管道的设计计算——管径和管壁厚度

合集下载

钢管壁厚计算范文

钢管壁厚计算范文

钢管壁厚计算范文钢管壁厚是指钢管壁的厚度,它是决定钢管强度和承载能力的重要参数。

在进行钢管的设计、制造和使用过程中,合理计算钢管壁厚是非常重要的。

钢管壁厚的计算需要考虑多个因素,如工作条件、使用要求、材料特性等。

以下是一个钢管壁厚计算的范文,展示了一个典型的计算过程。

首先,确定工作条件。

假设我们需要设计一根用于输送液体的钢管。

在设计过程中,我们需要知道液体的工作温度、工作压力和输送液体的化学性质。

假设液体的工作温度为50℃,工作压力为10MPa,液体为一般化学物质。

其次,选择材料。

根据液体的性质和工作条件,我们可以选择合适的钢管材料。

假设我们选择了碳钢管作为材料。

然后,计算壁厚。

钢管壁厚计算可以通过以下步骤进行:1.根据工作压力和材料的屈服强度计算允许应力。

根据设计规范和经验值,我们可以得出碳钢管的屈服强度为240MPa。

允许应力一般是屈服强度的1/3至1/4、假设我们选择允许应力为允许应力=屈服强度/3=240/3=80MPa。

2. 根据管道内径和工作压力计算应力。

应力可以通过应力=工作压力*管道内径/ (2*壁厚)计算得出。

假设管道内径为100mm,工作压力为10MPa,则应力=10*100/(2*壁厚)=500/壁厚。

3.根据允许应力和应力计算壁厚。

将应力与允许应力进行比较,如果应力小于允许应力,则壁厚合适;如果应力大于允许应力,则需要增加壁厚。

假设应力小于允许应力,即500/壁厚<80MPa,则壁厚适合条件。

最后,验证计算结果。

经过计算得出的壁厚为壁厚适合条件。

为了验证计算结果,我们可以选择使用计算机辅助设计软件或者与实际制造人员进行讨论,以确保钢管壁厚的合理性。

综上所述,钢管壁厚计算涉及各种因素的综合考虑,包括工作条件、材料选择和力学计算。

通过合理的计算方法和合适的参数选择,可以确定符合设计要求的钢管壁厚。

但它只是钢管设计的一部分,对于实际使用和制造过程中的其他问题,还需要更多的考虑和分析。

管道壁厚的合理计算和选择

管道壁厚的合理计算和选择

管径的大小 与管道 系统的一 次投资费( 材料 和安 择 却 非常 混乱 , 经常 会 出现 凭经 验估 算 、 乱 套管 子壁 厚系 列表 于给定 的流量 , 、 操作 费( 动力消耗 和维修) 和折 旧费等项有 密切 的关 系 , 应 ( S C H) 表、 不 经过 演算 随意 套 用某 些手 册数 据 的现 象 , 有 的甚 装)
c : . + 腐 蚀或 磨 蚀附 加量 ( m m ); 一螺纹 加工 深度 值( m m ) ;
1 。 4管道厚度附加量 C的确定
管壁附加 厚度 C值 的选 用如表 2 :
表2 管壁附加厚度 C值选用表 ( mm)
管壁制造偏差
C-
1 . 1 设计 压 力 P 和 温度 T 的计 算和 选 定
6=6 。 +C


d=1 8 . 8 1 V o 。 l Z
式中:
PD
C1 0—
d 一 管道 的内径 ( m m ); 一 管 内介 质的质量 流量 ,k g / h ;
一 管 内介质 的体 积流量 ,m / h ;
+C
2 1 o - 1 ++ P
即 6 = P D
【 】 在 设 计 温 度 下 材 料 的 许 用 应 力( M P a ) ;
焊 接 接 头 系 数 , 对 于 无 缝 钢 管 咖 : l , 焊 接 钢 管 = 0 . 8 , 螺 旋 焊 接 钢 管 ( = 5 = 0 . 6 ;
c _ ÷ 厚度 附 加量 之和 ( m m );
p 一 介质在 工作 条件下的 密度 ,培, m ;
式中:
6 一选 用 管壁 厚度 ( 肼 );
一 介 质在 管内的平 均流速 ,m / s 。

钢管的壁厚和单位长度重量计算及选择

钢管的壁厚和单位长度重量计算及选择

1:计算-20200mm),2;)表1中系列5”。

)表1P内。

(2)钢管水锤增加值计算(3)钢管壁厚计算(4)钢管和镀锌钢管单位长度重量计算计算公式:1)△H=C△V/g2)C=1425/(1+KD0/Ee)式中:△H—直接水锤的压力水头增加值,m;C—水锤波传播速度,m/s;△V—管中流速变化值,为初流速度减去末流速度,m/s,取计算实际流速值;g—重力加速度,m2/s,取值9.8;1425—声波在水中的传播速度,m/s;K—水的体积弹性模数,GPa,常温时K=2.025GPa,D0—管道内径,mm;E—管材的纵向弹性模量,GPa,钢管取206;e—管壁厚度,mm。

计算公式:t=PD/1.75S+2.54式中:t一钢管壁厚,(mm);P一设计管道压力,(MPa);若为泵站上水管则选择设计内水压力P内和增加水锤压力P 增两者中的较大值,若为自流输水管则等于设计内水压力P内;D一钢管外径,(mm);S一设计温度下的材料应用许用应力,(MPa);选用管材钢牌号为Q235B,取值125MPa;2.54一腐蚀裕量和螺纹深度,(mm)。

镀锌而成,一般用(量》(于内径。

35B水锤波在管中的传播速度C (m/s)直接水锤的压力水头增加值△H(m)增加水锤压力P增(Mpa)管壁计算厚度t2(mm)设计选取管壁厚度t(mm)管材(钢牌号Q235B)1102.4119.35 1.54 4.08 4.5热镀锌钢管3.6热镀锌钢管管道外径(mm)设计选取管壁厚度t(mm)管道公称直径(mm)管道外径(mm)DN202026.9 3.6100114.3 DN252533.7DN323242.4 DN404048.3 DN505060.3 DN656576.1 DN808088.9 DN100100114.3 DN125125139.7 DN150150165.1 DN200200219.1 DN250250273.1 DN300300323.9 DN350350355.6 DN400400406.4 DN450450457 DN500500508表5:《低压流体输送用焊接钢管道公称直径(mm)表3:系列1钢管常用管径表4:设计管道可承受压力验算可承受压力验算验算管道可承受压力(Mpa)2.03:《低压流体输送用焊接钢管》(GBT 3091-2015)中规定的对应管径的最小壁厚壁厚。

完整word版,压缩空气管径的设计计算及壁厚

完整word版,压缩空气管径的设计计算及壁厚

管道的设计计算——管径和管壁厚度空压机是通过管路、阀门等和其它设备构成一个完整的系统。

管道的设计计算和安装不当,将会影响整个系统的经济性及工作的可靠性,甚至会带来严重的破坏性事故。

A.管内径:管道内径可按预先选取的气体流速由下式求得:=i d 8.1821⎪⎭⎫ ⎝⎛u q v式中,i d 为管道内径(mm );v q 为气体容积流量(h m 3);u 为管内气体平均流速(sm ),下表中给出压缩空气的平均流速取值范围。

管内平均流速推荐值1m 内的管路或管路附件——冷却器、净化设备、压力容器等的进出口处,有安装尺寸的限制,可适当提高瞬间气体流速。

例1:2台WJF-1.5/30及2台H-6S 型空压机共同使用一根排气管路,计算此排气管路内径。

已知WJF-1.5/30型空压机排气量为1.5 m 3/min 排气压力为3.0 MPa已知H-6S 型空压机排气量为0.6 m 3/min 排气压力为3.0 MPa4台空压机合计排气量v q =1.5×2+0.6×2=4.2 m 3/min =252 m 3/h如上表所示u=6 m/s带入上述公式=i d 8.1821⎪⎭⎫ ⎝⎛u q v =i d 8.18216252⎪⎭⎫ ⎝⎛=121.8 mm得出管路内径为121mm 。

B.管壁厚度:管壁厚度δ取决于管道内气体压力。

a.低压管道,可采用碳钢、合金钢焊接钢管;中压管道,通常采用碳钢、合金钢无缝钢管。

其壁厚可近似按薄壁圆筒公式计算:min δ=[]c npnpd i+-ϕσ2式中,p 为管内气体压力(MPa );n 为强度安全系数5.25.1~=n ,取[σ]为管材的许用应力(MPa ),常用管材许用应力值列于下表;ϕ为焊缝系数,无缝钢管ϕ=1,直缝焊接钢管ϕ=0.8;c 为附加壁厚(包括:壁厚偏差、腐蚀裕度、加工减薄量),为简便起见,通常当δ>6mm 时,c ≈0.18δ;当δ≤6mm 时,c =1mm 。

钢管径厚比

钢管径厚比

钢管径厚比
钢管径厚比是指钢管的外径与壁厚之比,通常用D/T来表示,其中D为钢管外径,T为钢管壁厚。

钢管径厚比的大小直接影响了钢管的强度、稳定性以及承载能力等重要性能指标。

不同钢管径厚比的适用场合对于钢管的性能要求不同,因此需要选用不同的钢管径厚比。

以下是常见的几种情况:1.低压流体输送钢管:通常采用较小的钢管径厚比,如D/T 为15或者20,因为输送低压流体时对于钢管的要求不是很高。

2.中高压流体输送钢管:中高压流体输送对钢管的要求比较高,需要选用D/T值较大的钢管,以保证其具有足够的强度和承载能力。

常采用的钢管径厚比为20~50。

3.结构用钢管:结构用钢管需要具有足够的强度和稳定性,通常使用较大的钢管径厚比,如D/T为50以上。

4.石油、天然气输送用钢管:石油、天然气输送需要使用具有很高承载能力的钢管,通常使用较大的钢管径厚比,如D/T为30~100。

在选择钢管径厚比时需要考虑以下几个方面:
1.所输送介质的性质和流量。

2.工作压力和温度。

3.工程要求和设计标准。

正确选择钢管径厚比非常重要,选择不当将会影响工程质量和使用寿命。

(石油天然气管道行业)管径计算壁厚计算方式过程小秘籍

(石油天然气管道行业)管径计算壁厚计算方式过程小秘籍

一、项目设计阶段划分1.项目前期咨询阶段:规划、方案、可行性研究报告、项目申请报告等。

2.项目设计阶段(国内):1)石油系统:初步设计、施工图2)石化化工系统:基础设计、详细设计3.项目设计阶段(国外):概念设计(concept design)、FEED(front end engineering design)、EPC4.区别1)方案编制规定:国家或部门无具体的编制规定。

2)可研性研究报告编制规定:(1)油气田地面工程:中石油内部规定,油田地面可行性研究报告+气田地面可行性研究报告。

(2)长输管道工程:中石油内部规定,输气管道工程可行性研究报告+输油管道工程可行性研究报告。

(3)城镇燃气:《市政公用工程设计文件编制深度规定(2013年版)》3)项目申请报告编制规定:发改投资〔2017〕684号4)初步设计/基础设计阶段(1)油气田地面工程:GB/T50691-2011油气田地面工程建设项目设计文件编制标准;(2)长输管道工程:GB 50644-2011 油气管道工程建设项目设计文件编制标准(3)城镇燃气:《市政公用工程设计文件编制深度规定(2013年版)》(4)正规装置、石化、化工系统:GB 50933-2013 石油化工装置设计文件编制标准5)施工图/详细设计阶段GB 50933-2013 石油化工装置设计文件编制标准二、管道、阀门、法兰、罐、机泵等讲管道:大小、材料、制造标准、制造形式、外径及壁厚标准。

1.管道大小计算:1)油管道:《油田油气集输设计规范》GB50350-2015 输油泵进口流速不宜大于1.0m/s,输油泵出口流速0.8-2.0m/s。

2)输气管道:《油气管道运行规范》GB/T 35068-2018:---进站处至分离器上游之间工艺管道内的气体流速不宜大于15m/s,不应大于20m/s;---分离器下游至出站处之间工艺管道内的气体流速不宜大于20m/s;----调压后压力小于2.5MPa的,调压设施下游工艺管道内的气体流速不应大于25m/s。

压力管道管径和壁厚的选择论述

压力管道管径和壁厚的选择论述

压力管道管径和壁厚的选择论述摘要:压力管道的运行安全问题备受关注,特别是石油化工行业的压力管道,不仅作业环境复杂多变,而且易燃易爆、有毒有害介质较多,故必须对其管径和壁厚进行慎重选择和规范设计,来确保压力管道的安全运行。

对此,本文结合压力管道设计内涵,并就其管径和壁厚的选择方法进行了重点论述。

关键词:压力管道设计管径壁厚众所周知,压力管道涉及的介质多具有较强的毒害性、爆炸性和环境破坏性,一旦发生事故极易造成难以弥补的人员伤亡、经济损失和环境污染等,近年来这样的事故也在频频发生,故强化压力管道的规范化设计就具有更重要和深远的意义。

其中管径和壁厚的大小对介质流速、管路安全运行、费用成本等都有着重要影响,选择合理的管径和壁厚就尤为关键,下面就其选择方法加以论述。

一、压力管道设计内涵压力管道,是指利用一定的压力,用于输送气体或者液体的管状设备,其范围规定为最高工作压力大于或者等于0.1MPa(表压)的气体、液化气体、蒸汽介质或者可燃、易爆、有毒、有腐蚀性、最高工作温度高于或者等于标准沸点的液体介质,且公称直径大于25mm的管道。

国家在相应的监督规程中以设计压力、温度、输送介质的腐蚀性、毒性和火灾危险程度等为依据,将压力管道分为GA类(长输管道)、GB类(公用管道)、GC类(工业管道)、GD类(动力管道)[1]。

虽然管径的大小会影响介质的输送效果,壁厚的大小会影响介质的输送安全,但这并不意味着管径越大、管壁越厚就越好,而应将两者视为设计的基础和关键,予以综合分析和科学计算,以此来确保其取值切实合理,有助于提高压力管道的安全性、可靠性与经济性。

二、压力管道管径和壁厚的选择1.压力管道的管径选择一般情况下,若流体的输送能力一定,管径越大,介质流动速度越小,管路压力降也会随之减小,此时虽降低了压缩机、泵等动力设备的运行费用,但会大大增加管路建设费用,所以从安全和经济的角度出发,形成了一套简单而有效的方法用于计算管道内径,即di=18.8[qm/υ]1/2,其中di-管道内径(mm)、qm-介质体积流量(m3/h)、υ-介质平均流速(m/s),可见管径的选择是以预定介质流速为前提的[2]。

压缩空气管径的设计计算及壁厚

压缩空气管径的设计计算及壁厚

压缩空气管径的设计计算及壁厚1.确定气体流量:首先需要确定所需传输的压缩空气的气体流量,一般以标准体积流量表示,单位为立方米/分钟或立方英尺/分钟。

2.确定压力损失:计算压缩空气在管道传输中的压力损失,根据流量和管道长度来确定管道的摩阻系数。

根据气体传输的相关经验公式,计算得到气体在管道中的压力损失值。

3.选择管道材料:根据压缩空气的使用环境和工作条件选择合适的管道材料,常见的材料有铜管、镀锌管、不锈钢管等。

不同材料的管道具有不同的特性和耐压能力,根据实际情况选择合适的材料。

4. 计算管道直径:根据流量和压力损失值,采用Colebrook-White方程或其他管道流体力学公式,计算得到合适的管道直径。

直径的计算一般需要结合其他因素,如压力损失限制、经济性、施工便利性等进行综合考虑。

5.设计壁厚:根据所选择的管道材料和管道直径,结合设计标准和规范,确定合适的管道壁厚。

壁厚的设计一般要满足管道的强度和刚度要求,并考虑到管道的焊接性能和耐腐蚀性能。

在压缩空气管道设计过程中,需要注意以下几个要点:1.管道长度:管道长度对于压缩空气的传输有一定影响,较长的管道会增加压力损失。

因此,在设计计算时需要考虑管道长度,并进行相应的修正。

2.管道接头:管道连接方式也会对压缩空气管道的性能和压力损失产生一定影响。

常见的连接方式有焊接、螺纹连接、法兰连接等,需根据实际情况选择合适的连接方式,并考虑连接处的压力损失。

3.安全性考虑:在压缩空气管道设计中,应充分考虑系统的安全性,包括防止管道爆炸、泄漏等安全问题。

合理选择管道材料、设计合适的壁厚,并进行可靠的管道连接和保护措施,以确保系统的安全运行。

总之,压缩空气管径的设计计算及壁厚的选择要根据具体的使用需求、工作条件和管道特性进行综合考虑,合理设计管道尺寸和壁厚,以提高系统的传输效果和安全性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

管道的设计计算——管径和管壁厚度
管路、阀门等和其它设备构成一个完整的系统。

管道的设计计算和安装不当,将会影响整个系统的经济性及工作的可靠性,甚至会带来严重的破坏性事故。

A.管内径:管道内径可按预先选取的介质流速由下式求得:
d i=18.8{q v/u}1/2
式中,d i为管道内径(mm);q v为介质容积流量(m3/h);u为管内气体平均流速(m/s),下表中给出介质平均流速取值范围。

管内平均流速推荐值
例1:2台WJF-1.5/30及2台H-6S型空压机共同使用一根排气管路,计算此排气管路内径。

已知WJF-1.5/30型空压机排气量为1.5 m3/min 排气压力为3.0 MPa
已知H-6S型空压机排气量为0.6 m3/min 排气压力为3.0 MPa
4台空压机合计排气量=1.5×2+0.6×2=4.2 m vq3/min=252 m3/h
如上表所示u=6 m/s
带入上述公式d i=18.8{q v/u}1/2=18.8{252/6}1/2=121.8 mm
得出管路内径为121mm
B.管壁厚度:管壁厚度δ取决于管道内气体压力。

a.低压管道,可采用碳钢、合金钢焊接钢管;中压管道,通常采用碳钢、合金钢无缝
钢管。

其壁厚可近似按薄壁圆筒公式计算:
δmin =np d i/{2[σ]ϕ−np}+ c
式中,p为管内气体压力(MPa);n为强度安全系数n=1.5~2.5,取[σ]为管材的许用应力(MPa),常用管材许用应力值列于下表;ϕ为焊缝系数,无缝钢管ϕ=1,直缝焊接钢管ϕ=0.8;c为附加壁厚(包括:壁厚偏差、腐蚀裕度、加工减薄量),为简便起见,
通常当cδ>6mm时,c≈0.18δ;当δ≤6mm时,c =1mm。

当管子被弯曲时,管壁应适当增加厚度,可取
δ,=δ+δd0/2R
式中,d0为管道外径; R为管道弯曲半径。

b.高压管道的壁厚,应查阅相关专业资料进行计算,在此不做叙述。

例2:算出例1中排气管路的厚度。

管路材料为20#钢
公式δmin =np d i/{2[σ]ϕ−np}+ c中 n=2 , p=3.0 MPa , d i=121
如上表20#钢150oC时的许用应力为131,即σ=131
ϕ=1 , C =1 带入公式
δmin =np d i/{2[σ]ϕ−np}+ c=2×3×121/(2×121×1-2×3)+1=3.8 mm 管路厚度取4 mm
材料的许用应力
材料的许用应力是指材料的强度指标除以相应的安全系数而得到的值。

材料的机械性能指标有屈服极限、强度极限、蠕变极限、疲劳极限等,这些指标分别反映了不同状态下失效的极限值。

为了保证管道运行中的强度可靠,常将管道元件中的应力限制在各强度指标下某一值,该数值即为许用应力。

当管道元件中的应力超过其许用应力值时,就认为其强度已不能得到保证。

因此说,材料的许用应力是确定管道壁厚等级的基本参数。

不同的设计标准,选取材料的许用应力值是不同的。

对压力管道来说,国内的设计标准是按GB150《钢制压力容器》确定的许用应力值,ASTM材料则是取按ANSI B31.3
《Process Piping》标准确定的许用应力值。

腐蚀余量
腐蚀余量是考虑因介质对管道的腐蚀而造成的管道壁厚减薄,从而增加的管道壁厚值。

它的大小直接影响到管道壁厚的取值,或者说直接影响到壁厚等级的确定。

目前我国尚没有一套有关各种腐蚀介质在不同条件下对各种材料的腐蚀速率数据,因此,工程上大多数情况下仍是凭经验来确定其腐蚀余量的。

许多国内外的工程公司或设计院通常都将腐蚀余量分为如下四级:
a.无腐蚀余量。

对一般的不锈钢管道多取该值;
b.1.6mm腐蚀余量。

对于腐蚀不严重的碳素钢和铬钼钢多取该值;
c.3.2mm腐蚀余量。

对于腐蚀比较严重的碳素钢和铬钼钢管道多取该值;
d.加强级(大于3.2mn)腐蚀余量。

对于有固体颗粒冲刷等特殊情况下的管道,根据实际情况确定其具体值。

.
管子及其元件的制造壁厚偏差
管子及其元件在制造过程中,相对于其公称壁厚(或者叫理论壁厚)都会有正、负偏差,因此在确定管子及其元件公称壁厚时一定要考虑可能出现的负偏差值。

各种钢管标准中规定的负偏差值是不完全相同的,GB/T8163《流体输送用无缝钢管》、GB/T14976《流体输送用不锈钢无缝钢管》规定的壁厚偏差值如下:
常用标准的壁厚偏差值
焊缝系数
金属的焊接过程,实质上是一个冶金过程,其组织带有明显的铸造组织特征。

一般情况下,铸造组织缺陷较多,材料性能也有所下降。

对于有纵焊缝和螺旋焊缝的焊接管子及其元件,相对于无缝管子及其元件来说,工程上常给它一个强度降低系数(即焊缝系数),以衡量其机械性能下降的程度。

其焊缝系数的取值如下:。

相关文档
最新文档