2020年高考数学真题汇编 7:立体几何 理

合集下载

立体几何大题真题汇编(理) - (原卷版)(2020高考数学)

立体几何大题真题汇编(理) - (原卷版)(2020高考数学)

立体几何大题真题汇编1.(2017•新课标Ⅱ,19)如图,四棱锥P﹣ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC= AD,∠BAD=∠ABC=90°,E是PD的中点.(Ⅰ)证明:直线CE∥平面PAB;(Ⅱ)点M在棱PC 上,且直线BM与底面ABCD所成角为45°,求二面角M﹣AB﹣D的余弦值.2.(2017•江苏,15)如图,在三棱锥A﹣BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E、F(E与A、D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(Ⅰ)EF∥平面ABC;(Ⅱ)AD⊥AC.3.(2016·山东,17)在如图所示的圆台中,AC 是下底面圆O 的直径,EF 是上底面圆O ′的直径,FB 是圆台的一条母线.(1)已知G ,H 分别为EC ,FB 的中点,求证:GH ∥平面ABC ;(2)已知EF =FB =12AC =23,AB =BC ,求二面角F -BC -A 的余弦值.4.(2016·全国Ⅲ,19)如图,四棱锥P -ABCD 中,P A ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,P A =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点.(1)证明MN ∥平面P AB ;(2)求直线AN 与平面PMN 所成角的正弦值.5.(2015·江苏,16)如图,在直三棱柱ABC -A 1B 1C 1中,已知AC ⊥BC ,BC =CC 1.设AB 1的中点为D ,B 1C ∩BC 1=E .求证:(1)DE∥平面AA1C1C;(2)BC1⊥AB1.6.(2014·江苏,16)如图,在三棱锥P ABC中,D,E,F分别为棱PC,AC,AB的中点.已知P A⊥AC,P A =6,BC=8,DF=5.求证:(1)直线P A∥平面DEF;(2)平面BDE⊥平面ABC.7.(2014·新课标全国Ⅱ,18)如图,四棱锥P-ABCD中,底面ABCD为矩形,P A⊥平面ABCD,E为PD的中点.(1)证明:PB∥平面AEC;(2)设二面角DAEC为60°,AP=1,AD=3,求三棱锥EACD的体积.8.(2014·湖北,19)如图,在棱长为2的正方体ABCDA1B1C1D1中,E,F,M,N分别是棱AB,AD,A1B1,A1D1的中点,点P,Q分别在棱DD1,BB1上移动,且DP=BQ=λ(0<λ<2).(1)当λ=1时,证明:直线BC1∥平面EFPQ;(2)是否存在λ,使面EFPQ与面PQMN所成的二面角为直二面角?若存在,求出λ的值;若不存在,说明理由.9.(2018江苏,15)在平行六面体ABCD−A1B1C1D1中,AA1=AB,AB1⊥B1C1。

2020高考数学分类汇编--立体几何

2020高考数学分类汇编--立体几何

2020年普通高等学校招生全国统一考试理科数学3.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为A .14B .12C .14D .1210.已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC △的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为A .64πB .48πC .36πD .32π16.如图,在三棱锥P –ABC 的平面展开图中,AC =1,AB AD =AB ⊥AC ,AB ⊥AD ,∠CAE =30°,则cos ∠FCB = .18.(12分)如图,D 为圆锥的顶点,O 是圆锥底面的圆心,AE 为底面直径,AE AD =.ABC △是底面的内接正三角形,P 为DO 上一点,PO .(1)证明:PA ⊥平面PBC ; (2)求二面角B PC E --的余弦值. 3.C 10.A16.14-18.解:(1)设DO a =,由题设可得,,63PO a AO a AB a ===,2PA PB PC ===. 因此222PA PB AB +=,从而PA PB ⊥. 又222PA PC AC +=,从而PA PC ⊥. 所以PA ⊥平面PBC .(2)以O 为坐标原点,OE 的方向为y 轴正方向,||OE 为单位长,建立如图所示的空间直角坐标系O xyz -.由题设可得1(0,1,0),(0,1,0),(,0),(0,0,)22E A C P -.所以31(,,0),(0,2EC EP =--=-.设(,,)x y z =m 是平面PCE 的法向量,则00EP EC ⎧⋅=⎪⎨⋅=⎪⎩m m ,即2023102y z x y⎧-+=⎪⎪⎨⎪--=⎪⎩,可取3(,1,2)=-m . 由(1)知2(0,1,)2AP =是平面PCB 的一个法向量,记AP =n , 则25cos ,|||5⋅==n m n m n m |. 所以二面角B PC E --的余弦值为25.2020年普通高等学校招生全国统一考试理科数学4.北京天坛的圆丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)A .3699块B .3474块C .3402块D .3339块7.右图是一个多面体的三视图,这个多面体某条棱的一个断点在正视图中对应的点为M ,在俯视图中对应的点为N ,则该端点在侧视图中对应的点为ME F GHA .EB .FC .GD .H10. 已知ABC △是面积为439的等边三角形,且其顶点都在球O 的表面上,若球O 的表面积为π16,则球O 到平面ABC 的距离为( ) A .3B .23 C .1 D .23 16.设有下列四个命题: 1P :两两相交且不过同一点的三条直线必在同一平面内. 2P :过空间中任意三点有且仅有一个平面. 3P :若空间两条直线不相交,则这两条直线平行. 4P :若直线⊂l 平面α,直线⊥m 平面α,则l m ⊥.则下述命题中所有真命题的序号是________. ①41p p ∧②21p p ∧③32p p ∨⌝④ 43p p ⌝∨⌝20.(12分)如图,已知三棱柱111C B A ABC -的底面是正三角形,侧面C C BB 11是矩形,M ,N 分别为BC ,11C B 的中点,P 为AM 上一点,过11C B 和P 的平面交AB 于E ,交AC 于F .(1)证明:MN AA ∥1,且平面F C EB AMN A 111平面⊥;(2)设O 为△111C B A 的中心,若F C EB AO 11平面∥,且AB AO =,求直线E B 1与平面AMN A 1所成角的正弦值.2020年普通高等学校招生全国统一考试理科数学8.下图为某几何体的三视图,则该几何体的表面积是A .B .C .D .15.已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为__________.19.(12分)如图,在长方体1111ABCD A B C D -中,点,E F 分别在棱11,DD BB 上,且12DE ED =,12BF FB =.(1)证明:点1C 在平面AEF 内;(2)若2AB =,1AD =,13AA =,求二面角1A EF A --的正弦值.8.C15 19.解:设AB a =,AD b =,1AA c =,如图,以1C 为坐标原点,11C D 的方向为x 轴正方向,建立空间直角坐标系1C xyz -.(1)连结1C F ,则1(0,0,0)C ,(,,)A a b c ,2(,0,)3E a c ,1(0,,)3F b c ,1(0,,)3EA b c =,11(0,,)3C F b c =,得1EA C F =.因此1EA C F ∥,即1,,,A E F C 四点共面,所以点1C 在平面AEF 内. (2)由已知得(2,1,3)A ,(2,0,2)E ,(0,1,1)F ,1(2,1,0)A ,(0,1,1)AE =--,(2,0,2)AF =--,1(0,1,2)A E =-,1(2,0,1)A F =-.设1(,,)x y z =n 为平面AEF 的法向量,则 110,0,AE AF ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,220,y z x z --=⎧⎨--=⎩可取1(1,1,1)=--n . 设2n 为平面1A EF 的法向量,则 22110,0,A E A F ⎧⋅=⎪⎨⋅=⎪⎩n n 同理可取21(,2,1)2=n .因为121212cos ,||||⋅〈〉==⋅n n n n n n ,所以二面角1A EF A --.2020年普通高等学校招生全国统一考试文科数学3.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为A .14B .12C .14D .1211.设12,F F 是双曲线22:13y C x -=的两个焦点,O 为坐标原点,点P 在C 上且||2OP =,则12PF F △的面积为 A .72B .3C .52D .212.已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC △的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为A .64πB .48πC .36πD .32π19.(12分)如图,D 为圆锥的顶点,O 是圆锥底面的圆心,ABC △是底面的内接正三角形,P 为DO 上一点,∠APC =90°.(1)证明:平面PAB ⊥平面PAC ;(2)设DO ,求三棱锥P −ABC 的体积. 3.C11.B12.A19.解:(1)由题设可知,PA =PB = PC .由于△ABC 是正三角形,故可得△PAC ≌△PAB . △PAC ≌△PBC .又∠APC =90°,故∠APB =90°,∠BPC =90°.从而PB ⊥PA ,PB ⊥PC ,故PB ⊥平面PAC ,所以平面PAB ⊥平面PAC . (2)设圆锥的底面半径为r ,母线长为l .由题设可得rl 222l r ==.解得r =1,l从而AB 1)可得222PA PB AB +=,故PA PB PC ===所以三棱锥P -ABC 的体积为311113232PA PB PC ⨯⨯⨯⨯=⨯⨯=.2020年普通高等学校招生全国统一考试文科数学11.已知△ABC O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为AB .32C .1D 16.设有下列四个命题:p 1:两两相交且不过同一点的三条直线必在同一平面内. p 2:过空间中任意三点有且仅有一个平面. p 3:若空间两条直线不相交,则这两条直线平行. p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l . 则下述命题中所有真命题的序号是__________. ① 14p p ∧②12p p ∧③23p p ⌝∨④34p p ⌝∨⌝20.(12分)如图,已知三棱柱ABC –A 1B 1C 1的底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点.过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1//MN ,且平面A 1AMN ⊥平面EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心,若AO =AB =6,AO //平面EB 1C 1F ,且∠MPN =π3,求四棱锥B –EB 1C 1F 的体积. 12.A16.①③④20.解:(1)因为M ,N 分别为BC ,B 1C 1的中点,所以MN ∥CC 1.又由已知得AA 1∥CC 1,故AA 1∥MN .因为△A 1B 1C 1是正三角形,所以B 1C 1⊥A 1N .又B 1C 1⊥MN ,故B 1C 1⊥平面A 1AMN . 所以平面A 1AMN ⊥平面EB 1C 1F .(2)AO ∥平面EB 1C 1F ,AO ⊂平面A 1AMN ,平面A 1AMN ⋂平面EB 1C 1F = PN , 故AO ∥PN ,又AP ∥ON ,故四边形APNO 是平行四边形,所以PN =AO =6,AP = ON =13AM PM =23AM EF =13BC =2.因为BC ∥平面EB 1C 1F ,所以四棱锥B -EB 1C 1F 的顶点B 到底面EB 1C 1F 的距离等于点M 到底面EB 1C 1F 的距离.作MT ⊥PN ,垂足为T ,则由(1)知,MT ⊥平面EB 1C 1F ,故MT =PM sin ∠MPN =3.底面EB 1C 1F 的面积为1111()(62)624.22B C EF PN ⨯+⨯=+⨯=所以四棱锥B -EB 1C 1F 的体积为1243243⨯⨯=.2020年普通高等学校招生全国统一考试文科数学9.如图为某几何体的三视图,则该几何体的表面积是A .B .C .D .16.已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________. 19.(12分)如图,在长方体1111ABCD A B C D -中,点E ,F 分别在棱1DD ,1BB 上,且12DE ED =,12BF FB =.证明:(1)当AB BC =时,EF AC ⊥;(2)点1C 在平面AEF 内. 9.C16.2π 19.解:(1)如图,连结BD ,11B D .因为AB BC =,所以四边形ABCD 为正方形,故AC BD ⊥.又因为1BB ⊥平面ABCD ,于是1AC BB ⊥.所以AC ⊥平面11BB D D . 由于EF ⊂平面11BB D D ,所以EF AC ⊥.(2)如图,在棱1AA 上取点G ,使得12AG GA =,连结1GD ,1FC ,FG ,因为1123D E DD =,123AG AA =,11DD AA =∥,所以1ED AG =∥,于是四边形1ED GA 为平行四边形,故1AE GD ∥.因为1113B F BB =,1113AG AA =,11BB AA =∥,所以11FG A B =∥,11FG C D =∥,四边形11FGD C 为平行四边形,故11GD FC ∥.于是1AE FC ∥.所以1,,,A E F C 四点共面,即点1C 在平面AEF 内. 2020年普通高等学校招生全国统一考试(北京卷)(3)某三棱柱的底面为正三角形, 其三视图如图所示, 该三棱柱的表面积为(A )63+(B )623+(C )123+(D )1223+(16)(本小题13分) 如图,在正方体1111ABCD A B C D -中,E 为1BB 的中点.(Ⅰ)求证:1BC ∥平面1AD E ;(Ⅱ)求直线1AA 与平面1AD E 所成角的正弦值.2020年普通高等学校招生全国统一考试(江苏卷)9.如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2 cm ,高为2 cm ,内孔半轻为0.5 cm ,则此六角螺帽毛坯的体积是 cm.15.(本小题满分14分)在三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,B 1C ⊥平面ABC ,E ,F 分别是AC ,B 1C 的中点. (1)求证:EF ∥平面AB 1C 1; (2)求证:平面AB 1C ⊥平面ABB 1.9.1232π 15.满分14分.证明:因为,E F 分别是1,AC B C 的中点,所以1EF AB ∥. 又/EF ⊂平面11AB C ,1AB ⊂平面11AB C , 所以EF ∥平面11AB C .(2)因为1B C ⊥平面ABC ,AB ⊂平面ABC , 所以1B C AB ⊥.又AB AC ⊥,1B C ⊂平面11AB C ,AC ⊂平面1AB C ,1,B C AC C =所以AB ⊥平面1AB C .又因为AB ⊂平面1ABB ,所以平面1AB C ⊥平面1ABB . 22.(本小题满分10分)在三棱锥A —BCD 中,已知CB =CD 5,BD =2,O 为BD 的中点,AO ⊥平面BCD ,AO =2,E 为AC 的中点.(1)求直线AB 与DE 所成角的余弦值;(2)若点F 在BC 上,满足BF =14BC ,设二面角F —DE —C 的大小为θ,求sin θ的值. 2020年普通高等学校招生全国统一考试(天津卷)5.若棱长为23的正方体的顶点都在同一球面上,则该球的表面积为 A .12π B .24πC .36πD .144π17.(本小题满分15分)如图,在三棱柱111ABC A B C -中,1CC ⊥平面,,2ABC AC BC AC BC ⊥==,13CC =,点,D E 分别在棱1AA 和棱1CC 上,且2,1,AD CE M ==为棱11A B 的中点.(Ⅰ)求证:11C M B D ⊥;(Ⅱ)求二面角1B B E D --的正弦值;(Ⅲ)求直线AB 与平面1DB E 所成角的正弦值. 5.C17.满分15分.依题意,以C 为原点,分别以1,,CA CB CC 的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系(如图),可得1(0,0,0),(2,0,0),(0,2,0),(0,0,3)C A B C ,11(2,0,3),(0,2,3),(2,0,1),(0,0,2)A B D E ,(1,1,3)M .(Ⅰ)证明:依题意,1(1,1,0)C M =,1(2,2,2)B D =--,从而112200C M B D ⋅=-+=,所以11C M B D ⊥.(Ⅱ)解:依题意,(2,0,0)CA =是平面1BB E 的一个法向量,1(0,2,1)EB =,(2,0,1)ED =-.设(,,)x y z =n 为平面1DB E 的法向量,则10,0,EB ED ⎧⋅=⎪⎨⋅=⎪⎩n n 即20,20.y z x z +=⎧⎨-=⎩不妨设1x =,可得(1,1,2)=-n . 因此有|||6cos ,6|A CA C CA ⋅〈〉==n n n ,于是30sin ,CA 〈〉=n . 所以,二面角1B B E D --的正弦值为306. (Ⅲ)解:依题意,(2,2,0)AB =-.由(Ⅱ)知(1,1,2)=-n 为平面1DB E 的一个法向量,于是3cos ,3||||AB AB AB ⋅==-n n n .所以,直线AB 与平面1DB E 32020年普通高等学校招生全国统一考试新高考4.日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A处的水平面是指过点A且与OA垂直的平面.在点A处放置一个日晷,若晷面与赤道所在平面平行,点A处的纬度为北纬40°,则晷针与点A处的水平面所成角为A.20°B.40°C.50°D.90°D16.已知直四棱柱ABCD–A1B1C1D1的棱长均为2,∠BAD=60°.以1的球面与侧面BCC1B1的交线长为________.20.(12分)如图,四棱锥P-ABCD的底面为正方形,PD⊥底面ABCD.设平面PAD与平面PBC的交线为l.(1)证明:l⊥平面PDC;(2)已知PD=AD=1,Q为l上的点,求PB与平面QCD所成角的正弦值的最大值.4.B 1620.解:(1)因为PD⊥底面ABCD,所以PD AD⊥.⊥,因此AD⊥底面PDC.又底面ABCD为正方形,所以AD DC∥,AD⊄平面PBC,所以AD∥平面PBC.因为AD BC∥.因此l⊥平面PDC.由已知得l AD(2)以D为坐标原点,DA的方向为x轴正方向,建立如图所示的空间直角坐标系D xyz -.则(0,0,0),(0,1,0),(1,1,0),(0,0,1)D C B P ,(0,1,0)DC =,(1,1,1)PB =-. 由(1)可设(,0,1)Q a ,则(,0,1)DQ a =.设(,,)x y z =n 是平面QCD 的法向量,则0,0,DQ DC ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,0.ax z y +=⎧⎨=⎩ 可取(1,0,)a =-n . 所以cos ,||||3PB PB PB ⋅〈〉==⋅n nn . 设PB 与平面QCD 所成角为θ,则sin θ==当且仅当1a =时等号成立,所以PB 与平面QCD 所成角的正. 2020年普通高等学校招生全国统一考试(浙江卷)5.某几何体的三视图(单位:cm )如图所示,则该几何体的体积(单位:cm 3)是A .73B.143C .3D .614.已知圆锥的侧面积(单位:cm 2)为2π,且它的侧面展开图是一个半圆,则这个圆锥的底面半径(单位:cm )是_______. 19.(本题满分15分)如图,在三棱台ABC —DEF 中,平面ACFD ⊥平面ABC ,∠ACB =∠ACD =45°,DC =2BC . (Ⅰ)证明:EF ⊥DB ;(Ⅱ)求直线DF 与平面DBC 所成角的正弦值.5.A 14.119.满分15分。

专题07 立体几何(理数)(解析)2020年高考物理十年真题精解(全国Ⅰ卷)

专题07 立体几何(理数)(解析)2020年高考物理十年真题精解(全国Ⅰ卷)

三观一统2020年高中数学十年高考真题精解(全国卷I)专题7 立体几何(理)十年树木,百年树人,十年磨一剑。

本专辑按照最新2020年考纲,对近十年高考真题精挑细选,去伪存真,挑选符合最新考纲要求的真题,按照考点/考向同类归纳,难度分层精析,对全国卷Ⅰ具有重要的应试性和导向性。

三观指的观三题(观母题、观平行题、观扇形题),一统指的是统一考点/考向,并对十年真题进行标灰(调整不考或低频考点标灰色)。

(一)2020考纲(二)本节考向题型研究汇总一、考向题型研究一:空间几何体之三视图(2018新课标I卷T7理科)某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为A. 2√17B. 2√5C. 3D. 2【答案】B【解析】分析:首先根据题中所给的三视图,得到点M和点N在圆柱上所处的位置,点M在上底面上,点N在下底面上,并且将圆柱的侧面展开图平铺,点M、N在其四分之一的矩形的对角线的端点处,根据平面上两点间直线段最短,利用勾股定理,求得结果.详解:根据圆柱的三视图以及其本身的特征,可以确定点M和点N分别在以圆柱的高为长方形的宽,圆柱底面圆周长的四分之一为长的长方形的对角线的端点处,所以所求的最短路径的长度为√42+22=2√5,故选B.点睛:该题考查的是有关几何体的表面上两点之间的最短距离的求解问题,在解题的过程中,需要明确两个点在几何体上所处的位置,再利用平面上两点间直线段最短,所以处理方法就是将面切开平铺,利用平面图形的相关特征求得结果.(2016新课标I卷T6理科)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是283π,则它的表面积是(A)17π(B)18π(C)20π(D)28π【答案】A【解析】原立体图如图所示:是一个球被切掉左上角的后的三视图表面积是的球面面积和三个扇形面积之和故选A .(2015新课标I 卷T11理科)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16 + 20π,则r=( )18782271=42+32=1784S πππ⨯⨯⨯⨯(A )1 (B )2 (C )4 (D )8 【答案】B【解析】由正视图和俯视图知,该几何体是半球与半个圆柱的组合体,圆柱的半径与球的半径都为r ,圆柱的高为2r ,其表面积为22142222r r r r r r πππ⨯+⨯++⨯=2254r r π+=16 + 20π,解得r=2,故选B.【点睛】简单几何体的三视图;球的表面积公式、圆柱的测面积公式(2013新课标Ⅰ卷T8理科)某几何体的三视图如图所示,则该几何体的体积为( ).A .16+8πB .8+8πC .16+16πD .8+16π 【答案】A【解析】由三视图可知该几何体为半圆柱上放一个长方体,由图中数据可知圆柱底面半径r =2,长为4,在长方体中,长为4,宽为2,高为2,所以几何体的体积为πr 2×4×12+4×2×2=8π+16.故选A.(2017新课标I卷T7理科)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为()A.10 B.12 C.14 D.16【答案】B【分析】由三视图可得直观图,由图形可知该立体图中只有两个相同的梯形的面,根据梯形的面积公式计算即可【解析】解:由三视图可画出直观图,该立体图中只有两个相同的梯形的面,S梯形=×2×(2+4)=6,∴这些梯形的面积之和为6×2=12,故选:B.【点睛】本题考查了体积计算公式,考查了推理能力与计算能力,属于中档题(2015新课标I 卷T11文科)圆柱被一个平面截去一部分后与半球(半径为)r 组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为1620π+,则(r = )A .1B .2C .4D .8【答案】A【解析】解:由几何体三视图中的正视图和俯视图可知, 截圆柱的平面过圆柱的轴线, 该几何体是一个半球拼接半个圆柱,∴其表面积为:22222111142222542222r r r r r r r r r πππππ⨯+⨯+⨯⨯+⨯+⨯=+, 又Q 该几何体的表面积为1620π+, 22541620r r ππ∴+=+,解得2r =,故选:B .(2014新课标Ⅰ卷T12理科)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为()A.6C.4【答案】B【分析】画出图形,结合三视图的数据求出棱长,推出结果即可【解析】解:几何体的直观图如图:AB=4,BD=4,C到BD的中点的距离为:4,∴.AC==6,AD=4,显然AC最长.长为6.故选:B.【点睛】本题考查三视图求解几何体的棱长,考查计算能力(2013新课标I 卷T11文科)某几何体的三视图如图所示,则该几何体的体积为( ).A .π816+B .π88+C .π1616+D .π168+【答案】A【解析】该几何体为一个半圆柱与一个长方体组成的一个组合体. V 半圆柱=12π×22×4=8π, V 长方体=4×2×2=16.所以所求体积为16+8π.故选A.(2012新课标I 卷T7文科)如图,网格上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为(A )6 (B )9 (C )12(D)18【答案】B【解析】由三视图知,其对应几何体为三棱锥,其底面为一边长为6,这边上高为3,棱锥的高为3,故其体积为1163332⨯⨯⨯⨯=9,故选B.(2011新课标I卷T8文科)在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为()A.B.C.D.【答案】D【分析】由俯视图和正视图可以得到几何体是一个简单的组合体,是由一个三棱锥和被轴截面截开的半个圆锥组成,根据组合体的结构特征,得到组合体的侧视图.【解析】解:由俯视图和正视图可以得到几何体是一个简单的组合体,是由一个三棱锥和被轴截面截开的半个圆锥组成,∴侧视图是一个中间有分界线的三角形,故选:D.【点睛】本题考查简单空间图形的三视图,考查由三视图看出原几何图形,再得到余下的三视图,本题是一个基础题.空间几何体的三视图与直观图1.空间几何体的三视图(1)三视图的概念①光线从几何体的前面向后面正投影,得到的投影图叫做几何体的正视图;②光线从几何体的左面向右面正投影,得到的投影图叫做几何体的侧视图;③光线从几何体的上面向下面正投影,得到的投影图叫做几何体的俯视图.几何体的正视图、侧视图和俯视图统称为几何体的三视图.如图.(2)三视图的画法规则①排列规则:一般地,侧视图在正视图的右边,俯视图在正视图的下边.如下图:②画法规则ⅰ)正视图与俯视图的长度一致,即“长对正”;ⅱ)侧视图和正视图的高度一致,即“高平齐”;ⅲ)俯视图与侧视图的宽度一致,即“宽相等”.③线条的规则ⅰ)能看见的轮廓线用实线表示;ⅱ)不能看见的轮廓线用虚线表示.(3)常见几何体的三视图2.空间几何体的直观图(1)斜二测画法及其规则对于平面多边形,我们常用斜二测画法画它们的直观图.斜二测画法是一种特殊的画直观图的方法,其画法规则是:①在已知图形中取互相垂直的x轴和y轴,两轴相交于点O.画直观图时,把它们画成对应的x′轴和y′轴,两轴相交于点O′,且使∠x′O′y′=45°(或135°),它们确定的平面表示水平面.②已知图形中平行于x轴或y轴的线段,在直观图中分别画成平行于x′轴或y′轴的线段.③已知图形中平行于x 轴的线段,在直观图中保持原长度不变,平行于y 轴的线段,长度为原来的一半.(2)用斜二测画法画空间几何体的直观图的步骤①在已知图形所在的空间中取水平平面,作互相垂直的轴Ox ,Oy ,再作Oz 轴使∠xOz =90°,且∠yOz =90°. ②画直观图时,把它们画成对应的轴O ′x ′,O ′y ′,O ′z ′,使∠x ′O ′y ′=45°(或135°),∠x ′O ′z ′=90°,x ′O ′y ′所确定的平面表示水平平面.③已知图形中,平行于x 轴、y 轴或z 轴的线段,在直观图中分别画成平行于x ′轴、y ′轴或z ′轴的线段,并使它们和所画坐标轴的位置关系与已知图形中相应线段和原坐标轴的位置关系相同.④已知图形中平行于x 轴或z 轴的线段,在直观图中保持长度不变,平行于y 轴的线段,长度变为原来的一半.⑤画图完成以后,擦去作为辅助线的坐标轴,就得到了空间图形的直观图. (3)直观图的面积与原图面积之间的关系①原图形与直观图的面积比为SS ='4倍. 3.空间几何体的三视图问题的常见类型及解题策略:(1)由几何体的三视图还原几何体的形状.要熟悉柱、锥、台、球的三视图,明确三视图的形成原理,结合空间想象将三视图还原为实物图.(2)由几何体的直观图求三视图.注意正视图、侧视图和俯视图的观察方向,注意看到的部分用实线,不能看到的部分用虚线表示.(3)由几何体的部分视图画出剩余的部分视图.先根据已知的一部分三视图,还原、推测直观图的可能形式,然后再找其剩下部分三视图的可能形式.当然作为选择题,也可将选项逐项代入,再看看给出的部分三视图是否符合.4.空间几何体结构特征的判断技巧:紧扣结构特征是判断的关键,熟悉空间几何体的结构特征,依据条件构建几何模型,在条件不变的情况下,变换模型中的线面关系增加线、面等基本元素,然后再依据题意判定通过反例对结构特征进行辨析,即要说明一个命题是错误的,只要举出一个反例即可5.由三视图还原直观图的方法还原后的几何体一般为较熟悉的柱、锥、台、球的组合体注意图中实线、虚线,实际是原几何体中的可视线与被遮挡线想象原图形,并画出草图后进行三视图还原,把握三视图和几何体之间的关系,与所给三视图比较,通过调查准备画出几何体6.常见三视图对应的几何体:三视图为三个三角形,对应三棱锥三视图为两个三角形,一个四边形,对应四棱锥三视图为两个三角形,一个圆,对应圆锥三视图为一个三角形,两个四边形,对应三棱柱三视图为两个四边形,一个圆,对应圆柱5.具体方法可采用垂线法或者削体法二、考向题型研究二:空间几何体之外接球、内接球(2013新课标I 卷T15文科)已知H 是球O 的直径AB 上一点,2:1:=HB AH ,⊥AB 平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为 .【答案】9π2【解析】如图, 设球O 的半径为R , 则AH =23R , OH =3R . 又∵π·EH 2=π,∴EH =1.∵在Rt △OEH 中,R 2=22+13R ⎛⎫⎪⎝⎭,∴R 2=98.∴S 球=4πR 2=9π2(2019新课标I 卷T12理科).已知三棱锥P -ABC 的四个顶点在球O 的球面上,PA =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是PA ,PB 的中点,∠CEF =90°,则球O 的体积为A .B .C . D【答案】D【分析】先证得PB ⊥平面PAC ,再求得PA PB PC ===从而得P ABC -为正方体一部分,进而知正方体的体对角线即为球直径,从而得解.【解析】解法一:,PA PB PC ABC ==∆Q 为边长为2的等边三角形,P ABC ∴-为正三棱锥,PB AC ∴⊥,又E ,F 分别为PA 、AB 中点,//EF PB ∴,EF AC ∴⊥,又EF CE ⊥,,CE AC C EF =∴⊥I 平面PAC ,PB ⊥平面PAC ,PAB PA PB PC ∴∠=90︒,∴===,P ABC ∴-为正方体一部分,2R ==34433R V R =∴=π==π,故选D .解法二:设2PA PB PC x ===,,E F 分别为,PA AB 中点,//EF PB ∴,且12EF PB x ==,ABC ∆Q 为边长为2的等边三角形,CF ∴=90CEF ∠=︒1,2CE AE PA x ∴=== AEC ∆中余弦定理()2243cos 22x x EAC x+--∠=⨯⨯,作PD AC ⊥于D ,PA PC =Q ,D Q 为AC 中点,1cos 2AD EAC PA x ∠==,2243142x x x x+-+∴=,22121222x x x ∴+=∴==,PA PB PC ∴===又===2AB BC AC ,,,PA PB PC ∴两两垂直,2R ∴==2R ∴=,344338V R ∴=π=π⨯=,故选D. 【点睛】本题考查学生空间想象能力,补体法解决外接球问题.可通过线面垂直定理,得到三棱两两互相垂直关系,快速得到侧棱长,进而补体成正方体解决.(2017新课标I 卷T16文科)已知三棱锥S ﹣ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA=AC ,SB=BC ,三棱锥S ﹣ABC 的体积为9,则球O 的表面积为 . 【答案】36π【解析】解:三棱锥S ﹣ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径,若平面SCA ⊥平面SCB ,SA=AC ,SB=BC ,三棱锥S ﹣ABC 的体积为9,可知三角形SBC 与三角形SAC 都是等腰直角三角形,设球的半径为r , 可得,解得r=3.球O 的表面积为:4πr 2=36π. 故答案为:36π.【点睛】本题考查球的內接体,三棱锥的体积以及球的表面积的求法,考查空间想象能力以及计算能力.(2012新课标I 卷T8文科)平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为(A )6π (B )43π (C )46π (D )63π 【答案】B【解析】设球的半径为R ,由球的截面性质得R ==所有球的体积343V R π== (2011新课标I 卷T15理科)已知矩形ABCD 的顶点都在半径为4的球O 的球面上,且AB=6,BC=2,则棱锥O ﹣ABCD 的体积为 .【答案】8【分析】由题意求出矩形的对角线的长,结合球的半径,球心到矩形的距离,满足勾股定理,求出棱锥的高,即可求出棱锥的体积. 【解析】解:矩形的对角线的长为:,所以球心到矩形的距离为:=2,所以棱锥O ﹣ABCD 的体积为:=8.故答案为:8【点睛】本题是基础题,考查球内几何体的体积的计算,考查计算能力,空间想象能力,常考题型.(2017新课标I卷T16理科)如图,圆形纸片的圆心为O,半径为5cm,该纸片上的等边三角形ABC 的中心为O.D、E、F为圆O上的点,△DBC,△ECA,△FAB分别是以BC,CA,AB为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB为折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱锥.当△ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为.【答案】4cm3.【分析】法一:由题,连接OD,交BC于点G,由题意得OD⊥BC,OG=BC,设OG=x,则BC=2 x,DG=5﹣x,三棱锥的高h=,求出S△ABC=3,V==,令f(x)=25x4﹣10x5,x∈(0,),f′(x)=100x3﹣50x4,f(x)≤f(2)=80,由此能求出体积最大值.法二:设正三角形的边长为x,则OG=,FG=SG=5﹣,SO=h===,由此能示出三棱锥的体积的最大值.【解析】解法一:由题意,连接OD,交BC于点G,由题意得OD⊥BC,OG=BC,即OG的长度与BC的长度成正比,设OG=x,则BC=2x,DG=5﹣x,三棱锥的高h===,=3,则V===,令f(x)=25x4﹣10x5,x∈(0,),f′(x)=100x3﹣50x4,令f′(x)≥0,即x4﹣2x3≤0,解得x≤2,则f(x)≤f(2)=80,∴V≤=4cm3,∴体积最大值为4cm3.故答案为:4cm3.解法二:如图,设正三角形的边长为x,则OG=,∴FG=SG=5﹣,SO=h===,∴三棱锥的体积V===,令b(x)=5x4﹣,则,令b'(x)=0,则4x3﹣=0,解得x=4,∴(cm3).故答案为:4cm3.【点睛】本题考查三棱锥的体积的最大值的求法,考查空间中线线、线面、面面间的位置关系、函数性质、导数等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题.1.球的表面积和体积公式设球的半径为R ,它的体积与表面积都由半径R 唯一确定,是以R 为自变量的函数,其表面积公式为24πR ,即球的表面积等于它的大圆面积的4倍;其体积公式为34π3R . 2.球的切、接问题(常见结论)(1)若正方体的棱长为a ,则正方体的内切球半径是12a ;与正方体.外接球球心是正方体的中心内切球球心是正方体的中心与各条棱相切的求,球心是正方体的中心(2)若长方体的长、宽、高分别为a,b,h球心是体对角线的交点(3)若正四面体的棱长为a;a.与正四面体所有棱相切的球的半径是4球心是正四面体的中心(4)球与圆柱的底面和侧面均相切,则球的直径等于圆柱的高,也等于圆柱底面圆的直径.(5)球与圆台的底面与侧面均相切,则球的直径等于圆台的高.综上,可以认为,外接球的球心在空间几何体底面的外接圆的圆心的竖直线上3、球的表面积和体积确定一个球的条件是球心和球的半径,已知球的半径可以利用公式求球的表面积和体积;反之,已知球的体积或表面积也可以求其半径.球与几种特殊几何体的关系:(1)长方体内接于球,则球的直径是长方体的体对角线长;(2)正四面体的外接球与内切球的球心重合,且半径之比为3∶1;(3)直棱柱的外接球:找出直棱柱的外接圆柱,圆柱的外接球就是所求直棱柱的外接球.特别地,直三棱柱的外接球的球心是上、下底面三角形外心连线的中点;(4)球与圆柱的底面和侧面均相切,则球的直径等于圆柱的高,也等于圆柱底面圆的直径;(5)球与圆台的底面和侧面均相切,则球的直径等于圆台的高.与球有关的实际应用题一般涉及水的容积问题,解题的关键是明确球的体积与水的容积之间的关系,正确建立等量关系.有关球的截面问题,常画出过球心的截面圆,将空间几何问题转化为平面中圆的有关问题解决.球心到截面的距离d与球的半径R及截面圆的半径r之间满足关系式:d=.5.柱体的外接球问题,其解题关键是在于确定球心在多面体中的位置,找到球的半径或者直径与多面体相关元素之间的关系,结合原有多面体的特性求出球的半径,然后再利用球的表面积和体积公式进行正确计算,常见的方法是将多面体还原成正方体和长方体中再去求解6.椎体的外接球问题的关键是确定球心位置:将椎体还原或者补形为正方体或者长方体,进而确定球心椎体的外接球的球心一定在过底面的外心与底面垂直的直线上球心到各顶点的距离都相等球心一定在外接球的直径上三、考向题型研究三:空间几何体的体积(2018新课标I卷T12理科)已知正方体的棱长为1,每条棱所在直线与平面α所成的角相等,则α截此正方体所得截面面积的最大值为A. 3√34B. 2√33C. 3√24D. √32【答案】A【解析】分析:首先利用正方体的棱是3组每组有互相平行的4条棱,所以与12条棱所成角相等,只需与从同一个顶点出发的三条棱所成角相等即可,从而判断出面的位置,截正方体所得的截面为一个正六边形,且边长是面的对角线的一半,应用面积公式求得结果.详解:根据相互平行的直线与平面所成的角是相等的,所以在正方体ABCD −A 1B 1C 1D 1中,平面AB 1D 1与线AA 1,A 1B 1,A 1D 1所成的角是相等的,所以平面AB 1D 1与正方体的每条棱所在的直线所成角都是相等的, 同理平面C 1BD 也满足与正方体的每条棱所在的直线所成角都是相等, 要求截面面积最大,则截面的位置为夹在两个面AB 1D 1与C 1BD 中间的,且过棱的中点的正六边形,且边长为√22,所以其面积为S =6×√34⋅(√22)2=3√34,故选A.【点睛】该题考查的是有关平面被正方体所截得的截面多边形的面积问题,首要任务是需要先确定截面的位置,之后需要从题的条件中找寻相关的字眼,从而得到其为过六条棱的中点的正六边形,利用六边形的面积的求法,应用相关的公式求得结果.(2013新课标Ⅰ卷T6理科)如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm ,如果不计容器的厚度,则球的体积为( ).A .500π3cm 3B .866π3cm 3C .1372π3cm 3D .2048π3cm 3【答案】A【解析】设球半径为R ,由题可知R ,R -2,正方体棱长一半可构成直角三角形,即△OBA 为直角三角形,如图.BC =2,BA =4,OB =R -2,OA =R , 由R 2=(R -2)2+42,得R =5,所以球的体积为34500π5π33(cm 3),故选A.(2013新课标I 卷T19文科)如图,三棱柱ABC -A 1B 1C 1中,CA =CB ,AB =AA 1,∠BAA 1=60°. (1)证明:AB ⊥A 1C ;(2)若AB =CB =2,A 1C ,求三棱柱ABC -A 1B 1C 1的体积.【答案】答案见解析【解析】(1)证明:取AB 的中点O ,连结OC ,OA 1,A 1B . 因为CA =CB , 所以OC ⊥AB .由于AB =AA 1,∠BAA 1=60°, 故△AA 1B 为等边三角形, 所以OA 1⊥AB .因为OC ∩OA 1=O ,所以 AB ⊥平面OA 1C . 又A 1C ⊂平面OA 1C ,故AB ⊥A 1C .(2)解:由题设知△ABC 与△AA 1B 都是边长为2的等边三角形, 所以OC =OA 1=3.又A 1C =6,则A 1C 2=OC 2+21OA , 故OA 1⊥OC .因为OC ∩AB =O ,所以OA 1⊥平面ABC ,OA 1为三棱柱ABC -A 1B 1C 1的高. 又△ABC 的面积S △ABC =3,故三棱柱ABC -A 1B 1C 1的体积V =S △ABC ×OA 1=3.(2012新课标I 卷T19文科)如图,三棱柱111ABC A B C -中,侧棱垂直底面, ∠ACB =90°,AC =BC =12AA 1,D 是棱AA 1的中点。

2020高考数学新题分类汇编 立体几何(高考真题+模拟新题)

2020高考数学新题分类汇编 立体几何(高考真题+模拟新题)

2020高考数学新题分类汇编 立体几何(高考真题+模拟新题)课标理数12.G1[2020·福建卷] 三棱锥P -ABC 中,PA ⊥底面ABC ,PA =3,底面ABC 是边长为2的正三角形,则三棱锥P -ABC 的体积等于________.课标理数12.G1[2020·福建卷] 【答案】 3【解析】 由已知,S △ABC =12×22sin π3=3,∴ V P -ABC =13S △ABC ·PA =13×3×3=3,即三棱锥P -ABC 的体积等于 3.课标文数8.G2[2020·安徽卷] 一个空间几何体的三视图如图1-1所示,则该几何体的表面积为( )图1-1A .48B .32+817C .48+817D .80课标文数8.G2[2020·安徽卷] C 【解析】 由三视图可知本题所给的是一个底面为等腰梯形的放倒的直四棱柱(如图所示),所以该直四棱柱的表面积为S =2×12×(2+4)×4+4×4+2×4+2×1+16×4=48+817.课标理数6.G2[2020·安徽卷] 一个空间几何体的三视图如图1-1所示,则该几何体的表面积为( )图1-1A .48B .32+817C .48+817D .80图1-3课标理数7.G2[2020·北京卷] 某四面体的三视图如图1-3所示,该四面体四个面的面积中最大的是( )A .8B .6 2C .10D .8 2课标理数7.G2[2020·北京卷] C 【解析】 由三视图可知,该四面体可以描述为SA ⊥平面ABC ,∠ABC =90°,且SA =AB =4,BC =3,所以四面体四个面的面积分别为10,8,6,62,从而面积最大为10,故应选C.图1-4课标文数5.G2[2020·北京卷] 某四棱锥的三视图如图1-1所示,该四棱锥的表面积是( )图1-1A .32B .16+16 2C .48D .16+32 2课标文数5.G2[2020·北京卷] B 【解析】 由题意可知,该四棱锥是一个底面边长为4,高为2的正四棱锥,所以其表面积为4×4+4×12×4×22=16+162,故选B.课标理数7.G2[2020·广东卷] 如图1-2,某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则该几何体的体积为( )图1-2A .6 3B .9 3C .12 3D .18 3课标理数7.G2[2020·广东卷] B 【解析】 由三视图知该几何体为棱柱,h =22-1=3,S 底=3×3,所以V =9 3.课标文数9.G2[2020·广东卷] 如图1-2,某几何体的正视图(主视图),侧视图(左视图)和俯视图分别是等边三角形,等腰三角形和菱形,则该几何体体积为( )A .4 3B .4C .2 3D .2课标文数9.G2[2020·广东卷] C 【解析】 由三视图知该几何体为四棱锥,棱锥高h=232-32=3,底面为菱形,对角线长分别为23,2,所以底面积为12×23×2=23,所以V =13Sh =13×23×3=2 3.图1-1课标理数3.G2[2020·湖南卷] 设图1-1是某几何体的三视图,则该几何体的体积为( )A.92π+12 B.92π+18 C .9π+42 D .36π+18课标理数3.G2[2020·湖南卷] B 【解析】 由三视图可得这个几何体是由上面是一个直径为3的球,下面是一个长、宽都为3、高为2的长方体所构成的几何体,则其体积为:V =V 1+V 2=43×π×⎝ ⎛⎭⎪⎫323+3×3×2=92π+18, 故选B.课标文数4.G2[2020·湖南卷] 设图1-1是某几何体的三视图,则该几何体的体积为( )图1-1A .9π+42B .36π+18 C.92π+12 D.92π+18 课标文数4.G2[2020·湖南卷] D 【解析】 由三视图可得这个几何体是由上面是一个直径为3的球,下面是一个长、宽都为3高为2的长方体所构成的几何体,则其体积为: V=V 1+V 2=43×π×⎝ ⎛⎭⎪⎫323+3×3×2=92π+18,故选D.课标理数6.G2[2020·课标全国卷] 在一个几何体的三视图中,正视图和俯视图如图1-2所示,则相应的侧视图可以为( )图1-2 图1-3课标理数 6.G2 [2020·课标全国卷] D 【解析】 由正视图和俯视图知几何体的直观图是由一个半圆锥和一个三棱锥组合而成的,如下图,故侧视图选D.图1-5课标理数15.G2[2020·辽宁卷] 一个正三棱柱的侧棱长和底面边长相等,体积为23,它的三视图中的俯视图如图1-5所示,左视图是一个矩形,则这个矩形的面积是________.课标理数15.G2[2020·辽宁卷] 2 3 【解析】 由俯视图知该正三棱柱的直观图为图1-6,其中M ,N 是中点,矩形MNC 1C 为左视图.由于体积为23,所以设棱长为a ,则12×a 2×sin60°×a =23,解得a =2.所以CM=3,故矩形MNC 1C 面积为2 3.图1-6图1-3课标文数8.G2[2020·辽宁卷] 一个正三棱柱的侧棱长和底面边长相等,体积为23,它的三视图中的俯视图如图1-3所示,左视图是一个矩形,则这个矩形的面积是( )A .4B .2 3C .2 D. 3课标文数8.G2[2020·辽宁卷] B 【解析】 由俯视图知该正三棱柱的直观图为下图,其中M ,N 是中点,矩形MNC 1C 为左视图.图1-4 由于体积为23,所以设棱长为a ,则12×a 2×sin60°×a =23,解得a =2.所以CM=3,故矩形MNC 1C 面积为23,故选B.课标文数8.G2[2020·课标全国卷] 在一个几何体的三视图中,正视图和俯视图如图1-2所示,则相应的侧视图可以为( )图1-2 图1-3课标文数8.G2[2020·课标全国卷] D 【解析】 由正视图和俯视图知几何体的直观图是由一个半圆锥和一个三棱锥组合而成的,如图,故侧视图选D.图1-4图1-2课标理数11.G2[2020·山东卷] 如图1-2是长和宽分别相等的两个矩形.给定下列三个命题:①存在三棱柱,其正(主)视图、俯视图如图1-2;②存在四棱柱,其正(主)视图、俯视图如图1-2;③存在圆柱,其正(主)视图、俯视图如图1-2.其中真命题的个数是( )A .3B .2C .1D .0课标理数11.G2[2020·山东卷] A 【解析】 ①可以是放倒的三棱柱,所以正确;容易判断②正确;③可以是放倒的圆柱,所以也正确.图1-3课标文数11.G2[2020·山东卷] 如图1-3是长和宽分别相等的两个矩形.给定下列三个命题:①存在三棱柱,其正(主)视图、俯视图如图1-3;②存在四棱柱,其正(主)视图、俯视图如图1-3;③存在圆柱,其正(主)视图、俯视图如图1-3.其中真命题的个数是( )A .3B .2C .1D .0课标文数11.G2[2020·山东卷] A 【解析】 ①可以是放倒的三棱柱,所以正确;容易判断②正确;③可以是放倒的圆柱,所以也正确.课标理数5.G2[2020·陕西卷] 某几何体的三视图如图1-2所示,则它的体积是( )图1-2A .8-2π3B .8-π3C .8-2π D.2π3课标理数5.G2[2020·陕西卷] A 【解析】 分析图中所给的三视图可知,对应空间几何图形,应该是一个棱长为2的正方体中间挖去一个半径为1,高为2的圆锥,则对应体积为:V =2×2×2-13π×12×2=8-23π.课标文数5.G2[2020·陕西卷] 某几何体的三视图如图1-2所示,则它的体积为( )图1-2A .8-2π3B .8-π3C .8-2π D.2π3课标文数5.G2[2020·陕西卷] A 【解析】 主视图与左视图一样是边长为2的正方形,里面有两条虚线,俯视图是边长为2的正方形与直径为2的圆相切,其直观图为棱长为2的正方体中挖掉一个底面直径为2的圆锥,故其体积为正方体的体积与圆锥的体积之差,V正=23=8,V 锥=13πr 2h =2π3(r =1,h =2),故体积V =8-2π3,故答案为A.课标理数10.G2[2020·天津卷] 一个几何体的三视图如图1-5所示(单位:m),则该几何体的体积为________ m 3.图1-5课标理数10.G2[2020·天津卷] 6+π 【解析】 根据图中信息,可得该几何体为一个棱柱与一个圆锥的组合体,V =3×2×1+13π×1×3=6+π.课标文数10.G2[2020·天津卷] 一个几何体的三视图如图1-4所示(单位:m),则该几何体的体积为________ m 3.图1-4课标文数10.G2[2020·天津卷] 4 【解析】 根据三视图还原成直观图,可以看出,其是由两个形状一样的,底面长和宽都为1,高为2的长方体叠加而成,故其体积V =2×1×1+1×1×2=4.图1-2课标理数3.G2[2020·浙江卷] D 【解析】由正视图可排除A、B选项,由俯视图可排除C选项.课标文数7.G2[2020·浙江卷] 若某几何体的三视图如图1-1所示,则这个几何体的直观图可以是( )图1-1图1-2课标文数7.G2[2020·浙江卷] B 【解析】由正视图可排除A,C;由侧视图可判断该该几何体的直观图是B.大纲理数3.G3[2020·四川卷] l1,l2,l3是空间三条不同的直线,则下列命题正确的是( )A.l1⊥l2,l2⊥l3⇒l1∥l3B.l1⊥l2,l2∥l3⇒l1⊥l3C.l1∥l2∥l3⇒l1,l2,l3共面D.l1,l2,l3共点⇒l1,l2,l3共面大纲理数3.G3[2020·四川卷] B 【解析】对于A,直线l1与l3可能异面;对于C,直线l1、l2、l3可能构成三棱柱三条侧棱所在直线时而不共面;对于D,直线l1、l2、l3相交于同一个点时不一定共面. 所以选B.课标文数19.G4,G7[2020·安徽卷] 如图1-4,ABEDFC 为多面体,平面ABED 与平面ACFD 垂直,点O 在线段AD 上,OA =1,OD =2,△OAB ,△OAC ,△ODE ,△ODF 都是正三角形.(1)证明直线BC ∥EF ;(2)求棱锥F -OBED 的体积.图1-4课标文数19.G4,G7[2020·安徽卷] 本题考查空间直线与直线、直线与平面、平面与平面的位置关系,空间直线平行的证明,多面体体积的计算,考查空间想象能力,推理论证能力和运算求解能力.【解答】 (1)证明:设G 是线段DA 与EB 延长线的交点,由于△OAB 与△ODE 都是正三角形,OA =1,OD =2,所以OB 綊12DE ,OG =OD =2.同理,设G ′是线段DA 与FC 延长线的交点,有OC 綊12DF ,OG ′=OD =2,又由于G 和G ′都在线段DA 的延长线上,所以G 与G ′重合.在△GED 和△GFD 中,由OB 綊12DE 和OC 綊12DF ,可知B 和C 分别是GE 和GF 的中点.所以BC 是△GEF 的中位线,故BC ∥EF .(2)由OB =1,OE =2,∠EOB =60°,知S △EOB =32.而△OED 是边长为2的正三角形,故S △OED = 3.所以S OBED =S △EOB +S △OED =332.过点F 作FQ ⊥DG ,交DG 于点Q ,由平面ABED ⊥平面ACFD 知,FQ 就是四棱锥F -OBED的高,且FQ =3,所以V F -OBED =13FQ ·S 四边形OBED =32.图1-4课标理数17.G4,G7[2020·安徽卷] 【解析】 本题考查空间直线与直线,直线与平面、平面与平面的位置关系,空间直线平行的证明,多面体体积的计算等基本知识,考查空间想象能力,推理论证能力和运算求解能力.图1-5【解答】 (1)(综合法)证明:设G 是线段DA 与线段EB 延长线的交点,由于△OAB 与△ODE 都是正三角形,OA=1,OD =2,所以OB 綊12DE ,OG =OD =2.同理,设G ′是线段DA 与线段FC 延长线的交点,有OC 綊12DF ,OG ′=OD =2,又由于G和G ′都在线段DA 的延长线上,所以G 与G ′重合.在△GED 和△GFD 中,由OB 綊12DE 和OC 綊12DF ,可知B ,C 分别是GE 和GF 的中点,所以BC 是△GEF 的中位线,故BC ∥EF .(向量法)过点F 作FQ ⊥AD ,交AD 于点Q ,连QE .由平面ABED ⊥平面ADFC ,知FQ ⊥平面ABED .以Q 为坐标原点,QE →为x 轴正向,QD →为y 轴正向,QF →为z 轴正向,建立如图所示空间直角坐标系.图1-6由条件知E (3,0,0),F (0,0,3),B ⎝ ⎛⎭⎪⎫32,-32,0,C ⎝ ⎛⎭⎪⎫0,-32,32.则有BC →=⎝ ⎛⎭⎪⎫-32,0,32,EF →=(-3,0,3).所以EF →=2BC →,即得BC ∥EF .(2)由OB =1,OE =2,∠EOB =60°,知S △EOB =32.而△OED 是边长为2的正三角形,故S △OED = 3.所以S 四边形OBED =S △EOB +S △OED =332.过点F 作FQ ⊥AD ,交AD 于点Q ,由平面ABED ⊥平面ACFD 知,FQ 就是四棱锥F -OBED的高,且FQ =3,所以V F -OBED =13FQ ·S 四边形OBED =32.课标文数17.G4[2020·北京卷]图1-4如图1-4,在四面体PABC 中,PC ⊥AB ,PA ⊥BC ,点D ,E ,F ,G 分别是棱AP ,AC ,BC ,PB 的中点.(1)求证:DE ∥平面BCP ;(2)求证:四边形DEFG 为矩形;(3)是否存在点Q ,到四面体PABC 六条棱的中点的距离相等?说明理由.课标文数17.G4[2020·北京卷] 【解答】 (1)证明:因为D ,E 分别为AP ,AC 的中点,图1-5所以DE ∥PC .又因为DE ⊄平面BCP ,PC ⊂平面BCP , 所以DE ∥平面BCP .(2)因为D 、E 、F 、G 分别为AP 、AC 、BC 、PB 的中点, 所以DE ∥PC ∥FG , DG ∥AB ∥EF ,所以四边形DEFG 为平行四边形. 又因为PC ⊥AB , 所以DE ⊥DG ,所以平行四边形DEFG 为矩形.(3)存在点Q 满足条件,理由如下: 连接DF ,EG ,设Q 为EG 的中点.由(2)知,DF ∩EG =Q ,且QD =QE =QF =QG =12EG .分别取PC 、AB 的中点M ,N ,连接ME 、EN 、NG 、MG 、MN .与(2)同理,可证四边形MENG 为矩形,其对角线交点为EG 的中点Q ,且QM =QN =12EG .所以Q 为满足条件的点.图1-3课标文数15.G4[2020·福建卷] 如图1-3,正方体ABCD -A 1B 1C 1D 1中,AB =2,点E 为AD 的中点,点F 在CD 上,若EF ∥平面AB 1C ,则线段EF 的长度等于________.课标文数15.G4[2020·福建卷] 2 【解析】 ∵ EF ∥平面AB 1C ,EF ⊂平面ABCD ,平面ABCD ∩平面AB 1C =AC ,∴EF ∥AC ,又∵E 是AD 的中点,∴F 是CD 的中点,即EF 是△ACD 的中位线,∴EF =12AC =12×22= 2.课标数学16.G4,G5[2020·江苏卷] 如图1-2,在四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,AB =AD ,∠BAD =60°,E 、F 分别是AP 、AD 的中点.图1-2求证:(1)直线EF ∥平面PCD ; (2)平面BEF ⊥平面PAD .课标数学16.G4,G5[2020·江苏卷] 本题主要考查直线与平面、平面与平面的位置关系,考查空间想象能力和推理论证能力.【解答】 证明:(1)在△PAD 中,因为E ,F 分别为AP ,AD 的中点,所以EF ∥PD .又因为EF ⊄平面PCD ,PD ⊂平面PCD ,图1-3所以直线EF ∥平面PCD .(2)连结BD ,因为AB =AD ,∠BAD =60°,所以△ABD 为正三角形,因为F 是AD 的中点,所以BF ⊥AD .因为平面PAD ⊥平面ABCD ,BF ⊂平面ABCD , 平面PAD ∩平面ABCD =AD ,所以BF ⊥平面PAD . 又因为BF ⊂平面BEF ,所以平面BEF ⊥平面PAD .课标文数4.G4[2020·浙江卷] 若直线l 不平行于平面α,且l ⊄α,则( ) A .α内的所有直线与l 异面 B .α内不存在与l 平行的直线 C .α内存在唯一的直线与l 平行 D .α内的直线与l 都相交课标文数4.G4[2020·浙江卷] B 【解析】 在α内存在直线与l 相交,所以A 不正确;若α内存在直线与l 平行,又∵l ⊄α,则有l ∥α,与题设相矛盾,∴B 正确,C 不正确;在α内不过l 与α交点的直线与l 异面,D 不正确.图1-6课标理数16.G5,G11[2020·北京卷] 如图1-6,在四棱锥P -ABCD 中,PA ⊥平面ABCD ,底面ABCD 是菱形,AB =2,∠BAD =60°.(1)求证:BD ⊥平面PAC ;(2)若PA =AB ,求PB 与AC 所成角的余弦值; (3)当平面PBC 与平面PDC 垂直时,求PA 的长.课标理数16.G5,G11[2020·北京卷] 【解答】 (1)证明:因为四边形ABCD 是菱形, 所以AC ⊥BD .又因为PA ⊥平面ABCD , 所以PA ⊥BD ,所以BD ⊥平面PAC . (2)设AC ∩BD =O .因为∠BAD =60°,PA =AB =2, 所以BO =1,AO =CO = 3.如图,以O 为坐标原点,OB 、OC 所在直线及点O 所在且与PA 平行的直线分别为x 轴、y 轴、z 轴建立空间直角坐标系O -xyz ,则P (0,-3,2),A (0,-3,0),B (1,0,0),C (0,3,0).图1-7所以PB →=(1,3,-2),AC →=(0,23,0). 设PB 与AC 所成角为θ,则cos θ=⎪⎪⎪⎪⎪⎪⎪⎪PB →·AC →|PB →||AC →|=622×23=64. (3)由(2)知BC →=(-1,3,0). 设P (0,-3,t )(t >0), 则BP →=(-1,-3,t ).设平面PBC 的法向量m =(x ,y ,z ), 则BC →·m =0,BP →·m =0.所以⎩⎨⎧-x +3y =0,-x -3y +tz =0,令y =3,则x =3,z =6t, 所以m =⎝ ⎛⎭⎪⎫3,3,6t .同理,可求得平面PDC 的法向量n =⎝ ⎛⎭⎪⎫-3,3,6t .因为平面PBC ⊥平面PDC ,所以m ·n =0,即-6+36t2=0.解得t = 6.所以当平面PBC 与平面PDC 垂直时,PA = 6.大纲理数6.G5、G11[2020·全国卷] 已知直二面角α-l -β,点A ∈α,AC ⊥l ,C 为垂足.点B ∈β,BD ⊥l ,D 为垂足.若AB =2,AC =BD =1,则D 到平面ABC 的距离等于( )A.23B.33C.63D .1 大纲理数6.G5、G11[2020·全国卷] C 【解析】 ∵α⊥β,AC ⊥l ,∴AC ⊥β,则平面ABC ⊥β,在平面β内过D 作DE ⊥BC ,则DE ⊥平面ABC ,DE 即为D 到平面ABC 的距离,在△DBC 中,运用等面积法得DE =63,故选C.大纲理数19.G5,G11[2020·全国卷] 如图1-1,四棱锥S -ABCD 中,AB ∥CD ,BC ⊥CD ,侧面SAB 为等边三角形.AB =BC =2,CD =SD =1.(1)证明:SD ⊥平面SAB ;(2)求AB 与平面SBC 所成的角的大小.图1-1大纲理数19.G5,G11[2020·全国卷] 【解答】 解法一:(1)取AB 中点E ,连结DE ,则四边形BCDE 为矩形,DE =CB =2.图1-2连结SE ,则SE ⊥AB ,SE = 3.又SD =1,故ED 2=SE 2+SD 2, 所以∠DSE 为直角. 由AB ⊥DE ,AB ⊥SE ,DE ∩SE =E ,得AB ⊥平面SDE ,所以AB ⊥SD . SD 与两条相交直线AB 、SE 都垂直. 所以SD ⊥平面SAB .(2)由AB ⊥平面SDE 知,平面ABCD ⊥平面SDE . 作SF ⊥DE ,垂足为F ,则SF ⊥平面ABCD ,SF =SD ×SE DE =32. 作FG ⊥BC ,垂足为G ,则FG =DC =1. 连结SG ,则SG ⊥BC . 又BC ⊥FG ,SG ∩FG =G ,故BC ⊥平面SFG ,平面SBC ⊥平面SFG . 作FH ⊥SG ,H 为垂足,则FH ⊥平面SBC .FH =SF ×FG SG =37,即F 到平面SBC 的距离为217.由于ED ∥BC ,所以ED ∥平面SBC ,故E 到平面SBC 的距离d 也为217. 设AB 与平面SBC 所成的角为α,则sin α=d EB =217,α=arcsin 217.解法二:以C 为坐标原点,射线CD 为x 轴正半轴,建立如图1-3所示的空间直角坐标系C -xyz .图1-3设D (1,0,0),则A (2,2,0),B (0,2,0). 又设S (x ,y ,z ), 则x >0,y >0,z >0. (1)AS →=(x -2,y -2,z ),BS →=(x ,y -2,z ),DS →=(x -1,y ,z ), 由|AS →|=|BS →|得x -22+y -22+z 2=x 2+y -22+z 2, 故x =1, 由|DS →|=1得y 2+z 2=1,又由|BS →|=2得x 2+(y -2)2+z 2=4,即y 2+z 2-4y +1=0,故y =12,z =32.于是S ⎝ ⎛⎭⎪⎫1,12,32,AS →=⎝ ⎛⎭⎪⎫-1,-32,32,BS →=⎝ ⎛⎭⎪⎫1,-32,32,DS →=⎝ ⎛⎭⎪⎫0,12,32,DS →·AS →=0,DS →·BS →=0.故DS ⊥AS ,DS ⊥BS ,又AS ∩BS =S , 所以SD ⊥平面SAB .(2)设平面SBC 的法向量a =(m ,n ,p ),则a ⊥BS →,a ⊥CB →,a ·BS →=0,a ·CB →=0.又BS →=⎝⎛⎭⎪⎫1,-32,32,CB →=(0,2,0),故⎩⎪⎨⎪⎧m -32n +32p =0,2n =0.取p =2得a =(-3,0,2).又AB →=(-2,0,0),所以cos 〈AB →,a 〉=AB →·a |AB →|·|a |=217.故AB 与平面SBC 所成的角为arcsin 217.大纲文数8.G5[2020·全国卷] 已知直二面角α-l -β,点A ∈α,AC ⊥l ,C 为垂足,点B ∈β,BD ⊥l ,D 为垂足.若AB =2,AC =BD =1,则CD =( )A .2 B. 3 C. 2 D .1 大纲文数8.G5[2020·全国卷] C 【解析】 ∵α⊥β,AC ⊥l ,∴AC ⊥β,则AC ⊥CB ,∵AB =2,AC =1,可得BC =3,又BD ⊥l ,BD =1,∴CD =2,故选C.大纲文数20.G5,G11[2020·全国卷] 如图1-1,四棱锥S -ABCD 中,图1-1AB ∥CD ,BC ⊥CD ,侧面SAB 为等边三角形.AB =BC =2,CD =SD =1. (1)证明:SD ⊥平面SAB ;(2)求AB 与平面SBC 所成的角的大小.大纲文数20.G5,G11[2020·全国卷] 【解答】 解法一:(1)取AB 中点E ,连结DE ,则四边形BCDE 为矩形,DE =CB =2.图1-2连结SE ,则SE ⊥AB ,SE = 3.又SD =1,故ED 2=SE 2+SD 2, 所以∠DSE 为直角.由AB ⊥DE ,AB ⊥SE ,DE ∩SE =E ,得AB ⊥平面SDE ,所以AB ⊥SD . SD 与两条相交直线AB 、SE 都垂直. 所以SD ⊥平面SAB .(2)由AB ⊥平面SDE 知,平面ABCD ⊥平面SDE . 作SF ⊥DE ,垂足为F ,则SF ⊥平面ABCD ,SF =SD ×SE DE =32.作FG ⊥BC ,垂足为G ,则FG =DC =1. 连结SG ,则SG ⊥BC . 又BC ⊥FG ,SG ∩FG =G ,故BC ⊥平面SFG ,平面SBC ⊥平面SFG . 作FH ⊥SG ,H 为垂足,则FH ⊥平面SBC .FH =SF ×FG SG =37,即F 到平面SBC 的距离为217.由于ED ∥BC ,所以ED ∥平面SBC ,故E 到平面SBC 的距离d 也为217. 设AB 与平面SBC 所成的角为α,则sin α=d EB=217,α=arcsin 217. 解法二:以C 为坐标原点,射线CD 为x 轴正半轴,建立如图1-3所示的空间直角坐标系C -xyz .图1-3设D (1,0,0),则A (2,2,0),B (0,2,0). 又设S (x ,y ,z ),则x >0,y >0,z >0. (1)AS →=(x -2,y -2,z ),BS →=(x ,y -2,z ),DS →=(x -1,y ,z ), 由|AS →|=|BS →|得x -22+y -22+z 2=x 2+y -22+z 2, 故x =1, 由|DS →|=1得y 2+z 2=1,又由|BS →|=2得x 2+(y -2)2+z 2=4,即y 2+z 2-4y +1=0,故y =12,z =32.于是S ⎝ ⎛⎭⎪⎫1,12,32,AS →=⎝ ⎛⎭⎪⎫-1,-32,32,BS →=⎝ ⎛⎭⎪⎫1,-32,32,DS →=⎝ ⎛⎭⎪⎫0,12,32,DS →·AS →=0,DS →·BS →=0.故DS ⊥AS ,DS ⊥BS ,又AS ∩BS =S , 所以SD ⊥平面SAB .(2)设平面SBC 的法向量a =(m ,n ,p ),则a ⊥BS →,a ⊥CB →,a ·BS →=0,a ·CB →=0.又BS →=⎝⎛⎭⎪⎫1,-32,32,CB →=(0,2,0),故⎩⎪⎨⎪⎧m -32n +32p =0,2n =0.取p =2得a =(-3,0,2).又AB →=(-2,0,0),所以cos 〈AB →,a 〉=AB →·a |AB →|·|a |=217.故AB 与平面SBC 所成的角为arcsin217.课标理数20.G5,G10,G11[2020·福建卷] 如图1-7,四棱锥P -ABCD 中,PA ⊥底面ABCD .四边形ABCD 中,图1-7AB ⊥AD ,AB +AD =4,CD =2,∠CDA =45°. (1)求证:平面PAB ⊥平面PAD ; (2)设AB =AP .①若直线PB 与平面PCD 所成的角为30°,求线段AB 的长;②在线段AD 上是否存在一个点G ,使得点G 到P 、B 、C 、D 的距离都相等?说明理由. 课标理数20.G5,G10,G11 [2020·福建卷] 【解答】图1-8(1)证明:因为PA ⊥平面ABCD , AB ⊂平面ABCD , 所以PA ⊥AB .又AB ⊥AD ,PA ∩AD =A , 所以AB ⊥平面PAD .又AB ⊂平面PAB ,所以平面PAB ⊥平面PAD .图1-9(2)①以A 为坐标原点,建立空间直角坐标系A -xyz (如图1-9). 在平面ABCD 内,作CE ∥AB 交AD 于点E , 则CE ⊥AD .在Rt △CDE 中,DE =CD ·cos45°=1, CE =CD ·sin45°=1.设AB =AP =t ,则B (t,0,0),P (0,0,t ). 由AB +AD =4得AD =4-t ,所以E (0,3-t,0),C (1,3-t,0),D (0,4-t,0), CD →=(-1,1,0),PD →=(0,4-t ,-t ). 设平面PCD 的法向量为n =(x ,y ,z ).由n ⊥CD →,n ⊥PD →,得⎩⎪⎨⎪⎧-x +y =0.4-t y -tz =0.取x =t ,得平面PCD 的一个法向量n =(t ,t,4-t ). 又PB →=(t,0,-t ),故由直线PB 与平面PCD 所成的角为30°得c os60°=⎪⎪⎪⎪⎪⎪⎪⎪n ·P B →|n |·|PB →|, 即|2t 2-4t |t 2+t 2+4-t 2·2t 2=12. 解得t =45或t =4(舍去,因为AD =4-t >0),所以AB =45.则GC →=(1,3-t -m,0),GD →=(0,4-t -m,0),GP →=(0,-m ,t ).由|GC →|=|GD →|得12+(3-t -m )2=(4-t -m )2, 即t =3-m ;① 由|GD →|=|GP →|得(4-t -m )2=m 2+t 2.②由①、②消去t ,化简得m 2-3m +4=0.③由于方程③没有实数根,所以在线段AD 上不存在一个点G ,使得点G 到点P 、C 、D 的距离都相等.从而,在线段AD 上不存在一个点G ,使得点G 到点P ,B ,C ,D 的距离都相等. 法二:假设在线段AD 上存在一个点G ,使得点G 到点P 、B 、C 、D 的距离都相等. 由GC =GD ,得∠GCD =∠GDC =45°,图1-12从而∠CGD =90°,即CG ⊥AD . 所以GD =CD ·cos45°=1.设AB =λ,则AD =4-λ,AG =AD -GD =3-λ. 在Rt △ABG 中, GB =AB 2+AG 2=λ2+3-λ2=2⎝⎛⎭⎪⎫λ-322+92>1.这与GB =GD 矛盾.所以在线段AD 上不存在一个点G ,使得点G 到点B 、C 、D 的距离都相等.从而,在线段AD 上不存在一个点G ,使得点G 到点P ,B ,C ,D 的距离都相等.课标理数18.G5,G10[2020·广东卷] 如图1-3,在锥体P -ABCD 中,ABCD 是边长为1的菱形,且∠DAB =60°,PA =PD =2,PB =2,E ,F 分别是BC ,PC 的中点.(1)证明:AD ⊥平面DEF ;(2)求二面角P -AD -B 的余弦值.图1-3课标理数18.G5,G10[2020·广东卷] 【解答】 法一:(1)证明:设AD 中点为G ,连接PG ,BG ,BD .图1-1因PA =PD ,有PG ⊥AD ,在△ABD 中,AB =AD =1,∠DAB =60°,有△ABD 为等边三角形,因此BG ⊥AD ,BG ∩PG =G ,所以AD ⊥平面PBG ,所以AD ⊥PB ,AD ⊥GB .又PB ∥EF ,得AD ⊥EF ,而DE ∥GB 得AD ⊥DE ,又FE ∩DE =E ,所以AD ⊥平面DEF . (2)∵PG ⊥AD ,BG ⊥AD ,∴∠PGB 为二面角P -AD -B 的平面角.在Rt △PAG 中,PG 2=PA 2-AG 2=74,在Rt △ABG 中,BG =AB ·sin60°=32, ∴cos ∠PGB =PG 2+BG 2-PB 22PG ·BG=74+34-42·72·32=-217. 法二:(1)证明:设AD 中点为G ,因为PA =PD ,所以PG ⊥AD , 又AB =AD ,∠DAB =60°,所以△ABD 为等边三角形,因此,BG ⊥AD ,从而AD ⊥平面PBG . 延长BG 到O 且使PO ⊥OB ,又PO ⊂平面PBG ,所以PO ⊥AD ,又AD ∩OB =G ,所以PO ⊥平面ABCD .以O 为坐标原点,菱形的边长为单位长度,直线OB ,OP 分别为x 轴,z 轴,平行于AD 的直线为y 轴,建立如图1-2所示的空间直角坐标系.设P (0,0,m ),G (n,0,0),则A ⎝⎛⎭⎪⎫n ,-12,0,D ⎝ ⎛⎭⎪⎫n ,12,0.图1-2∵|GB →|=|AB →|sin60°=32,∴B ⎝ ⎛⎭⎪⎫n +32,0,0,C ⎝ ⎛⎭⎪⎫n +32,1,0,E ⎝⎛⎭⎪⎫n +32,12,0,F ⎝ ⎛⎭⎪⎫n 2+34,12,m 2. ∴AD →=(0,1,0),DE →=⎝ ⎛⎭⎪⎫32,0,0,FE →=⎝ ⎛⎭⎪⎫n 2+34,0,-m 2,∴AD →·DE →=0,AD →·FE →=0, ∴AD ⊥DE ,AD ⊥FE ,又DE ∩FE =E ,∴AD ⊥平面DEF .(2)∵PA →=⎝ ⎛⎭⎪⎫n ,-12,-m ,PB →=⎝ ⎛⎭⎪⎫n +32,0,-m , ∴m 2+n 2+14=2,⎝⎛⎭⎪⎫n +322+m 2=2,解得m =1,n =32. 取平面ABD 的法向量n 1=(0,0,-1), 设平面PAD 的法向量n 2=(a ,b ,c ),由PA →·n 2=0,得32a -b 2-c =0,由PD →·n 2=0,得32a +b 2-c =0,故取n 2=⎝ ⎛⎭⎪⎫1,0,32.∴cos〈n1,n2〉=-32 1·74=-217.即二面角P-AD-B的余弦值为-217.课标理数18.G5,G11[2020·湖北卷] 如图1-4,已知正三棱柱ABC-A1B1C1的各棱长都是4,E是BC的中点,动点F在侧棱CC1上,且不与点C重合.(1)当CF=1时,求证:EF⊥A1C;(2)设二面角C-AF-E的大小为θ,求tanθ的最小值.图1-4课标理数18.G5,G11[2020·湖北卷] 【解答】解法1:过E作EN⊥AC于N,连结EF.(1)如图①,连结NF、AC1,由直棱柱的性质知,底面ABC⊥侧面A1C,又底面ABC∩侧面A1C=AC,且EN⊂底面ABC,所以EN⊥侧面A1C,NF为EF在侧面A1C 内的射影,在Rt△CNE中,CN=CE co s60°=1,则由CFCC1=CNCA=14,得NF∥AC1.又AC1⊥A1C,故NF⊥A1C,由三垂线定理知EF⊥A1C.(2)如图②,连结AF,过N作NM⊥AF于M,连结ME,由(1)知EN⊥侧面A1C,根据三垂线定理得EM⊥AF,所以∠EMN是二面角C-AF-E的平面角,即∠EMN=θ,设∠FAC=α,则0°<α≤45°.在Rt△CNE中,NE=EC·sin60°=3,在Rt△AMN中,MN=AN·sinα=3sinα,故tanθ=NEMN=33sinα.又0°<α≤45°,∴0<sinα≤22,故当sinα=22,即当α=45°时,tanθ达到最小值,tanθ=33×2=63,此时F与C1重合.解法2:(1)建立如图③所示的空间直角坐标系,则由已知可得A(0,0,0),B(23,2,0),C(0,4,0),A1(0,0,4),E (3,3,0),F (0,4,1),于是CA 1→=(0,-4,4),EF →=(-3,1,1), 则CA 1→·EF →=(0,-4,4)·(-3,1,1)=0-4+4=0,故EF ⊥A 1C .(2)设CF =λ(0<λ≤4),平面AEF 的一个法向量为m =(x ,y ,z ),则由(1)得F (0,4,λ),AE →=(3,3,0),AF →=(0,4,λ),于是由m ⊥AE →,m ⊥AF →可得⎩⎪⎨⎪⎧m ·AE →=0,m ·AF →=0,即⎩⎨⎧3x +3y =0,4y +λz =0,取m =(3λ,-λ,4),又由直三棱柱的性质可取侧面A 1C 的一个法向量为n =(1,0,0),于是由θ为锐角可得cos θ=|m·n||m|·|n|=3λ2λ2+4,sin θ=λ2+162λ2+4,所以tan θ=λ2+163λ=13+163λ2, 由0<λ≤4,得1λ≥14,即tan θ≥13+13=63, 故当λ=4,即点F 与点C 1重合时,tan θ取得最小值63.图1-2课标文数18.G5,G11[2020·湖北卷] 如图1-2,已知正三棱柱ABC -A 1B 1C 1的底面边长为2,侧棱长为32,点E 在侧棱AA 1上,点F 在侧棱BB 1上,且AE =22,BF = 2.(1)求证:CF ⊥C 1E ;(2)求二面角E -CF -C 1的大小.课标文数18.G5,G11[2020·湖北卷]【解答】 解法1:(1)证明:由已知可得CC 1=32,CE =C 1F =22+222=23,EF =C 1E =22+22= 6.于是有EF 2+C 1E 2=C 1F 2,CE 2+C 1E 2=CC 21. 所以C 1E ⊥EF ,C 1E ⊥CE .又EF ∩CE =E ,所以C 1E ⊥平面CEF . 又CF ⊂平面CEF ,故CF ⊥C 1E .(2)在△CEF 中,由(1)可得EF =CF =6,CE =23,于是有EF 2+CF 2=CE 2,所以CF ⊥EF . 又由(1)知CF ⊥C 1E ,且EF ∩C 1E =E , 所以CF ⊥平面C 1EF .又C 1F ⊂平面C 1EF ,故CF ⊥C 1F .于是∠EFC 1即为二面角E -CF -C 1的平面角.由(1)知△C 1EF 是等腰直角三角形,所以∠EFC 1=45°,即所求二面角E -CF -C 1的大小为45°图1-3解法2:建立如图1-3所示的空间直角坐标系,则由已知可得A (0,0,0),B (3,1,0),C (0,2,0),C 1(0,2,32),E (0,0,22),F (3,1,2).(1)C 1E →=(0,-2,-2),CF →=(3,-1,2), ∴C 1E →·CF →=0+2-2=0, ∴CF ⊥C 1E . (2)CE →=(0,-2,22),设平面CEF 的一个法向量为m =(x ,y ,z ). 由m ⊥CE →,m ⊥CF →,得⎩⎪⎨⎪⎧m ·CE →=0,m ·CF →=0,即⎩⎨⎧-2y +22z =0,3x -y +2z =0,可取m =(0,2,1).设侧面BC 1的一个法向量为n ,由n ⊥CB →,n ⊥CC 1→,及CB →=(3,-1,0),CC 1→=(0,0,32),可取n =(1,3,0),设二面角E -CF -C 1的大小为θ,于是由θ为锐角可得cos θ=|m·n ||m ||n |=63×2=22,所以θ=45°,即所求二面角E -CF -C 1的大小为45°.图1-6课标理数19.G5,G11[2020·湖南卷] 如图1-6,在圆锥PO 中,已知PO =2,⊙O 的直径AB =2,C 是AB 的中点,D 为AC 的中点.(1)证明:平面POD ⊥平面PAC ; (2)求二面角B -PA -C 的余弦值.课标理数19.G5,G11[2020·湖南卷] 【解答】 解法一:(1)连结OC ,因为OA =OC ,D 是AC 的中点,所以AC ⊥OD .图1-7又PO ⊥底面⊙O ,AC ⊂底面⊙O ,所以AC ⊥PO .因为OD ,PO 是平面POD 内的两条相交直线,所以AC ⊥平面POD ,而AC ⊂平面PAC ,所以平面POD ⊥平面PAC .(2)在平面POD 中,过O 作OH ⊥PD 于H ,由(1)知,平面POD ⊥平面PAC ,所以OH ⊥平面PAC . 又PA ⊂面PAC ,所以PA ⊥OH .在平面PAO 中,过O 作OG ⊥PA 于G ,连结HG ,则有PA ⊥平面OGH .从而PA ⊥HG . 故∠OGH 为二面角B -PA -C 的平面角.在Rt △ODA 中,OD =OA ·sin45°=22.在Rt △POD 中,OH =PO ·ODPO 2+OD 2=2×222+12=105.在Rt △POA 中,OG =PO ·OA PO 2+OA 2=2×12+1=63.在Rt △OHG 中,sin ∠OGH =OH OG =10563=155. 所以cos ∠OGH =1-sin 2∠OGH =1-1525=105. 故二面角B -PA -C 的余弦值为105. 解法二:(1)如图1-8所示,以O 为坐标原点,OB ,OC ,OP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系.则图1-8O (0,0,0),A (-1,0,0),B (1,0,0),C (0,1,0),P (0,0,2),D ⎝ ⎛⎭⎪⎫-12,12,0.设n 1=(x 1,y 1,z 1)是平面POD 的一个法向量,则由n 1·OD →=0,n 1·OP →=0,得⎩⎪⎨⎪⎧-12x 1+12y 1=0,2z 1=0.所以z 1=0,x 1=y 1.取y 1=1,得n 1=(1,1,0).设n 2=(x 2,y 2,z 2)是平面PAC 的一个法向量,则由n 2·PA →=0,n 2·PC →=0,得⎩⎨⎧-x 2-2z 2=0,y 2-2z 2=0.所以x 2=-2z 2,y 2=2z 2,取z 2=1,得n 2=(-2,2,1).因为n 1·n 2=(1,1,0)·(-2,2,1)=0,所以n 1⊥n 2.从而平面POD ⊥平面PAC . (2)因为y 轴⊥平面PAB ,所以平面PAB 的一个法向量为n 3=(0,1,0).由(1)知,平面PAC 的一个法向量为n 2=(-2,2,1).设向量n 2和n 3的夹角为θ,则cos θ=n 2·n 3|n 2|·|n 3|=25=105.由图可知,二面角B -PA -C 的平面角与θ相等,所以二面角B -PA -C 的余弦值为105.课标文数19.G5,G11[2020·湖南卷] 如图1-5,在圆锥PO 中,已知PO =2,⊙O 的直径AB =2,点C 在AB 上,且∠CAB =30°,D 为AC 的中点.(1)证明:AC ⊥平面POD ;(2)求直线OC 和平面PAC 所成角的正弦值.图1-5课标文数19.G5,G11[2020·湖南卷] 【解答】 (1)因为OA =OC ,D 是AC 的中点,所以AC ⊥OD . 又PO ⊥底面⊙O ,AC ⊂底面⊙O ,所以AC ⊥PO . 而OD ,PO 是平面POD 内的两条相交直线, 所以AC ⊥平面POD .(2)由(1)知,AC ⊥平面POD ,又AC ⊂平面PAC , 所以平面POD ⊥平面PAC .在平面POD 中,过O 作OH ⊥PD 于H ,则OH ⊥平面PAC .图1-6连结CH ,则CH 是OC 在平面PAC 上的射影, 所以∠OCH 是直线OC 和平面PAC 所成的角.在Rt △ODA 中,OD =OA ·sin30°=12.在Rt △POD 中,OH =PO ·OD PO 2+OD 2=2×122+14=23.在Rt △OHC 中,sin ∠OCH =OH OC =23. 故直线OC 和平面PAC 所成角的正弦值为23.图1-9课标理数18.G5,G10,G11[2020·课标全国卷] 如图1-9,四棱锥P -ABCD 中,底面ABCD 为平行四边形,∠DAB =60°,AB =2AD ,PD ⊥底面ABCD .(1)证明:PA ⊥BD ;(2)若PD =AD ,求二面角A -PB -C 的余弦值.课标理数18.G5,G10,G11[2020·课标全国卷] 【解答】 (1)因为∠DAB =60°,AB =2AD ,由余弦定理得BD =3AD ,从而BD 2+AD 2=AB 2,故BD ⊥AD . 又PD ⊥底面ABCD ,可得BD ⊥PD , 所以BD ⊥平面PAD .故PA ⊥BD .图1-10(2)如图,以D 为坐标原点,AD 的长为单位长,DA 、DB 、DP 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系D -xyz ,则A (1,0,0),B (0,3,0),C (-1,3,0),P (0,0,1), AB →=(-1,3,0),PB →=(0,3,-1),BC →=(-1,0,0).设平面PAB 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧n ·AB →=0,n ·PB →=0,即⎩⎨⎧-x +3y =0,3y -z =0.因此可取n =(3,1,3).设平面PBC 的法向量为m ,则⎩⎪⎨⎪⎧m ·PB →=0,m ·BC →=0,可取m =(0,-1,-3).cos 〈m ,n 〉=-427=-277.故二面角A -PB -C 的余弦值为-277.图1-8课标文数18.G5,G11[2020·课标全国卷] 如图1-8,四棱锥P -ABCD 中,底面ABCD 为平行四边形,∠DAB =60°,AB =2AD ,PD ⊥底面ABCD .(1)证明:PA ⊥BD ;(2)设PD =AD =1,求棱锥D -PBC 的高.课标文数18.G5,G11[2020·课标全国卷] 【解答】 (1)证明:因为∠DAB =60°,AB =2AD ,由余弦定理得BD =3AD ,从而BD 2+AD 2=AB 2,故BD ⊥AD . 又PD ⊥底面ABCD ,可得BD ⊥PD , 所以BD ⊥平面PAD ,故PA ⊥BD . (2)如图,作DE ⊥PB ,垂足为E . 已知PD ⊥底面ABCD ,则PD ⊥BC .由(1)知BD ⊥AD ,又BC ∥AD ,所以BC ⊥BD.图1-9故BC ⊥平面PBD ,BC ⊥DE . 则DE ⊥平面PBC .由题设知PD =1,则BD =3,PB =2.根据DE ·PB =PD ·BD 得DE =32.即棱锥D -PBC 的高为32. 课标理数16.G5,G9[2020·陕西卷] 如图1-6,在△ABC 中,∠ABC =60°,∠BAC =90°,AD 是BC 上的高,沿AD 把△ABD 折起,使∠BDC =90°.图1-6(1)证明:平面ADB ⊥平面BDC;(2)设E 为BC 的中点,求AE →与DB →夹角的余弦值.课标理数16.F2[2020·陕西卷] 【解答】 (1)∵折起前AD 是BC 边上的高, ∴当△ABD 折起后,AD ⊥DC ,AD ⊥DB . 又DB ∩DC =D , ∴AD ⊥平面BDC , ∵AD 平面ABD ,∴平面ABD ⊥平面BDC .cos 〈AE →,DB →〉=AE →·DB →|AE →|·|DB →|=121×224=2222.课标文数16.G5[2020·陕西卷] 如图1-8,在△ABC 中,∠ABC =45°,∠BAC =90°,AD 是BC 上的高,沿AD 把△ABD 折起,使∠BDC =90°.(1)证明:平面ADB ⊥平面BDC ;(2)若BD =1,求三棱锥D -ABC 的表面积.图1-8课标文数16.G5[2020·陕西卷] 【解答】 (1)∵折起前AD 是BC 边上的高, ∴当△ABD 折起后,AD ⊥DC ,AD ⊥DB . 又DB ∩DC =D . ∴AD ⊥平面BDC . ∵AD 平面ABD ,∴平面ABD ⊥平面BDC .(2)由(1)知,DA ⊥DB ,DB ⊥DC ,DC ⊥DA , DB =DA =DC =1. ∴AB =BC =CA = 2.从而S △DAB =S △DBC =S △DCA =12×1×1=12.S △ABC =12×2×2×sin60°=32. ∴表面积S =12×3+32=3+32.课标数学16.G4,G5[2020·江苏卷] 如图1-2,在四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,AB =AD ,∠BAD =60°,E 、F 分别是AP 、AD 的中点.图1-2求证:(1)直线EF ∥平面PCD ; (2)平面BEF ⊥平面PAD .课标数学16.G4,G5[2020·江苏卷] 本题主要考查直线与平面、平面与平面的位置关系,考查空间想象能力和推理论证能力.【解答】 证明:(1)在△PAD 中,因为E ,F 分别为AP ,AD 的中点,所以EF ∥PD .又因为EF ⊄平面PCD ,PD ⊂平面PCD ,图1-3所以直线EF ∥平面PCD .(2)连结BD,因为AB=AD,∠BAD=60°,所以△ABD为正三角形,因为F是AD的中点,所以BF⊥AD.因为平面PAD⊥平面ABCD,BF⊂平面ABCD,平面PAD∩平面ABCD=AD,所以BF⊥平面PAD.又因为BF⊂平面BEF,所以平面BEF⊥平面PAD.大纲文数6.G5[2020·四川卷] l1,l2,l3是空间三条不同的直线,则下列命题正确的是( )A.l1⊥l2,l2⊥l3⇒l1∥l3B.l1⊥l2,l2∥l3⇒l1⊥l3C.l1∥l2∥l3⇒l1,l2,l3共面D.l1,l2,l3共点⇒l1,l2,l3共面大纲文数6.G5[2020·四川卷] B 【解析】对于A,直线l1与l3可能异面;对于C,直线l1、l2、l3可能构成三棱柱三条侧棱所在直线而不共面;对于D,直线l1、l2、l3相交于同一个点时不一定共面. 所以选B.课标理数4.G5[2020·浙江卷] 下列命题中错误..的是( )A.如果平面α⊥平面β,那么平面α内一定存在直线平行于平面βB.如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βC.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥平面γD.如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β课标理数4.G5[2020·浙江卷] D 【解析】若面α⊥面β,在面α内与面β的交线不相交的直线平行于平面β,故A正确;B中若α内存在直线垂直平面β,则α⊥β,与题设矛盾,所以B正确;由面面垂直的性质知选项C正确.由A正确可推出D错误.课标文数19.G4,G7[2020·安徽卷] 如图1-4,ABEDFC 为多面体,平面ABED 与平面ACFD 垂直,点O 在线段AD 上,OA =1,OD =2,△OAB ,△OAC ,△ODE ,△ODF 都是正三角形.(1)证明直线BC ∥EF ;(2)求棱锥F -OBED 的体积.图1-4课标文数19.G4,G7[2020·安徽卷] 本题考查空间直线与直线、直线与平面、平面与平面的位置关系,空间直线平行的证明,多面体体积的计算,考查空间想象能力,推理论证能力和运算求解能力.【解答】 (1)证明:设G 是线段DA 与EB 延长线的交点,由于△OAB 与△ODE 都是正三角形,OA =1,OD =2,所以OB 綊12DE ,OG =OD =2.同理,设G ′是线段DA 与FC 延长线的交点,有OC 綊12DF ,OG ′=OD =2,又由于G 和G ′都在线段DA 的延长线上,所以G 与G ′重合.在△GED 和△GFD 中,由OB 綊12DE 和OC 綊12DF ,可知B 和C 分别是GE 和GF 的中点.所以BC 是△GEF 的中位线,故BC ∥EF .(2)由OB =1,OE =2,∠EOB =60°,知S △EOB =32.而△OED 是边长为2的正三角形,故S △OED = 3.所以S OBED =S △EOB +S △OED =332.过点F 作FQ ⊥DG ,交DG 于点Q ,由平面ABED ⊥平面ACFD 知,FQ 就是四棱锥F -OBED的高,且FQ =3,所以V F -OBED =13FQ ·S 四边形OBED =32.课标理数17.G4,G7[2020·安徽卷]如图1-4,ABEDFC 为多面体,平面ABED 与平面ACFD 垂直,点O 在线段AD 上,OA =1,OD =2,△OAB ,△OAC ,△ODE ,△ODF 都是正三角形.(1)证明直线BC ∥EF ;(2)求棱锥F -OBED 的体积.图1-4课标理数17.G4,G7[2020·安徽卷] 【解析】 本题考查空间直线与直线,直线与平面、。

2020年普通高等学校招生全国统一考试数学试题汇编 立体几何(理科)部分

2020年普通高等学校招生全国统一考试数学试题汇编 立体几何(理科)部分

2020年普通高等学校招生全国统一考试数学试题汇编 立体几何(理科)部分立体几何(理科)部分1. (广东5)给定以下四个命题:①假设一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行; ②假设一个平面通过另一个平面的垂线,那么这两个平面相互垂直; ③垂直于同一直线的两条直线相互平行;④假设两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中,为真命题的是A.①和② B.②和③ C..③和④ D.②和④ D2.〔宁夏海南11〕一个棱锥的三视图如图,那么该棱锥的全面积 〔单位:c 2m 〕为〔A 〕48+122 〔B 〕48+242 〔C 〕36+122 〔D 〕36+242 解析:选A.3. (宁夏海南8) 如图,正方体1111ABCD A B C D -的棱线长为1,线段11B D 上有两个动点E ,F ,且22EF =,那么以下结论中错误的选项是 〔A 〕AC BE ⊥ 〔B 〕//EF ABCD 平面〔C 〕三棱锥A BEF -的体积为定值 〔D 〕异面直线,AE BF 所成的角为定值解析:A 正确,易证11;AC D DBB AC BE ⊥⊥平面,从而B 明显正确,//,//EF BD EF ABCD ∴平面易证;C 正确,可用等积法求得;D 错误。

选D.4.(山东4) 一空间几何体的三视图如下图,那么该几何体的体积为( ). A.223π+ B. 423π+ C. 2323π+ D. 2343π+【解析】:该空间几何体为一圆柱和一四棱锥组成的, 圆柱的底面半径为1,高为2,体积为2π,四棱锥的底面 边长为2,高为3,因此体积为()2123233⨯⨯=因此该几何体的体积为2323π+.答案:C【命题立意】:此题考查了立体几何中的空间想象能力, 由三视图能够想象得到空间的立体图,并能准确地 运算出.几何体的体积.5.(辽宁11)正六棱锥P-ABCDEF 中,G 为PB 的中点,那么三棱锥D-GAC 与三棱锥P-GAC 体积之比为〔A 〕1:1 〔B 〕1:2 〔C 〕2:1 〔D 〕3:2 答案:C 解析:连接FC 、AD 、BE ,设正六边形 的中心为O ,连接AC 与OB 相交点H ,那么GH∥PO,故GH⊥平面ABCDEF , ∴平面GAC⊥平面ABCDEF 又DC⊥AC,BH⊥AC, ∴DC⊥平面GAC ,BH⊥平面GAC , 且DC=2BH ,故三棱锥D-GAC 与三棱锥P-GAC 体积之比为2:1。

2020高考真题数学分类汇编—立体几何

2020高考真题数学分类汇编—立体几何

2020高考真题数学分类汇编—立体几何一、选择题(共10小题)1.(2020•天津)若棱长为2的正方体的顶点都在同一球面上,则该球的表面积为()A.12πB.24πC.36πD.144π2.(2020•北京)某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱的表面积为()A.6+B.6+2C.12+D.12+23.(2020•山东)日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O),地球上一点A的纬度是指OA与地球赤道所在平面所成角,点A处的水平面是指过点A且与OA垂直的平面.在点A处放置一个日晷,若晷面与赤道所在平面平行,点A处的纬度为北纬40°,则晷针与点A处的水平面所成角为()A.20°B.40°C.50°D.90°4.(2020•新课标Ⅲ)如图为某几何体的三视图,则该几何体的表面积是()A.6+4B.4+4C.6+2D.4+25.(2020•上海)在棱长为10的正方体ABCD﹣A1B1C1D1中,P为左侧面ADD1A1上一点,已知点P到A1D1的距离为3,P到AA1的距离为2,则过点P且与A1C平行的直线相交的面是()A.AA1B1B B.BB1C1C C.CC1D1D D.ABCD6.(2020•新课标Ⅱ)已知△ABC是面积为的等边三角形,且其顶点都在球O的球面上.若球O的表面积为16π,则O到平面ABC的距离为()A.B.C.1 D.7.(2020•新课标Ⅱ)如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M,在俯视图中对应的点为N,则该端点在侧视图中对应的点为()A.E B.F C.G D.H8.(2020•浙江)某几何体的三视图(单位:cm)如图所示,则该几何体的体积(单位:cm3)是()A.B.C.3 D.69.(2020•新课标Ⅰ)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为()A.B.C.D.10.(2020•新课标Ⅰ)已知A,B,C为球O的球面上的三个点,⊙O1为△ABC的外接圆.若⊙O1的面积为4π,AB=BC=AC=OO1,则球O的表面积为()A.64πB.48πC.36πD.32π二.填空题(共6小题)11.(2020•浙江)已知圆锥的侧面积(单位:cm2)为2π,且它的侧面展开图是一个半圆,则这个圆锥的底面半径(单位:cm)是.12.(2020•山东)已知直四棱柱ABCD﹣A1B1C1D1的棱长均为2,∠BAD=60°.以D1为球心,为半径的球面与侧面BCC1B1的交线长为.13.(2020•江苏)如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2cm,高为2cm,内孔半径为0.5cm,则此六角螺帽毛坯的体积是cm3.14.(2020•新课标Ⅲ)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的表面积为.15.(2020•新课标Ⅰ)如图,在三棱锥P﹣ABC的平面展开图中,AC=1,AB=AD=,AB⊥AC,AB⊥AD,∠CAE=30°,则cos∠FCB=.16.(2020•新课标Ⅲ)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为.三.解答题(共14小题)17.(2020•天津)如图,在三棱柱ABC﹣A1B1C1中,CC1⊥平面ABC,AC⊥BC,AC=BC=2,CC1=3,点D,E 分别在棱AA1和棱CC1上,且AD=1,CE=2,M为棱A1B1的中点.(Ⅰ)求证:C1M⊥B1D;(Ⅱ)求二面角B﹣B1E﹣D的正弦值;(Ⅲ)求直线AB与平面DB1E所成角的正弦值.18.(2020•上海)已知ABCD是边长为1的正方形,正方形ABCD绕AB旋转形成一个圆柱.(1)求该圆柱的表面积;(2)正方形ABCD绕AB逆时针旋转至ABC1D1,求线段CD1与平面ABCD所成的角.19.(2020•北京)如图,在正方体ABCD﹣A1B1C1D1中,E为BB1的中点.(Ⅰ)求证:BC1∥平面AD1E;(Ⅱ)求直线AA1与平面AD1E所成角的正弦值.20.(2020•山东)如图,四棱锥P﹣ABCD的底面为正方形,PD⊥底面ABCD.设平面PAD与平面PBC的交线为l.(1)证明:l⊥平面PDC;(2)已知PD=AD=1,Q为l上的点,求PB与平面QCD所成角的正弦值的最大值.21.(2020•江苏)在三棱锥A﹣BCD中,已知CB=CD=,BD=2,O为BD的中点,AO⊥平面BCD,AO=2,E为AC中点.(1)求直线AB与DE所成角的余弦值;(2)若点F在BC上,满足BF=BC,设二面角F﹣DE﹣C的大小为θ,求sinθ的值.22.(2020•浙江)如图,在三棱台ABC﹣DEF中,平面ACFD⊥平面ABC,∠ACB=∠ACD=45°,DC=2BC.(Ⅰ)证明:EF⊥DB;(Ⅱ)求直线DF与平面DBC所成角的正弦值.23.(2020•江苏)在三棱柱ABC﹣A1B1C1中,AB⊥AC,B1C⊥平面ABC,E,F分别是AC,B1C的中点.(1)求证:EF∥平面AB1C1;(2)求证:平面AB1C⊥平面ABB1.24.(2020•新课标Ⅲ)如图,在长方体ABCD﹣A1B1C1D1中,点E,F分别在棱DD1,BB1上,且2DE=ED1,BF =2FB1.证明:(1)当AB=BC时,EF⊥AC;(2)点C1在平面AEF内.25.(2020•新课标Ⅰ)如图,D为圆锥的顶点,O是圆锥底面的圆心,AE为底面直径,AE=AD.△ABC是底面的内接正三角形,P为DO上一点,PO=DO.(1)证明:PA⊥平面PBC;(2)求二面角B﹣PC﹣E的余弦值.26.(2020•新课标Ⅰ)如图,D为圆锥的顶点,O是圆锥底面的圆心,△ABC是底面的内接正三角形,P为DO 上一点,∠APC=90°.(1)证明:平面PAB⊥平面PAC;(2)设DO=,圆锥的侧面积为π,求三棱锥P﹣ABC的体积.27.(2020•新课标Ⅱ)如图,已知三棱柱ABC﹣A1B1C1的底面是正三角形,侧面BB1C1C是矩形,M,N分别为BC,B1C1的中点,P为AM上一点.过B1C1和P的平面交AB于E,交AC于F.(1)证明:AA1∥MN,且平面A1AMN⊥平面EB1C1F;(2)设O为△A1B1C1的中心.若AO=AB=6,AO∥平面EB1C1F,且∠MPN=,求四棱锥B﹣EB1C1F的体积.28.(2020•新课标Ⅲ)如图,在长方体ABCD﹣A1B1C1D1中,点E,F分别在棱DD1,BB1上,且2DE=ED1,BF =2FB1.(1)证明:点C1在平面AEF内;(2)若AB=2,AD=1,AA1=3,求二面角A﹣EF﹣A1的正弦值.29.(2020•新课标Ⅱ)如图,已知三棱柱ABC﹣A1B1C1的底面是正三角形,侧面BB1C1C是矩形,M,N分别为BC,B1C1的中点,P为AM上一点.过B1C1和P的平面交AB于E,交AC于F.(1)证明:AA1∥MN,且平面A1AMN⊥平面EB1C1F;(2)设O为△A1B1C1的中心.若AO∥平面EB1C1F,且AO=AB,求直线B1E与平面A1AMN所成角的正弦值.30.(2020•上海)已知四棱锥P﹣ABCD,底面ABCD为正方形,边长为3,PD⊥平面ABCD.(1)若PC=5,求四棱锥P﹣ABCD的体积;(2)若直线AD与BP的夹角为60°,求PD的长.。

2020年高考试题分类汇编(立体几何)

2020年高考试题分类汇编(立体几何)

2020年高考试题分类汇编(立体几何)考法1空间中的点、线、面的位置关系1.(2020·全国卷Ⅰ·文理科)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状科视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥的一个侧面三角形的面积,则其侧面三角形底边上的高于底面正方形的边长的比值为 A .514- B .512- C .514+ D .512+2.(2020·全国卷Ⅰ·理科)如图,在三棱锥P ABC -的平面展开图中,1AC =,3AB AD ==,AB AC ⊥,AB AD ⊥, 30CAE ∠=,则cos FCB ∠= .3.(2020·全国卷Ⅱ·文理科)设有下列四个命题:1p :两两相交且不过同一点的三条直线必在同一个平面内. 2p :过空间任意三点有且仅有一个平面.3p :若空间两条直线不相交,则这两条直线平行. 4p :若直线l ⊂平面α,直线m ⊥平面α,则l m ⊥.则下列命题中所以真命题的序号是 .①14p p ∧ ②12p p ∧ ③23()p p ⌝∨ ④34()()p p ⌝∨⌝ 4.(2020·浙江卷)已知空间中不过同一点的三条直线m ,n ,l ,则“m ,n ,ABCD (P )E (P )F (P )l 在同一平面”是“m ,n ,l 两两相交”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件 考法2三视图1.(2020·全国卷Ⅱ·理科)右图是一个多面体的三视图,这个多面体某天棱的一个端点在正视图中对应的点为M ,在俯视图中对应的点为N ,则该端点在侧视图中对应的点为A .EB .FC .GD .H2.(2020·全国卷Ⅲ·文理科)右图为某几何体的三视图,则该几何体的表面积为A .642+B .442+C .623+D .423+3.(2020·浙江卷)某几何体的三视图(单位:cm )如图所示,则该几 何体的体积(单位:3cm )是A .73B .143C .3D .64.(2020·北京卷)某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱M N EF GH222的表面积为A .63+B .623+C .123+D .1223+考法3与球的组合体1.(2020·全国卷Ⅰ·文理科)已知A ,B ,C 为球O 的球面上三点,1O 为ABC ∆的外接圆,若1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为 A .64π B .48π C .36π D .32π2.(2020·山东卷)日冕是中国古代用来测定时间的仪器,利用与冕面垂直的冕针投射到冕面的影子来测定时间,把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成的角,点A 处的水平面是指过点A 且与OA 垂直的平面,在点A 处放置一个日冕,若冕面与赤道所在的平面平行,点A 的纬度为北纬40,则冕针与点A 处的水平面所成的角为A .20B .40C .50D .903.(2020·全国卷Ⅱ·文理科)已知ABC ∆是面积为934的等边三角形,且其顶点都在球O 的球面上,若球O 的表面积为16π,则O 到平面ABC 的面积112正(主)视图 侧(左)视图俯视图AB .32C .1 D.24.(2020·全国卷Ⅲ·文理科)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为 .5.(2020·山东卷)已知直四棱柱1111ABCD A B C D -的棱长均为2,60BAD ∠=.以1D11BCC B 的交线长为 .6.(2020·天津卷)若棱长为则该球的表面积为A .12πB .24πC .36πD .144π考法4解答题1.(2020·全国卷Ⅰ·理科)如图,D 为圆锥的顶点,O 是圆锥底面的圆心,AE 为底面直径,AE AD =.ABC ∆是底面的内角正三角形,P 为DO上一点,6PO DO =. (Ⅰ)证明:PA ⊥平面PBC ; (Ⅱ)求二面角B PC E --的余弦值.2.(2020·全国卷Ⅰ·文科)如图,D 为圆锥的顶点,O 是圆锥底面的圆心,ABC ∆是底面的内角正三角形,P 为DO 上一点,90ABC ∠=. (Ⅰ)证明:平面PAB ⊥平面PAC ;(Ⅱ)设DO =,求三棱锥P ABC -的体积.P ABO E CDP ABO C D3.(2020·全国卷Ⅱ·理科)如图,已知三棱柱111ABC A B C -的底面是正三角形,侧面11BCC B 是矩形,M ,N 分别为的BC ,11B C 的中点,P 为AM 上一点,过11B C 和P 的平面交AB 于E ,交AC 于F .(Ⅰ)证明:1AA MN ∥,且平面1A AMN ⊥平面11EB C F ;(Ⅱ)设O 为111A B C ∆的中心,若AO ∥平面11EB C F ,且AO AB =,求直线1B E 与平面1A AMN 所成角的正弦值.4.(2020·全国卷Ⅱ·文科)如图,已知三棱柱111ABC A B C -的底面是正三角形,侧面11BCC B 是矩形,M ,N 分别为的BC ,11B C 的中点,P 为AM 上一点,过11B C 和P 的平面交AB 于E ,交AC 于F .(Ⅰ)证明:1AA MN ∥,且平面1A AMN ⊥平面11EB C F ;(Ⅱ)设O 为111A B C ∆的中心,若6AO AB ==,AO ∥平面11EB C F ,且3MPN π∠=,求四棱锥11B EB C F -的体积.5.(2020·全国卷Ⅲ·理科)如图,在长方体1111ABCD A B C D -中,点E 、F 分别在棱1DD ,1BB 上,且2DE =1ED ,12BF FB =. (Ⅰ)证明:点1C 在平面AEF 内;ABC E F O MNA 1B 1C 1PABC E FO MNA 1B 1C 1P(Ⅱ)若2AB =,1AD =,13AA =,求二面角1A EF A --的正弦值.6.(2020·全国卷Ⅲ·文科)如图,在长方体1111ABCD A B C D -中,点E 、F 分别在棱1DD ,1BB 上,且2DE =1ED ,12BF FB =.(Ⅰ)当AB BC =时,EF AC ⊥. (Ⅱ)证明:点1C 在平面AEF 内;7.(2020·山东卷)如图,四棱锥P ABCD -的底面为正方形,PD ⊥底面ABCD .设平面PAD 与平面PBC 的交线为l . (Ⅰ)证明:l ⊥平面PDC ;(Ⅱ)已知1PD AD ==,Q 为l 上的点,求PB 与平面QCD 所成角的正弦值的最大值.A BCDEF A 1B 1C 1D 1ABCDEFA 1B 1C 1D 1PABCD8.(2020·天津卷)如图,在三棱柱111ABC A B C -中,1CC ⊥平面ABC ,AC BC ⊥,2AC BC ==,13CC =,点D ,E 分别在棱1AA 和棱1CC 上,且1AD =,2CE =,M 为棱11A B 的中点. (Ⅰ)求证:11C M B D ⊥;(Ⅱ)求二面角1B B E D --的正弦值;(Ⅲ)求直线AB 与平面1DB E 所成角的正弦值.9.(2020·浙江卷)如图,三棱台DEF ABC -中,面ADFC ⊥面ABC ,45ACB ACD ∠=∠=,DC =2BC .(Ⅰ)证明:EF DB ⊥;(Ⅱ)求DF 与面DBC 所成角的正弦值.A BCDEMB 1A 1C 1ABCDEF10.(2020·北京卷)如图,在正方体1111ABCD A B C D 中,E 为1BB 的中点. (Ⅰ)求证:1BC ∥平面1AD E ;(Ⅱ)求直线1AA 与平面1AD E 所成角的正弦值.ABCDE A 1B 1C 1D 1。

2020高考模拟试题立体几何部分解答题汇编(含答案)

2020高考模拟试题立体几何部分解答题汇编(含答案)

2020高考模拟试题立体几何部分解答题汇编(含答案)1.(2020•浙江模拟)如图,在三棱柱ABC﹣A1B1C1中,已知四边形ABB1A1是矩形,四边形BCC1B1是菱形,O为BC的中点,且AB=1,BC=2,∠ABC=90°,∠B1BC=60°.(1)求证:B1C⊥平面ABC1;(2)求直线CC1与平面AB1O所成角的正弦值.2.(2020•吉林模拟)如图,在四棱锥P﹣ABCD中,底面ABCD为等腰梯形,AD∥BC,平面P AD⊥底面ABCD,P A=PD=AD=2BC=2CD=2,M为PC上一点,P A∥平面BDM.(1)求PM:MC的值;(2)求四棱锥P﹣ABCD外接球的半径.3.(2020•5月份模拟)如图①四边形ABCD为矩形,E、F分别为AD、BC边的三等分点,其中AB=AE=CF=1,BF=2,以EF为折痕把四边形ABFE折起如图②,使面ABFE ⊥面EFCD.(1)证明:图②中CD⊥BD;(2)求二面角A﹣BD﹣C的余弦值.4.(2020•江西模拟)已知如图,菱形ABCD的边长为2,对角线AC=2,现将菱形ABCD 沿对角线AC翻折,使B翻折至点B'.(1)求证:AC⊥B'D;(2)若B'D=1,且点E为线段B'D的中点,求CE与平面AB'D夹角的正弦值.5.(2020•德阳模拟)如图,四棱柱ABCD﹣A1B1C1D1的侧棱与底面垂直,底面ABCD是菱形,四棱锥P﹣ABCD的顶点P在平面A1B1C1D1上的投影恰为四边形A1B1C1D1对角线的交点O1,四棱锥P﹣ABCD和四棱柱ABCD﹣A1B1C1D1的高相等.(1)证明:PB∥平面ADO1;(2)若∠BAD=,AA1=A1B1,求平面PBC与平面ABO1所成的锐二面角的余弦值.6.(2020•内江三模)如图,在直棱柱ABCD﹣A1B1C1D1中,AD∥BC,∠BAD=90°,AC ⊥BD,BC=1,AD=AA1=4.(1)证明:面ACD1⊥面BB1D;(2)求二面角B1﹣AC﹣D1的余弦值.7.(2020•天津二模)如图,在四棱锥P﹣ABCD中,P A⊥平面ABCD,AB∥CD,且CD=2,AB=1,,AB⊥BC,N为PD的中点.(1)求证:AN∥平面PBC;(2)求平面P AD与平面PBC所成锐二面角的余弦值;(3)在线段PD上是否存在一点M,使得直线CM与平面PBC所成角的正弦值为,若存在,求出的值;若不存在,说明理由.8.(2020•汉阳区校级模拟)如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,P A⊥底面ABCD,P A=AB=4,E为线段PB的中点.(1)若F为线段BC上的动点,证明:平面AEF⊥平面PBC;(2)若F为线段BC的中点,求点P到平面AEF的距离.9.(2020•西湖区校级模拟)如图,在直三棱柱ABC﹣A1B1C1中,A1B1=A1C1=2,,∠BAC=120°,O为线段B1C1的中点,P线段CC1上一动点(异于点C、C1).Q为线段BC上一动点,且QP⊥OP;(1)求证:平面A1PQ⊥平面A1OP;(2)若BO∥PQ,求直线OP与平面A1PQ所成角的正弦值.10.(2020•高港区校级模拟)如图,在四棱锥P ABCD中,M是P A上的点,△ABD为正三角形,CB=CD,P A⊥BD.(1)求证:平面MBD⊥平面P AC;(2)若∠BCD=120°,DM∥平面BPC,求证:点M为线段P A的中点.11.(2020•柯桥区二模)如图,在四棱锥P﹣ABCD中,PD=PB=BD=AB=1,∠BAD =30°,CD=CB.(1)求证:PC⊥BD;(2)若P A=,求直线P A与平面PBD所成角的正弦值.12.(2020•三模拟)如图甲,在矩形ABCD中,E是边CD的中点,AB=2,BC=.以AE,BE为折痕将△ADE与△BCE折起,使D,C重合(仍记为D),如图乙.(1)探索:翻折后形成的几何体中直线DE的几何性质(写出一条即可,说明理由.不含DE⊥DA,DE⊥DB)(2)求翻折后的几何体E﹣ABD外接球的体积.13.(2020•运城模拟)在三棱锥P﹣ABC中,BC=2,AB=2,AP⊥PC,平面P AC⊥平面ABC,E是PB的中点.(1)求证:BC⊥P A;(2)求点B到平面ACE的距离.14.(2020•镜湖区校级模拟)如图,已知正三棱柱ABC﹣A1B1C1底面边长为1,BC1∩B1C =E,点D在AC上,使得AB1∥平面BDC1.(Ⅰ)求的值;(Ⅱ)若AB1⊥BC1,作出点D在平面BCC1B1上投影F,并求线段EF的长.15.(2020•香坊区校级一模)已知直三棱柱ABC﹣A1B1C1中,△ABC为正三角形,AB=AA1=4,F为BC的中点.点E在棱C1C上,且C1E=3EC.(Ⅰ)求证:直线B1F⊥平面AEF;(Ⅱ)求二面角B1﹣AE﹣F的余弦值.16.(2020•沙坪坝区校级模拟)如图,在正三棱柱ABC﹣A1B1C1中,D为CC1的中点,AB =2.(1)求证:平面ADB1⊥平面ABB1A1;(2)若直线AB1与平面A1B1C1所成角为60°,求二面角B1﹣AD﹣C1的余弦值.17.(2020•衡阳三模)如图,半圆弧所在平面与平面ABCD垂直,M是上异于A,B 的动点,∠BAD=∠ADC=90°,AB=AD=2DC(1)证明:MB⊥平面MAD;(2)当直线MB与平面ABCD所成的角为45°时,求二面角D﹣MA﹣C的正弦值.18.(2020•德阳模拟)如图,四棱柱ABCD﹣A1B1C1D1的侧棱与底面垂直,底面ABCD是菱形,四棱锥P﹣ABCD的顶点P在平面A1B1C1D1上的投影恰为四边形A1B1C1D1对角线的交点O1,四棱锥P﹣ABCD和四棱柱ABCD﹣A1B1C1D1的高相等.(1)证明:PB∥平面ADO1;(2)若AB=BD=BB1=2,求几何体P﹣AB1C1的体积.19.(2020•内江三模)如图,在直棱柱ABCD﹣A1B1C1D1中,AD∥BC,∠BAD=90°,AC ⊥BD,BC=1,AD=AA1=4.(1)证明:面ACD1⊥面BB1D;(2)求多面体ABC﹣A1B1C1D1的体积.20.(2020•二模拟)如图甲所示,在平面四边形ABCD中,∠ABC=∠ADC=90°,∠DCA =60°,AB=BC=,现将平面ADC沿AC向上翻折,使得DB=,M为AC的中点,如图乙.(1)证明:BM⊥DC;(2)线段DC上是否存在点Q,使得直线BQ与平面ADB所成角的正弦值为,若存在,求出线段DQ的长度;若不存在,请说明理由.21.(2020•南岗区校级模拟)如图,组合体由棱长为2的正方体ABCD﹣A1B1C1D1和四棱锥S﹣ABCD组成,SD⊥平面ABCD,SD=2,E是DD1中点,F是SB中点.(Ⅰ)求证:SB∥平面EA1C1;(Ⅱ)求证:A1C1⊥EF;(Ⅲ)求S到平面EA1C1的距离.22.(2020•河南模拟)如图,在四棱锥P﹣ABCD中,P A⊥平面ABCD,BC∥AD,AB⊥BC,AB=BC=1,AD=AP=2,E为PD的中点,F为BP的中点.(1)求证:CE∥平面P AB;(2)求点D到平面PBC的距离.23.(2020•滨州三模)在如图所示的圆柱O1O2中,AB为圆O1的直径,C,D是的两个三等分点,EA,FC,GB都是圆柱O1O2的母线.(1)求证:FO1∥平面ADE;(2)设BC=1,已知直线AF与平面ACB所成的角为30°,求二面角A﹣FB﹣C的余弦值.24.(2020•金凤区校级四模)如图,AB为圆O的直径,点E,F在圆O上,AB∥EF,矩形ABCD所在平面和圆O所在平面互相垂直,已知AB=4,EF=2.(1)求证:平面ADF⊥平面BCF;(2)若几何体F﹣BCE和几何体F﹣ABCD的体积分别为V1和V2,求V1:V2.25.(2020•韩城市模拟)如图,在Rt△AOB中,OA=OB=2,△AOC通过△AOB以直线OA为轴顺时针旋转120°得到(即∠BOC=120°),点M为线段BC上一点,且MB=.(Ⅰ)求证:OA⊥OM;(Ⅱ)若D是线段AB的中点,求四棱锥O﹣ACMD的体积.26.(2020•南岗区校级模拟)图中组合体由一个棱长为2的正方体ABCD﹣A1B1C1D1和一个四棱锥S﹣ABCD组成(SD⊥平面ABCD,S,D,D1三点共线,SD=2),E是DD1中点.(Ⅰ)求证:SB∥平面EA1C1;(Ⅱ)点F在棱SB上靠近S的三等分点,求直线EF与平面EA1C1所成角的正弦值.27.(2020•邵阳三模)如图所示,已知正方体ABCD﹣A1B1C1D1.(1)线段AC上是否存在点O,使得C1O∥平面AB1D1,若存在,求的值;若不存在,请说明理由;(2)求直线D1A与平面A1ACC1所成角的大小.28.(2020•龙潭区校级模拟)如图,在四棱锥P﹣ABCD中,AB∥DC,DC=2AB=2AD=2BC,△P AB为等边三角形,平面P AB⊥底面ABCD,E为PD的中点.(1)求证:AE∥平面PBC;(2)求二面角B﹣AE﹣P的正弦值.29.(2020•武昌区校级模拟)如图,在四棱锥P﹣ABCD中,底面ABCD为平行四边形,AB =2AD=4,PD=BD=AD,且PD⊥底面ABCD.(1)证明:BC⊥平面PBD;(2)若Q为PC的中点,求三棱锥A﹣PBQ的体积.30.(2020•东兴区校级模拟)如图,四棱锥E﹣ABCD中,四边形ABCD是边长为2的菱形∠DAE=∠BAE=45°,∠DAB=60°.(Ⅰ)证明:平面ADE⊥平面ABE;(Ⅱ)当平面DCE与平面ABE所成锐二面角的余弦值,求直线DE与平面ABE所成角正弦值.31.(2020•宝鸡三模)如图,DA⊥平面ABC,DA∥PC,E为PB的中点,PC=2,AC⊥BC,△ACB和△DAC是等腰三角形,AB=.(Ⅰ)求证:DE∥平面ABC;(Ⅱ)求三棱锥E﹣BCD体积.32.(2020•杜集区校级模拟)如图,将长方形OAA1O1(及其内部)绕OO1旋转一周形成圆柱,其中OA=1,OO1=2,弧的长为为⊙O的直径.(Ⅰ)在弧上是否存在点C(C,B1在平面OAA1O1的同侧),使BC⊥AB1,若存在,确定其位置;若不存在,说明理由;(Ⅱ)求A1到平面BO1B1的距离.33.(2020•靖远县模拟)如图,四边形ABCD为正方形,PD⊥平面ABCD,PD=DC=2,点E,F分别为AD,PC的中点.(1)证明:DF∥平面PBE;(2)求直线PD与平面PBE所成角的正弦值.34.(2020•梅河口市校级模拟)如图,在四棱锥P﹣ABCD中,底面ABCD的对角线互相垂直,且BC=CD,PB=PD,P A⊥平面ABCD.(1)若Q为PD的中点,求证:OQ∥平面P AB;(2)若AB⊥BC,AB=P A=AC=1,点M在PC上,且PM=PC,求点A到平面MBD的距离.35.(2020•襄州区校级四模)如图,DA⊥平面ABC,DA∥PC,E为PB的中点,PC=4,AC⊥BC,△ACB和△DAC都是等腰三角形,.(1)求证:DE∥平面ABC;(2)求直线DE和平面BCD所成角的正弦值.36.(2020•二模拟)如图甲所示,在平面四边形ABCD中,∠ABC=∠ADC=90°,∠DCA =60°,AB=BC=,现将平面ADC沿AC向上翻折,使得DB=,M为AC的中点,如图乙.(1)证明:BM⊥DC;(2)求BM与平面ADB所成角的正弦值.37.(2020•东湖区校级三模)如图,在六棱锥P﹣ABCDEF中,底面ABCDEF是边长为4的正六边形,.(1)证明:平面P AC⊥平面PBE;(2)若,求二面角B﹣P A﹣F的余弦值.38.(2020•泸州四模)如图,在多面体ABCDEF中,侧面ADEF是平行四边形,底面ABCD是等腰梯形,AB∥CD,AB=4,BC=CD=2,顶点E在底面ABCD内的射影恰为点C.(Ⅰ)求证:BC⊥平面ACE;(Ⅱ)若CD=CE,求四面体ABEF的体积.39.(2020•福州三模)如图,在多面体P ABCD中,平面ABCD⊥平面P AD,AD∥BC,∠BAD=90°,∠P AD=120°,BC=1,AB=AD=P A=2.(1)求平面PBC与平面P AD所成二面角的正弦值;(2)若E是棱PB的中点,求证:对于棱CD上任意一点F,EF与PD都不平行.40.(2020•庐阳区校级模拟)如图,在四棱锥P﹣ABCD中,平面P AD⊥平面ABCD.平面PCD⊥平面ABCD.(1)证明:PD⊥平面ABCD;(2)若E为PC的中点,DE⊥PC,四边形ABCD为菱形,且∠BAD=60°,求二面角D﹣BE﹣C的余弦值.1.【解答】解:(1)因为,∠ABC=90°,所以AB⊥BC,因为四边形ABB1A1是矩形,所以AB⊥BB1,又BC⊂平面BCC1B1,BB1⊂平面BCC1B1,BC∩BB1=B,所以AB⊥平面BCC1B1.因为B1C⊂平面BCC1B1,所以AB⊥B1C,又四边形BCC1B1是菱形,所以BC1⊥CB1,因为AB⊂平面ABC1,B1C⊂平面ABC1,AB∩BC1=B,所以B1C⊥平面ABC1.(2)因为四边形BCC1B1是菱形,∠B1BC=60°,O为BC的中点,所以B1O⊥BC,由(l)知AB⊥平面BCC1B1,所以AB⊥B1O,又BC∩AB=B,所以B1O⊥平面ABC,又B1O⊂平面AB1O,所以平面AB1O⊥平面ABC,过点B作BH⊥AO于点H,则BH⊥平面AB1O,连接B1H,则∠BB1H即直线CC1与平面AB1O所成的角,在直角△ABO中,易得BH=,又B1B=2,所以sin,所以直线CC1与平面AB1O所成角的正弦值为.2.【解答】解:(1)如图,连接AC交BD于点N,连接MN,因为平面P AC∩平面BDM=MN,P A∥平BDM,所以P A∥MN,所以=.又因为△BCN∽△DAN,所以=2,故=2.(2)根据题意,取AD的中点O,连接PO,因为△P AD为等边三角形,所以PO⊥AD,PO=.因为平面P AD⊥底面ABCD,且平面P AD∩底面ABCD=AD,所以PO⊥平面ABCD.设△P AD的重心为G,则GO平面ABCD,AG=DG=PG=.解等腰梯形ABCD,可得O为梯形ABCD外接圆的圆心,所以OD=OA=OB=OC=1,所以GD=GA=GB=GC=,故G为四棱锥P﹣ABCD外接球球心,半径为.3.【解答】解:(1)证明:连接BE,易知,∴BE2+EF2=BF2,∴BE⊥EF,∵面ABFE⊥面EFCD,面ABFE∩面EFCD=EF,∴BE⊥面EFCD,∴BE⊥CD,∵CD⊥DE,BE∩DEE,且BE,DE都在平面BDE内,∴CD⊥面BDE,又BD⊂面BDE,∴CD⊥BD;(2)以ED,EB分别为y,z轴建立如图所示的空间直角坐标系,则,BF的中点,∵,∴,∴,设平面ABD的法向量为,则,则可取,同理可得平面BDC的法向量为,∴,∵二面角A﹣BD﹣C的平面角为钝角,∴二面角A﹣BD﹣C的余弦值为.4.【解答】(1)证明:如图所示,取AC的中点为O,连结OD,OB′,∵AB′=B′C,AD=CD,∴B′O⊥AC,DO⊥AC,又B′O∩DO=O,∴AC⊥平面B′OD,∵B′D⊂平面B′ED,∴AC⊥B′D.(2)解:以O为原点,OC为x轴,OD为y轴,过O作平面ACD的垂线为z轴,建立空间直角坐标系,在等腰△B′AC中,B′O=1,同理DO=1,∵B′D=1,A(﹣,0,0),D(0,1,0),B′(0,,),C(,0,0),E (0,,),∴=(,1,0),=(0,,﹣),=(﹣,,),设平面B′AD的一个法向量为=(x,y,z),则,即,取z=1,得=(﹣1,,1),∴cos<>===.设CE与平面AB'D夹角为θ,则sinθ=|cos<>|=.∴CE与平面AB'D夹角的正弦值为.5.【解答】(1)证明:连接BO1、PO1,由题知,PO1⊥平面A1B1C1D1且四棱柱ABCD﹣A1B1C1D1的侧棱与底面垂直,∴PO1∥BB1∥DD1,即P、B、O1、D四点共面.∵四棱锥P﹣ABCD和四棱柱ABCD﹣A1B1C1D1的高相等,∴在四边形PBO1D中,PO1与BD的交点O为BD的中点,也是PO1的中点,∴四边形PBO1D为平行四边形,∴PB∥O1D,又O1D⊂平面ADO1,PB⊄平面ADO1,∴PB∥平面ADO1.(2)解:由题意知,O1A1、O1B1、O1P三直线两两垂直,∴以O1为原点,O1A1、O1B1、O1P所在直线分别为x、y、z轴建立如图所示的空间直角坐标系,设O1B1=1,则O1A1=,AA1=2,∴O1(0,0,0),A(,0,2),B(0,1,2),P(0,0,4),C(,0,2),∴=(,0,2),=(0,1,2),设平面ABO1的法向量为=(x,y,z),则,即,令z=,则x=﹣2,y=,∴=(﹣2,,).同理可得,平面PBC的法向量=(﹣2,,).∴cos<,>===.故平面PBC与平面ABO1所成的锐二面角的余弦值为.6.【解答】解:(1)证明:由直棱柱ABCD﹣A1B1C1D1可知,BB1⊥平面ABCD,AC⊂平面ABCD,∴BB1⊥AC,又∵AC⊥BD,且BB1∩BD=B,∴AC⊥平面BB1D,又AC⊂平面ACD1,∴面ACD1⊥面BB1D;(2)易知,AB,AD,AA1两两垂直,以A为坐标原点,建立如图所示的空间直角坐标系,设AB=t,则A(0,0,0),B(t,0,0),B1(t,0,4),C(t,1,0),C1(t,1,4),D(0,4,0),D1(0,4,4),∴,∵AC⊥BD,∴,解得t=2(t=﹣2舍去),∴,设是平面ACD1的一个法向量,则,即,令x=1,可得,同理可得平面ACB1的一个法向量为,∴,∵二面角B1﹣AC﹣D1为锐二面角,∴二面角B1﹣AC﹣D1的余弦值为.7.【解答】解:过A作AE⊥CD于点E,则DE=1,以A为原点,AE、AB、AP所在的直线分别为x、y、z轴建立如图所示的空间直角坐标系,则A(0,0,0),B(0,1,0),E(,0,0),D(,﹣1,0),C(,1,0),P(0,0,1),∵N为PD的中点,∴N(,,).(1)=(,,),=(0,﹣1,1),=(,0,0).设平面PBC的法向量为=(x,y,z),则,令y=1,则x=0,z=1,∴=(0,1,1),∴•=+=0,即⊥,又AN⊄平面PBC,∴AN∥平面PBC.(2)由(1)知,=(0,0,1),=(,﹣1,0),设平面P AD的法向量为=(a,b,c),则,令a=1,则b=,c=0,∴=(1,,0),∴cos<,>===.故平面P AD与平面PBC所成锐二面角的余弦值为.(3)令=λ,λ∈[0,1],设M(x,y,z),∴(x﹣,y+1,z)=λ(,1,1),∴M(,λ﹣1,λ),∴=(,λ﹣2,λ).由(1)知,平面PBC的法向量为=(0,1,1),∵直线CM与平面PBC所成角的正弦值为,∴=||=,化简得21λ2﹣50λ+24=0,即(3λ﹣2)(7λ﹣12)=0,∵λ∈[0,1],∴λ=,故=.8.【解答】(1)证明:∵P A=AB,E为线段PB的中点,∴AE⊥PB,∵P A⊥底面ABCD,BC⊂平面ABCD,∴BC⊥P A,∵底面ABCD为正方形,∴BC⊥AB,P A∩AB=A,∴BC⊥平面P AB,∵AE⊂平面P AB,∴AE⊥BC.∵PB∩BC=B,∴AE⊥平面PBC,∵AE⊂平面AEF,∴平面AEF⊥平面PBC.(2)解:∵P A⊥底面ABCD,∴平面P AB⊥底面ABCD,∵平面P AB∩底面ABCD=AD,CD⊥AD,∴CD⊥平面P AB,∴CD⊥PD.∵,CD=AB=4∴PC=4,∵E为线段PB的中点,F为线段BC的中点,∴,点P到面AEF的距离等于点B到面AEF的距离,设为h.∵,,由(1)知AE⊥EF,∴S△AEF=2,S△ABF=4,V B﹣AEF=V E﹣ABF得即点P到面AEF的距离为.9.【解答】(1)证明:∵A1B1=A1C1=2,O为线段B1C1的中点,∴A1O⊥B1C1,∵直三棱柱ABC﹣A1B1C1中,∴CC1⊥平面A1B1C1,∴A1O⊥CC1,又CC1∩B1C1=C1,∴A1O⊥平面CBB1C1,∴QP⊥A1O.又∵QP⊥OP,A1O∩OP=O,∴QP⊥平面A1OP,又QP⊂平面A1OP,∴平面A1PQ⊥平面A1OP.(2)解:建立如图空间直角坐标系O﹣xyz,∵A1B1=A1C1=2,∠B1A1C1=∠BAC=120°,∴,OA1=1,则O(0,0,0),,,,A1(﹣1,0,0),设,,则,=(0,﹣b,a﹣2),=(0,,a).∵QP⊥OP,BO∥PQ,∴,,故,解得:,(P异于点C,C1),∴,,.设平面A1QP的法向量为,则,即,可取,设直线OP与平面A1QP所成角为θ,则.故直线OP与平面A1QP所成角的正弦值为.10.【解答】证明:(1)取BD的中点O,连结OA,OC,∵△ABD为正三角形,∴OA⊥BD.∵CB=CD,∴OC⊥BD.在平面ABCD内,过O点垂直于BD的直线有且只有一条,∴A,O,C三点共线,即AC⊥BD.∵P A⊥BD,AC,P A⊂平面P AC,AC∩P A=A,∴BD⊥平面P AC.∵BD⊂平面MBD,∴平面MBD⊥平面P AC.(2)(证法1)延长BC,AD,交于Q点,连结PQ,如图1;∵DM∥平面BPC,DM⊂平面P AQ,平面BPC∩平面P AQ=PQ,∴DM∥PQ.在△CBD中,∵CB=CD,∠BCD=120°,∴∠CBD=30°,∴∠ABC=30°+60°=90°,∴△ABO为直角三角形.∵在Rt△ABQ中,∠BAQ=60°,∴AQ=2AB=2AD,∴点D是AQ的中点,∴点M为线段P A的中点.(证法2)取AB的中点N,连结MN和DN,如图2;易算得∠ABC=90°,即AB⊥BC.∵△ABD为正三角形,∴DN⊥AB.又DN,BC,AB共面,∴DN∥CB.∵DN⊄平面BPC,CB⊂平面BPC,∴DN∥平面BPC.DM∥平面BPC,DN,DM⊂平面DMN,∴平面DMN∥平面BPC.∵MN⊂平面DMN,∴MN∥平面BPC.∵MN⊂平面P AB,平面P AB∩平面BPC=PB,∴MN∥PB.∵N是AB的中点,∴M为线段P A的中点.11.【解答】证明:(1)取BD的中点O,连接OP、OC,∵PD=PB,∴OP⊥BD,又CD=CB,∴OC⊥BD,∵OP∩OC=O,OP、OC⊂平面OPC,∴BD⊥平面OPC,∵PC⊂平面OPC,∴PC⊥BD;解:(2)∵BD=AB=1,∴AB=2,BD=1,而∠BAD=30°,由余弦定理可得:BD2=AD2+AB2﹣2AD•AB cos∠BAD,即,解得AD=,∴AD2+DB2=AB2,则AD⊥DB.取AB中点E,连接OE,则OE∥AD,∴OE⊥BD,可得OE⊂平面POC,连接PE,在平面PCE中,过O作OZ⊥CE,以O为坐标原点,分别以OB,OC,OZ所在直线为x,y,z轴建立空间直角坐标系.在△P AB中,由P A=,AB=2,PB=1,可得cos,在△P AE中,有PE==.在△POE中,有cos=.∴cos.则B(,0,0),D(﹣,0,0),P(0,,),A(,﹣,0).=(0,,),=(1,0,0),.设平面PDB的一个法向量为,由,取z=﹣1,得.设直线P A与平面PBD所成角为θ,则sinθ===.∴直线P A与平面PBD所成角的正弦值为.12.【解答】解:(1)性质:DE⊥平面ABD,证明如下:翻折前,DE⊥DA,DE⊥BC,翻折后满足,DE⊥DA,DE⊥BD且DA∩DB=D,则DE⊥平面ABD,(2)解:因为DA,DB,DE两两垂直,所以几何体E﹣ABD的外接球就是以DA,DB,DE相邻的棱的长方体的外接球,所以(2R)2=DA2+DB2+DE2=2+2+1=5,所以R=.故V==13.【解答】(1)证明:∵,∴,∵,∴AB2=AC2+BC2,∴AC⊥BC,∵平面P AC⊥平面ABC,平面P AC∩平面ABC=AC,∴BC⊥平面P AC,∴BC⊥P A.(2)解:∵E是PB的中点,∴点P,B到平面ACE的距离相等,设为d,,即,化简得S△ACE×d=1,由(1)可得BC⊥PC,∴,∵AB2=AP2+PB2,∴P A⊥PB,∴,∴,∴,∴,∴,∴点B到平面ACE的距离为.14.【解答】解:(Ⅰ)连接DE,由题意可知点E为B1C的中点,∵AB1∥平面BDC1,又平面AB1C∩平面BDC1=DE,AB1⊂平面AB1C,∴AB1∥DE,∵E为B1C的中点,∴D为AC的中点,∴.(Ⅱ)作DF⊥BC于F,则DF⊥平面B1BCC1,连接EF,则EF是ED在平面B1BCC1上的射影.∵AB1⊥BC1,由(Ⅰ)知AB1∥DE,∴DE⊥BC1,则BC1⊥EF,由已知AC=1,则,∵△ABC是正三角形,∴在Rt△DCF中,,取BC中点G,∵EB=EC,∴EG⊥BC.则在Rt△BEF中,EF2=BF•GF,又,∴,即.15.【解答】解:(Ⅰ)取B1C1中点D,连接DF,设AB=4,以F为坐标原点,的方向为x,y,z轴的正方向建立空间直角坐标系,,∴,设平面AEF的法向量为∵,∴,∴,∵,∴,∴直线B1F⊥平面AEF.(Ⅱ),设平面B1AE的法向量为∵,∴,不妨取y2=3,则x2=﹣5,z2=﹣4.∴,平面AEF的法向量为,设二面角B1﹣AE﹣F的平面角为θ,∴.16.【解答】(1)证明:取AB1中点H,连接DH.由题设条件易知:Rt△ACD与Rt△B1C1D全等,所以DA=DB1,DH⊥AB1,同理:Rt△A1C1D与Rt△BCD全等,所以DA1=DB1,DH⊥A1B,所以DH⊥平面ABB1A1⇒平面ADB1⊥平面ABB1A1.(2)解:AA1⊥平面A1B1C1⇒AB1与平面A1B1C1所成角即为∠AB1A1,∴,取A1C1中点O,连接OB1,则OB1⊥A1C1,以O为坐标原点,OB1方向为x轴,OC1方向为y轴,过O作平面A1B1C1的垂线为z轴建立如图所示空间直角坐标系,则:,设平面ADB1的法向量为,由得,易知为平面AA1C1C的法向量,设二面角B1﹣AD﹣C1的大小为θ,则,所以二面角B1﹣AD﹣C1的余弦值为.17.【解答】解:(1)证明:因为半圆弧所在平面与平面ABCD垂直,平面MAB∩平面ABCD=AB,由DA⊥AB,所以DA⊥平面MAB,又MB⊂平面MAB,则有DA⊥MB又AB为半圆弧所对的直径,所以MB⊥MA,而MA∩DA=A,所以MB⊥平面MAD.(2)法1(空间向量法):过M作AO⊥AB于O,因为平面MAB⊥平面ABCD,平面MAB∩平面ABCD=AB,所以MO⊥平面ABCD,∠MBO即MB与平面ABCD所成的角,由已知条件得∠MBA=45°,MA=MB,即O为AB中点.由∠BAD=∠ADC=90°,AB=AD=2DC,四边形AOCD为矩形,所以OC⊥AB以O为坐标原点,OB,OC,OM方向分别为x,y,z轴建立如图所示的空间直角坐标系,设AB=AD=2DC=2,所以C(0,2,0),D(﹣1,2,0),A(﹣1,0,0),M(0,0,1),B(1,0,0)由(1)知,MB⊥平面MAD,则平面MAD的一个法向量设平面MAC的法向量因为,由,得,取y=﹣1,则设二面角D﹣MA﹣C大小为θ,则所以,即二面角D﹣MA﹣C的正弦值为.法2(传统几何法):二面角D﹣MA﹣C的大小即为二面角B﹣MA﹣D的大小与二面角B ﹣MA﹣C大小的差,由(1)的证明可得,二面角B﹣MA﹣D的大小为90°,所以二面角D﹣MA﹣C的正弦值即为二面角B﹣MA﹣C的余弦值.由平面MAB⊥平面ABCD,平面MAB∩平面ABCD=AB,CO⊥AB,所以CO⊥平面MAB,又MA⊂平面MAB,则OC⊥MA,取MA中点H,连HC,由AB为半圆弧所对的直径,所以BM⊥MA,O,H分别为AB,MA的中点,所以OH∥BM,则OH⊥MA,又OH∩OC=O,所以MA⊥平面OHC则∠OHC即为二面角B﹣MA﹣C的平面角,设AB=AD=2DC=2,在Rt△COH中,,OC=2,所以,故二面角D﹣MA﹣C的正弦值为.18.【解答】(1)证明:由已知可得,PO1⊥平面A1B1C1D1,且四棱柱ABCD﹣A1B1C1D1的侧棱与底面垂直,故PO1∥BB1∥DD1,即P、B、O1、D四点共面.由四棱锥P﹣ABCD和四棱柱ABCD﹣A1B1C1D1的高相等,可知,在四边形PBO1D中,PO1与BD的交点O为PO1的中点,也是BD的中点.∴四边形PBO1D是平行四边形,故PB∥DO1,又PB⊄平面ADO1,O1D⊂ADO1,∴PB∥平面ADO1;(2)解:∵=,∵AB=BD=BB1=2,∴B1O1=1.连接PC1和AC交于点E,由△POE≌△C1CE,得OE=,则AE==.∴=.∴几何体P﹣AB1C1的体积为.19.【解答】证明:(1)∵棱柱ABCD﹣A1B1C1D1是直棱柱,∴BB1⊥底面ABCD,可得AC⊥BB1,又AC⊥BD,而BB1∩BD=B,∴直线AC⊥平面BDB1,而AC⊂面ACD1,∴面ACD1⊥面BB1D;解:(2)AB,AD,AA1两两垂直,如图所示,以A为坐标原点,AB,AD,AA1所在直线分别为x,y,z轴建立空间直角坐标系.设|AB|=t>0,A(0,0,0),B(t,0,0),C(t,1,0),D(0,4,0).又AC⊥BD,∴,即(t,1,0)•(﹣t,4,0)=﹣t2+4=0,得t=2.∴多面体ABC﹣A1B1C1D1的体积V===.20.【解答】(1)证明:连接DM,∵AB=BC=,∠ABC=90°,且M是AC的中点,∴BM⊥AC,BM=1,AC=2,∵∠ADC=90°,∠DCA=60°,M是AC得中点,∴DM=AC=1,又DB=,∴DM2+BM2=DB2,∴DM⊥BM,又DM∩AC=M,∴BM⊥平面ACD,∴BM⊥DC;(2)解:由(1)知,BM⊥平面ACD,又BM⊂平面ABC,∴平面ADC⊥平面ABC.在平面ADC内,过M作MZ⊥AC.以M为坐标原点,分别以MB、MC、MZ所在直线为x、y、z轴建立空间直角坐标系.则B(1,0,0),A(0,﹣1,0),D(0,,),C(0,1,0).,.设平面ABD的一个法向量为,由,取y=﹣1,得.假设线段DC上是否存在点Q,满足(0<λ≤1),使得直线BQ与平面ADB所成角的正弦值为,则=.由=|cos<>|==,整理得:15λ2+λ﹣2=0,解得(λ>0).∴,即|DQ|=.21.【解答】(Ⅰ)证明:连接DB1,连接D1B1交A1C1于点O,则D1O=OB1,∵D1E=ED,∴EO∥DB1,又SD∥BB1,SD=BB1,因此四边形SDB1B是平行四边形,∴SB∥DB1,故SB∥EO.又SB⊄平面EAC,EO⊂平面EA1C1,因此SB∥平面EA1C1.(Ⅱ)证明:四边形A1B1C1D1是正方形,∴A1C1⊥B1D1,又DD1⊥平面A1B1C1D1,A1C1⊂平面A1B1C1D1,A1C1⊥SD1,又SD1∩B1D1=D1,∴A1C1⊥平面SD1B1B,又EF⊂平面SD1B1B,因此A1C1⊥EF.(Ⅲ)解:设S到平面EA1C1的距离为d,==,即××3×2×2=××2××d,解得d=,∴S到平面EA1C1的距离为.22.【解答】(1)证明:如图,取AP的中点G,连接EG,BG,∵DE=PE,AG=PG,∴GE∥AD且AD=2GE.∵AD=2,∴GE=1.∵BC∥AD,BC=1,∴GE∥BC且GE=BC,∴四边形BCEG为平行四边形,∴CE∥BG.又∵BG⊂平面P AB,CE⊄平面P AB,∴CE∥平面P AB.(2)解:如图,过点A作AH⊥BP,垂足为H.∵AP⊥平面ABCD,BC⊂平面ABCD,∴AP⊥BC.∵BC⊥AB,AB∩AP=A,又AB,AP⊂平面P AB,∴BC⊥平面P AB.∵AH⊂平面P AB,∴AH⊥BC.∵AH⊥BP,BP∩BC=B,BP,BC⊂平面PBC,∴AH⊥平面PBC.在Rt△APB中,BP==,AH===.∵AD∥BC,BC⊂平面PBC,AD⊄平面PBC,∴AD∥平面PBC,∴点D到平面PBC的距离与点A到平面的距离相等,故点D到平面PBC的距离为.(注:也可利用V P﹣BCD=V D﹣PBC求解)23.【解答】(1)证明:连接O1C,O1D,因为C,D是半圆弧的两个三等分点,所以∠AO1D=∠DO1C=∠CO1B=60°,又O1A=O1B=O1C=O1D,所以△AO1D,△CO1D,△BO1C均为等边三角形,所以O1A=AD=DC=CO1,所以四边形ADCO1是平行四边形.所以CO1∥AD.因为EA,FC都是圆柱O1O2的母线,所以EA∥FC.又因为CO1、FC⊂平面FCO1,CO1∩FC=C,AD、EA⊂平面ADE,AD∩EA=A,所以平面FCO1∥平面ADE,又FO1⊂平面FCO1,所以FO1∥平面ADE.(2)解:连接AC,因为FC是圆柱O1O2的母线,所以FC⊥平面ACB,所以∠F AC为直线AF与平面ACB 所成的角,即∠F AC=30°.因为AB为圆O1的直径,所以∠ACB=90°,在Rt△ABC中,∠ABC=60°,BC=1,所以,所以在Rt△F AC中,FC=AC•tan30°=1.因为AC⊥BC,AC⊥FC,BC∩FC=C,BC、FC⊂平面FBC,所以AC⊥平面FBC,又FB⊂平面FBC,所以AC⊥FB.在△FBC内,作CH⊥FB于点H,连接AH.因为AC∩CH=C,AC、CH⊂平面ACH,所以FB⊥平面ACH,又AH⊂平面ACH,所以FB⊥AH,所以∠AHC是二面角A﹣FB﹣C的平面角.在Rt△FBC中,CH===,在Rt△ACH中,,所以,故二面角A﹣FB﹣C的余弦值为.24.【解答】(1)证明:由已知得,平面ABCD⊥平面ABEF,在矩形ABCD中,CB⊥AB,又平面ABCD∩平面ABEF=AB,CB⊂平面ABCD,∴CB⊥平面ABEF.∵AF⊂平面ABEF,∴CB⊥AF.又AB为圆O的直径,∴AF⊥BF.∵CB∩BF=B,CB⊂平面CBF,BF⊂平面CBF,∴AF⊥平面CBF.而AF⊂平面DAF,∴平面ADF⊥平面BCF;(2)解:过点F作FH⊥AB,垂足为H,∵平面ABCD⊥平面ABEF,且平面ABCD∩平面ABEF=AB,∴FH⊥平面ABCD,∴V1=V F﹣BCE=V C﹣BEF=.=.∴V1:V2=1:4.25.【解答】(Ⅰ)证明:由题意得OA⊥OB,OA⊥OC,∵OB∩OC=O,∴OA⊥平面COB,∵OM⊂平面COB,∴OA⊥OM;(Ⅱ)解:由已知得,.在△MOB中,由OB=2,MB=,∠OBM=30°,利用余弦定理得OM==,∴OM2+OB2==MB2,得OM⊥OB,由(Ⅰ)知OM⊥OA,且OA∩OB=O,∴MO⊥平面AOB.∵D是线段AB的中点,∴V D﹣OMB=V M﹣DOB=,∴四棱锥O﹣ACMD的体积为:V O﹣ACMD=V A﹣BOC﹣V D﹣OBM=.26.【解答】(Ⅰ)证明:连接DB1,连接D1B1交A1C1于O,则D1O=OB1.∵D1E=ED,∴EO∥DB1,又SD∥BB1,SD=BB1,∴四边形SDB1B是平行四边形,得SB∥DB1,故SB∥EO.∵SB⊄平面EA1C1,EO⊂平面EA1C1,∴SB∥平面EA1C1;(Ⅱ)解:以D1为坐标原点,分别以D1A1、D1C1、D1D所在直线为x、y、z轴建立空间直角坐标系.则A1(2,0,0),C1(0,2,0),E(0,0,1),F(,,).,,.设平面EA1C1的一个法向量为,由,取x=1,得.设直线EF与平面EA1C1所成角为θ.则sinθ=|cos<>|====.∴直线EF与平面EA1C1所成角的正弦值为.27.【解答】解:(1)假设存在O∈AC,使C1O∥平面AB1D1,设A1C1∩B1D1=O1.连结AO1,则平面A1ACC1∩平面AB1D1=AO1,∵C1O⊂平面A1ACC1,∴AO1∥C1O,∵O1为A1C1的中点,∴O必为AC的中点,故存在O为AC的中点,使C1O∥平面AB1D1,且.(2)∵ABCD﹣A1B1C1D1为正方体,∴AA1⊥平面A1B1C1D1,∵D1O1⊂平面A1B1C1D1,∴AA1⊥D1O1.又D1O1⊥A1C1,A1C1∩AA1=A1,A1C1、AA1⊂面A1ACC1,∴D1O1⊥平面A1ACC1,D1O1⊥AO1,∴∠D1AO1为直线D1A与平面A1ACC1所成的角.∵D1O1⊥AO1,且,∴∠D1AO1=30°.故直线D1A与平面A1ACC1所成的角为30°.28.【解答】(1)证明:如图1,取PC中点F,连接EF,BF,在△PDC中,E,F分别为PD,PC的中点,∴EF∥DC,,∵AB∥DC,,∴EF∥AB,EF=AB,∴四边形AEFB为平行四边形,∴AE∥BF,又AE⊄平面PBC,BF⊂平面PBC,∴AE∥平面PBC.(2)解:取AB中点O,CD中点Q,连接OP,OQ,∵△P AB为正三角形,∴OP⊥AB,在四边形ABCD中,AB∥DC,AB≠DC,AD=BC,∴四边形ABCD为等腰梯形,O,Q分别为AB,DC的中点,∴OQ⊥AB,∵平面P AB⊥底面ABCD,且平面P AB∩底面ABCD=AB,OP⊥AB,∴OP⊥底面ABCD,∴以点O为原点,以向量,,的方向为x,y,z轴正方向,建立空间直角坐标系O﹣xyz,如图2,设AB=2,在等腰梯形ABCD中,AD=2,DC=4,,在等边三角形△P AB中,,∴A(0,﹣1,0),B(0,1,0),,,∵E为PD中点,∴,∴,,.设平面BAE的法向量为,则,即,取z1=﹣1,得,设平面P AE的法向量为,则,即,取z2=﹣1,得,设二面角B﹣AE﹣P为θ,有,∴,∴二面角B﹣AE﹣P的正弦值为.29.【解答】解:(1)证明:∵PD⊥底面ABCD,BC⊂底面ABCD,∴BC⊥PD,∵底面ABCD为平行四边形,AB=2AD=4,PD=BD=AD,∴BD2+BC2=CD2,∴BC⊥BD,∵PD∩BD=D,∴BC⊥平面PBD.(2)解:以D为原点,DA为x轴,DB为y轴,DP为z轴,建立空间直角坐标系,则A(2,0,0),P(0,0,2),B(0,2,0),C(﹣2,2,0),Q(﹣1,,),=(2,0,﹣2),=(0,2,﹣2),=(﹣1,,﹣),设平面PBQ的法向量=(x,y,z),则,取y=1,得=(0,1,1),cos<>===,sin<>==,S△PBQ==,点A到平面PBQ的距离d===,∴三棱锥A﹣PBQ的体积V A﹣PBQ===2.30.【解答】(Ⅰ)证明:过D作DO⊥AE,垂足为O,连接OB,∵AD=2,∠DAO=45°,∴OD=OA=,在△AOB中,由余弦定理可得OB2=OA2+AB2﹣2OA•AB•cos∠OAB=2+4﹣2××2×=2,∴OB=,∵AB=AD=2,∠DAB=60°,∴△ABD是等边三角形,∴BD=2.∴OD2+OB2=BD2,则OB⊥OD,又OD⊥AE,AE∩OB=O,∴OD⊥平面ABE,而OD⊂平面ADE,∴平面ADE⊥平面ABE;(Ⅱ)由(Ⅰ)知AO=OB=,AB=2,∴OA2+OB2=AB2,得OA⊥OB,∵OD⊥平面ABE,∴∠DEO为直线ED与平面ABE所成的角.以O为原点,以OB,OE,OD为坐标轴建立空间直角坐标系O﹣xyz,则A(0,﹣,0),B(,0,0),D(0,0,),设E(0,t,0)(t>0),∴=(,,0),=(0,t,﹣),设平面CDE的法向量为=(x,y,z),则,令y=1,得,∵OD⊥平面ABE,∴=(0,0,1)为平面ABE的一个法向量,由平面DCE与平面ABE所成锐二面角的余弦值,得|cos<>|===,解得t=.∴tan∠DEO=,得∠DEO=30°.故直线DE与平面ABE所成角正弦值为.31.【解答】(Ⅰ)证明:取BC的中点F,连接EF、AF,因为E、F是PB,BC的中点,所以EF∥PC且=1,又因为△ACB和△DAC是等腰三角形,AB=,所以AD=AC=BC=1,又因为DA∥PC,所以四边形ADEF是平行四边形,故DE∥AF,又因为AF⊂面ABC,DE⊄平面ABC,所以DE∥平面ABC.(Ⅱ)解:因为AC⊥BC,AC⊥PC,所以AC⊥面PBC,又因为DA∥PC,所以D到面PBC高等于|AC|,又因为S△BCE=,所以.32.【解答】解:(Ⅰ)当B1C为圆柱OO1的母线时,BC⊥AB1.证明如下:在上取点C,使B1C为圆柱的母线,连接AC,则B1C⊥BC,∵AB为圆O的直径,∴BC⊥AC,∵B1C∩AC=C,B1C⊂平面AB1C,AC⊂平面AB1C,∴BC⊥平面AB1C,∵AB1⊂平面AB1C,∴BC⊥AB1.(Ⅱ)由弧,的长为可得,AC=A1C1=1,∴,所以,∵BC==,BB1==,BO1==,∴cos∠BO1B1==﹣,∴sin∠BO1B1=,∴S==,设A1到平面BO1B1的距离为h,则V==,解得h=.∴A1到平面BO1B1的距离是.33.【解答】(1)证明:取PB的中点G,连接EG,FG,则FG∥BC,且FG=BC,∵四边形ABCD是正方形,E是AD的中点,∴DE∥BC,DE=BC,∴FG∥DE且FG=DE,∴四边形DEGF为平行四边形,∴DF∥EG,又DF⊄平面PBE,EG⊂平面PBE,∴DF∥平面PBE.(2)解:∵BD=DC=2,PD=2,∴PB==2,又AE=DE=1,AB=PD=2,∴BE=PE=,∴△PBE的边PB上的高为h==,∴S△PBE==,设D到平面PBE的距离为d,则V D﹣PBE==.又V D﹣PBE=V P﹣BDE==.∴d=.设PD与平面PBE所成角为α,则sinα==.故直线PD与平面PBE所成角的正弦值为.34.【解答】(1)证明:∵AC⊥BD,BC=CD,∴Rt△OBC≌Rt△ODC,∴OB=OD,即O为BD的中点,又Q是PD的中点,∴OQ∥PB,又PB⊂平面P AB,OQ⊄平面P AB,∴OQ∥平面P AB.(2)解:∵M是PC的中点,P A⊥平面ABCD,∴M到平面ABCD的距离为P A=,∵AB⊥BC,AB=1,AC=2,∴BC=,OB==,∴BD=2OB=,OA=,∴V M﹣ABD==,∵PB==,BC=,PC==,∴PB2+BC2=PC2,∴PB⊥BC,∴BM=PC=.同理可得DM=,又BD=,∴cos∠BMD==﹣,∴sin∠BMD=,∴S△BMD==.设A到平面BMD的距离为h,则V A﹣BMD==,解得h=.故点A到平面MBD的距离为.35.【解答】(1)证明:取BC的中点F,连接EF、AF,因为E、F分别是PB、BC的中点,所以EF∥PC且.因为AC⊥BC,△ACB和△DAC是等腰三角形,,所以DA=AC=BC=2,即DA=PC,又因为DA∥PC,所以DA∥EF,DA=EF,所以四边形ADEF是平行四边形,所以DE ∥AF因为AF⊂面ABC,DE⊄面ABC,所以DE∥平面ABC.(2)解:因为AC⊥BC,AC⊥PC,BC∩PC=C,BC、PC⊂面PBC,所以AC⊥面PBC,因为DA∥PC,所以点D到面PBC的距离为AC=2.因为DA⊥平面ABC,DA∥PC,所以PC⊥平面ABC,所以PC⊥BC,所以EF⊥BC,所以S△BCE=EF•BC=××4×2=2.因为PC⊥BC,AC⊥BC,PC∩AC=C,PC、AC⊂平面ACD,所以BC⊥平面ACD,所以BC⊥CD,所以S△BCD=BC•CD=2×=.设点E到平面BCD的距离为d,∵V E﹣BCD=V D﹣BCE,∴d•S△BCD=AC•S△BCE,即d•=2•2,解得d=,所以点E到平面BCD的距离,∵DE=AF===,设DE与平面BCD所成角为θ,则,故DE与平面BCD所成角的正弦值为.36.【解答】(1)证明:连接DM,∵AB=BC=,∠ABC=90°,且M是AC的中点,∴BM⊥AC,BM=1,AC=2,∵∠ADC=90°,∠DCA=60°,M是AC得中点,∴DM=AC=1,又DB=,∴DM2+BM2=DB2,∴DM⊥BM,又DM∩AC=M,∴BM⊥平面ACD,∴BM⊥DC.(2)解:∵AD=,AB=BD=,∴cos∠ABD==,sin∠ABD=,∴S△ABD==,设M到平面ABD的距离为h,则V M﹣ABD==h,又V M﹣ABD=V B﹣ADM=S△ADM•BM=•S△ACD•BM=××1×1=.∴h=,解得h=.设BM与平面ADB所成角为α,则sinα==,故BM与平面ADB所成角的正弦值为.37.【解答】(1)证明:设AC∩BE=O,则O为AC的中点,∵P A=PC,∴PO⊥AC.由正六边形的性质可知,AC⊥BE.∵PO∩BE=O,PO、BE⊂平面PBE,∴AC⊥平面PBE,∵AC⊂平面P AC,∴平面P AC⊥平面PBE.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020高考真题分类汇编:立体几何一、选择题1.【2020高考真题新课标理7】如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( )()A 6 ()B 9 ()C 12 ()D 18【答案】B2.【2020高考真题浙江理10】已知矩形ABCD ,AB=1,BC=2。

将△沿矩形的对角线BD 所在的直线进行翻折,在翻折过程中。

A.存在某个位置,使得直线AC 与直线BD 垂直.B.存在某个位置,使得直线AB 与直线CD 垂直.C.存在某个位置,使得直线AD 与直线BC 垂直.D.对任意位置,三对直线“AC 与BD ”,“AB 与CD ”,“AD 与BC ”均不垂直 【答案】C3.【2020高考真题新课标理11】已知三棱锥S ABC -的所有顶点都在球O 的求面上,ABC ∆是边长为1的正三角形,SC 为球O 的直径,且2SC =;则此棱锥的体积为( )()A 26 ()B 3()C 23 ()D 22【答案】A4.【2020高考真题四川理6】下列命题正确的是( )A 、若两条直线和同一个平面所成的角相等,则这两条直线平行B 、若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C 、若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D 、若两个平面都垂直于第三个平面,则这两个平面平行【答案】C5.【2020高考真题四川理10】如图,半径为R 的半球O 的底面圆O 在平面α内,过点O 作平面α的垂线交半球面于点A ,过圆O 的直径CD 作平面α成45o角的平面与半球面相交,所得交线上到平面α的距离最大的点为B ,该交线上的一点P 满足60BOP ∠=o ,则A 、P两点间的球面距离为( )αCAODBPA 、2arccos 4R B、4R π C 、3arccos 3R D 、3R π 【答案】A6.【2020高考真题陕西理5】如图,在空间直角坐标系中有直三棱柱111ABC A B C -,12CA CC CB ==,则直线1BC 与直线1AB 夹角的余弦值为( )A.55 B.53 C. 255D. 35【答案】A.7.【2020高考真题湖南理3】某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能是【答案】D8.【2020高考真题湖北理4】已知某几何体的三视图如图所示,则该几何体的体积为A.8π3B.3πC.10π3D.6π【答案】B9.【2020高考真题广东理6】某几何体的三视图如图所示,它的体积为A.12π B.45π C.57π D.81π【答案】C10.【2020高考真题福建理4】一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是A.球B.三棱柱C.正方形D.圆柱【答案】D.11.【2020高考真题重庆理9】设四面体的六条棱的长分别为1,1,1,12和a,且长为a2的棱异面,则a的取值范围是(A )(0,2) (B)(0,3) (C )(1,2) (D )(1,3)【答案】A12.【2020高考真题北京理7】某三棱锥的三视图如图所示,该三梭锥的表面积是( )A. 28+65B. 30+65C. 56+ 125D. 60+125【答案】B13.【2020高考真题全国卷理4】已知正四棱柱ABCD- A 1B 1C 1D 1中 ,AB=2,CC 1=22 E 为CC 1的中点,则直线AC 1与平面BED 的距离为 A 2 B 3 C 2 D 1 【答案】D二、填空题14.【2020高考真题浙江理11】已知某三棱锥的三视图(单位:cm )如图所示,则该三棱锥的体积等于________cm 3.【答案】115.【2020高考真题四川理14】如图,在正方体1111ABCD A B C D -中,M 、N 分别是CD 、1CC 的中点,则异面直线1A M 与DN 所成角的大小是____________。

N MB 1A 1C 1D 1BDC【答案】2π 【命题立意】本题主要考查空间中直线与直线,直线与平面的位置关系,以及异面直线所成角的求法.16.【2020高考真题辽宁理13】一个几何体的三视图如图所示,则该几何体的表面积为______________。

【答案】38【点评】本题主要考查几何体的三视图、柱体的表面积公式,考查空间想象能力、运算求解能力,属于容易题。

本题解决的关键是根据三视图还原出几何体,确定几何体的形状,然后再根据几何体的形状计算出表面积。

17.【2020高考真题山东理14】如图,正方体1111ABCD A B C D -的棱长为1,,E F 分别为线段11,AA B C上的点,则三棱锥1D EDF-的体积为____________.【答案】61 18.【2020高考真题辽宁理16】已知正三棱锥P -ABC ,点P ,A ,B ,C 3上,若PA ,PB ,PC 两两互相垂直,则球心到截面ABC 的距离为________。

3 【点评】本题主要考查组合体的位置关系、抽象概括能力、空间想象能力、运算求解能力以及转化思想,该题灵活性较强,难度较大。

该题若直接利用三棱锥来考虑不宜入手,注意到条件中的垂直关系,把三棱19.【2020高考真题上海理8】若一个圆锥的侧面展开图是面积为π2的半圆面,则该圆锥的体积为 。

【答案】π33 20.【2020高考真题上海理14】如图,AD 与BC 是四面体ABCD 中互相垂直的棱,2=BC ,若c AD 2=,且a CD AC BD AB 2=+=+,其中a 、c 为常数,则四面体ABCD 的体积的最大值是 。

【答案】13222--c a c 。

21.【2020高考江苏7】(5分)如图,在长方体1111ABCD A B C D -中,3cm AB AD ==,12cm AA =,则四棱锥11A BB D D -的体积为 ▲ cm 3.【答案】6。

22.【2020高考真题安徽理12】某几何体的三视图如图所示,该几何体的表面积是_____.【答案】92【命题立意】本题考查空间几何体的三视图以及表面积的求法。

23.【2020高考真题天津理10】一个几何体的三视图如图所示(单位:m ),则该几何体的体积为_________m3.31363223【答案】π918+24.【2020高考真题全国卷理16】三菱柱ABC-A1B1C1中,底面边长和侧棱长都相等,BAA1=CAA1=60°则异面直线AB1与BC1所成角的余弦值为____________.【答案】36三、解答题25.【2020高考真题广东理18】(本小题满分13分)如图5所示,在四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,点 E在线段PC上,PC⊥平面BDE.(1)证明:BD⊥平面PAC;(2)若PH=1,AD=2,求二面角B-PC-A的正切值;【答案】本题考查空间直线与平面的位置关系,考查直线与平面垂直的证明、二面角的求解等问题,考查了学生的空间想象能力以及推理论证能力.26.【2020高考真题辽宁理18】(本小题满分12分) 如图,直三棱柱///ABC A B C -,90BAC ∠=o ,/,AB AC AA λ==点M ,N 分别为/A B 和//B C 的中点。

(Ⅰ)证明:MN ∥平面//A ACC ;(Ⅱ)若二面角/A MN C --为直二面角,求λ的值。

【答案】【点评】本题以三棱柱为载体主要考查空间中的线面平行的判定,借助空间直角坐标系求平面的法向量的方法,并利用法向量判定平面的垂直关系,考查空间想象能力、推理论证能力、运算求解能力,难度适中。

第一小题可以通过线线平行来证明线面平行,也可通过面面平行来证明。

27.【2020高考真题湖北理19】(本小题满分12分)如图1,45ACB ∠=o ,3BC =,过动点A 作AD BC ⊥,垂足D 在线段BC 上且异于点B ,连接AB ,沿AD 将△ABD 折起,使90BDC ∠=o (如图2所示). (Ⅰ)当BD 的长为多少时,三棱锥A BCD -的体积最大;(Ⅱ)当三棱锥A BCD -的体积最大时,设点E ,M 分别为棱BC ,AC 的中点,试在 棱CD 上确定一点N ,使得EN ⊥BM ,并求EN 与平面BMN 所成角的大小.第19题图【答案】(Ⅰ)解法1:在如图1所示的△ABC 中,设(03)BD x x =<<,则3CD x =-.由AD BC ⊥,45ACB ∠=o 知,△ADC 为等腰直角三角形,所以3AD CD x ==-.由折起前AD BC ⊥知,折起后(如图2),AD DC ⊥,AD BD ⊥,且BD DC D =I ,所以AD ⊥平面BCD .又90BDC ∠=o ,所以11(3)22BCD S BD CD x x ∆=⋅=-.于是1111(3)(3)2(3)(3)33212A BCD BCD V AD S x x x x x x -∆=⋅=-⋅-=⋅--312(3)(3)21233x x x +-+-⎡⎤≤=⎢⎥⎣⎦, 当且仅当23x x =-,即1x =时,等号成立,故当1x =,即1BD =时, 三棱锥A BCD -的体积最大. 解法2:同解法1,得321111(3)(3)(69)3326A BCD BCD V AD S x x x x x x -∆=⋅=-⋅-=-+.令321()(69)6f x x x x =-+,由1()(1)(3)02f x x x '=--=,且03x <<,解得1x =.当(0,1)x ∈时,()0f x '>;当(1,3)x ∈时,()0f x '<. 所以当1x =时,()f x 取得最大值.故当1BD =时, 三棱锥A BCD -的体积最大. (Ⅱ)解法1:以D 为原点,建立如图a 所示的空间直角坐标系D xyz -.由(Ⅰ)知,当三棱锥A BCD -的体积最大时,1BD =,2AD CD ==.于是可得(0,0,0)D ,(1,0,0)B ,(0,2,0)C ,(0,0,2)A ,(0,1,1)M ,1(,1,0)2E ,且(1,1,1)BM =-u u u u r.DABCACDB图2图1M E. ·设(0,,0)N λ,则1(,1,0)2EN λ=--u u u r . 因为EN BM ⊥等价于0EN BM ⋅=u u u r u u u u r ,即11(,1,0)(1,1,1)1022λλ--⋅-=+-=,故12λ=,1(0,,0)2N .所以当12DN =(即N 是CD 的靠近点D 的一个四等分点)时,EN BM ⊥.设平面BMN 的一个法向量为(,,)x y z =n ,由,,BN BM ⎧⊥⎪⎨⊥⎪⎩u u u ru u u u r n n 及1(1,,0)2BN =-u u u r ,得2,.y x z x =⎧⎨=-⎩可取(1,2,1)=-n .设EN 与平面BMN 所成角的大小为θ,则由11(,,0)22EN =--u u u r ,(1,2,1)=-n ,可得1|1|sin cos(90)||||EN EN θθ--⋅=-===⋅o u u u r u u u r n n 60θ=o .故EN 与平面BMN 所成角的大小为60.o解法2:由(Ⅰ)知,当三棱锥A BCD -的体积最大时,1BD =,2AD CD ==. 如图b ,取CD 的中点F ,连结MF ,BF ,EF ,则MF ∥AD . 由(Ⅰ)知AD ⊥平面BCD ,所以MF ⊥平面BCD .如图c ,延长FE 至P 点使得FP DB =,连BP ,DP ,则四边形DBPF 为正方形, 所以DP BF ⊥. 取DF 的中点N ,连结EN ,又E 为FP 的中点,则EN ∥DP , 所以EN BF ⊥. 因为MF ⊥平面BCD ,又EN ⊂面BCD ,所以MF EN ⊥. 又MF BF F =I ,所以EN ⊥面BMF . 又BM ⊂面BMF ,所以EN BM ⊥. 因为EN BM ⊥当且仅当EN BF ⊥,而点F 是唯一的,所以点N 是唯一的.即当12DN =(即N 是CD 的靠近点D 的一个四等分点),EN BM ⊥.图a图bC AD BE FMN图cBD PCF NEGMN H图d第19题解答图连接MN ,ME ,由计算得5NB NM EB EM ====, 所以△NMB 与△EMB 是两个共底边的全等的等腰三角形, 如图d 所示,取BM 的中点G ,连接EG ,NG ,则BM ⊥平面EGN .在平面EGN 中,过点E 作EH GN ⊥于H , 则EH ⊥平面BMN .故ENH ∠是EN 与平面BMN 所成的角.在△EGN 中,易得2EG GN NE ===,所以△EGN 是正三角形, 故60ENH ∠=o ,即EN 与平面BMN 所成角的大小为60.o 28.【2020高考真题新课标理19】(本小题满分12分) 如图,直三棱柱111ABC A B C -中,112AC BC AA ==, D 是棱1AA 的中点,BDDC ⊥1(1)证明:BC DC ⊥1(2)求二面角11C BD A --的大小. 【答案】(1)在Rt DAC ∆中,AD AC = 得:45ADC ︒∠=同理:1114590A DC CDC ︒︒∠=⇒∠=得:111,DC DC DC BD DC ⊥⊥⇒⊥面1BCD DC BC ⇒⊥ (2)11,DC BC CC BC BC ⊥⊥⇒⊥面11ACC A BC AC ⇒⊥取11A B 的中点O ,过点O 作OH BD ⊥于点H ,连接11,C O C H 1111111AC B C C O A B =⇒⊥,面111A B C ⊥面1A BD 1C O ⇒⊥面1A BD 1OH BD C H BD ⊥⇒⊥ 得:点H 与点D 重合且1C DO ∠是二面角11C BD A --的平面角 设AC a =,则12a C O =,1112230C D a C O C DO ︒==⇒∠= 既二面角11C BD A --的大小为30︒29.【2020高考江苏16】(14分)如图,在直三棱柱111ABC A B C -中,1111A B AC =,D E ,分别是棱1BC CC ,上的点(点D 不同于点C ),且AD DE F ⊥,为11B C 的中点. 求证:(1)平面ADE ⊥平面11BCC B ; (2)直线1//A F 平面ADE .【答案】证明:(1)∵111ABC A B C -是直三棱柱,∴1CC ⊥平面ABC 。

相关文档
最新文档