本运算;掌握分式方程的计算及实际应用问题教学难点 同底数幂的乘除法、幂的乘方、积的乘方的综合应用;多项式与多项式相乘的乘法法则的运用;理解零指数指数幂的意义;乘法公式的熟练使用;分式的概念,计算及分式方程的解法【教学建议】1.通过系统化、条理化的复习,回顾各章的基础知识和基本方法,同时加强整个学期知识间 的联系,使学生能理清所学,查漏补缺,真正落实掌握所学内容;2.加强学生的审题、阅读、观察、计算、画图、抽象概括、逻辑推理、动手操作等技能; 3.渗透函数与方程、转化与化归、分类与整合、数形结合等数学思想方法; 4.帮助学生揭示解题规律,归纳解题方法,进一步提高学生综合运用数学知识分析问题、解决问题的能力; 5.培养学生自己复习的能力,提高应试能力和综合素质。
【知识导图】2整式乘除代数部分复习因式分解分式与分式方程整式乘法 整式除法定义 方法步骤分式 分式方程教学过程一、导入【教学建议】 导入是一节课必备的一个环节,是为了激发学生的学习兴趣,帮助学生尽快进入学习状态。
导入的方法很多,仅举两种方法: ① 情境导入,比如讲一个和本讲内容有关的生活现象; ② 温故知新,在知识体系中,从学生已有知识入手,揭示本节知识与旧知识的关系,帮学生建立知识网络。
提供一个教学设计供讲师参考:复习预习1. 求 n 个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。
例如 an 这个表达式中,a 是底数,n 是指数, an 又读作 a 的 n 次幂2. 乘方的性质:负数的偶次幂是正数,负数的奇次幂是负数,正数的任何次幂都是正数, 0 的任何正整数次幂都是零,例如(-1)2=1,(-1)-1=-1 等。
八年级上册数学复习教案

八年级上册数学复习教案一、指导思想在教学中努力推进九年义务教育,落实新课改,体现新理念,培养创新精神。
贯彻《初中数学新课程标准》的精神,以学生发展为本,以改变学习方式为目的,以培养高素质的人才为目标,,培养学生创新精神和实践能力为重点的素质教育,探索有效教学的新模式。
义务教育阶段的数学课程,其基本出发点是促进学生全面、持续、和谐地发展。
通过数学课的教学,并使学生二要努力学习专门从事现代化建设和进一步自学现代化科学技术所所需的数学基本知识和基本技能;不懈努力培育学生的运算能力、逻辑思维能力,以及分析问题和解决问题的能力。
二、学情分析本学期我拎初二(2)(3)班的数学课,学生反应较快,基础极差。
同时初二这个年龄阶段的学生比较调皮,具有一定的应用领域数学知识化解实际问题的能力,但在科学知识有效率应用领域上还是很缺乏,因此在教学中要循序渐进,融合实例,通俗易懂,培育学生活学活用的数学应用领域能力。
八年级就是初中自学过程中的关键时期,学生基础的优劣,直接影响至将来与否能够升学。
班级学生非常活跃,存有少数学生不上入,思维不紧随老师。
学生纯粹,存有部分同学基础极差,问题较轻微。
必须在本期获得理想成绩,老师和学生都必须代价不懈努力,补漏伯粉,充分发挥学生就是自学的主体,教师就是教导的主体作用,著重方法,培养能力。
三、教材分析本学期教学内容总计五章,科学知识的前后联系,教材的教学目标,轻、难点分析如下:第十一章三角形本章主要自学与三角形有关的线段、角及多边形的内角和等内容。
本章重点:三角形有关线段、角及多边形的内角和的性质与应用领域。
本章难点:正确理解三角形的高、中线及角平分线的性质并能够作图,及三角形内角和的证明与多边形内角和的探究。
第十二章全等三角形主要了解了三角形全等的性质和认定方法及直角三角形全等的特定条件。
更多的著重学生推理小说意识的创建和对推理小说过程的认知,学生在直观重新认识和直观表明理由的基础上,从几个基本事实启程,比较严苛地证明全系列等三角形的一些性质,积极探索三角形全等的条件。
八年级数学上学期期末复习《八上总复习》课案(教师用) 新人教版

课案(教师用)《八年级上册全册复习》(复习课)【理论支持】数学教师的任务之一是帮助学生构造数学现实,并在此基础上发展他们的数学现实。
因此,在教学过程中,教师应该充分利用学生的认知规律,及已有的生活经验和数学的实际。
教学时,把那些最能反映现代生产、现代社会生活需要的最基本、最核心的数学知识和技能作为数学教育的内容.数学教育的内容不能仅仅局限于数学内部的内在联系,还应该研究数学与现实世界各种不同领域的外部关系和联系。
这样才能使学生一方面获得既丰富多彩而又错综复杂的“现实的数学”内容,掌握比较完整的数学体系.另一方面,学生也有可能把学到的数学知识应用于现实世界中去。
数学教育应该为所有的人服务,应该满足全社会各种领域的不同层次的人对数学的不同水平的需求。
《数学课程标准》(实验稿)中强调:“从学生已有的生活经验出发,让学生亲自经历将实际问题抽象成数学模型进行解释与应用的过程。
”数学教学应从学生熟悉的生活现实出发,使生活材料数学化,数学教学生活化。
新课程明确倡导动手实践、自主探究、合作交流的学习方式,这就要求教师应当从过去知识的传授者转变为学生自主性、探究性、合作性学习活动的设计者和组织者,因此,在教学过程中,设置问题情境,让学生自主地去探究、发现问题,要让学生感受到学习的快乐,体会到探究与发现带来的乐趣,同时给学生一个展示个性、享受成功的机会;引导学生自己概括数学概念、原理、法则等,使学生在数学学习过程中保持高水平的数学思维活动。
教师在整个教学过程中与学生一起共同探讨与研究,及时帮助学生解决问题,真正成为学生学习的引导者。
“全等三角形”这一章是全册学习的开篇课,也是本册学习的主线和进一步学习其他图形的基础之一。
在知识结构上,以后学习的几何图形都要通过它来解决。
在能力培养上无论是逻辑思维能力、推理论证能力,还是分析问题解决问题的能力,都可以在全等三角形的学习中得以启迪和发展。
因此本小节的学习对全章乃至以后的学习都至关重要。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
期末复习一
教
材
分
析
教学
目标
通过练习复习全等三角形相关知识,使学生温故知新
旧知重现,感受知识的渐进性和整体性
教学
重难点
旧知重现
考点
与
措施
全等三角形的证明
教
学
过
程
环节
教学内容与师生活动
设计意图和
关注的学生
练习
一.选择题(3×10=30分)
1.下列说法正确的是()
A.形状相同的两个三角形是全等三角形
B.面积相等的两个三角形是全等三角形
(1)(2分)若要使 ,应添上条件:;
(2)(4分)证明上题;
(3)(2分)在 中,若 , ,可以求得 边上的中线 的取值范围是 。请看解题过程:
由 得: , ,
因此 ,即 ,
而 ,则 。
请参考上述解题方法,求 。
26.(10分)四边形 是正方形(提示:正方形四边相等,四个角都是 )
(1)(4分)如图1,点 是 边上任意一点(不与点 、 重合),连接 ,作 于点 , 于点 。
图2图3
教
学
反
思
全等三角形的证明
求证: ;
图1
(2)直接写出(1)中,线段 与 、 的等量关系;
(3)①如图2,若点 是 边上任意一点(不与点 、 重合),连接 ,作 于点 , 于点 ,则图中全等三角形是,线段 与 、 的等量关系是;
②如图3,若点 是 延长线上任意一点,连接 ,作 于点 , 于点 ,线段 与 、 的等量关系是;
(4)(2分)若点 是 延长线上任意一点,连接 ,作 于点 , 于点 ,请画图、探究线段 与 、 的等量关系。
A.B.C.D.
8.如图, 中, , 平分 ,
则下列结论中:① ;② ;
③ ;④ 。正确的有( )
A.①②③ B.②③④ C.①②④ D.①③④
9.如图, , , 、 交于点 ,
则图中全等三角形共有()
A.四对B.三对
C.二对D.一对
10.如图, 中, 、 分别平分 和 ,
连接 ,已知 , ,则
的度数为( )
C.三个角对应相等的两个三角形是全等三角形
D.三条边对应相等的两个三角形是全等三角形
2.如图,点 落在 边上,用尺规作 ,其中弧 的()
A.圆心是 ,半径是
B.圆心是 ,半径是
C.圆心是 ,半径是
D.圆心是 ,半径是
3.如右图,已知 , ,若要得
到“ ”,必须添加一个条件,则下
列所添条件不恰当的是()
22.(7分)如图, 、 、 三点共线, , , 。
求证: 。
23.(7分)如图, 中, 于 ቤተ መጻሕፍቲ ባይዱ若 , 。
(1)(4分)求证: ;
(2)(3分)求证: 。
24.(8分)如图, 于 , 于 ,若 、 ,
(1)(6分)求证: 平分 ;
(2)(2分)直接写出 与 之间的等量关系。
25.(8分)如图, 中,点 是 中点,连接 并延长到点 ,连接 。
A. B.
C. D.
4.如图, ,点 与 , 与 分别
是对应顶点,且测得 , ,则
长为( )
A. B.
C. D.
5.在第4题的图中,若测得 , , , ,则梯形 的面积是( )
A. B. C. D.
6.如图, 中, , 平分 ,
过点 作 于 ,测得 , ,
则 的周长是()
A. B. C. D.
7.根据下列各图中所作的“边相等、角相等”标记,其中不能使该图中两个三角形全等的是()
,连接 ,测得 长为 ,则池塘
宽 为 ,依据是。
15.如图, , ,请你添加一个条
件使 ,依据是。
16. 如图, °。
17. 如图 中, 平分 , , ,
且 的面积为 ,则 的面积为。
18. 如图, 平分 , 于点 ,
点 在射线 上运动。若 ,则 长度
的最小值为。
19.如图, 中, , ,
,在 上取一点 使 ,过点
作 交 延长线于点 ,若 ,
则 。
20.如图, 的顶点分别为 , ,
,且 与 全等,则点 坐标
可以是。
三.解答题(6+7+7+8+8+10=46分)
21.(6分)如图,铁路和公路都经过 地,曲线 是一条河流,现欲在河上建一个货运码头 ,使其到铁路和公路的距离相等,请用直尺和圆规通过画图找到码头 的位置。(注意:①保留作图痕迹;②在图中标出点 )
A. B. C. D.
二.填空题(2×12=24分)
11.如图,某同学将三角形玻璃打碎,现要到玻璃店
配一块完全相同的玻璃,应带去。
12. 如图, ,点 、 是对应顶点,
的周长为 , , ,则
的长为。
13.如图, ,点 、 是对应顶点,
, ,则 。
14.如图,要测量池塘的宽度 ,在池塘外选取
一点 ,连接 、 并各自延长,使 ,