上海市2017年华二附中高一下学期数学期末试卷及答案

合集下载

0217-华二附中高一月考(2017.5)

0217-华二附中高一月考(2017.5)

问是否存在正整数 m, r
使
lim
n
c1

c2

cn


S

4 61

S

1 13
成立?若存在,求正
整数 m, r 的值;不存在,说明理由.
18. 现有正整数构成的数表如下: 第一行: 1 第二行: 1 2 第三行: 1 1 2 3 第四行: 1 1 2 1 1 2 3 4 第五行: 1 1 2 1 1 2 3 1 1 2 1 1 2 3 4 5 ……
(1)用 tk 表示数表第 k 行的数的个数,求数列tk 的前 k 项和Tk ;
(2)第 8 行中的数是否超过 73 个?若是,用 an0 表示第 8 行中的第 73 个数,试求 n0 和 an0 的值;若不是,请说明理由; (3)令 Sn a1 a2 a3 an ,求 S2017 的值.
10 题解析:由已知 QnRn 越来越小,而 OQn 2 ORn 2 0 ,当 n 无限增大时,Qn 与
Rn
无限接近,即 lim n
OQn

lim
n
ORn

2
,所以
lim
n
OPn

2
,从而 lim n
Q0 Pn

3.
二. 选择题 11. B
12. B
13. D
要条件是( )
A. 存在整数 m 1使 a1 md
B. an 0
C. a1 为整数, d 1
D. a1 a2 1, an2 an1 an
三. 简答题
15.
计算 lim an3 bn1 n an2 bn

2016-2017年上海市华师大二附中高一(下)期中数学试卷和答案

2016-2017年上海市华师大二附中高一(下)期中数学试卷和答案

2016-2017学年上海市华师大二附中高一(下)期中数学试卷一.填空题1.(3分)弧度数为3的角的终边落在第象限.2.(3分)=.3.(3分)若函数f(x)=asinx+3cosx的最大值为5,则常数a=.4.(3分)已知{a n}为等差数列,S n为其前n项和,若a1=8,a4+a6=0,则S8=.5.(3分)在△ABC中,,,则=.6.(3分)函数的图象可由函数的图象至少向右平移个单位长度得到.7.(3分)方程3sinx=1+cos2x的解集为.8.(3分)已知θ是第四象限角,且sin(θ+)=,则tan(θ﹣)=.9.(3分)无穷数列{a n}由k个不同的数组成,S n为{a n}的前n项和,若对任意n∈N*,S n∈{2,3},则k的最大值为.10.(3分)在锐角△ABC中,若sinA=3sinBsinC,则tanAtanBtanC的最小值是.二.选择题11.(3分)已知,,,则β=()A.B.C.D.12.(3分)函数y=Asin(ωx+φ)的部分图象如图所示,则()A.y=2sin(2x﹣)B.y=2sin(2x﹣)C.y=2sin(x+)D.y=2sin(x+)13.(3分)“sinα<0”是“α为第三、四象限角”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件14.(3分)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤),x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,且f(x)在(,)上单调,则ω的最大值为()A.11B.9C.7D.5三.简答题15.在△ABC中,a2+c2=b2+ac.(1)求∠B 的大小;(2)求cosA+cosC的最大值.16.已知{a n}是等比数列,前n项和为S n(n∈N*),且﹣=,S6=63.(1)求{a n}的通项公式;(2)若对任意的n∈N*,b n是log2a n和log2a n+1的等差中项,求数列{(﹣1)n b}的前2n项和.17.已知函数;(1)求f(x)的定义域与最小正周期;(2)求f(x)在区间上的单调性与最值.18.已知方程;(1)若,求的值;(2)若方程有实数解,求实数a的取值范围;(3)若方程在区间[5,15]上有两个相异的解α、β,求α+β的最大值.2016-2017学年上海市华师大二附中高一(下)期中数学试卷参考答案与试题解析一.填空题1.(3分)弧度数为3的角的终边落在第二象限.【解答】解:因为<3<π,所以3弧度的角终边在第二象限.故答案为:二2.(3分)=﹣.【解答】解:=cos=﹣cos=﹣,故答案为:.3.(3分)若函数f(x)=asinx+3cosx的最大值为5,则常数a=±4.【解答】解:函数f(x)=asinx+3cosx=sin(x+θ),其中tanθ=.∵sin(x+θ)的最大值为1.∴函数f(x)的最大值为,即=5可得:a=±4.故答案为:±4.4.(3分)已知{a n}为等差数列,S n为其前n项和,若a1=8,a4+a6=0,则S8=8.【解答】解:设等差数列{a n}的公差为d,∵a1=8,a4+a6=0,∴2×8+8d=0,解得d=﹣2.则S8=8×8﹣2×=8.故答案为:8.5.(3分)在△ABC中,,,则=.【解答】解:∵,,∴由正弦定理,可得:=,解得:sinC=,C为锐角,可得C=,∴由A+B+C=π,可得:B=,∴===.故答案为:.6.(3分)函数的图象可由函数的图象至少向右平移个单位长度得到.【解答】解:∵y=f(x)=sinx+cosx=2sin(x+),y=sinx﹣cosx=2sin(x﹣),∴f(x﹣φ)=2sin(x+﹣φ)(φ>0),令2sin(x+﹣φ)=2sin(x﹣),则﹣φ=2kπ﹣(k∈Z),即φ=﹣2kπ(k∈Z),当k=0时,正数φmin=,故答案为:.7.(3分)方程3sinx=1+cos2x的解集为.【解答】解:方程3sinx=1+cos2x,即3sinx=1+1﹣2sin2x,即2sin2x+3sinx﹣2=0,求得sinx=﹣2(舍去),或sinx=,∴x∈,故答案为:.8.(3分)已知θ是第四象限角,且sin(θ+)=,则tan(θ﹣)=.【解答】解:∵θ是第四象限角,∴,则,又sin(θ+)=,∴cos(θ+)=.∴cos()=sin(θ+)=,sin()=cos(θ+)=.则tan(θ﹣)=﹣tan()=﹣=.故答案为:﹣.9.(3分)无穷数列{a n}由k个不同的数组成,S n为{a n}的前n项和,若对任意n∈N*,S n∈{2,3},则k的最大值为4.【解答】解:对任意n∈N*,S n∈{2,3},可得当n=1时,a1=S1=2或3;若n=2,由S2∈{2,3},可得数列的前两项为2,0;或2,1;或3,0;或3,﹣1;若n=3,由S3∈{2,3},可得数列的前三项为2,0,0;或2,0,1;或2,1,0;或2,1,﹣1;或3,0,0;或3,0,﹣1;或3,1,0;或3,1,﹣1;若n=4,由S3∈{2,3},可得数列的前四项为2,0,0,0;或2,0,0,1;或2,0,1,0;或2,0,1,﹣1;或2,1,0,0;或2,1,0,﹣1;或2,1,﹣1,0;或2,1,﹣1,1;或3,0,0,0;或3,0,0,﹣1;或3,0,﹣1,0;或3,0,﹣1,1;或3,﹣1,0,0;或3,﹣1,0,1;或3,﹣1,1,0;或3,﹣1,1,﹣1;…即有n>4后一项都为0或1或﹣1,则k的最大个数为4,不同的四个数均为2,0,1,﹣1.故答案为:4.10.(3分)在锐角△ABC中,若sinA=3sinBsinC,则tanAtanBtanC的最小值是12.【解答】解:由sinA=sin(π﹣A)=sin(B+C)=sinBcosC+cosBsinC,sinA=3sinBsinC,可得sinBcosC+cosBsinC=3sinBsinC,①由三角形ABC为锐角三角形,则cosB>0,cosC>0,在①式两侧同时除以cosBcosC可得tanB+tanC=3tanBtanC,又tanA=﹣tan(π﹣A)=﹣tan(B+C)=﹣②,则tanAtanBtanC=﹣•tanBtanC,由tanB+tanC=3tanBtanC,可得tanAtanBtanC=﹣,令tanBtanC=t,由A,B,C为锐角可得tanA>0,tanB>0,tanC>0,由②式得1﹣tanBtanC<0,解得t>1,tanAtanBtanC=﹣=﹣,﹣=(﹣)2﹣,由t>1得,﹣≤﹣<0,因此tanAtanBtanC的最小值为12.故答案为:12.二.选择题11.(3分)已知,,,则β=()A.B.C.D.【解答】解:∵,,∴α﹣β∈(﹣,),cos(α﹣β)==,又∵,可得:cos=,∴sinβ=﹣sin[(α﹣β)﹣α]=﹣sin(α﹣β)cosα+cos(α﹣β)sinα=﹣(﹣)×+=,∴.故选:C.12.(3分)函数y=Asin(ωx+φ)的部分图象如图所示,则()A.y=2sin(2x﹣)B.y=2sin(2x﹣)C.y=2sin(x+)D.y=2sin(x+)【解答】解:由图可得:函数的最大值为2,最小值为﹣2,故A=2,=,故T=π,ω=2,故y=2sin(2x+φ),将(,2)代入可得:2sin(+φ)=2,则φ=﹣满足要求,故y=2sin(2x﹣),故选:A.13.(3分)“sinα<0”是“α为第三、四象限角”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【解答】解:由α为第三、四象限角,可得sinα<0.反之不成立,例如.故选:B.14.(3分)已知函数f(x)=sin(ωx+φ)(ω>0,|φ|≤),x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,且f(x)在(,)上单调,则ω的最大值为()A.11B.9C.7D.5【解答】解:∵x=﹣为f(x)的零点,x=为y=f(x)图象的对称轴,∴,即,(n∈N)即ω=2n+1,(n∈N)即ω为正奇数,∵f(x)在(,)上单调,则﹣=≤,即T=≥,解得:ω≤12,当ω=11时,﹣+φ=kπ,k∈Z,∵|φ|≤,∴φ=﹣,此时f(x)在(,)不单调,不满足题意;当ω=9时,﹣+φ=kπ,k∈Z,∵|φ|≤,∴φ=,此时f(x)在(,)单调,满足题意;故ω的最大值为9,故选:B.三.简答题15.在△ABC中,a2+c2=b2+ac.(1)求∠B 的大小;(2)求cosA+cosC的最大值.【解答】解:(1)∵a2+c2=b2+ac,可得:a2+c2﹣b2=ac.∴cosB===,∵B∈(0,π),∴B=.(2)由(1)得:C=﹣A,∴cosA+cosC=cosA+cos(﹣A)=cosA﹣cosA+sinA=sinA.∵A∈(0,),∴故当A=时,sinA取最大值1,即cosA+cosC的最大值为1.16.已知{a n}是等比数列,前n项和为S n(n∈N*),且﹣=,S6=63.(1)求{a n}的通项公式;(2)若对任意的n∈N*,b n是log2a n和log2a n+1的等差中项,求数列{(﹣1)n b}的前2n项和.【解答】解:(1)设{a n}的公比为q,则﹣=,即1﹣=,解得q=2或q=﹣1.若q=﹣1,则S6=0,与S6=63矛盾,不符合题意.∴q=2,∴S6==63,∴a1=1.∴a n=2n﹣1.(2)∵b n是log2a n和log2a n+1的等差中项,∴b n=(log2a n+log2a n+1)=(log22n﹣1+log22n)=n﹣.﹣b n=1.∴b n+1∴{b n}是以为首项,以1为公差的等差数列.设{(﹣1)n b n2}的前2n项和为T n,则T n=(﹣b12+b22)+(﹣b32+b42)+…+(﹣b2n﹣12+b2n2)=b1+b2+b3+b4…+b2n﹣1+b2n===2n2.17.已知函数;(1)求f(x)的定义域与最小正周期;(2)求f(x)在区间上的单调性与最值.【解答】解:(1)由tanx有意义得x≠+kπ,k∈Z.∴f(x)的定义域是,f(x)=4tanxcosxcos(x﹣)﹣=4sinxcos(x﹣)﹣=2sinxcosx+2sin2x ﹣=sin2x+(1﹣cos2x)﹣=sin2x﹣cos2x=2sin(2x﹣).∴f(x)的最小正周期T==π.(2)令﹣+2kπ≤2x﹣≤+2kπ,解得﹣+kπ≤x≤+kπ,k∈Z.令+2kπ≤2x﹣≤+2kπ,解得+kπ≤x≤+kπ,k∈Z.[﹣+kπ,+kπ]∩[﹣,]=[﹣,],[+kπ,+kπ]∩[﹣,]=[﹣,﹣],∴f(x)在上单调递增,在上单调递减,∴f(x)的最小值为f(﹣)=﹣2,又f(﹣)=﹣1,f()=1,∴f(x)的最大值为f()=1.18.已知方程;(1)若,求的值;(2)若方程有实数解,求实数a的取值范围;(3)若方程在区间[5,15]上有两个相异的解α、β,求α+β的最大值.【解答】解:(1)当时,arctan+arctan(2﹣x)=,∴,解得x=﹣1或x=2,∴当x=﹣1时,=arccos(﹣)=π﹣arccos=;当x=2时,arccos=arccos1=0,(2)∵,∴tana==当x=4时,tana=0,当x≠4时,tana=,∵4﹣x +≥2或4﹣x +≤﹣2,∴0<tana ≤或≤tana<0,综上,≤tana ≤,∴a ∈.(3)由(2)知=tana在[5,15]上有两解α,β,即tana•x2+(1﹣2tana)x+2tana﹣4=0在[5,15]有两解α,β,∴α+β==2﹣,∴△=(1﹣2tana)2﹣8tana(tana﹣2)=﹣4tan2a+12tana+1>0,解得<tana <且tana≠0.①若tana>0,则对称轴=1﹣<1,方程在[5,15]上不可能有两解,不符合题意,舍去;②若tana<0,令5<1﹣<15,解得﹣<tana <﹣,又,解得tana ≤﹣,综上,<tana ≤﹣,∴当tana=﹣时,α+β取得最大值2+17=19.第11页(共11页)。

上海华东师范大学第二附属中学高一数学理联考试卷含解析

上海华东师范大学第二附属中学高一数学理联考试卷含解析

上海华东师范大学第二附属中学高一数学理联考试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知,则()A. 1B. -1C.2D. -2参考答案:A2. 设集合,集合B={2,3,4},则A∩B=( )A.(2,4)B.{2.4}C.{3}D.{2,3}参考答案:D3. 已知、、为△的三边,且,则角等于( )A. B. C. D.参考答案:B4. 已知1,a1,a2,9四个实数成等差数列, -1,b1,b2,b3, -9五个实数成等比数列,则b2(a2-a1)的值为()A. 8B.-8 C.8 D.参考答案:B略5. 若当时,均有意义,则函数的图像大致是()参考答案:B6. 已知单位向量与单位向量的夹角为,=3+4,则||等于()A.5 B.6 C.D.参考答案:C【考点】平面向量数量积的运算.【分析】根据平面向量的数量积与单位向量的概念,求出模长即可.【解答】解:单位向量与单位向量的夹角为,∴?=1×1×cos=,又=3+4,∴=9+24?+16=9×1+24×+16×1=37,∴||=.故选:C.7. 对于△ABC,若存在△A1B1C1,满足,则称△ABC为“V类三角形”.“ V类三角形”一定满足().A. 有一个内角为30°B. 有一个内角为45°C. 有一个内角为60°D. 有一个内角为75°参考答案:B【分析】由对称性,不妨设和为锐角,结合同角三角函数关系进行化简求值即可.【详解】解:由对称性,不妨设和为锐角,则A,B,所以:+=π﹣(A+B)=C,于是:cos C=sin=sin(+)=sin C,即:tan C=1,解得:C=45°,故选:B.【点睛】本题主要考查三角函数的化简求值,注意新定义运算法则,诱导公式的应用,属于中档题.8. 在△ABC中,,,E是边BC的中点.O为△ABC所在平面内一点且满足,则的值为()A. B. 1 C. D.参考答案:D【分析】根据平面向量基本定理可知,将所求数量积化为;由模长的等量关系可知和为等腰三角形,根据三线合一的特点可将和化为和,代入可求得结果.【详解】为中点和为等腰三角形,同理可得:本题正确选项:D【点睛】本题考查向量数量积的求解问题,关键是能够利用模长的等量关系得到等腰三角形,从而将含夹角的运算转化为已知模长的向量的运算.9. 已知直线l1:x+2y+t2=0和直线l2:2x+4y+2t﹣3=0,则当l1与l2间的距离最短时t的值为()A.1 B.C.D.2参考答案:B【考点】两条平行直线间的距离.【分析】利用平行线之间的距离公式、二次函数的单调性即可得出.【解答】解:∵直线l2:2x+4y+2t﹣3=0,即x+2y+=0.∴直线l1∥直线l2,∴l1与l2间的距离d==≥,当且仅当t=时取等号.∴当l1与l2间的距离最短时t的值为.故选:B.10. y=(m2﹣2m+2)x2m+1是一个幂函数,则m=()A.﹣1 B.1 C.2 D.0参考答案:B【考点】幂函数的概念、解析式、定义域、值域.【分析】据幂函数的定义:形如y=xα的函数为幂函数,令x前的系数为1,求出m的值.【解答】解:令m2﹣2m+2=1,解得:m=1,故选:B.二、填空题:本大题共7小题,每小题4分,共28分11. 比较大小:.参考答案:略12. 已知直线过点,且与直线垂直,则直线的方程为___________.参考答案:分析:设与直线垂直的直线方程为,根据直线过点,即可求得直线方程.解析:由题意,设与直线垂直的直线方程为,直线过点,直线的方程为:. 故答案为:.点睛:1.直线l 1:A 1x +B 1y +C 1=0,直线l 2:A 2x +B 2y +C 2=0, (1)若l 1∥l 2?A 1B 2-A 2B 1=0且B 1C 2-B 2C 1≠0(或A 1C 2-A 2C 1≠0). (2)若l 1⊥l 2?A 1A 2+B 1B 2=0.2.与直线Ax +By +C =0平行的直线方程可设为Ax +By +m =0,(m ≠C ),与直线Ax +By +C =0垂直的直线方程可设为Bx -Ay +m =0.13.在如图所示的“茎叶图”表示的数据中,众数和中位数分别参考答案:31,26 14. 已知函数,分别由下表给出:则当时,.参考答案:3 略15. 若,则的取值范围为________________.参考答案:16. 直线xsin α﹣y+1=0的倾角的取值范围 .参考答案:[0,]∪[)【考点】直线的倾斜角.【分析】由直线方程求出直线斜率的范围,再由正切函数的单调性求得倾角的取值范围.【解答】解:直线xsin α﹣y+1=0的斜率为k=sin α,则﹣1≤k≤1,设直线xsin α﹣y+1=0的倾斜角为θ(0≤θ<π),则﹣1≤tanθ≤1, ∴θ∈[0,]∪[).故答案为:[0,]∪[).【点评】本题考查直线的倾斜角,考查了直线倾斜角和斜率的关系,训练了由直线斜率的范围求倾斜角的范围,是基础题.17. 函数的定义域为参考答案:三、 解答题:本大题共5小题,共72分。

上海市华东师范大学第二附属中学2024届数学高一下期末调研试题含解析

上海市华东师范大学第二附属中学2024届数学高一下期末调研试题含解析

上海市华东师范大学第二附属中学2024届数学高一下期末调研试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本大题共10小题,每小题5分,共50分。

在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知数列{}n a 满足111222n n n a a a -+++=,*2,n n N ≥∈,且121,2a a ==,则16a =A .4B .5C .6D .8 2.在中,角的对边分别为,若,则( ) A .B .C .D .3.数列{}n a 满足12a =,111nn na a a ++=-,则2019a =( ) A .3-B .13 C .12-D .24.如图是正方体的展开图,则在这个正方体中:①AF 与CN 平行; ②BM 与AN 是异面直线; ③AF 与BM 成60°角; ④BN 与DE 垂直.以上四个命题中,正确命题的序号是 A .①②③ B .②④C .③④D .②③④5.若集合,则A .B .C .D .6.设a >0,b >033a 和3b 的等比中项,则14a b+的最小值为( )A .6B .42C .8D .97.《张丘建算经》中如下问题:“今有马行转迟,次日减半,疾五日,行四百六十五里,问日行几何”根据此问题写出如下程序框图,若输出465S =,则输入m 的值为( )A .240B .220C .280D .2608.设是两条不同的直线,是两个不同的平面,则下列结论正确的是( ) A .若,,则B .若,则C .若,则D .若,则9.唐代诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题——“将军饮马”问题,即将军在观望烽火之后从山脚下某处出发,先到河边饮马后再回到军营,怎样走才能使总路程最短?在平面直角坐标系中,设军营所在位置为(2,0)B -,若将军从山脚下的点(2,0)A 处出发,河岸线所在直线方程为3x y +=,则“将军饮马”的最短总路程为( ) A .4B .5C .26D .3210.ABC ∆中,2,3,60,b c A ===︒则a = A .6B .7C .22D .3二、填空题:本大题共6小题,每小题5分,共30分。

上海市华二附中高一数学学科期末考试试卷(含答案)(2019.06)

上海市华二附中高一数学学科期末考试试卷(含答案)(2019.06)

华二附中高一期末数学试卷2019.06一. 填空题1. 函数arcsin y x =(1[]2x ∈-)的值域是 2. 数列{}n a 的前n 项和21n S n n =++,则数列{}n a 的通项公式为n a =3. ()cos f x x x =+的值域是4. “1423a a a a +=+”是“数列1234,,,a a a a 依次成等差数列”的 条件 (填“充要”,“充分非必要”,“必要非充分”,“既不充分也不必要”)5. 等差数列{}n a 的前n 项和为n S ,若1010S =,2030S =,则30S =6. △ABC 三条边的长度是a 、b 、c ,面积是2224a b c +-,则C = 7. 已知数列{}n a ,其中199199a =,11()a n n a a -=,那么99100log a = 8. 等比数列{}n a 中首项12a =,公比3q =,1720n n m a a a +++⋅⋅⋅+=(,n m *∈N ,n m <), 则n m +=9. 在△ABC 中,222sin sin 2018sin A C B +=,则2(tan tan )tan tan tan tan A C B A B C+=++ 10. 已知数列{}n a 的通项公式为22lg(1)3n a n n=++,1,2,3n =⋅⋅⋅,n S 是数列的前n 项和,则lim n n S →∞=二. 选择题11. “十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献,十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于,若第一个单音的频率为f ,则第八个单音的频率为( )A. B. C. D.12. 已知函数22()2cos sin 2f x x x =-+,则( )A. ()f x 的最小正周期为π,最大值为3B. ()f x 的最小正周期为π,最大值为4C. ()f x 的最小正周期为2π,最大值为3D. ()f x 的最小正周期为2π,最大值为413. 将函数sin(2)5y x π=+向右平移10π个单位长度,那么新函数( ) A. 在53[,]42ππ上单调递增 B. 在区间3[,]4ππ上单调递减 C. 在35[,]44ππ上单调递增 D. 在区间3[,2]2ππ上单调递减 14. 已知函数215cos()36k y x ππ+=-(其中k ∈N ),对任意实数a ,在区间[,3]a a + 上要使函数值54出现的次数不少于4次且不多于8次,则k 值为( ) A. 2或3 B. 4或3 C. 5或6 D. 8或7三. 解答题15. 在△ABC 中,7a =,8b =,1cos 7B =-. (1)求A ;(2)求AC 边上的高.16. 已知1221n n n n n n u a a b a b ab b ---=+++⋅⋅⋅++(n *∈N ,,0a b >).(1)当a b =时,求数列{}n u 的前n 项和n S (用a 和n 表示);(2)求1lim n n n u u →∞-.17. 已知方程arctanarctan(2)2x x a +-=. (1)若4a π=,求arccos 2x 的值; (2)若方程有实数解,求实数a 的取值范围; (3)若方程在区间[5,15]上有两个相异的解α、β,求αβ+的最大值.18.(1)证明:3cos(3)4cos 3cos x x x =-;(2)证明:对任何正整数n ,存在多项式函数()n f x ,使得cos()(cos )n nx f x =对所有实数 x 均成立,其中1111()2n n n n n n f x x a x a x a ---=++⋅⋅⋅++,1,n a a ⋅⋅⋅均为整数,当n 为奇数时, 0n a =,当n 为偶数时,2(1)n n a =-;(3)利用(2)的结论判断cos7m π(16m ≤≤,m *∈N )是否为有理数?参考答案一. 填空题 1. [,]36ππ-- 2. 3122n n n =⎧⎨≥⎩ 3. [2,2]- 4. 必要非充分 5. 60 6. 4π 7. 1 8. 9 9. 2201710. lg3二. 选择题11. D 12. B 13. C 14. A三. 解答题15.(1)3A π=;(2)2.16.(1)12(1)12(1)01(1)1n n n n n a S a a naa a a a++⎧=⎪⎪=⎨-⎪->≠⎪--⎩且;(2)1lim n n n aa b u ba b u →∞-≥⎧=⎨<⎩. 17.(1)0或23π;(2)33[arctan ]22+;(3)19.18.(1)证明略;(2)证明略;(3)不是有理数.。

2018-2019学年上海市浦东新区华师大二附中高一(下)期末数学试卷

2018-2019学年上海市浦东新区华师大二附中高一(下)期末数学试卷

2018-2019学年上海市浦东新区华师大二附中高一(下)期末数学试卷试题数:18.满分:01.(填空题.3分)在等比数列{a n }中.已知a 2=4.a 6=16.则a 4=___ .2.(填空题.3分)已知sinx=- 13 .x∈[π. 32π ].则x=___ .3.(填空题.3分)数列{a n }的前n 项和为S n .已知S n =2n 2+n+1.则a n =___ .4.(填空题.3分)等差数列{a n }与{b n }的前n 项和分别为S n .和T n .且 S n T n= 3n+17n+3 .则 a9b 9=___ .5.(填空题.3分) lim n→∞(1+ 11+2 + 11+2+3 +……+ 11+2+3+⋯+n )=___ .6.(填空题.3分)一个正实数.它的小数部分、整数部分及这个正实数依次成等比数列.则这个正实数是___ .7.(填空题.3分)化小数为最简分数:0.3 4• 5•=___ .8.(填空题.3分)若无穷等比数列{a n }的各项和为 12.则a 2的取值范围是___ .9.(填空题.3分)设方程x-cosx= π4 的根是x 1.方程x+arcsin (x- π2 )= π4 的根是x 2.则x 1+x 2的值是___ .10.(填空题.3分)在等差数列{a n }中.若即sp+tm=kn.s+t=k.则有sa p +ta m =ka n .(s.t.k.p.m.n∈N*).对于等比数列{b n }.请你写出相应的命题:___ .11.(单选题.3分)已知a 、b 、c 是非零实数.则“a 、b 、c 成等比数列”是“b= √ac ”的( ) A.充要条件 B.充分不必要条件 C.必要不充分条件 D.既不充分也不必要条件12.(单选题.3分)下列四个命题中正确的是( ) A.若n→∞a n 2=A 2.则n→∞a n =AB.若a n >0. n→∞a n =A.则A >0C.若n→∞a n =A.则 n→∞a n 2=A 2D.若n→∞(a n -b n )=0.则 n→∞a n =n→∞b n13.(单选题.3分)设S k =1k+1 + 1k+2 + 1k+3 +…+ 12k.则S k+1为( )A.S k + 12(k+1) B.S k + 12k+1 + 12(k+1) C.S k +12k+1 - 12(k+1) D.S k + 12(k+1) - 12k+114.(单选题.3分)已知数列a n =arcsin (sinn°).n∈N*.{a n }的前n 项和为S n .则当1≤n≤2016时( ) A.S 1980≤S n ≤S 90 B.S 1800≤S n ≤S 180 C.S 1980≤S n ≤S 180 D.S 2016≤S n ≤S 9015.(问答题.0分)已知关于x 的方程sin 2x+cosx+m=0.x∈[0.2π). (1)当m=1时.解此方程(2)试确定m 的取值范围.使此方程有解.16.(问答题.0分)在公差为d 的等差数列{a n }中.已知a 1=10.且a 1.2a 2+2.5a 3成等比数列. (Ⅰ)求d.a n ;(Ⅱ)若d <0.求|a 1|+|a 2|+|a 3|+…+|a n |.17.(问答题.0分)某公司自2016年起.每年投入的技术改造资金为1000万元.预计自2016年起第n 年(2016年为第一年).因技术改造.可新增的盈利a n = {150(n −1),n ≤52000(1−0.6n−5),n >5(万元).按此预计.求:(1)第几年起.当年新增盈利超过当年的技术改造金; (2)第几年起.新增盈利累计总额超过累计技术改造金.18.(问答题.0分)已知数列{a n}.满足a n+1=λa n2+μa n+1;(1)若λ=0.μ=1.a1=3.求{a n}的通项公式;(2)若λ=0.μ=2.a1=1.求{a n}的前n项和为S n;(3)若λ=1.a1=-1.{a n}满足a n+a n+1>0恒成立.求μ的取值范围.2018-2019学年上海市浦东新区华师大二附中高一(下)期末数学试卷参考答案与试题解析试题数:18.满分:01.(填空题.3分)在等比数列{a n}中.已知a2=4.a6=16.则a4=___ .【正确答案】:[1]8【解析】:由等比数列通项公式得a2a6=a42 .由此能求出a4.【解答】:解:∵在等比数列{a n}中.a2=4.a6=16.∴ a2a6=a42 =4×16=64.且a4>0.解得a4=8.故答案为:8.【点评】:本题考查等比数列的第4项的求法.考查等比数列的性质等基础知识.考查运算求解能力.考查函数与方程思想.是基础题.2.(填空题.3分)已知sinx=- 13 .x∈[π. 32π ].则x=___ .【正确答案】:[1]π+arcsin 13【解析】:先将x∈[π. 32π ].化为π-x∈[- π2,0 ].再利用诱导公式sin(π-x)=sinx.求出π-x=arcsin(- 13)=-arcsin 13.然后计算得解.【解答】:解:因为x∈[π. 32π ].所以π-x∈[- π2,0 ].由sinx=- 13.sin(π-x)=sinx.所以sin(π-x)=- 13.即π-x=arcsin(- 13)=-arcsin 13.所以x=π+arcsin 13.故答案为:π+arcsin 13 .【点评】:本题考查了解三角方程.及正弦的主值区间.属简单题3.(填空题.3分)数列{a n }的前n 项和为S n .已知S n =2n 2+n+1.则a n =___ . 【正确答案】:[1] {4,n =14n −1,n ≥2【解析】:根据数列的递推公式即可求出通项公式.【解答】:解:当n=1时.a 1=S 1=2×12+1+1=4.当n≥2时.a n =S n -S n-1=2n 2+n+1-[2(n-1)2+n-1+1]=4n-1. 当n=1时.a 1=3≠4. 故a n = {4,n =14n −1,n ≥2 .故答案为: {4,n =14n −1,n ≥2 .【点评】:本题考查了数列的递推公式.属于基础题4.(填空题.3分)等差数列{a n }与{b n }的前n 项和分别为S n .和T n .且 S n T n= 3n+17n+3 .则 a9b 9=___ .【正确答案】:[1] 2661【解析】:由等差数列的性质和求和公式可得 a 9b 9= S17T 17.代值计算可得.【解答】:解:由等差数列的性质和求和公式可得 a 9b 9= 2a 92b 9 = a 1+a 17b 1+b 17 = S 17T 17 = 3×17+17×17+3 = 2661. 故答案为: 2661【点评】:本题考查等差数列的性质和求和公式.属基础题. 5.(填空题.3分) lim n→∞(1+ 11+2 + 11+2+3 +……+ 11+2+3+⋯+n )=___ .【正确答案】:[1]2【解析】:求出数列通项公式的表达式.求出数列的和.然后求解数列的极限即可.【解答】:解: 11+2+3+⋯+n = 2n (n+1) =2( 1n −1n+1 ).∴ lim n→∞(1+ 11+2 + 11+2+3 +……+ 11+2+3+⋯+n )= lim n→∞2(1- 12+12−13+13−14 +… +1n −1n+1 )=lim n→∞(2- 2n+1 )=2.故答案为:2.【点评】:本题考查数列的和.数列的极限的求法.考查计算能力.6.(填空题.3分)一个正实数.它的小数部分、整数部分及这个正实数依次成等比数列.则这个正实数是___ . 【正确答案】:[1]√5+12【解析】:根据题意.这个数为a.则整数部分aq.则小数部分为a-aq.结合等比数列的性质可得a 2q 2=a (a-aq ).即q 2+q-1=0.解可得q 的值.又由aq 为正整数且aq 2<1.设aq 这个正整数为m.则有a= mq =m× √5+12且m (√5+12 )×( √5−12)2<1.解可得m 的值.变形可得a 的值.即可得答案.【解答】:解:小数部分、整数部分及这个正实数依次成等比数列. 不妨设这个数为a.则整数部分aq.则小数部分为a-aq.则q >0. 则有a 2q 2=a (a-aq ). 即q 2+q-1=0. 解得q=√5−12 .q= −1−√52(舍去). 又由aq 为正整数.设aq 这个正整数为m.则a= mq =m× √5+12. 又由aq 2<1.即m ( √5+12 )×( √5−12)2<1. 解可得m <√5+12.又由m 为整数.则m=1.则a= mq=m× √5+12 = m q = √5+12. 故答案为: √5+12.【点评】:本题考查等比数列的性质.涉及等比中项的计算.注意分析q 的范围.属于基础题. 7.(填空题.3分)化小数为最简分数:0.3 4• 5•=___ . 【正确答案】:[1] 1955【解析】:由0.3 4• 5• =0.3+0.045+0.0045+….可得等号右边的数从0.045起为公比为0.01的无穷等比数列.运用无穷递缩等比数列的求和公式.计算可得所求值.【解答】:解:0.3 4• 5• =0.3+0.045+0.0045+… =0.3+ 0.0451−0.01 =0.3+ 45990 = 342990 = 1955 . 故答案为: 1955.【点评】:本题考查循环小数化为分数的方法.考查无穷递缩等比数列的求和公式的运用.考查运算能力.属于基础题.8.(填空题.3分)若无穷等比数列{a n }的各项和为 12.则a 2的取值范围是___ . 【正确答案】:[1](-1.0)∪(0. 18 ]【解析】:由题意 a 11−q =12 .|q|<1.从而q=1-2a 1.进而a 2=a 1q=(1-2q )q=q-2q 2=-2(q- 14 )2+18.利用-1<q <1.能求出a 2的取值范围.【解答】:解:∵无穷等比数列{a n }的各项和为 12 .∴ a 11−q =12 .|q|<1.∴q=1-2a 1.a 2=a 1q=(1-2q )q=q-2q 2=-2(q- 14 )2+ 18 . ∵-1<q <1.a 2的取值范围是(-1.0)∪(0. 18]. 故答案为:(-1.0)∪(0. 18 ].【点评】:本题考查等比数列的第二项的取值范围的求法.考查等比数列的性质等基础知识.考查运算求解能力.是基础题.9.(填空题.3分)设方程x-cosx= π4 的根是x 1.方程x+arcsin (x- π2 )= π4 的根是x 2.则x 1+x 2的值是___ .【正确答案】:[1] 3π4【解析】:先将两方程变形为:-θ- π4 =sinθ.-θ- π4 =arcsinθ.由y=sinθ.y=arcsinθ互为反函数.其图象关于直线y=x 对称.则方程组 {y =xy =−x −π4.由对称性及中点坐标公式可得.解的横坐标为θ1+θ22.得解.【解答】:解:由x-cosx= π4 .可化为: π4 -x=sin (x- π2 ). x+arcsin (x- π2 )= π4 .可化为: π4 -x=arcsin (x- π2 ). 设θ=x - π2.则有:-θ- π4=sinθ.-θ- π4=arcsinθ. 由y=sinθ.y=arcsinθ.互为反函数. 其图象关于直线y=x 对称. 联立 {y =x y =−x −π4 .得:x=- π8 .即θ1+θ2=- π4 . 所以x 1- π2 +x 2- π2 =- π4 . 则x 1+x 2= 3π4 . 故答案为: 3π4 .【点评】:本题考查了函数与其反函数图象关于直线y=x 对称的性质.属中档题 10.(填空题.3分)在等差数列{a n }中.若即sp+tm=kn.s+t=k.则有sa p +ta m =ka n .(s.t.k.p.m.n∈N*).对于等比数列{b n }.请你写出相应的命题:___ . 【正确答案】:[1]若sp+tm=kn.s+t=k.则有b p s b m t =b n k .(s.t.k.p.m.n∈N*) 【解析】:利用类比推理可得【解答】:解:利用类比推理可得.对于等比数列{b n }.若sp+tm=kn.s+t=k. 则有b p s b m t =b n k .(s.t.k.p.m.n∈N*). 故答案为:若sp+tm=kn.s+t=k. 则有b p s b m t =b n k .(s.t.k.p.m.n∈N*)【点评】:本题考查了类比推理的问题.属于基础题.11.(单选题.3分)已知a 、b 、c 是非零实数.则“a 、b 、c 成等比数列”是“b= √ac ”的( ) A.充要条件 B.充分不必要条件 C.必要不充分条件 D.既不充分也不必要条件 【正确答案】:C【解析】:由举例1.-1.1可得“a 、b 、c 成等比数列”不能推出“b= √ac “.由等比中项概念可得:当a 、b 、c 是非零实数.“b= √ac “.可推出“a 、b 、c 成等比数列”.故“a 、b 、c 成等比数列”是“b= √ac “的必要不充分条件.【解答】:解:当“a 、b 、c 成等比数列”时.不妨取“1.-1.1“.则不满足“b= √ac “. 即“a 、b 、c 成等比数列”不能推出“b= √ac “. 当a 、b 、c 是非零实数.“b= √ac ”.由等比中项概念可得:“a 、b 、c 成等比数列”即“a 、b 、c 成等比数列”是“b= √ac ”的必要不充分条件. 故选:C .【点评】:本题考查了等比数列的性质及充分.必要条件.属简单但易错题. 12.(单选题.3分)下列四个命题中正确的是( ) A.若n→∞a n 2=A 2.则n→∞a n =AB.若a n >0. n→∞a n =A.则A >0C.若n→∞a n =A.则 n→∞a n 2=A 2D.若n→∞(a n -b n )=0.则 n→∞a n =n→∞b n【正确答案】:C【解析】:此题可采用排除法法.可取a n =(-1)n .排除A ;取a n = 1n.排除B ;取a n =b n =n.排除D 得到答案.【解答】:解:取a n =(-1)n .排除A ; 取a n = 1n .排除B ; 取a n =b n =n.排除D . 故选:C .【点评】:考查学生认识极限及运算的能力.以及学会采用排除法做选择题. 13.(单选题.3分)设S k = 1k+1 + 1k+2 + 1k+3 +…+ 12k .则S k+1为( ) A.S k + 12(k+1) B.S k + 12k+1 + 12(k+1) C.S k + 12k+1 - 12(k+1) D.S k + 12(k+1) - 12k+1【正确答案】:C【解析】:先利用S k = 1k+1 + 1k+2 + 1k+3 +…+ 12k .表示出S k+1.再进行整理即可得到结论.【解答】:解:因为S k = 1k+1 + 1k+2 + 1k+3 +…+ 12k .所以s k+1= 1(k+1)+1 + 1(k+1)+2 +…+ 12(k+1)−2 + 12(k+1)−1 + 12(k+1) =1k+1 +1k+2 +…+ 12k + 12k+1 + 12k+2 - 1k+1=s k +12k+1 - 12k+2. 故选:C .【点评】:本题主要考查数列递推关系式.属于易错题.易错点在与整理过程中.不能清楚哪些项有.哪些项没有.14.(单选题.3分)已知数列a n =arcsin (sinn°).n∈N*.{a n }的前n 项和为S n .则当1≤n≤2016时( ) A.S 1980≤S n ≤S 90 B.S 1800≤S n ≤S 180 C.S 1980≤S n ≤S 180 D.S 2016≤S n ≤S 90 【正确答案】:B【解析】:由y=arcsinx 的值域为[- π2 . π2 ].考虑数列{a n }的周期为360.一个周期内的和.即可得到所求最小值和最大值.【解答】:解:由y=arcsinx 的值域为[- π2 . π2 ]. 当n 取1到90的自然数可得: S 90=π180 + 2π180 +…+ 90π180; 当n 取91到180的自然数可得: a 91+a 92+…+a 180= 89π180 + 88π180 +…+ π180 +0; 当n 取181到270的自然数可得:a 181+a 182+…+a 270=-( π180 + 2π180 +…+ 90π180 ); 当n 取271到360的自然数可得:a 271+a 272+…+a 360=-( 89π180 + 88π180 +…+ π180 +0). 由{a n }的周期为360.可得S 360=0.且S180>0.且为最大值;而S1800=S360×5=0.S2016=S216>0.S1980=S180>0.则故排除A.C.D.故选:B.【点评】:本题考查反正弦函数值的求法.以及数列的求和.考查分类讨论思想方法.以及运算能力和推理能力.属于中档题.15.(问答题.0分)已知关于x的方程sin2x+cosx+m=0.x∈[0.2π).(1)当m=1时.解此方程(2)试确定m的取值范围.使此方程有解.【正确答案】:【解析】:(1)由sin2x+cos2x=1.则sin2x+cosx+m=0可化为:cos2x-cosx-1-m=0.将m=1代入解一元二次方程可得解.(2)分离m与cosx.用值域法可得解.即1+m=cos2x-cosx.再用配方法求cos2x-cosx的值域即可得解.【解答】:解:(1)sin2x+cosx+m=0.所以cos2x-cosx-1-m=0.当m=1时.方程为:cos2x-cosx-2=0.所以cosx=-1或cosx=2.又cosx∈[-1.1].所以cosx=-1.又x∈[0.2π).所以x=π.故方程的解集为:{π}(2)由(1)得.cos2x-cosx-1-m=0有解.即1+m=cos2x-cosx有解.又1+m=cos2x-cosx=(cosx- 12)2- 14.又cosx∈[-1.1].所以(cosx- 12)2- 14∈[- 14,2 ].即1+m∈[- 14,2 ].即m∈[ −54,1 ].故答案为:[ −54,1 ]【点评】:本题考查了三角函数的运算及二次函数的值域.与方程有解问题.属中档题16.(问答题.0分)在公差为d的等差数列{a n}中.已知a1=10.且a1.2a2+2.5a3成等比数列.(Ⅰ)求d.a n;(Ⅱ)若d<0.求|a1|+|a2|+|a3|+…+|a n|.【正确答案】:【解析】:(Ⅰ)直接由已知条件a1=10.且a1.2a2+2.5a3成等比数列列式求出公差.则通项公式a n可求;(Ⅱ)利用(Ⅰ)中的结论.得到等差数列{a n}的前11项大于等于0.后面的项小于0.所以分类讨论求d<0时|a1|+|a2|+|a3|+…+|a n|的和.【解答】:解:(Ⅰ)由题意得5a3•a1=(2a2+2)2 .即5(a1+2d)•a1=(2a1+2d+2)2 .整理得d2-3d-4=0.解得d=-1或d=4.当d=-1时.a n=a1+(n-1)d=10-(n-1)=-n+11.当d=4时.a n=a1+(n-1)d=10+4(n-1)=4n+6.所以a n=-n+11或a n=4n+6;(Ⅱ)设数列{a n}的前n项和为S n.因为d<0.由(Ⅰ)得d=-1.a n=-n+11.则当n≤11时. |a1|+|a2|+|a3|+⋯+|a n|=S n=−12n2+212n.当n≥12时.|a1|+|a2|+|a3|+…+|a n|=-S n+2S11= 12n2−21n2+110.综上所述.|a1|+|a2|+|a3|+…+|a n|= {−12n2+212n,n≤1112n2−212n+110,n≥12.【点评】:本题考查了等差数列、等比数列的基本概念.考查了等差数列的通项公式.求和公式.考查了分类讨论的数学思想方法和学生的运算能力.是中档题.17.(问答题.0分)某公司自2016年起.每年投入的技术改造资金为1000万元.预计自2016年起第n 年(2016年为第一年).因技术改造.可新增的盈利a n = {150(n −1),n ≤52000(1−0.6n−5),n >5(万元).按此预计.求:(1)第几年起.当年新增盈利超过当年的技术改造金;(2)第几年起.新增盈利累计总额超过累计技术改造金.【正确答案】:【解析】:(1)计算n=1.2.3.4.5.6.7即可得到所求结论;(2)考虑1到5年不符题意;n >5时.可得1500+2000[n-5-0.6(1−0.6n−5)1−0.6 ]>1000n.结合n的特殊值.计算可得结论.【解答】:解:(1)新增的盈利a n = {150(n −1),n ≤52000(1−0.6n−5),n >5 (万元). 可得a 1=0.a 2=150.a 3=300.a 4=450.a 5=600.a 6=2000×(1-0.6)=800.a 7=2000×(1-0.36)=1280>1000.则第7年起.当年新增盈利超过当年的技术改造金;(2)由n=5时.a 1+a 2+…+a 5=1500<5000.可得所求n 超过5.可得1500+2000[n-5- 0.6(1−0.6n−5)1−0.6 ]>1000n.化简可得n+3•0.6n-5>11.5.由于3•0.6n-5随着n 的增大而减小.当n=11时.11+3•0.66<11.5.当n=12时.12+3•0.67>11.5.则第12年起.新增盈利累计总额超过累计技术改造金.【点评】:本题考查数列在实际问题中的运用.考查化简运算能力和推理能力.属于中档题.18.(问答题.0分)已知数列{a n}.满足a n+1=λa n2+μa n+1;(1)若λ=0.μ=1.a1=3.求{a n}的通项公式;(2)若λ=0.μ=2.a1=1.求{a n}的前n项和为S n;(3)若λ=1.a1=-1.{a n}满足a n+a n+1>0恒成立.求μ的取值范围.【正确答案】:【解析】:(1)由题意可得数列为等差数列.即可得到所求通项公式;(2)由条件可得a n+1+1=2(a n+1).由等比数列的定义和通项公式、求和公式.计算可得所求;(3)由条件可得a n2+(1+μ)a n+1>0恒成立.即(a n+ 1+μ2)2+1- (1+μ)24>0恒成立.结合首项成立.以及二次函数的最值.计算可得所求范围.【解答】:解:(1)λ=0.μ=1.a1=3.可得a n+1=a n+1.即有a n=3+n-1=n+2;(2)若λ=0.μ=2.a1=1.可得a n+1=2a n+1.即有a n+1+1=2(a n+1).可得a n+1=2n.即a n=2n-1.前n项和为S n=(2+4+…+2n)-n= 2(1−2n)1−2-n=2n+1-2-n;(3)若λ=1.a1=-1.{a n}满足a n+a n+1>0恒成立. 可得a n+1=a n2+μa n+1.即有a n2+(1+μ)a n+1>0恒成立.即(a n+ 1+μ2)2+1- (1+μ)24>0恒成立.由a1=-1.可得1-(1+μ)+1>0.即有μ<1;又(a n+ 1+μ2)2+1- (1+μ)24≥1- (1+μ)24.可得1- (1+μ)24>0.可得-3<μ<1.综上可得μ的范围是(-3.1).【点评】:本题考查数列的递推式的运用.以及等差数列和等比数列的定义、通项公式和求和公式的运用.考查运算能力和推理能力.属于中档题.。

上海中学2017-2018学年高一下学期期末数学试卷Word版含解析.pdf

上海中学2017-2018学年高一下学期期末数学试卷Word版含解析.pdf

2017-2018学年上海中学高一(下)期末数学试卷一、填空题1.arcsin (﹣)+arccos (﹣)+arctan (﹣)=.2.=.3.若数列{a n }为等差数列.且满足a 2+a 4+a 7+a 11=44,则a 3+a 5+a 10=.4.设数列{a n }满足:a 1=,a n +1=(n ≥1),则a 2016=.5.已知数列{a n }满足:a n =n ?3n (n ∈N *),则此数列前n 项和为S n =.6.已知数列{a n }满足:a 1=3,a n +1=9?(n ≥1),则a n =.7.等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若=,则=.8.等比数列{a n },a 1=3﹣5,前8项的几何平均为9,则a 3=.9.定义在R 上的函数f (x )=,S n =f ()+f ()+…+f (),n=2,3,…,则S n =.10.设x 1,x 2是方程x 2﹣xsin +cos =0的两个根,则arctanx 1+arctanx 2的值为.11.已知数列{a n }的前n 项和为S n ,a n =,则S 2016=.12.设正数数列{a n }的前n 项和为b n ,数列{b n }的前n 项之积为c n ,且b n +c n =1,则数列{}的前n 项和S n 中大于2016的最小项为第项.二、选择题.13.用数学归纳法证明“(n+1)(n+2)?…?(n+n )=2n ?1?3?…?(2n ﹣1)”,当“n 从k 到k+1”左端需增乘的代数式为()A .2k +1B .2(2k +1)C .D .14.一个三角形的三边成等比数列,则公比q 的范围是()A .q >B .q <C .<q <D .q <或q >15.等差数列{a n }中,a 5<0,且a 6>0,且a 6>|a 5|,S n 是其前n 项和,则下列判断正确的是()A .S 1,S 2,S 3均小于0,S 4,S 5,S 6,…均大于0 B .S 1,S 2,…,S 5均小于0,S 6,S 7,…均大于0C .S 1,S 2,…S 9均小于0,S 10,S 11,…均大于0D .S 1,S 2,…,S 11均小于0,S 12,S 13,…均大于0 16.若数列{a n }的通项公式是a n =,n=1,2,…,则(a 1+a 2+…+a n )等于()A .B .C .D .17.已知=1,那么(sin θ+2)2(cos θ+1)的值为()A .9 B .8 C .12 D .不确定18.已知f (n )=(2n +7)?3n +9,存在自然数m ,使得对任意n ∈N *,都能使m 整除f (n ),则最大的m 的值为()A .30B .26C .36D .6 三、解答题.19.用数学归纳法证明:12+22+32+…+(n ﹣1)2+n 2+(n ﹣1)2+…+32+22+12=n (2n 2+1)20.已知数列{a n }满足a 1=1,其前n 项和是S n 对任意正整数n ,S n =n 2a n ,求此数列的通项公式.21.已知方程cos2x+sin2x=k +1.(1)k 为何值时,方程在区间[0,]内有两个相异的解α,β;(2)当方程在区间[0,]内有两个相异的解α,β时,求α+β的值.22.设数列{a n }满足a 1=2,a 2=6,a n +2=2a n +1﹣a n +2(n ∈N*).(1)证明:数列{a n +1﹣a n }是等差数列;(2)求: ++…+.23.数列{a n },{b n }满足,且a 1=2,b 1=4.(1)证明:{a n +1﹣2a n }为等比数列;(2)求{a n },{b n }的通项.24.已知数列{a n }是等比数列,且a 2=4,a 5=32,数列{b n }满足:对于任意n ∈N*,有a 1b 1+a 2b 2+…+a n b n =(n ﹣1)?2n +1+2.(1)求数列{a n }的通项公式;(2)若数列{d n }满足:d 1=6,d n ?d n +1=6a?(﹣)(a >0),设T n =d 1d 2d 3…d n (n ∈N*),当且仅当n=8时,T n 取得最大值,求a 的取值范围.2015-2016学年上海中学高一(下)期末数学试卷参考答案与试题解析一、填空题1.arcsin(﹣)+arccos(﹣)+arctan(﹣)=.【考点】反三角函数的运用.【分析】利用反三角函数的定义和性质,求得要求式子的值.【解答】解:arcsin(﹣)+arccos(﹣)+arctan(﹣)=﹣arcsin()+π﹣arccos﹣arctan=﹣+(π﹣)﹣=,故答案为:.2.=5.【考点】数列的极限.【分析】利用数列的极限的运算法则化简求解即可.【解答】解:====5.故答案为:5.3.若数列{a n}为等差数列.且满足a2+a4+a7+a11=44,则a3+a5+a10=33.【考点】等差数列的性质.【分析】利用等差数列的通项公式即可得出.【解答】解:设等差数列{a n}的公差为d,∵a2+a4+a7+a11=44=4a1+20d,∴a1+5d=11.则a3+a5+a10=3a1+15d=3(a1+5d)=33.故答案为:33.4.设数列{a n}满足:a1=,a n+1=(n≥1),则a2016=2.【考点】数列递推式.【分析】通过计算出前几项的值确定周期,进而计算可得结论.【解答】解:依题意,a2===3,a3===﹣2,a4===,a5===2,∴数列{a n}是以4为周期的周期数列,又∵2016=504×4,∴a2016=a4=2,故答案为:2.5.已知数列{a n}满足:a n=n?3n(n∈N*),则此数列前n项和为S n=?3n+1+.【考点】数列的求和.【分析】利用“错位相减法”与等比数列的前n项和公式即可得出.【解答】解:∵a n=n?3n,则此数列的前n项和S n=3+2×32+3×33+…+n?3n,∴3S n=32+2×33+…+(n﹣1)?3n+n?3n+1,∴﹣2S n=3+32+33+…+3n﹣n?3n+1=﹣n?3n+1=(﹣n)3n+1﹣,∴S n=?3n+1+.故答案为:?3n+1+.6.已知数列{a n}满足:a1=3,a n+1=9?(n≥1),则a n=27.【考点】数列的极限.【分析】把已知数列递推式两边取常用对数,然后构造等比数列,求出数列{a n}的通项公式,则极限可求.【解答】解:由a n+1=9?(n≥1),得,。

2016-2017学年上海市浦东新区华师大二附中高一(下)学期期末数学试卷(a卷) (解析版)

2016-2017学年上海市浦东新区华师大二附中高一(下)学期期末数学试卷(a卷) (解析版)

2016-2017学年上海市浦东新区华师大二附中高一第二学期期末数学试卷(A 卷)一、填空题(共10小题,每小题4分,满分40分)1.已知集合A ={﹣1,3,2m ﹣1},集合B ={3,m 2}.若B ⊆A ,则实数m = . 2.“sin α=√32”是“α=2π3”的 条件.3.设指数函数f (x )=(a ﹣1)x 是R 上的减函数,则a 的取值范围是 . 4.设函数f (x )=1x 2+2x ,g (x )=√x +2+1x 2,则f (x )﹣g (x )= . 5.函数y =4x +9x−5(x >5)的最小值是 .6.若2cos (π﹣x )=sin (3π+x ),则sin(2π−x)−5cos(5π+x)sin(π+x)+7cos(−x−3π)= .7.已知下列三组函数:①y =ln (x 2)与y =2lnx ;②y =x 2|x|与y ={t ,t >0−t ,t <0;③f (x )=x ,D ={0,1}与g (x )=x 2,D ={0,1}表示同一函数的是 (写出所有符合要求的函数组的序号)8.函数f (x )=x −√2x −5的值域为 .9.已知函数y =f (x ),x ∈R ,对函数y =g (x ),x ∈I ,定义g (x )关于f (x )的“对称函数”为函数y =h (x ),x ∈I ,y =h (x )满足:对任意x ∈I ,两个点(x ,h (x )),(x ,g (x )关于点(x ,f (x ))对称,若y =h (x )是g (x )=√9−x 2关于f (x )=2x +b 的“对称函数”,且h (x )>g (x )恒成立,则实数b 的取值范围10.已知函数f(x)=|x +1x|−|x −1x|,关于x 的方程f 2(x )+a |f (x )|+b =0(a ,b ∈R )恰有6个不同实数解,则a 的取值范围是 . 二、选择题11.已知集合A ={x |x <a },B ={x |1<x <2},且A ∪(∁R B )=R ,则实数a 的取值范围是( ) A .a ≤1B .a <1C .a ≥2D .a >212.如果α是第二象限的角,那么α3必然不是下列哪个象限的角( ) A .第一象限B .第二象限C .第三象限D .第四象限13.若log m 2<log n 2<0,则实数m 、n 的关系是( )A .1<n <mB .0<n <m <1C .1<m <nD .0<m <n <114.下列四个图象,只有一个符合y =|k 1x +b 1|+|k 2x +b 2|﹣|k 3x +b 3|(k 1,k 2k 3∈R +,b 1b 2b 3≠0)的图象,则根据你所判断的图象,k 1、k 2、k 3之间一定满足的关系是( )A .k 1+k 2=k 3B .k 1=k 2=k 3C .k 1+k 2>k 3D .k 1+k 2<k 3三、解答题15.判断并证明函数f (x )=1x 2−1在区间(﹣1,0)上的单调性. 16.解关于x 的不等式:x 2﹣(a +a 2)x +a 3>0.17.如图是国际田联的标准400米跑道,它的最内侧跑道的边线是由两根84.39米的平行直线和两段半径36.80米的半园组成,每根跑道宽1.22米(道与道间的划线宽度忽略不计).比赛时运动员从下方标有数字处出发,为了比赛公平.外道的运动员的起跑点较内道的会有一定的提前量,使得所有运动员跑过的路程完全一致.假设每位运动员都会沿着自己道次的最内侧跑.(1)试给出400米比赛各道次提前量y 关于道次n 之间的函数关系,并完成下表(精确到0.01米)(2)800米比赛的规则是从出发处按道次跑完第一个弯道后可以开始并道赛跑,请你设计第8道选手的最优跑步路线并给出他起跑的提前量应该是多少. 道次 2 3 4 5 6 7 8 提前量(米)7.6715.3323.0030.6638.3346.0053.6618.已知函数f (x )的定义域是{x|x ∈R ,x ≠k 2,k ∈Z }且f (x )+f (2﹣x )=0,f (x +1)=−1f(x),当0<x <12时,f (x )=2019x .(1)求证:f (x )是奇函数;(2)求f (x )在区间 (12,1)上的解析式;(3)是否存在正整数k ,使得当x ∈(2k +12,2k +1)时,不等式log 2019f(x)>x 2−kx −2k有解?证明你的结论.2016-2017学年上海市浦东新区华师大二附中高一第二学期期末数学试卷(A 卷)参考答案一、填空题(共10小题,每小题4分,满分40分)1.已知集合A ={﹣1,3,2m ﹣1},集合B ={3,m 2}.若B ⊆A ,则实数m = 1 . 【分析】根据题意,若B ⊆A ,必有m 2=2m ﹣1,而m 2=﹣1不合题意,舍去,解可得答案,注意最后进行集合元素互异性的验证. 解:由B ⊆A ,m 2≠﹣1, ∴m 2=2m ﹣1.解得m =1. 验证可得符合集合元素的互异性,此时B ={3,1},A ={﹣1,3,1},B ⊆A 满足题意. 故答案为:12.“sin α=√32”是“α=2π3”的 必要非充分 条件.【分析】根据充分必要条件的定义,从而得到结论.解:“sin α=√32”则α=2π3+2k π或α=π3+2k π,∴“sin α=√32”是“α=2π3”的必要非充分条件,故答案为:必要非充分3.设指数函数f (x )=(a ﹣1)x 是R 上的减函数,则a 的取值范围是 1<a <2 . 【分析】欲使得指数函数f (x )=(a ﹣1)x 是R 上的减函数,只须其底数小于1即可,从而求得a 的取值范围. 解:根据指数函数的性质得: 0<a ﹣1<1, ∴1<a <2. 故答案为1<a <2. 4.设函数f (x )=1x 2+2x ,g (x )=√x +2+1x2,则f (x )﹣g (x )= 2x −√x +2,x ∈[﹣2.0)∪(0,+∞) .【分析】作差后,求x 的范围时,要注意x ≠0.解:f (x )﹣g (x )=1x 2+2x −√x +2−1x 2=2x −√x +2,x ∈[﹣2,0)∪(0,+∞) 故答案为:2x −√x +2,x ∈[﹣2,0)∪(0,+∞) 5.函数y =4x +9x−5(x >5)的最小值是 32 . 【分析】先进行换元t =x ﹣5,则t >0,可得y =4x +9x−5=4t +9t+20,然后利用基本不等式即可求解.解:由x >5可得x ﹣5>0, 令t =x ﹣5,则t >0, 则y =4x +9x−5=4t +9t +20≥20+2√4t ⋅9t=32, 当且仅当4t =9t即t =32时取得最小值32,此时x =132. 故答案为:326.若2cos (π﹣x )=sin (3π+x ),则sin(2π−x)−5cos(5π+x)sin(π+x)+7cos(−x−3π)= −13 .【分析】由条件利用诱导公式求得tan x =2,再利用诱导公式、同角三角函数的基本关系,化简所给的式子,可得结果.解:∵2cos (π﹣x )=sin (3π+x ),∴﹣2cos x =﹣sin x ,∴tan x =2, 则sin(2π−x)−5cos(5π+x)sin(π+x)+7cos(−x−3π)=−sinx+5cosx −sinx−7cosx=sinx−5cosx sinx+7cosx=tanx−5tanx+7=−13,7.已知下列三组函数:①y =ln (x 2)与y =2lnx ;②y =x 2|x|与y ={t ,t >0−t ,t <0;③f (x )=x ,D ={0,1}与g (x )=x 2,D ={0,1}表示同一函数的是 ②③ (写出所有符合要求的函数组的序号)【分析】通过看定义域可判断①的两函数不是同一函数,对于②可得出y =x 2|x|=|x|={xx >0−xx <0,显然与y ={tt >0−tt <0是同一函数,对于③的两函数都表示两个点(0,0),(1,1),从而是同一函数,从而得出是同一函数的为②③.解:①y =ln (x 2)的定义域为{x |x ≠0},y =2lnx 的定义域为{x |x >0},定义域不同,不是同一函数; ②y =x 2|x|=|x|={x x >0−x x <0,与y ={tt >0−t t <0是同一函数;③f(x)=x,D={0,1}表示两个点(0,0),(1,1),g(x)=x2,D={0,1}表示两个点(0,0),(1,1),是同一函数;∴表示同一函数的是②③.故答案为:②③.8.函数f(x)=x−√2x−5的值域为[2,+∞).【分析】设√2x−5=t,则t≥0,利用换元法,结合二次函数的性质即可求出.解:设√2x−5=t,则t≥0,则2x﹣5=t2,即x=12(t2+5),∴y=12(t2+5)﹣t=12t2﹣t+52=12(t﹣1)2+2≥2,故函数f(x)的值域为[2,+∞),故答案为:[2,+∞)9.已知函数y=f(x),x∈R,对函数y=g(x),x∈I,定义g(x)关于f(x)的“对称函数”为函数y=h(x),x∈I,y=h(x)满足:对任意x∈I,两个点(x,h(x)),(x,g(x)关于点(x,f(x))对称,若y=h(x)是g(x)=√9−x2关于f(x)=2x+b 的“对称函数”,且h(x)>g(x)恒成立,则实数b的取值范围(3√5,+∞)【分析】根据两个函数关于y=f(x)的对称定义,写出函数y=h(x)的解析式,再利用h(x)>g(x)恒成立列出不等式,在同一坐标系内画出两个函数的图象,由数形结合求出b的取值范围.解:根据两个函数h(x)与g(x)关于y=f(x)的对称定义知,函数g(x)=√9−x2,f(x)=2x+b,∴函数y=h(x)=4x+2b−√9−x2;h(x)>g(x)恒成立,即4x+2b−√9−x2>√9−x2恒成立,化简为2x+b>√9−x2恒成立;在同一坐标系内画出y=2x+b和y=√9−x2的图象,如图所示;由图形知,圆心O(0,0)到直线2x﹣y+b=0的距离d>r,3,即22解得b>3√5或b<﹣3√5(不合题意,舍去);综上所述,实数b的取值范围是b>3√5.故答案为:(3√5,+∞).|−|x−1x|,关于x的方程f2(x)+a|f(x)|+b=0(a,b∈R)恰10.已知函数f(x)=|x+1x有6个不同实数解,则a的取值范围是(﹣4,﹣2).【分析】题中原方程f2(x)+a|f(x)|+b=0恰有6个不同实数解,故先根据题意作出f(x)的简图,由图可知,只有当f(x)=2时,它有二个根,且当f(x)=k(0<k<2),关于x的方程f2(x)+a|f(x)|+b=0(a,b∈R)恰有6个不同实数解,据此即可求得实数a的取值范围.解:先根据题意作出f(x)的简图:得f(x)>0.∵题中原方程f2(x)+a|f(x)|+b=0(a,b∈R)恰有6个不同实数解,即方程f2(x)+af (x)+b=0(a,b∈R)恰有6个不同实数解,∴故由图可知,只有当f(x)=2时,它有二个根.故关于x的方程f2(x)+af(x)+b=0中,有:4+2a+b=0,b=﹣4﹣2a,且当f(x)=k,0<k<2时,关于x的方程f2(x)+af(x)+b=0有4个不同实数解,∴k2+ak﹣4﹣2a=0,a=﹣2﹣k,∵0<k<2,∴a∈(﹣4,﹣2).故答案为:(﹣4,﹣2).二、选择题11.已知集合A ={x |x <a },B ={x |1<x <2},且A ∪(∁R B )=R ,则实数a 的取值范围是( ) A .a ≤1B .a <1C .a ≥2D .a >2【分析】先求出∁R B ,从而根据集合A 及A ∪(∁R B )=R 即可求出a 的取值范围. 解:∵∁R B ={x |x ≤1,或x ≥2}, ∴若A ∪(∁R B )=R ; ∴a ≥2. 故选:C .12.如果α是第二象限的角,那么α3必然不是下列哪个象限的角( )A .第一象限B .第二象限C .第三象限D .第四象限【分析】由α的范围判断α的13的范围,先写出角的范围,再除以3,求出角的13的范围,看出角的范围. 解:∵α是第二象限角, ∴α∈(2k π+π2,2k π+π),k ∈Z , ∴α3∈(23k π+π6,23k π+π3),k ∈Z .∴是第一或二,四象限角. 故选:C .13.若log m 2<log n 2<0,则实数m 、n 的关系是( ) A .1<n <mB .0<n <m <1C .1<m <nD .0<m <n <1【分析】利用对数换底公式、对数函数的单调性即可得出. 解:∵log m 2<log n 2<0,∴lg2lgm <lg2lgn<0,∴lgn<lgm<0,可得0<n<m<1.故选:B.14.下列四个图象,只有一个符合y=|k1x+b1|+|k2x+b2|﹣|k3x+b3|(k1,k2k3∈R+,b1b2b3≠0)的图象,则根据你所判断的图象,k1、k2、k3之间一定满足的关系是()A.k1+k2=k3B.k1=k2=k3C.k1+k2>k3D.k1+k2<k3【分析】由于k1,k2,k3为正实数,考虑当x足够小时和当x足够大时的情形去掉绝对值符号,转化为关于x的一次函数,通过观察直线的斜率特征即可进行判断.解:y=|k1x+b1|﹣|k2x+b2|+|k3x+b3|(其中k1>0,k2>0,k3<0,b1,b2,b3为非零实数),当x足够小时,y=﹣(k1+k2﹣k3)x﹣(b1+b2﹣b3),当x足够大时,y=(k1+k2﹣k3)x+(b1+b2﹣b3),可见,折线的两端的斜率必定为相反数,此时只有第2个图象符合条件.此时k1+k2﹣k3=0,即k1+k2=k3,故选:A.三、解答题15.判断并证明函数f(x)=1x2−1在区间(﹣1,0)上的单调性.【分析】根据题意,设﹣1<x1<x2<0,作差分析可得f(x1)﹣f(x2)=(x2−x1)(x2+x1) (x12−1)(x22−1),结合﹣1<x1<x2<0,分析可得f(x1)﹣f(x2)<0,由函数单调性的定义,分析可得答案.解:根据题意,函数f(x)=1x2−1在区间(﹣1,0)上单调递增,证明如下:设﹣1<x1<x2<0,则f(x1)﹣f(x2)=1x12−1−1x22−1=(x2−x1)(x2+x1)(x12−1)(x22−1),又由﹣1<x1<x2<0,则x2﹣x1>0,x2+x1<0,x12﹣1<0,x22﹣1<0,则有f(x1)﹣f(x2)<0,则函数f(x)=1x2−1在区间(﹣1,0)上单调递增.16.解关于x的不等式:x2﹣(a+a2)x+a3>0.【分析】把不等式坐标利用十字相乘法分解因式,然后分a大于a2、a小于a2及a等于a2三种情况即a小于0,a等于0,a大于0小于1,a等于1,a大于1五种情况,利用不等式取解集的方法分别求出各自的解集即可.解:(x﹣a)(x﹣a2)>0①当a<0时,x>a2或x<a;②当a=0时,x≠0;③当0<a<1时,x>a或x<a2;④当a=1时,x≠1;⑤当a>1时,x>a2或x<a;综上,当a<0或a>1时,不等式解集为{x|x>a2或x<a};当a=0时,不等式解集为{x|x≠0};当0<a<1时,不等式解集为{x|x>a或x<a2};当a=1时,不等式解集为{x|x≠1}.17.如图是国际田联的标准400米跑道,它的最内侧跑道的边线是由两根84.39米的平行直线和两段半径36.80米的半园组成,每根跑道宽1.22米(道与道间的划线宽度忽略不计).比赛时运动员从下方标有数字处出发,为了比赛公平.外道的运动员的起跑点较内道的会有一定的提前量,使得所有运动员跑过的路程完全一致.假设每位运动员都会沿着自己道次的最内侧跑.(1)试给出400米比赛各道次提前量y关于道次n之间的函数关系,并完成下表(精确到0.01米)(2)800米比赛的规则是从出发处按道次跑完第一个弯道后可以开始并道赛跑,请你设计第8道选手的最优跑步路线并给出他起跑的提前量应该是多少.道次2345678提前量(米)7.6715.3323.0030.6638.3346.0053.66【分析】(1)7.67π≈2.44.根据一次函数的关系即可得出.(2)经过第一个弯道后并道,恰好在第二个弯道入口处到达最里内道,再沿着最内道完成比赛,提前量为27.26米.解:(1)7.67π≈2.44.y =2.44π(n ﹣1),n ∈[1,8],n ∈N *.(2)经过第一个弯道后并道,恰好在第二个弯道入口处到达最里内道,再沿着最内道完成比赛,提前量为27.26米.18.已知函数f (x )的定义域是{x|x ∈R ,x ≠k 2,k ∈Z }且f (x )+f (2﹣x )=0,f (x +1)=−1f(x),当0<x <12时,f (x )=2019x . (1)求证:f (x )是奇函数;(2)求f (x )在区间 (12,1)上的解析式; (3)是否存在正整数k ,使得当x ∈(2k +12,2k +1)时,不等式log 2019f(x)>x 2−kx −2k 有解?证明你的结论.【分析】(1)由已知f (x +1)=−1f(x),得f (x +2)=−1f(x+1)=f (x ),进而结合f (x )+f (2﹣x )=0,可得f (x )+f (﹣x )=0,结合奇函数的定义,即可得证;(2)由x ∈(12,1)时,1﹣x ∈(0,12),结合已知f (x )=2019x .结合(1)中结论可得所求解析式;(3)由(2)的结论及指数的运算性质,可将不等式log 2019f (x )>x 2﹣kx ﹣2k 转化为二次不等式的形式,进而分析出对应函数在区间(2k +12,2k +1)上的单调性,即可得到结论. 解:(1)证明:由f (x +1)=−1f(x),得f (x +2)=−1f(x+1)=f (x ),由f (x )+f (2﹣x )=0得f (x )+f (﹣x )=0,故f (x )是奇函数;(2)当x ∈(12,1)时,1﹣x ∈(0,12), ∴f (1﹣x )=20191﹣x ,而f (1﹣x )=−1f(−x),∴f (x )=2019x ﹣1; (3)当x ∈(2k +12,2k +1),k ∈Z 时,x ﹣2k ∈(12,1), ∴f (x ﹣2k )=2019x ﹣2k ﹣1, 因此f (x )=f (x ﹣2k )=2019x ﹣2k ﹣1,不等式log 2019f (x )>x 2﹣kx ﹣2k 即为x ﹣2k ﹣1>x 2﹣kx ﹣2k , 即x 2﹣(k +1)x +1<0.令g (x )=x 2﹣(k +1)x +1,对称轴为x =k+12, 因此函数g (x )在(2k +12,2k +1)上单调递增,因为g (2k +12)=(2k +12)2﹣(k +1)(2k +12)+1=(2k +12)(k −12)+1,又k 为正整数,所以g (2k +12)>0,因此x 2﹣(k +1)x +1>0在(2k +12,2k +1)上恒成立, 因此不存在正整数k 使不等式x 2﹣(k +1)x +1<0有解.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

华二附中高一期末数学试卷
2017.6
一. 填空题
1. 方程组21
32x y x y -=⎧⎨+=⎩
的增广矩阵是
2. 已知数列{}n a 是以15-为首项,2为公差的等差数列,n S 是其前n 项和,则数列{}n S 的最小项为第 项
3.
函数1arcsin (
2y x x =≤≤的值域为 4. 数列{}n a 通项公式1
()(1)
n a n n n *=
∈+N ,{}n a 前n 项和为n S ,则lim n n S →∞=
5. 在ABC ∆中,,,a b c 是角,,A B C 所对应的边,1tan 3A =,1
tan 2
B =,如果1a =,则
b =
6. 无穷等比数列{}n a 的首项是某个正整数,公比为单位分数(即形如:1
m
的分数,m 为 正整数),若该数列的各项和为3,则12a a +=
7. 不等式
21
20
02103
2
1
x x +≥-的解集为 8. 设0,0a b >>,若关于,x y 的方程组1
1ax y x by +=⎧⎨+=⎩
无解,则a b +的取值范围是
9. 数列{}n a 满足:1a a =(a ∈R 且为常数),13(3)
()4(3)
n n n n n a a a n a a *+->⎧=∈⎨-≤⎩N ,当100a =
时,则数列{}n a 的前100项的和100S 为 10. 如果12()n S n n *=++
+∈N ,32
23(2,)11
1
n
n n S S S T n n S S S *=
⨯⨯⨯
≥∈---N , 则2017T 的值为 (用分数形式表示)
二. 选择题
11. 方程tan 2x =的解集为( )
A. {|2arctan 2,}x x k k π=+∈Z
B. {|2arctan 2,}x x k k π=±∈Z
C. {|arctan 2,}x x k k π=+∈Z
D. {|(1)arctan 2,}k
x x k k π=+-∈Z
12. 以n S 、n T 分别表示等差数列{}n a 、{}n b 的前n 项和,若73n n S n T n =+,则55
a b =( ) A. 7 B.
214 C. 378 D. 2
3
13. 已知等比数列{}n a 的前n 项和为n S ,则下列一定成立的是( ) A. 若30a >,则20160a > B. 若40a >,则20170a > C. 若30a >,则20170S > D. 若40a >,则 20160S >
14. 已知无穷等比数列{}n a 的公比为q ,前n 项和为n S ,且lim n n S S =→∞
,下列条件中,使
得2()n S S n *
<∈N 恒成立的是( )
A. 10a >,0.60.7q <<
B. 10a <,0.70.6q -<<-
C. 10a >,0.70.8q <<
D. 10a <,0.80.7q -<<-
三. 简答题 15. 关于x 的不等式
201
x m x
+<的解集为(1,2)-.
(1)求实数m 的值;
(2)若cos 2sin 0m αα+=,求tan(2)4
π
α-的值.
16.
已知函数2
()cos ())cos()(0)f x x x x ωωωω=>的最小正周期为π. (1)求ω的值和函数()f x 的值域;
(2)求函数()f x 的单调递增区间及其图像的对称轴方程.
17. 设数列{}n a ,{}n b 满足:1254,2a a ==,12
n n n a b a ++=,12n n n n n a b b a b +=+,n *
∈N .
(1)写出数列{}n b 的前三项;
(2)证明:数列{}n n a b ⋅为常数列,并用n a 表示1n a +; (3)证明:数列2
{ln }2
n n a a +-是等比数列,并求数列{}n a 的通项公式.
18. 定义:对于任意n *
∈N ,满足条件2
12
n n n a a a +++≤且n a M ≤(M 是与n 无关的常数)
的无穷数列{}n a 称为T 数列.
(1)若28()n a n n n *
=-+∈N ,证明:数列{}n a 是T 数列;
(2)设数列{}n b 的通项为3
50()2
n n b n =-,且数列{}n b 是T 数列,求常数M 的取值范围; (3)设数列|1|(,12)n p
c n p n
*=-∈<<N ,若数列{}n c 是T 数列,求p 的取值范围.
参考答案
一. 填空题 1. 211132-⎛⎫
⎪⎝⎭
2. 8
3.
,63ππ⎡⎤
⎢⎥⎣⎦
4. 1
5.
6.
8
3
7. (,0]-∞ 8. (2,)+∞ 9. 1849 10. (1)
(1)12(1)1(2)(1)21
12
n n n n S n n n n n n S n n n n +++===⋅+-+-+-- 201724T =35⨯4⨯62015⨯⨯20172016⨯20172018⨯32019⎛⎫⨯ ⎪⎝⎭41⨯52⨯3
2016⨯

201420172015⨯20182016⨯23201720182017=2018201912673
⎛⎫
⎪⎝⎭⨯⨯=⨯⨯⨯
二. 选择题
11. C 12. B 13. C 14. B
三. 解答题
15. (1)1m =-;(2)
17
. 16. (1)1ω=,113()sin 2,6222f x x π⎛⎫⎡⎤=++∈- ⎪⎢⎥⎝
⎭⎣⎦
; (2)单调递增区间为,()3
6k k k π
πππ⎡

-+
∈⎢⎥⎣

Z ,对称轴方程为()26k x k ππ
=+∈Z . 17. (1)11b =,285b =,380
41
b =; (2)证明:11111
222n n n n n n n n n n n n n n n a b a b a b
b a b a b a b a a +++++=
==⇒=+,
∴{}n n a b ⋅为常数列4,即4n n a b ⋅=,∴2144
2
2
2n n n
n
n n n
a a
b a a a a ++++==
=
; (3)22
221222
14
22244(2)24244(2)222n n n n n n n n
n n n n n n
a a a a a a a a a a a a a a ++++⎛⎫+++++==== ⎪+-+---⎝⎭-
2
1111222
ln ln 2ln
222n n n n n n a a a a a a ++++⎛⎫+++⇒== ⎪---⎝⎭
, ∴2ln
2n n a a ⎧⎫
+⎨⎬-⎩⎭
是以ln 3为首项,2为公比的等比数列, ∴1
11
212222232ln =2ln 3=32231
n n n n n n n n n a a a a a ----++⋅+⇒⇒=---. 18.(1)略;(2)12
36002M ⎛⎫≥- ⎪⎝⎭
;(3)615p <≤.。

相关文档
最新文档