高中数学必修四试卷(含答案)
高中数学必修四试卷(含详细答案)[1]
![高中数学必修四试卷(含详细答案)[1]](https://img.taocdn.com/s3/m/4b6544a6e2bd960591c67711.png)
高中数学必修四试卷一、选择题3.如果1cos()2A π+=-,那么sin()2A π+= A.12 B.12 C.12 D.124.函数2005sin(2004)2y x π=-是A.奇函数B.偶函数C.非奇非偶函数D.既是奇函数又是偶函数 6.如果点(sin 2P θ,cos 2)θ位于第三象限,那么角θ所在象限是 A.第一象限 B.第二象限 C.第三象限 D.第四象限7.在四边形ABCD 中,如果0AB CD =u u u r u u u r g,AB DC =u u u r u u u r,那么四边形ABCD 的形状是 A.矩形 B.菱形 C.正方形 D.直角梯形 8.若α是第一象限角,则sin cos αα+的值与1的大小关系是 A.sin cos 1αα+> B.sin cos 1αα+= C.sin cos 1αα+< D.不能确定 9.在△ABC 中,若sin 2cos sin C A B =,则此三角形必是A.等腰三角形B.正三角形C.直角三角形D.等腰直角三角形 二、填空题(本大题共4小题,每小题5分,共20分)11.设扇形的周长为8cm ,面积为24cm ,则扇形的圆心角的弧度数是 .12.已知tan 2α=,3tan()5αβ-=-,则tan β= . 13.已知(3a =r ,1),(sin b α=r ,cos )α,且a r ∥b r ,则4sin 2cos 5cos 3sin αααα-+= .三、解答题(本大题共6小题,共80分,解答应写出文字说明,证明过程或演算步骤) 16.(本小题满分13分)已知函数()sin22x xf x =,x R ∈. (1)求函数()f x 的最小正周期,并求函数()f x 在[2,2]x ππ∈-上的单调递增区间; (2)函数()sin ()f x x x R =∈的图象经过怎样的平移和伸缩变换可以得到函数()f x 的图象.17.已知,cos )a x m x =+r ,(cos ,cos )b x m x =-+r , 且()f x a b =v vg(1) 求函数()f x 的解析式; (2) 当,63x ππ⎡⎤∈-⎢⎥⎣⎦时, ()f x 的最小值是-4 , 求此时函数()f x 的最大值, 并求出相应的x 的值.18.(本小题满分13分)已知向量(3,4)OA =-u u u r ,(6,3)OB =-u u u r ,(5,3)OC m m =---u u u r.(1)若点,,A B C 能够成三角形,求实数m 应满足的条件; (2)若△ABC 为直角三角形,且A ∠为直角,求实数m 的值.19.(本小题满分13分)设平面内的向量(1,7)OA =u u u r ,(5,1)OB =u u u r ,(2,1)OM =u u u u r ,点P 是直线OM 上的一个 动点,且8PA PB =-u u u r u u u r g ,求OP uuu r的坐标及APB ∠的余弦值.20.(本小题满分13分)已知向量33(cos ,sin )22x x a =r ,(cos ,sin )22x x b =-r ,且[,]2x ππ∈. (1)求a b r r g及a b +r r ; (2)求函数()f x a b a b =++r r r rg的最大值,并求使函数取得最大值时x 的值.高中数学必修(4)试卷参考答案及评分标准一、选择题二、填空题11. 2 12. -13 13. 5714. (1)(2)(3) 三、解答题15.解:(1)因为5342παπ<<,所以5232παπ<<. ………………………(2分) 因此4cos 25α==-. ………………………………(4分)由2cos 22cos 1αα=-,得cos α=. ……………………(8分) (2)因为sin()sin()2cos x x ααα--++=, 所以2cos (1sin )x α-=1sin 2x =. ………………………(11分) 因为x 为锐角,所以6x π=. ………………………………………………(13分)16.解:sin2sin()2223x x x y π=+=+. (1)最小正周期2412T ππ==. ……………………………………………(3分)令123z x π=+,函数sin y z =单调递增区间是[2,2]()22k k k Z ππππ-++∈.由 1222232k x k πππππ-+≤+≤+,得 544,33k x k k Z ππππ-+≤≤+∈. ………………………………(5分) 取0k =,得533x ππ-≤≤,而5[,]33ππ-⊂[2,2]ππ-, 所以,函数sin 22x x y =,[2,2]x ππ∈-得单调递增区间是5[,]33ππ-.…………………………………………………………………………(8分)(2)把函数sin y x =图象向左平移3π,得到函数sin()3y x π=+的图象,…(10分)再把函数sin()3y x π=+的图象上每个点的横坐标变为原来的2倍,纵坐标不变,得到函数sin()23x y π=+的图象, …………………………………(11分)然后再把每个点的纵坐标变为原来的2倍,横坐标不变,即可得到函数2sin()23x y π=+的图象. …………………………………………………(13分)17.解 (1) (),cos )(cos ,cos )f x a b x m x x m x ==+-+v vgg即22()cos cos f x x x x m =+-(2) 21cos 2()2xf x m +=- 21sin(2)62x m π=++- 由,63x ππ⎡⎤∈-⎢⎥⎣⎦, 52,666x πππ⎡⎤∴+∈-⎢⎥⎣⎦, 1sin(2),162x π⎡⎤∴+∈-⎢⎥⎣⎦,211422m ∴-+-=-, 2m ∴=± max 11()1222f x ∴=+-=-, 此时262x ππ+=, 6x π=.18.解:(1)已知向量(3,4)OA =-u u u r ,(6,3)OB =-u u u r ,(5,3)OC m m =---u u u r,若点,,A B C 能构成三角形,则这三点不共线,即AB u u u r 与BC uuur 不共线. ……(4分) (3,1)AB =u u u r ,(2,1)AC m m =--u u u r,故知3(1)2m m -≠-,∴实数12m ≠时,满足条件. …………………………………………………(8分) (若根据点,,A B C 能构成三角形,必须任意两边长的和大于第三边的长,即由AB u u u rBC CA +>u u u r u u u r去解答,相应给分)(2)若△ABC 为直角三角形,且A ∠为直角,则AB AC ⊥u u u r u u u r, …………(10分)∴3(2)(1)0m m -+-=, 解得74m =. …………………………………………………………………(13分) 19.解:设(,)OP x y =u u u r . ∵点P 在直线OM 上,∴OP uuu r 与OM u u u u r 共线,而OM u u u u r(2,1)=,∴20x y -=,即2x y =,有(2,)OP y y =u u u r. ………………………………(2分) ∵(12,7)PA OA OP y y =-=--u u u r u u u r u u u r ,(52,1)PB OB OP y y =-=--u u u r u u u r u u u r,……(4分) ∴(12)(52)(7)(1)PA PB y y y y =--+--u u u r u u u rg ,即252012PA PB y y =-+u u u r u u u r g . …………………………………………………(6分)又8PA PB =-u u u r u u u r g , ∴2520128y y -+=-,所以2y =,4x =,此时(4,2)OP =u u u r. ……………………………………(8分) (3,5),(1,1)PA PB =-=-u u u r u u u r.于是8PA PB PA PB ===-u u u r u u u r u u u r u u u rg . …………………………………(10分)∴cos 17PA PB APB PA PB∠===-⋅u u u r u u u rg u u u r u u u r . ………………………(13分) 20.解:(1)33cos cos sin sin cos 22222x x x xa b x =-=r r g , ……………………(3分)a b +=r r ………………………(4分)=2cos x == …………………………………………(7分) ∵[,]2x ππ∈, ∴cos 0x <.∴2cos a b x +=-r r. …………………………………………………………(9分) (2)2()cos 22cos 2cos 2cos 1f x a b a b x x x x =++=-=--r r r r g2132(cos )22x =-- …………………………………………………(11分) ∵[,]2x ππ∈, ∴1cos 0x -≤≤, ……………………………………(13分)∴当cos 1x =-,即x π=时max ()3f x =. ………………………………(15分)。
人教版B版高中数学必修第四册 第十一章综合测试01试题试卷含答案 答案在前

第十一章综合测试答案解析基础练习一、 1.【答案】D【解析】直线AC 与直线PO 交于点O ,所以平面PCA 与平面PBD 交于点O ,所以必相交于直线PO ,直线AM 在平面PAC 内,点N AM ∈故N ∈面PAC ,故O ,N ,P ,M 四点共面,所以A 错,点D 若与M ,N 共面,则直线BD 在平面PAC 内,与题目矛盾,故B 错,O ,M 为中点,所以OM PA ∥,ON PA P =,故ON OM O =,故C 错,故选D 。
2.【答案】D【解析】连接1B C 交1BC 于点O ,取AC 中点D ,连接OD ,设12AA AB AC BC ====,三棱柱111ABC A B C −为直三棱柱,∴四边形11BCC B 为矩形,O ∴为1B C 中点,1//DO AB ∴且112DO AB ===又1DC 1112OC BC ==,11cos 4DOC ∴∠==−, ∴异面直线1AB 和1BC 所成角的余弦值为11cos 4DOC ∠=, 故选:D 。
3.【答案】C【解析】因为截面PQMN 是正方形,所以PQ MN ∥、QM PN ∥, 则PQ ACD ∥平面、QM BDA ∥平面,所以PQ AC ∥,QM BD ∥,由PQ QM ⊥可得AC BD ⊥,故A 正确; 由PQ AC ∥可得AC PQMN ∥截面,故B 正确;异面直线PM 与BD 所成的角等于PM 与QM 所成的角,故D 正确; 综上C 是错误的, 故选C 。
4.【答案】A【解析】如图所示,三棱锥11D B EF −的体积为1 111112·2213323D EF V S B C ==⨯⨯⨯⨯=为定值,①正确; 11EF D C ∥,111B D C ∠是异面直线11D B 与EF 所成的角为45︒,②正确;若11D B ⊥平面1B EF ,则11D B EF ⊥,而11EF D C ∥故1111D B D C ⊥,而11D B 与11D C 所成角为45︒,③错误;平面1D EF 即为平面11D C CD ,故直线11D B 与平面1D EF 所成的角是为11145C D B ∠=︒,④错误。
高中数学必修四试卷(含详细答案)

高中数学必修四试卷(考试时间:100分钟 满分:150分)一、选择题1.下列命题正确的是A.第一象限角是锐角B.钝角是第二象限角C.终边相同的角一定相等D.不相等的角,它们终边必不相同 2.函数12sin()24y x π=-+的周期,振幅,初相分别是A.4π,2,4π B. 4π,2-,4π- C. 4π,2,4π D. 2π,2,4π3.如果1cos()2A π+=-,那么sin()2A π+=A.12B.12C.12D.124.函数2005sin(2004)2y x π=-是 A.奇函数 B.偶函数 C.非奇非偶函数 D.既是奇函数又是偶函数 5.给出命题(1)零向量的长度为零,方向是任意的.(2)若a ,b 都是单位向量,则a =b.(3)向量AB 与向量BA相等.(4)若非零向量AB 与CD是共线向量,则A ,B ,C ,D 四点共线.以上命题中,正确命题序号是A.(1)B.(2)C.(1)和(3)D.(1)和(4) 6.如果点(sin 2P θ,cos2)θ位于第三象限,那么角θ所在象限是 A.第一象限 B.第二象限 C.第三象限 D.第四象限7.在四边形ABCD 中,如果0AB CD = ,AB DC =,那么四边形ABCD 的形状是A.矩形B.菱形C.正方形D.直角梯形 8.若α是第一象限角,则sin cos αα+的值与1的大小关系是 A.sin cos 1αα+> B.sin cos 1αα+= C.sin cos 1αα+< D.不能确定 9.在△ABC 中,若sin 2cos sin C A B =,则此三角形必是10.如图,在△ABC 中,AD 、BE 、CF 分别是BC 、点G ,则下列各等式中不正确的是 A.23BG BE = B.2CG GF =C.12DG AG =D.121332DA FC BC +=二、填空题(本大题共4小题,每小题5分,共20分)11.设扇形的周长为8cm ,面积为24cm ,则扇形的圆心角的弧度数是 .12.已知tan 2α=,3tan()5αβ-=-,则tan β= . 13.已知(3a = ,1),(sin b α= ,cos )α,且a ∥b ,则4sin 2cos 5cos 3sin αααα-+= .14.给出命题:(1)在平行四边形ABCD 中,AB AD AC +=.(2)在△ABC 中,若0AB AC <,则△ABC 是钝角三角形.(3)在空间四边形ABCD 中,,E F 分别是,BC DA 的中点,则1()2FE AB DC =+.以上命题中,正确的命题序号是 .三、解答题(本大题共6小题,共80分,解答应写出文字说明,证明过程或演算步骤)15.(本小题满分13分)已知3sin 25α=,53[,]42αππ∈. (1)求cos 2α及cos α的值;(2)求满足条件sin()sin()2cos 10x x ααα--++=-的锐角x .已知函数()sin22x xf x =,x R ∈. (1)求函数()f x 的最小正周期,并求函数()f x 在[2,2]x ππ∈-上的单调递增区间; (2)函数()sin ()f x x x R =∈的图象经过怎样的平移和伸缩变换可以得到函数()f x 的图象.17.(本小题满分13分)已知电流I 与时间t 的关系式为sin()I A t ωϕ=+. (1)下图是sin()I A t ωϕ=+(0,)2πωϕ><求sin()I A t ωϕ=+的解析式; (2)如果t 在任意一段1150秒的时间内,电流 sin()I A t ωϕ=+ 那么ω的最小正整数值是多少?已知向量(3,4)OA =- ,(6,3)OB =- ,(5,3)OC m m =---.(1)若点,,A B C 能够成三角形,求实数m 应满足的条件; (2)若△ABC 为直角三角形,且A ∠为直角,求实数m 的值.19.(本小题满分13分)设平面内的向量(1,7)OA = ,(5,1)OB = ,(2,1)OM =,点P 是直线OM 上的一个 动点,且8PA PB =- ,求OP的坐标及APB ∠的余弦值.20.(本小题满分13分)已知向量33(cos ,sin )22x x a = ,(cos ,sin )22x x b =- ,且[,]2x ππ∈. (1)求a b 及a b +;(2)求函数()f x a b a b =++的最大值,并求使函数取得最大值时x 的值.高中数学必修(4)试卷参考答案及评分标准一、选择题二、填空题11. 2 12. -13 13. 5714. (1)(2)(3) 三、解答题15.解:(1)因为5342παπ<<,所以5232παπ<<. ………………………(2分) 因此4cos 25α==-. ………………………………(4分)由2cos 22cos 1αα=-,得cos α=……………………(8分) (2)因为sin()sin()2cos x x ααα--++=, 所以2cos (1sin )10x α-=-,所以1sin 2x =. ………………………(11分)因为x 为锐角,所以6x π=. ………………………………………………(13分)16.解:sin2sin()2223x x x y π=+=+. (1)最小正周期2412T ππ==. ……………………………………………(3分)令123z x π=+,函数sin y z =单调递增区间是[2,2]()22k k k Z ππππ-++∈.由 1222232k x k πππππ-+≤+≤+,得 544,33k x k k Z ππππ-+≤≤+∈. ………………………………(5分) 取0k =,得533x ππ-≤≤,而5[,]33ππ-⊂[2,2]ππ-, 所以,函数sin 22x x y =,[2,2]x ππ∈-得单调递增区间是5[,]33ππ-.(2)把函数sin y x =图象向左平移3π,得到函数sin()3y x π=+的图象,…(10分)再把函数sin()3y x π=+的图象上每个点的横坐标变为原来的2倍,纵坐标不变,得到函数sin()23x y π=+的图象, …………………………………(11分)然后再把每个点的纵坐标变为原来的2倍,横坐标不变,即可得到函数2sin()23x y π=+的图象. …………………………………………………(13分) 17.解:(1)由图可知300A =,设11900t =-,21180t =, ……………………(2分)则周期211112()2()18090075T t t =-=+=, …………………………(4分) ∴2150T πωπ==. ………………………………………………………(6分) 1900t =-时,0I =,即1sin[150()]0900πϕ⋅-+=,sin()06πϕ-=. 而2πϕ<, ∴6πϕ=.故所求的解析式为300sin(150)6I t ππ=+. ……………………………(8分)(2)依题意,周期1150T ≤,即21150πω≤,(0)ω>, …………………(10分)∴300942ωπ≥>,又*N ω∈,故最小正整数943ω=. ……………(13分)18.解:(1)已知向量(3,4)OA =- ,(6,3)OB =- ,(5,3)OC m m =--- ,若点,,A B C 能构成三角形,则这三点不共线,即AB 与BC不共线. ……(4分)(3,1)AB = ,(2,1)AC m m =--,故知3(1)2m m -≠-,∴实数12m ≠时,满足条件. …………………………………………………(8分) (若根据点,,A B C 能构成三角形,必须任意两边长的和大于第三边的长,即由ABBC CA +>去解答,相应给分)∴3(2)(1)0m m -+-=, 解得74m =. …………………………………………………………………(13分) 19.解:设(,)OP x y =.∵点P 在直线OM 上,∴OP 与OM 共线,而OM(2,1)=,∴20x y -=,即2x y =,有(2,)OP y y =. ………………………………(2分)∵(12,7)PA OA OP y y =-=-- ,(52,1)PB OB OP y y =-=--,……(4分)∴(12)(52)(7)(1)PA PB y y y y =--+-- ,即252012PA PB y y =-+ . …………………………………………………(6分) 又8PA PB =- , ∴2520128y y -+=-,所以2y =,4x =,此时(4,2)OP =. ……………………………………(8分) (3,5),(1,1)PA PB =-=-.于是8PA PB PA PB ===-. …………………………………(10分)∴cos PA PB APB PA PB ∠===⋅. ………………………(13分) 20.解:(1)33cos cos sin sin cos 22222x x x xa b x =-=, ……………………(3分)a b += ………………………(4分)=2cos x == …………………………………………(7分) ∵[,]2x ππ∈, ∴cos 0x <.∴2cos a b x +=-. …………………………………………………………(9分) (2)2()cos 22cos 2cos 2cos 1f x a b a b x x x x =++=-=--2132(cos )22x =-- …………………………………………………(11分) ∵[,]2x ππ∈, ∴1cos 0x -≤≤, ……………………………………(13分)∴当cos 1x =-,即x π=时max ()3f x =. ………………………………(15分)。
高中数学必修四试卷(含详细答案)

高中数学必修四试卷(含详细答案)高中数学必修四试卷(含详细答案)考试时间:2小时总分:100分一、选择题(共30小题,每小题2分,共60分)从每题所给的四个选项中,选出一个最佳答案。
1. 已知数列{an}的通项公式为an = 3n - 2,其中n为正整数。
则数列S = a1 + a2 + a3 + ... + a10的值为:A. 135B. 145C. 155D. 1652. 若函数f(x) = ax^3 + bx + 1在区间[-1,1]上具有单调性,则a和b 的关系是:A. a > 0,b > 0B. a > 0,b < 0C. a < 0,b > 0D. a < 0,b < 03. 曲线y = 2x^2 - 3x + c与x轴相交于两点,若这两点的横坐标之和为1,则c的值为:A. -1B. 0C. 1D. 24. 在△ABC中,已知∠A = 30°,边a = 5,边b = 10。
则△ABC的面积为:A. 10√3B. 15√3C. 20√3D. 25√3...(题目继续,共30题)二、解答题(共4题,共40分)题目1:已知函数f(x) = x^3 - 3x^2 - 4x + 2。
(1)求f(x)的零点;(2)求函数f(x)在区间[-2,2]上的最大值和最小值。
(1)令f(x) = 0,得到x^3 - 3x^2 - 4x + 2 = 0,进行因式分解得(x-1)(x+2)(x-1)=0,所以零点为x=-2, x=1。
(2)在区间[-2,2]上,先求f'(x)的值为0的点,即f'(x)=3x^2-6x-4=0。
通过求解方程可得x=2和x=-2/3。
将这三个点代入f(x)的表达式中,比较大小可得最大值和最小值。
题目2:若函数g(x)满足g(3)=1,并且对任意实数x有g(ax)=g(x)-3ax,其中a是一个常数。
求g(x)的表达式。
高中数学必修四同步练习及答案(新课标人教A版)

高之老阳三干创作中数学必人修教四A版练习册高中数学人教A 版必修4练习册目录导航人教A 版必修4练习1.1任意角和弧度制 ................................................................................................................ 0 1.2任意角的三角函数 ............................................................................................................ 2 1.3三角函数的诱导公式 ........................................................................................................ 4 1.4三角函数的图像与性质 . (6)1.5函数)sin(ϕω+=x A y 的图像与1.6三角函数模型的简单应用 ................................. 9 第一章 三角函数基础过关测试卷 ...................................................................................... 11 第一章三角函数单元能力测试卷 ........................................................................................ 132.1平面向量的实际布景及基本概念与2.2.1向量加法运算 ............................................ 16 2.2向量减法运算与数乘运算 .............................................................................................. 18 2.3平面向量的基本定理及坐标暗示 .................................................................................. 20 2.4平面向量的数量积与2.5平面向量应用举例 ............................................................... 22 第二章平面向量基础过关测试卷 ........................................................................................ 24 第二章平面向量单元能力测试卷 ........................................................................................ 263.1两角和与差的正弦、余弦和正切公式 .......................................................................... 29 3.2简单的三角恒等变换 ...................................................................................................... 31 第三章三角恒等变换单元能力测试卷 ................................................................................ 33 人教A 版必修4练习答案1.1任意角和弧度制 .............................................................................................................. 36 1.2任意角的三角函数 .......................................................................................................... 36 1.3三角函数的诱导公式 ...................................................................................................... 37 1.4三角函数的图像与性质 .. (37)1.5函数)sin(ϕω+=x A y 的图像与1.6三角函数模型的简单应用 ............................... 38 第一章三角函数基础过关测试卷 ........................................................................................ 39 第一章三角函数单元能力测试卷 ........................................................................................ 39 2.1平面向量的实际布景及基本概念与2.2.1向量加法运算 ............................................ 40 2.2向量减法运算与数乘运算 .............................................................................................. 40 2.3平面向量的基本定理及坐标暗示 .................................................................................. 40 2.4平面向量的数量积与2.5平面向量应用举例 ............................................................... 41 第二章平面向量基础过关测试卷 ........................................................................................ 42 第二章平面向量单元能力测试卷 ........................................................................................ 42 3.1两角和与差的正弦、余弦和正切公式 .......................................................................... 43 3.2简单的三角恒等变换 ...................................................................................................... 43 第三章三角恒等变换单元能力测试卷 .. (44)1.1任意角和弧度制一、选择题(每题5分,共50分)1.四个角中,终边相同的角是 ( ) A.,398 - 38 B.,398 - 142 C.,398 - 1042 D.,14210422.集合α{=A ︱ 90⋅=k α,36 -}Z k ∈,β{=B ︱180- 180<<β},则B A 等于 ( )A.,36{ -54} B.,126{ -144} C.,126{ -,36 -,54144}D.,126{ -54}3.设θ{=A ︱θ为锐角},θ{=B ︱θ为小于90的角},θ{=C ︱θ为第一象限角},θ{=D ︱θ为小于 90的正角},则 ( )A.B A =B.C B =C.C A =D.D A =4.若角α与β终边相同,则一定有 ( ) A.180=+βα B.0=+βαC.360⋅=-k βα,Z k ∈ D.360⋅=+k βα,Z k ∈ 5.已知α为第二象限的角,则2α所在的象限是 ( ) A.第一或第二象限 B.第二或第三象限 C.第一或第三象限 D.第二或第四象限 6.将分针拨慢5分钟,则分针转过的弧度数是 ( )A.3π B.3π- C.2π D.32π7.在半径为cm 2的圆中,有一条弧长为cm 3π,它所对的圆心角为 ( )A.6πB.3πC.2πD.32π 8.已知角α的终边经过点)1,1(--P ,则角α为 ( )A.)(45Z k k ∈+=ππα B.)(432Z k k ∈+=ππα C.)(4Z k k ∈+=ππα D.)(432Z k k ∈-=ππα 9.角316π化为)20,(2παπα<<∈+Z k k 的形式 ( )A.35ππ+B.344ππ+C.326ππ-D.373ππ+10.集合α{=A ︱},2Z k k ∈+=ππα,α{=B ︱},)14(Z k k ∈±=πα,则集合A 与B的关系是 ( ) A.B A = B.B A ⊇ C.B A ⊆ D.B A ≠ 二、填空题(每题5分,共20分)11.角a 小于 180而大于-180,它的7倍角的终边又与自身终边重合,则满足条件的角a 的集合为__________.12.写满足下列条件的角的集合.1)终边在x 轴的非负半轴上的角的集合__________; 2)终边在坐标轴上的角的集合__________;3)终边在第一、二象限及y 轴上的角的集合__________; 4)终边在第一、三象限的角平分线上的角的集合__________.13.设扇形的周长为cm 8,面积为24cm ,则扇形的圆心角的弧度数是__________. 14.已知a {∈θ︱a =+πk },4)1(Z k k∈⋅-π,则角θ的终边落在第__________象限.三、解答题(15、16每题7分,17、18每题8分)15.已知角a 的终边与y 轴的正半轴所夹的角是30,且终边落在第二象限,又720-<a < 0,求角a .16.已知角45=a ,(1)在区间 720[-0,)内找出所有与角a 有相同终边的角β;(2)集合x M {=︱ 1802⨯=k x 45+,}Z k ∈,x N {=︱ 1804⨯=kx 45+}Z k ∈ 那么两集合的关系是什么?17.若θ角的终边与3π的终边相同,在]2,0[π内哪些角的终边与3θ角的终边相同? 18.已知扇形的周长为30,当它的半径R 和圆心角各取何值时,扇形的面积最大?并求出扇形面积的最大值.1.2任意角的三角函数一、选择题(每题5分,共40分)1.已知角α的终边过点()αcos ,2,1-P 的值为 ( )A.55-B.55 C.552 D.252.α是第四象限角,则下列数值中一定是正值的是 ( ) A.αsin B.αcos C.αtan D.αtan 13.已知角α的终边过点()()03,4<-a a a P ,则ααcos sin 2+的值是 ( )A.52 B.52- C.0 D.与α的取值有关 4.(),,0,54cos παα∈=则αtan 1的值等于 ( )A.34B.43C.34±D.43± 5.函数x x y cos sin -+=的定义域是 ( ) A.()Z k k k ∈+,)12(,2ππ B.Z k k k ∈⎥⎦⎤⎢⎣⎡++,)12(,22πππ C.Z k k k ∈⎥⎦⎤⎢⎣⎡++,)1(,2πππ D.[]Z k k k ∈+,)12(,2ππ 6.若θ是第三象限角,且,02cos<θ则2θ是 ( ) A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角7.已知,54sin =α且α是第二象限角,那么αtan 的值为 ( ) A.34- B.43- C.43 D.348.已知点()ααcos ,tan P 在第三象限,则角α在 ( ) A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角二、填空题(每题5分,共20分)9.已知,0tan sin ≥αα则α的取值集合为__________. 10.角α的终边上有一点(),5,m P 且(),013cos ≠=m mα则=+ααcos sin __________.11.已知角θ的终边在直线x y 33=上,则=θsin __________,=θtan __________. 12.设(),2,0πα∈点()αα2cos ,sin P 在第三象限,则角α的范围是__________. 三、解答题(第15题20分,其余每题10分,共40分)13.求43π的角的正弦,余弦和正切值. 14.已知,51sin =α求ααtan ,cos 的值.15.已知,22cos sin =+αα求αα22cos 1sin 1+的值.1.3三角函数的诱导公式一、选择题(每题5分,共40分) 1.21)cos(-=+απ,παπ223<<,)2sin(απ-值为 ( ) A.23B.21C.23± D.23- 2.若,)sin()sin(m -=-++ααπ则)2sin(2)3sin(απαπ-++等于 ( ) A.m 32-B.m 23- C.m 32 D.m 233.已知,23)4sin(=+απ则)43sin(απ-值为 ( ) A.21B.21- C.23 D.23- 4.如果),cos(|cos |π+-=x x 则x 的取值范围是( )A.)](22,22[Z k k k ∈++-ππππB.))(223,22(Z k k k ∈++ππππC.)](223,22[Z k k k ∈++ππππD.))(2,2(Z k k k ∈++-ππππ 5.已知,)1514tan(a =-π那么=︒1992sin ( )A.21||aa + B.21aa + C.21aa +-D.211a+-6.设角则,635πα-=)(cos )sin(sin 1)cos()cos()sin(222απαπααπαπαπ+--+++--+的值等于 ( ) A.33 B.33- C.3D.-3 7.若,3cos )(cos x x f =那么)30(sin ︒f 的值为 ( ) A.0B.1C.1- D.238.在△ABC 中,若)sin()sin(C B A C B A +-=-+,则△ABC 必是 ( ) A.等腰三角形 B.直角三角形 C.等腰或直角三角形 D.等腰直角三角形二、填空题(每题5分,共20分) 9.求值:︒2010tan 的值为.10.若1312)125sin(=-α,则=+)55sin( α. 11.=+++++76cos 75cos 74cos 73cos 72cos7cos ππππππ. 12.设,1234tan a =︒那么)206cos()206sin(︒-+︒-的值为. 三、解答题(每题10分,共40分) 13.已知3)tan(=+απ,求)2sin()cos(4)sin(3)cos(2a a a a -+-+--πππ的值.14.若32cos =α,α是第四象限角,求sin(2)sin(3)cos(3)cos()cos()cos(4)απαπαππαπααπ-+--------的值.15.已知αtan 、αtan 1是关于x 的方程0322=-+-k kx x 的两实根,且,273παπ<< 求)sin()3cos(απαπ+-+的值.16.记4)cos()sin()(++++=βπαπx b x a x f ,(a 、b 、α、β均为非零实数),若5)1999(=f ,求)2000(f 的值.1.4三角函数的图像与性质一、选择题(每题5分,共50分)1.)(x f 的定义域为[]1,0则)(sin x f 的定义域为 ( ) A.[]1,0 B.)(2,2222,2Z k k k k k ∈⎪⎭⎫ ⎝⎛++⎥⎦⎤⎢⎣⎡+ πππππππ C.[])()12(,2Z k k k ∈+ππ D.)(22,2Z k k k ∈⎪⎭⎫⎢⎣⎡+πππ 2.函数)652cos(3π-=x y 的最小正周期是( )52 B 25 C π2 D π53.x x y sin sin -=的值域是( )A ]0,1[-B ]1,0[C ]1,1[-D ]0,2[-4.函数)44(tan 1ππ≤≤-=x x y 的值域是 ( ) A.[]1,1- B.(][) +∞-∞-,11, C.[)+∞-,1 D.(]1,∞-5.下列命题正确的是 ( ) A.函数)3sin(π-=x y 是奇函数 B.函数)cos(sin x y =既是奇函数,也是偶函数C.函数x x y cos =是奇函数D.函数x y sin =既不是奇函数,也不是偶函数6.设()f x 是定义域为R ,最小正周期为32π的函数,若cos ,(0)(),2sin ,(0)x x f x x x ππ⎧-≤<⎪=⎨⎪≤<⎩ 则15()4f π-等于 ( ) A 10 D.7.函数)3cos(πϖ+=x y 的周期为4π则ϖ值为 ( )A.8B.6C.8±D.48.函数)32sin(π+=x y 的图象 ( ) A.关于点⎪⎭⎫⎝⎛0,12π对称 B.关于点⎪⎭⎫⎝⎛-0,6π对称 C.关于直线3π=x 对称 D.关于直线6π-=x 对称9.)2sin(θ+=x y 图像关于y 轴对称则 ( ) A.)(,22Z k k ∈+=ππθ B.)(,2Z k k ∈+=ππθC.)(,2Z k k ∈+=ππθD.)(,Z k k ∈+=ππθ 10.满足21)4sin(≥-πx 的x 的集合是 ( ) A.⎭⎬⎫⎩⎨⎧∈+≤≤+Z k k x k x ,121321252ππππ B.⎭⎬⎫⎩⎨⎧∈+≤≤+Z k k x k x ,65262ππππ C.⎭⎬⎫⎩⎨⎧∈+≤≤-Z k k x k x ,1272122ππππ D.⎭⎬⎫⎩⎨⎧∈+≤≤Z k k x k x ,6522πππ 二、填空题(每题5分,共20分) 11.函数)23sin(2x y -=π的单调递增区间是__________.12.函数)21(cos log 2-=x y 的定义域是__________. 13.函数)2sin(x y =的最小正周期为__________.14.若)(x f 为奇函数,且当0>x 时,x x x x f 2cos sin )(+=,则当0<x 时,=)(x f __________.三、解答题(每题10分,共30分) 15.利用“五点法”画出函数)621sin(π+=x y 在长度为一个周期的闭区间的简图. 16.已知函数⎪⎭⎫⎝⎛-=32tan )(πx x f ,(1)求函数)(x f 的定义域周期和单调区间; (2)求不等式3)(1≤≤-x f 的解集.17.求下列函数的最大值和最小值及相应的x 值.(1)1)42sin(2++=πx y (2)),32cos(43π+-=x y ⎥⎦⎤⎢⎣⎡-∈6,3ππx (3)5cos 4cos 2+-=x x y (4)2sin sin 1-+=x xy1.5函数)sin(ϕω+=x A y 的图像与1.6三角函数模型的简单应用一、选择题(每题5分,共35分) 1.函数1)62sin(3)(--=πx x f 的最小值和最小正周期分别是 ( )A.13--,πB.13+-,πC.3-,πD.13--,π2 2.若函数)3sin(2πω+=x y 的图像与直线2=y 的相邻的两个交点之间的距离为π,则ω的一个可能值为 ( ) A.3 B.2 C.31 D.21 3.要得到)32sin(π-=x y 的图像,只要将x y 2sin =的图像 ( )A.向左平移3π个单位 B.向右平移3π个单位C.向左平移6π个单位 D.向右平移6π个单位 4.函数1)62sin(2++=πx y 的最大值是 ( )A.1B.2C.3D.45.已知函数)(x f 的部分图像如图所示,则)(x f 的解析式可能为 ( )A.)62sin(2)(π-=x x f B.)44cos(2)(π+=x x fC.)32cos(2)(π-=x x f D.)64sin(2)(π+=x x f6.)23sin(2x y -=π的单调增区间为 ( )A.⎥⎦⎤⎢⎣⎡+-125,12ππππK K B.⎥⎦⎤⎢⎣⎡++127,125ππππK K C.⎥⎦⎤⎢⎣⎡+-6,3ππππK K D.⎥⎦⎤⎢⎣⎡++1211,125ππππK K 7.函数[]),0(),62sin(3ππ∈--=x x y 为增函数的区间是 ( )A.⎥⎦⎤⎢⎣⎡125,0π B.⎥⎦⎤⎢⎣⎡32,6ππ C.⎥⎦⎤⎢⎣⎡1211,6ππ D.⎥⎦⎤⎢⎣⎡1211,32ππ 二、填空题(每题5分,共15分)8.关于))(32sin(4)(R x x x f ∈+=有下列命题: 1)有0)()(31==x f x f 可得21x x -是π的整数倍; 2)表达式可改写为)62cos(4)(π-=x x f ;3)函数的图像关于点)0,6(π-对称;4)函数的图像关于直线6π-=x 对称;其中正确的命题序号是__________.9.甲乙两楼相距60米,从乙楼底望甲楼顶的仰角为45,从甲楼顶望乙楼顶的俯角为30,则甲乙两楼的高度分别为__________.10.已知1tan sin )(++=x b x a x f 满足7)5(=πf ,则)599(πf 的值为__________. 三、解答题(每题25分,共50分) 11.已知函数)421sin(3π-=x y , 1)用“五点法”画函数的图像;2)说出此图像是由x y sin =的图像经过怎样的变换得到的; 3)求此函数的周期、振幅、初相;4)求此函数的对称轴、对称中心、单调递增区间. 12.已知函数)32cos(log )(π-=x ax f (其中)1,0≠>a a 且,1)求它的定义域; 2)求它的单调区间; 3)判断它的奇偶性;4)判断它的周期性,如果是周期函数,求出它的周期.第一章三角函数基础过关测试卷一、选择题(每题5分,共40分)1.与240-角终边位置相同的角是 ( ) A.240 B.60 C.150 D.480 2.已知()21cos -=+απ,则()απ+3cos 的值为 ( ) A.21 B.23± C.21- D.23 3.函数x y sin 1-=的最大值为 ( ) A.1 B.0 C.2 D.1- 4.函数⎪⎭⎫⎝⎛+=321sin x y 的最小正周期是 ( )A.2πB.πC.π2D.π4 5.在下列各区间上,函数⎪⎭⎫⎝⎛+=4sin 2πx y 单调递增的是 ( )A.],4[ππB.]4,0[πC.]0,[π-D.]2,4[ππ 6.函数x y cos 1+=的图象 ( ) A.关于x 轴对称 B.关于y 轴对称 C.关于原点对称 D.关于直线2π=x 轴对称7.使x x cos sin <成立的x 的一个区间是 ( ) A.⎪⎭⎫ ⎝⎛-4,43ππ B.⎪⎭⎫⎝⎛-2,2ππ C.⎪⎭⎫⎝⎛-43,4ππ D.()π,0 8.函数⎪⎭⎫⎝⎛+=43sin πx y 的图象,可由x y 3sin =的图象 ( )A.向左平移4π个单位 B.向右平移4π个单位 C.向左平移12π个单位 D.向右平移12π个单位二、填空题(每题5分,共20分)9.已知角β的终边过点()12,5--P ,求=βcos __________.10.函数x y tan lg =的定义域是__________. 11.()R x x y ∈=sin 的对称点坐标为__________. 12.1cos cos -=x xy 的值域是__________.三、解答题(每题10分,共40分) 13.已知2tan =β,求1sin cos sin 2+βββ的值. 14.化简:()()()()()()()()πααπαπαπααπααπ6sin sin cos sin 6cos cos cos sin 2222---++---+-++. 15.求证:ααααααααcos sin cos sin 1cos sin 2cos sin 1+=+++++.16.求函数⎪⎭⎫⎝⎛≤≤+=323cos 2sin 2ππx x x y 的最大值和最小值.第一章三角函数单元能力测试卷一、选择题(每小题5分,共60分) 1.设α角属于第二象限,且2cos2cosαα-=,则2α角属于 ( )A.第一象限B.第二象限C.第三象限D.第四象限2.下列值①)1000sin(-;②)2200cos( -;③)10tan(-;④4sin 是负值的为 ( )A.①B.②C.③D.④3.函数sin(2)(0)y x ϕϕπ=+≤≤是R 上的偶函数,则ϕ的值是 ( )A.0 B4π C 2πD π 4.已知4sin 5α=,而且α是第二象限的角,那么tan α的值等于 ( ) A.43-B.34- C.43 D.345.若α是第四象限的角,则πα-是 ( )A 第一象限的角B 第二象限的角C 第三象限的角D 第四象限的角6.将函数sin()3y x π=-的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再 所得的图象向左平移3π个单位,得到的图象对应的解析式是 ( )A.1sin 2y x = B 1sin()22y x π=- C.1sin()26y x π=- D.sin(2)6y x π=-7.若点(sin cos ,tan )P ααα-在第一象限,则在[0,2)π内α的取值范围是 ( )A.35(,)(,)244ππππ B 5(,)(,)424ππππC.353(,)(,)2442ππππ D 33(,)(,)244ππππ 8.与函数)42tan(π+=x y 的图像不相交的一条直线是 ( )A.2π=x B 2π-= C 4π=x D 8π=x9.在函数x y sin =、x y sin =、)322sin(π+=x y 、)322cos(π+=x y 中,最小正周期为π的函数的个数是( )A.1个 B 2个 C 3个 D 4个10.方程1sin 4x x π=的解的个数是 ( ) A 5 B 6 C 7 D 811.在)2,0(π内,使x x cos sin >成立的x 取值范围为 ( )A.)45,()2,4(ππππ B.),4(ππC.)45,4(ππD.)23,45(),4(ππππ12.已知函数()sin(2)f x x ϕ=+的图象关于直线8x π=对称,则ϕ可能是 ( )A.2π B 4π C 4π D 34π 二、填空题(每小题5分,共20分)13.设扇形的周长为8cm ,面积为24cm ,则扇形的圆心角的弧度数是__________14.若,24παπ<<则αααtan cos sin 、、的大小关系为__________15若角α与角β的终边关于y 轴对称,则α与β的关系是__________16.关于x 的函数()cos()f x x α=+有以下命题:①对任意α,()f x 都是非奇非偶函数;②不存在α,使()f x 既是奇函数,又是偶函数;③存在α,使()f x 是偶函数;④对任意α,()f x 都是奇函数其中假命题的序号是__________三、解答题(第17题10分,其余每题12分,共70分) 17.求下列三角函数值: (1))316sin(π-(2))945cos( - 18.比较大小:(1) 150sin ,110sin ; (2) 200tan ,220tan19.化简:(1))sin()360cos()810tan()450tan(1)900tan()540sin(x x x x x x --⋅--⋅--(2)xx x sin 1tan 1sin 12-⋅++20.求下列函数的值域:(1))6cos(π+=x y ,⎥⎦⎤⎢⎣⎡∈2,0πx ; (2) 2sin cos 2+-=x x y 21.求函数)32tan(π-=x y 的定义域、周期和单调区间.22.用五点作图法画出函数)631sin(2π-=x y 的图象(1)求函数的振幅、周期、频率、相位; (2)写出函数的单调递增区间;(3)此函数图象可由函数x y sin =怎样变换得到2.1平面向量的实际布景及基本概念与2.2.1向量加法运算一、选择题(每题5分,共40分)1.把平面上所有的单位向量平移到相同的起点上,那么它们的终点所构成的图形是( ) A.一条线段 B.一段圆弧 C.两个孤立点 D.一个圆2.下列说法中,正确的是 ( )A.>,则b a >B.=,则b a =C.若b a =,则a ∥bD.若a ≠b ,则a 与b 不是共线向量3.设O 为△ABC 的外心,则AB 、BO 、CO 是 ( ) A.相等向量 B.平行向量 C.模相等的向量 D.起点相等的向量4.已知正方形ABCD 的边长为1,设a AB =,b BC =,c AC =, b +( ) A.0 B.3 C.22+ D.225.58==的取值范围是 ( ) A.[]8,3 B.()8,3 C.[]13,3 D.()13,36.如图,四边形ABCD 为菱形,则下列等式中 A B成立的是 ( ) A.CA BC AB =+ B.BC AC AB =+C.AD BA AC =+D.DC AD AC =+ D C7.在边长为1的正三角形ABC 中,若向量a BA =,b BC =+ ( ) A.7 B.5 C.3 D.28.向量a 、b 皆为非零向量,下列说法不正确的是 ( )A.向量a 与b >,则向量b a +与a 的方向相同B.向量a 与b <,则向量b a +与a 的方向相同C.向量a 与b 同向,则向量b a +与a 的方向相同D.向量a 与b 同向,则向量b a +与b 的方向相同 二、填空题(每题5分,共20分)9.ABC ∆是等腰三角形,则两腰上的向量AB 与AC 的关系是__________.10.已知C B A ,,是不共线的三点,向量m 与向量AB 是平行向量,与BC 是共线向量,则m =__________.11.在菱形ABCD 中,∠DAB ︒=601==__________. 12.化简=++BO OP PB __________.三、解答题(13题16分,其余每题12分,共40分)13.化简:(1)FA BC CD DF AB ++++. (2)PM MN QP NQ +++.14.已知四边形ABCD 的对角线AC 与BD 相交于点O ,且OC AO =,OB DO =. 求证:四边形ABCD 是平行四边形.15.一艘船以h km /5的速度向垂直于对岸的方向行驶,航船实际航行方向与水流方向成︒30 角,求水流速度和船的实际速度.2.2向量减法运算与数乘运算一、选择题(每题5分,共40分)1.在菱形ABCD 中,下列各式中不成立的是 ( )A.-=AC AB BCB.-=AD BD ABC.-=BD AC BCD.-=BD CD BC2.下列各式中结果为O 的有 ( )①++AB BC CA ②+++OA OC BO CO ③-+-AB AC BD CD ④+-+MN NQ MP QPA.①②B.①③C.①③④D.①②③3.下列四式中可以化简为AB 的是 ( )①+AC CB ②-AC CB ③+OA OB ④-OB OAA.①④B.①②C.②③D.③④ 4. ()()=⎥⎦⎤⎢⎣⎡+-+b a b a 24822131 ( ) A.2a b - B.2b a - C.b a - D.()b a --5.设两非零向量12,e e ,不共线,且1212()//()k e e e ke ++,则实数k 的值为 ( )A.1B.1-C.1±D.06.在△ABC 中,向量BC 可暗示为 ( )①-AB AC ②-AC AB ③+BA AC ④-BA CAA.①②③B.①③④C.②③④D.①②④7.已知ABCDEF 是一个正六边形,O 是它的中心,其中===,,OA a OB b OC c 则EF =( )A.a b +B.b a -C.-c bD.-b c8.当C 是线段AB 的中点,则AC BC += ( )A.ABB.BAC.ACD.O二、填空题(每题5分,共20分)9.化简:AB DA BD BC CA ++--=__________.10.一架飞机向北飞行km 300后改变航向向西飞行km 400,则飞行的总路程为__________,两次位移和的和方向为__________,大小为__________.11.点C 在线段AB 上,且35AC AB =,则________AC CB =. 12.把平面上一切单位向量归结到共同的始点,那么这些向量的终点所构成的图形是__________三、解答题(每题10分,共40分) 13.已知点C 在线段AB 的延长线上,且2,,BC AB BC CA λλ==则为何值?14.如图,ABCD 中,E F 分别是,BC DC 的中点,G 为交点,若AB =a ,AD =b ,试以a ,b 暗示DE 、BF 、CG 15.若菱形ABCD 的边长为2,求AB CB CD -+=?16.在平面四边形ABCD 中,若AB AD AB AD +=-,则四边形ABCD 的形状是什么?A G E FB D2.3平面向量的基本定理及坐标暗示一、选择题(每题5分,共50分)1.已知平面向量),2,1(),1,2(-==b a 则向量b a 2321-等于 ( ) A.)25,21(-- B.)27,21( C.)25,21(- D.)27,21(- 2.若),3,1(),4,2(==AC AB 则BC 等于 ( )A.)1,1(B.)1,1(--C.)7,3(D.)7,3(-- 3.21,e e 是暗示平面内所有向量的一组基底,下列四组向量中,不克不及作为一组基底的是( ) A.21e e +和21e e - B.2123e e -和1264e e - C.212e e +和122e e + D.2e 和21e e +4.已知平面向量),,2(),3,12(m b m a =+=且b a //,则实数m 的值等于 ( )A.2或23-B.23C.2-或23D.72- 5.已知C B A ,,三点共线,且),2,5(),6,3(--B A 若C 点的横坐标为6,则C 点的纵坐标为A.13-B.9C.9-D.13 ( )6.已知平面向量),,2(),2,1(m b a -==且b a //,则b a 32+等于 ( )A.)10,5(--B.)8,4(--C.)6,3(--D.)4,2(--7.如果21,e e 是平面内所有向量的一组基底,那么 ( )A.若实数21,λλ使02211=+e e λλ,则021==λλB.21,e e 可以为零向量C.对实数21,λλ,2211e e λλ+纷歧定在平面内D.对平面中的任一向量a ,使=a 2211e e λλ+的实数21,λλ有无数对8.已知向量)4,3(),3,2(),2,1(===c b a ,且b a c 21λλ+=,则21,λλ的值分别为 ( )A.1,2-B.2,1-C.1,2-D.2,1-9.已知),3,2(),2,1(-==b a 若b n a m -与b a 2+共线(其中R n m ∈,且)0≠n ,则nm 等于 ( ) A.21-B.2C.21D.2- 10.在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与 CD 交于点F ,若,,b BD a AC == 则AF 等于 ( ) A.b a 2141+ B.b a 3132+ C.b a 4121+ D.b a 3231+ 二、填空题(每题5分,共20分)11.已知),1,(),3,1(-=-=x b a 且b a //,则=x __________12.设向量)3,2(),2,1(==b a ,若向量b a +λ与向量)7,4(--=c 共线,则=λ__________13.已知x 轴的正方向与a 的方向的夹角为3π4=,则a 的坐标为__________ 14.已知边长为1的正方形ABCD ,若A 点与坐标原点重合,边AD AB ,分别落在x 轴,y 轴的正向上,则向量AC BC AB ++32的坐标为__________三、解答题(第15题6分,其余每题8分,共30分)15.已知向量a 与b 不共线,实数y x ,满足等式b x a x b y a x 2)74()10(3++=-+,求yx ,的值.16.已知向量21,e e 不共线,(1)若,82,2121e e BC e e AB +=+=),(321e e CD -=则B A ,,D三点是否共线?(2)是否存在实数k ,使21e e k +与21e k e -共线?17.已知三点),10,7(),4,5(),3,2(C B A 点P 满足)(R AC AB AP ∈+=λλ,(1)λ为何值时,点P 在直线x y =上?(2)设点P 在第一象限内,求λ的取值范围.18.平面内给定三个向量)1,4(),2,1(),2,3(=-==c b a ,(1)求c b a 23-+;(2)求满足c n b m a +=的实数n m ,;(3)若)2//()(a b c k a -+,求实数k .2.4平面向量的数量积与2.5平面向量应用举例一、选择题(每题5分,共50分)1.若b a ,是两个单位向量,那么下列四个结论中正确的是 ( )A.b a =B.1=⋅b aC.≠D.= 2.下面给出的关系始终正确的个数是 ( )①00=⋅a ②a b b a ⋅=⋅③2a =④()()c b a c b a ⋅⋅=⋅⋅b a ⋅≤A.0B.1C.2D.33.对于非零向量b a ,,下列命题中正确的是( )A.000==⇒=⋅b a b a 或B. b a //a ⇒在bC.()2b a b a b a ⋅=⋅⇒⊥D.b a c b c a =⇒⋅=⋅4.下列四个命题,真命题的是( ) A.在ABC ∆中,若,0>⋅BC AB 则ABC ∆是锐角三角形;B.在ABC ∆中,若,0>⋅BC AB 则ABC ∆是钝角三角形;C.ABC ∆为直角三角形的充要条件是0=⋅BC AB ;D.ABC ∆为斜三角形的充要条件是.0≠⋅BC AB .5.e ,8=为单位向量,a 与e 的夹角为,60o 则a 在e 方向上的投影为( ) A.34 B.4 C.24 D.238+6.若向量b a ,a ,1==与b 的夹角为 120,则=⋅+⋅b a a a( ) A.21B.21- C.23D.23-7.a ,631==与b 的夹角为,3π则b a ⋅的值为( ) A.2 B.2± C.1 D.1±8.已知()(),5,5,0,3-==b a 则a 与b 的夹角为 ()A.4πB.3πC.43πD.32π 9.若O 为ABC ∆所在平面内的一点,且满足()(),02=-+⋅-OA OC OB OC OB 则ABC ∆的形状为 ( )A.正三角形B.直角三角形C.等腰三角形D.A ,B ,C 均不是10.设向量()(),1,,2,1x b a ==当向量b a 2+与b a -2平行时,b a ⋅等于 ( ) A.25 B.2 C.1 D.27 二、填空题(每题5分,共20分)11.(),2,1,3==b 且,b a ⊥则a 的坐标是_____________.12.若(),8,6-=a 则与a 平行的单位向量是_____________.13.设21,e e 为两个不共线的向量,若21e e a λ+=与()2132e e b --=共线,则=λ________.14.有一个边长为1的正方形ABCD ,设,,,c AC b BC a AB ====-b __________.三、解答题(每题10分,共30分)15.()()61232,34=+⋅-==b a b a ,求a 与b 的夹角θ.16.,43==且a 与b 不共线,当k 为何值的时,向量b k a +与b k a -互相垂直?17.平面上三个力321,,F F F 作用于一点且处于平衡状态,121,226,1F N F N F +==与 2F 的夹角为,45o 求:①3F 的大小;②3F 与1F 的夹角的大小.第二章平面向量基础过关测试卷一、选择题(每题5分,共55分)1.如图在平行四边形ABCD 中,,b OB a OA == ,,d OD c OC ==则下列运算正确的是( )A.0 =+++d c b aB.0 =-+-d c b aC.0 =--+d c b aD.0 =+--d c b a2.已知)1,3(),3,(-==b x a ,且a ∥b ,则x 等于 ( )A.1-B.9C.9-D.13.已知a =)1,2(-,b =)3,1(,则-2a +3b 等于 ( )A.)11,1(--B.)11,1(-C.)11,1(-D.)11,1( 4.若点P 分有向线段21P P 所成定比为1:3,则点1P 分有向线段P P 2所成的比为 ( )A.34-B.32-C.21-D.23- 5.下列命题中真命题是 ( )A.000 ==⇒=⋅b a b a 或B.a b a b a 上的投影为在⇒//C.()2b a b a b a ⋅=⋅⇒⊥ D.b a c b c a =⇒⋅=⋅ 6.已知ABCD 的三个顶点C B A ,,的坐标分别为),3,1(),4,3(),1,2(--则第四个顶点D的坐标为 ( )A.)2,2(B.)0,6(-C.)6,4(D.)2,4(-7.设21,e e 为两不共线的向量,则21e e a λ+=与()1232e e b --=共线的等价条件是A.23=λB.32=λC.32-=λD.23-=λ ( ) 8.下面给出的关系式中正确的个数是 ( ) ①00 =⋅a ②a b b a ⋅=⋅③22a a =④)()(c b a c b a ⋅=⋅⑤||||b a b a ⋅≤⋅A.0B.1C.2D.39.下列说法中正确的序号是 ( )①一个平面内只有一对不共线的向量可作为基底;②两个非零向量平行,则他们所在直线平行;A C OD③零向量不克不及作为基底中的向量;④两个单位向量的数量积等于零.A.①③B.②④C.③D.②③10.已知()()5,0,1,221P P -且点P 在21P P延长线上,22PP =,则点P 坐标是( ) A.)11,2(- B.)3,34( C.)3,32( D.)7,2(-11.若b a k b a b a b a 432,1||||-+⊥==与且也互相垂直,则k 的值为 ( )A.6-B.6C.3D.3-二、填空题(每题5分,共15分) 12.已知向量)2,1(,3==b a ,且b a ⊥,则a 的坐标是__________.13.若()0,2,122=⋅-==a b a b a ,则b a 与的夹角为__________. 14.ΔABC 中,)1,3(),2,1(B A 重心)2,3(G ,则C 点坐标为__________.三、解答题(每题题10分,共30分)15.已知),4,(),1,1(),2,0(--x C B A 若C B A ,,三点共线,求实数x 的值.16.已知向量)1,0(),0,1(,4,23212121==+=-=e e e e b e e a ,求(1)b a b a +⋅,的值;(2)a 与b的夹角的余弦值.17.已知四边形ABCD 的顶点分别为)4,1(),7,2(),4,5(),1,2(-D C B A ,求证:四边形ABCD为正方形.第二章平面向量单元能力测试卷一、选择题(每题5分,共60分)1.设F E D C B A ,,,,,是平面上任意五点,则下列等式①AB CE AE CB +=+②AC BE BC EA +=-③ED AB EA AD +=+④0AB BC CD DE EA ++++=⑤0AB BC AC +-=其中错误等式的个数是( )A.1B.2C.3D.42.已知正方形ABCD 的边长为1,设c AC b BC a AB ===,,=++b ( )A.0B.3C.22+D.223.设1e 、2e 是两个不共线向量,若向量 a =2153e e +与向量213e e m b -=共线,则m 的值等于 ( ) A.35- B.-59 C.53- D.95- 4.已知)3,1(),1,2(=-=b a 则b a 32+-等于 ( )A.)11,1(--B.)11,1(-C.)11,1(-D.)11,1(5.设P )6,3(-,Q )2,5(-,R 的纵坐标为9-,且R Q P ,,三点共线,则R 点的横坐标为A.9-B.6-C.9D.6 ( )6.在ΔABC 中,若0)()(=-⋅+CB CA CB CA ,则ΔABC 为 ( )A.正三角形B.直角三角形C.等腰三角形D.无法确定7.已知向量a ,b ,40-=⋅b a =8,则向量a 与b 的夹角为 ( )A. 60B. 60-C. 120D.120-8.已知)0,3(=a ,)5,5(-=b ,则a 与b 的夹角为 ( ) A.4πB.43πC.3πD.32π 9.若b a b a ⊥==,1||||且b a 32+与b a k 4-也互相垂直,则k 的值为 ( ) A.6- B.6 C.3 D.3-10.已知a =(2,3),b =(4-,7),则a 在b 上的投影值为 ( ) A.13 B.513 C.565 D.65N A B D M C 11.若035=+CD AB ,且BC AD =,则四边形ABCD 是 ( )A.平行四边形B.菱形C.等腰梯形D.非等腰梯形12.己知)1,2(1-P ,)5,0(2P 且点P 在线段21P P 的延长线上,||2||21PP P P =, 则P 点坐标为 ( )A.)11,2(-B.)3,34( C.(3,32) D.)7,2(- 二、填空题(每题5分,共 20分) 13.已知|a |=1,|b |=2,且(a -b )和a 垂直,则a 与b 的夹角为__________.14.若向量),2(x a -=,)2,(x b -=,且a 与b 同向,则-a b 2=__________.15.已知向量a )2,3(-=,b )1,2(-,c )4,7(-=,且b a c μλ+=,则λ=__________,μ=__________.16.已知|a |=3,|b |=2,a 与b 的夹角为60,则|a -b |=__________.三、解答题(第17题10分,其余每题12分,共70分)17.如图,ABCD 中,点M 是AB 的中点, 点N 在BD 上,且BD BN 31=, 求证:C N M ,,三点共线.18.已知C B A ,,三点坐标分别为),2,1(),1,3(),0,1(--AE =31AC ,BF =31BC , 1)求点E 、F 及向量EF 的坐标;2)求证:EF ∥AB .19.24==b a a b 夹角为120,求:(1)b a ⋅;(2))()2(b a b a +⋅-;(3)b a 23+. 20.已知)2,3(),2,1(-==b a ,当k 为何值时:(1)b a k +与b a 3-垂直;(2)b a k +与b a 3-平行,平行时它们是同向还是反向?21.())sin 3cos ),3(sin(,sin ,cos 2x x x b x x a -+==π,b a x f ⋅=)(,求:(1)函数()x f 的最小正周期; (2))(x f 的值域; (3))(x f 的单调递增区间.22.已知点)sin ,(cos ),3,0(),0,3(ααC B A , (1)若1-=⋅BC AC ,求α2sin 的值;(213=+,且),0(πα∈,求OB 与OC 的夹角.3.1两角和与差的正弦、余弦和正切公式一、选择题(每题5分,共45分)1.345cos 的值等于 ( )A.462- B.426- C.462+ D.462+- 2.195sin 75sin 15cos 75cos -的值为 ( ) A.0 B.21 C.23 D.21-3.已知1312sin -=θ,)0,2(πθ-∈,则)4cos(πθ-的值为 ( ) A.2627-B.2627C.26217-D.262174.已知53)4sin(=-x π,则x 2sin 的值为 ( )A.2519B.2516C.2514D.257 5.若31sin cos ),,0(-=+∈ααπα且, 则α2cos 等于 ( )A.917 B.917± C.917- D.317 6.已知函数是则)(,,sin )2cos 1()(2x f R x x x x f ∈+= ( )A.最小正周期为π的奇函数B.最小正周期为2π的奇函数 C.最小正周期为π的偶函数 D.最小正周期为2π的偶函数7.已知71tan =α,βtan =31,20πβα<<<,则βα2+等于 ( )A.45πB.4πC.45π或4πD.47π8.ΔABC 中,已知αtan 、βtan 是方程01832=-+x x 的两个根,则c tan 等于 ( ) A.2 B.2- C.4 D.4- 9.函数56sin2sin 5cos2cos )(ππx x x f -=的单调递增区间是 ( )A.)(53,10Z k k k ∈⎥⎦⎤⎢⎣⎡++ππππ B.)(207,203Z k k k ∈⎥⎦⎤⎢⎣⎡+-ππππ C.)(532,102Z k k k ∈⎥⎦⎤⎢⎣⎡++ππππ D.)(10,52Z k k k ∈⎥⎦⎤⎢⎣⎡+-ππππ 二、填空题(每题5分,共20分)10.已知函数的最小正周期是则)(,,sin )cos (sin )(x f R x x x x x f ∈-=__________. 11.135)6cos(-=+πx ,则)26sin(x -π的值是__________. 12.231tan 1tan +=+-αα,则α2sin =__________. 13.已知函数[]则,,0,sin )(π∈=x x x f )2(3)(x f x f y -+=π的值域为__________.三、解答题(14题11分,15、16题12分,共35分)14.求值:(1))32cos(3)3sin(2)3sin(x x x ---++πππ. (2)已知,71tan ,21)tan(-==-ββα且)0,(,πβα-∈,求βα-2的值.15.设x x x f 2sin 3cos 6)(2-=, (1)求)(x f 的最大值及最小正周期; (2)若锐角α满足323)(-=αf ,求α54tan的值. 16.已知),,0(,,55cos ,31tan πβαβα∈=-= (1)求)tan(βα+的值; (2)求函数)cos()sin(2)(βα++-=x x x f 的最大值.3.2简单的三角恒等变换一、选择题(每题5分,共40分)1.=-︒︒︒︒16sin 194cos 74sin 14sin ( ) A.23 B.23- C.21 D.21-2.下列各式中,最小的是 ( ) A.40cos 22B.6cos 6sin 2 C.37sin 50cos 37cos 50sin - D.41cos 2141sin 23- 3.函数()R x x y ∈+=2cos 21的最小正周期为 ( ) A.2πB.πC.π2D.π44.︒︒︒︒-+70tan 50tan 350tan 70tan 的值为 ( )A.21B.23C.21- D.3- 5.若316sin =⎪⎭⎫ ⎝⎛-απ,则=⎪⎭⎫⎝⎛+απ232cos ( )A.97-B.31- C.31 D.976.若函数x x y tan 2sin =,则该函数有 ( ) A.最小值0,无最大值B.最大值2,无最小值C.最小值0,最大值2D.最小值2-,最大值2 7.若παπ223<<,则=++α2cos 21212121 ( ) A.2cosαB.2sinα C.2cos α- D.2sin α- 8.若()x x f 2sin tan =,则()=-1f ( ) A.1B.1- C.21D.21-二、填空题(每题5分,共20分)9.计算=-+75tan 175tan 1__________.10.要使mm --=-464cos 3sin θθ有意义,则m 取值范围是__________.11.sin 510αβ==且,αβ为锐角,则αβ+=__________. 12.若函数4cos sin 2++=x a x y 的最小值为1,则a =__________. 三、解答题(每题10分,共40分) 13.化简:)10tan 31(40cos ︒+︒.14.求值:︒︒︒︒++46cos 16sin 46cos 16sin 22. 15.求函数1cos sin 2cos sin +++=x x x x y ,⎥⎦⎤⎢⎣⎡∈2,0πx 的最值. 16.已知函数R x x x x x y ∈++=,cos 2cos sin 3sin 22,(1)求函数的最小正周期; (2)求函数的对称轴; (3)求函数最大值及取得最大值时x 的集合.第三章三角恒等变换单元能力测试卷一、选择题(每题5分 ,共60分)1.︒︒︒︒++15cos 75cos 15cos 75cos 22的值等于 ( )A.26 B.23 C.45D.431+ 2.已知222tan -=θ,πθπ22<<,则θtan 的值为 ( ) A.2 B.22-C.2D.2或22- 3.设︒︒︒︒++=30tan 15tan 30tan 15tan a ,︒︒-=70sin 10cos 22b ,则a ,b 的大小关系 A.b a = B.b a > C.b a < D.b a ≠ ( ) 4.函数x x x x f cos sin 3sin )(2+=在区间⎥⎦⎤⎢⎣⎡2,4ππ上的最大值 ( ) A.1 B.231+ C.23 D.31+5.函数)32cos()62sin(ππ+++=x x y 的最小正周期和最大值分别为 ( )A.π,1B.π,2C.π2,1D.π2,2 6.xx xx sin cos sin cos -+= ( )A.)4tan(π-x B.)4tan(π+x C.)4cot(π-x D.)4cot(π+x7.函数)3cos()33cos()6cos()33sin(ππππ+++-+=x x x x y 的图像的一条对称轴是 A.6π=x B.4π=x C.6π-=x D.2π-=x ( )8.)24tan 1)(25tan 1)(20tan 1)(21tan 1(++++的值为 ( ) A.2 B.4 C.8 D.169.若51)cos(=+βα,53)cos(=-βα,则βαtan tan = ( ) A.2 B.21C.1D.010.函数[]0,(cos 3sin )(π-∈-=x x x x f )的单调递增区间是 ( )。
【沪科版】高中数学必修四期末试卷含答案(1)

一、选择题1.已知tan α,tan β是方程2506x x a -+=的两个实数根,且()tan 1αβ+=,则实数a =( )A .16B .116C .512D .7122.设函数22()cos sin 2cos sin f x x x x x =-+,下列说法中,错误的是( ) A .()f x 的最小值为2- B .()f x 在区间,48ππ⎡⎤-⎢⎥⎣⎦上单调递增. C .函数()y f x =的图象可由函数2sin y x =的图象先向左平移4π个单位,再将横坐标缩短为原来的一半(纵坐标不变)而得到. D .将函数()y f x =的图象向左平移4π个单位,所得函数的图象关于y 轴对称. 3.设a =sin17°cos45°+cos17°sin45°,b =2cos 213°-1,c =32,则有( ) A .c <a <bB .b <c <aC .a <b <cD .b <a <c4.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知sin 3cos 23b A a B b c -=-,则A =( )A .3π B .4π C .6π D .23π 5.已知非零向量,a b 满足4,2a b ==,且a 在b 方向上的投影与b 在a 方向上的投影相等,则a b -等于( ) A .1B .25C .5D .36.已知圆C 的方程为22(1)(1)2x y -+-=,点P 在直线3y x上,线段AB 为圆C的直径,则PA PB ⋅的最小值为() A .2B .52C .3D .727.在边长为2的正方形ABCD 中,E ,F 分别为BC 和DC 的中点,则AE AF ⋅=( )A .52B .52-C .4D .4-8.在ABC 中,D 为AB 的中点,E 为AC 边上靠近点A 的三等分点,且BE CD ⊥,则cos2A 的最小值为( ) A .267B .27-C .17-D .149-9.斐波那契螺线又叫黄金螺线,广泛应用于绘画、建筑等,这种螺线可以按下列方法画出:如图,在黄金矩形ABCD (512AB BC -=)中作正方形ABFE ,以F 为圆心,AB 长为半径作圆弧BE ;然后在矩形CDEF 中作正方形DEHG ,以H 为圆心,DE 长为半径作圆弧EG ;……;如此继续下去,这些圆弧就连成了斐波那契螺线.记圆弧BE ,EG ,GI 的长度分别为,,l m n ,对于以下四个命题:①l m n =+;②2m l n =⋅;③2m l n =+;④211m l n=+.其中正确的是( )A .①②B .①④C .②③D .③④10.将函数()sin 2f x x =的图象向右平移ϕ(02πϕ<≤)个单位,得到函数()g x 的图象.在同一坐标系中,这两个函数的部分图象如图所示,则ϕ=( )A .6π B .4π C .3π D .2π 11.已知曲线1C :sin y x =,2C :cos 23y x π⎛⎫=-⎪⎝⎭,则下面结论正确的是( )A .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移3π个单位长度,得到曲线2CB .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移23π个单位长度,得到曲线2CC .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移12π个单位长度,得到曲线2CD .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移12π个单位长度,得到曲线2C12.设函数()sin()(0,||)f x x ωϕωϕπ=+><.若5()8f x f π⎛⎫≤ ⎪⎝⎭对任意的实数x 都成立,且1108f π⎛⎫= ⎪⎝⎭,()f x 在443,ππ⎛⎫-⎪⎝⎭单调,则( ) A .23ω=,12πϕ=B .23ω=,1112πϕ=- C .13ω=,1124πϕ=-D .13ω=,724πϕ= 二、填空题13.已知1cos 3α=,且02πα-<<,则()()()cos sin 2tan 23sin cos 22αππαπαππαα--+-=⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭______. 14.sin 347°cos 148°+sin 77°cos 58°=________. 15.已知sin 4πα⎛⎫+= ⎪⎝⎭,()0,απ∈,则cos 26πα⎛⎫+= ⎪⎝⎭__________. 16.已知平面向量a ,b 不共线,且1a =,1a b ⋅=,记b 与2a b +的夹角是θ,则θ最大时,a b -=_______.17.设1e ,2e 是单位向量,且1e ,2e 的夹角为23π,若12a e e =+,122b e e =-,则a 在b 方向上的投影为___________.18.如图,在矩形ABCD 中,3AB =,4=AD ,圆M 为BCD △的内切圆,点P 为圆上任意一点, 且AP AB AD λμ=+,则λμ+的最大值为________.19.已知函数()()()cos 0,0f x x ωϕωϕπ=+>≤≤是奇函数,且在,64ππ⎡⎤-⎢⎥⎣⎦上单调递减,则ω的最大值是__________. 20.已知函数sin cos |sin cos |3()22+--=+x x x x f x [0,]m 上恰有4个零点,则实数m 的取值范围为________.三、解答题21.已知函数()2sin cos 144f x x x ππ⎛⎫⎛⎫=+--⎪ ⎪⎝⎭⎝⎭. (1)求函数()f x 的最小正周期;(2)若函数()()223g x f x x =-,求函数()g x 的单调增区间.22.已知函数23()3sin cos (0)2f x x x x ωωωω=+->的最小正周期为π. (1)求()f x 的解析式;(2)将()f x 图象上所有的点向左平移4π个单位长度,得到函数()y g x =的图象,若对于任意的12,,66x x ππϕϕ⎛⎫∈---+⎪⎝⎭,当12x x >时,()()()()1212f x f x g x g x ->-恒成立,求ϕ的取值范围.23.已知4a =,8b =,a 与b 的夹角是120(1)计算:①a b +,②42a b-;(2)当k 为何值时,2a b +()与ka b -()垂直? 24.已知||4,||2a b ==,且a 与b 夹角为120︒, 求:(1)||a b +; (2)a 与a b +的夹角.25.已知函数2()3cos cos (0)f x x x x ωωωω=->周期是2π. (1)求()f x 的解析式,并求()f x 的单调递增区间;(2)将()f x 图像上所有点的横坐标扩大到原来的2倍,再向左平移6π个单位,最后将整个函数图像向上平移32个单位后得到函数()g x 的图像,若263x ππ≤≤时,()2g x m -<恒成立,求m 得取值范围.26.已知函数()sin()0,0,||2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭,,28M π⎛⎫⎪⎝⎭、5,28N π⎛⎫- ⎪⎝⎭分别为其图象上相邻的最高点、最低点. (1)求函数()f x 的解析式; (2)求函数()f x 在0,2π⎡⎤⎢⎥⎣⎦上的单调区间和值域.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】首先利用韦达定理求得5tan tan 6αβ+=,tan tan a αβ⋅=,再结合()tan 1αβ+=,利用两角和正切公式得到关于a 的等量关系式,求得结果. 【详解】因为tan α,tan β是方程2506x x a -+=的两个实数根, 所以有5tan tan 6αβ+=,tan tan a αβ⋅=, 因为()tan 1αβ+=,所以有5611a=-,所以16a =,故选:A. 【点睛】思路点睛:该题考查的是有关两角和正切公式,解题思路如下: (1)先利用韦达定理,写出两根和与两根积;(2)利用两角和正切公式,结合题中条件,得到等量关系式,求得结果.2.D解析:D 【分析】由二倍角公式及辅助角公式化简,再根据正弦型函数性质判断AB ,利用图象平移伸缩判断CD. 【详解】由22()cos sin 2cos sin cos 2sin 2)4f x x x x x x x x π=-+=+=+,可知函数的最小值为,故A 正确;当,48x ππ⎡⎤∈-⎢⎥⎣⎦时,2,442x πππ⎡⎤+∈-⎢⎥⎣⎦,由正弦函数单调性知())4f x x π=+单调递增,故B 正确;y x =的图象先向左平移4π个单位得)4y x π=+,再将横坐标缩短为原来的一半(纵坐标不变)得)4y x π=+,故C 正确;将函数()y f x =的图象向左平移4π个单位得)]))44424y x x x πππππ=++=++=+,图象不关于y 轴对称,故D 错误. 故选:D 【点睛】关键点点睛:首先要把函数解析式化简,利用正弦型函数的图象与性质判断值域与单调性,利用图象变换的时候,注意平移与伸缩都变在自变量上,属于中档题.3.A解析:A 【分析】利用两角和的正弦函数公式化简a ,利用二倍角的余弦公式及诱导公式化简b ,再利用特殊角的三角函数值化简c ,根据正弦函数在0,2π⎡⎤⎢⎥⎣⎦为增函数,甶角度的大小,得到正弦值的大小,进而得到,a b 及c 的大小关系. 【详解】化简得()17cos45cos1745174562a sin sin sin sin =+=+=,()22cos 131cos26cos 906464b sin =-==-=,60c sin ==,正弦函数在0,2π⎡⎤⎢⎥⎣⎦为增函数,606264sin sin sin ∴<<,即c a b <<,故选A. 【点睛】本题考查了二倍角的余弦公式,两角和与差的正弦公式,诱导公式,以及特殊角的三角函数,正弦函数的单调性,属于中档题. 比较大小主要有四种方法:(1)作差法;(2)作商法;(3)函数单调性法;(4)基本不等式法.4.C解析:C 【分析】由正弦定理,两角和的正弦函数公式化简已知等式,结合sin 0B ≠,可得2sin 23A π⎛⎫+= ⎪⎝⎭,根据题意可求范围(0,)A π∈,根据正弦函数的图象和性质即可求解A 的值. 【详解】解:∵ bsin cos 2A B b -=,∴由正弦定理可得:sin sin cos 2sin B A A B B C =, ∴sin sin cos 2sin B A A B B C =2sin cos cos sin )B A B A B =-+,∴sin sin 2sin sin B A B A B =,又∵sin 0B ≠,∴sin 2A A +=, ∴2sin 23A π⎛⎫+= ⎪⎝⎭,可得232A k πππ+=+,Z k ∈, 又(0,)A π∈,∴6A π=.故选:C . 【点睛】本题考查正弦定理和三角恒等变换的运用,考查运算求解能力,求解时注意角的范围.5.B解析:B 【解析】因为a 在b 方向上的投影与b 在a 方向上的投影相等,设这两个向量的夹角为θ,则cos cos 4cos 2cos 2a b πθθθθθ===⇒=,又由2()a b a b -=-且4,2a b ==,所以222()225a b a b a a b b -=-=-⋅+=,故选B.6.B解析:B 【分析】将PA PB ⋅转化为2||2PC -,利用圆心到直线的距离求得||PC 的取值范围求得PA PB⋅的最小值. 【详解】()()()()PA PB PC CA PC CB PC CA PC CA ⋅=+⋅+=+⋅-2222||||||222PC CA PC =-=-≥- ⎪⎝⎭52=.故选B. 【点睛】本小题主要考查向量的线性运算,考查点到直线距离公式,考查化归与转化的数学思想方法,属于中档题.7.C解析:C 【分析】建立直角坐标系,利用向量的坐标运算求解即可. 【详解】以点A 为坐标原点,建立如下图所示的直角坐标系(0,0),(2,1),(1,2)A E F(2,1),(1,2)AE AF ∴==21124AE AF ∴⋅=⨯+⨯=故选:C【点睛】本题主要考查了求平面向量的数量积,属于中档题.8.D解析:D 【分析】作出图形,用AB 、AC 表示向量BE 、CD ,由BE CD ⋅可得出2232cos 7c b A bc+=,利用基本不等式求得cos A 的最小值,结合二倍角的余弦公式可求得cos2A 的最小值. 【详解】 如下图所示:13BE AE AB AC AB =-=-,12CD AD AC AB AC =-=-, BE CD ⊥,则2211711032623BE CD AC AB AB AC AB AC AB AC ⎛⎫⎛⎫⋅=-⋅-=⋅--= ⎪ ⎪⎝⎭⎝⎭,即22711cos 0623cb A c b --=,可得22322626cos 7c b bc A bc +=≥= 当且仅当62b =时,等号成立, 所以,22261cos 22cos 12149A A =-≥⨯-=-⎝⎭. 故选:D. 【点睛】本题考查二倍角余弦值最值的求解,考查平面向量垂直的数量积的应用,同时也考查了基本不等式的应用,考查计算能力,属于中等题.9.A解析:A 【分析】 设51AB =,则2BC =,再由14圆弧分别求出,,l m n ,再逐项判断即可得正确选项. 【详解】 不妨设51AB =,则2BC =,所以()512l BE π==⨯, ()25135ED =-=所以(352m EG π==⨯,(134CG =-=,所以())422n GI ππ==⨯=,所以(())341222m n l πππ⨯+⨯=⨯==+,故①正确;(22227342m π-⨯==,))271222l n ππ-⨯⨯=⋅=, 所以2m l n =⋅,故②正确;))122l n ππ⨯++==,((22332m ππ=⨯⨯-=-, 所以2m l n ≠+,故③不正确;11l n l n l n ++===⋅(1132m π==⨯,所以211m l n ≠+, 故④不正确;所以①②正确, 故选:A 【点睛】关键点点睛:本题解题的关键是读懂题意,正确求出扇形的半径,利用弧长公式求出弧长即,,l m n 的值.10.C解析:C 【分析】由图可知,172482g f ππ⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭,根据函数图象的平移变化法则可知()()sin 2x g x ϕ=-,于是推出1717sin 224242g ππϕ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,即1722124k ππϕπ-=+或324k ππ+,k Z ∈,再结合02πϕ<≤,解之即可得ϕ的值.【详解】由图可知,17sin 224882g f πππ⎛⎫⎛⎫⎛⎫==⨯=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 因为()f x 的图象向右平移ϕ个单位,得到函数()g x 的图象,所以()()sin 2x g x ϕ=-,所以171717sin 2sin 22424122g πππϕϕ⎛⎫⎛⎫⎛⎫=-=-=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以1722124k ππϕπ-=+或17322124k ππϕπ-=+,k Z ∈, 解得712k πϕπ=-或3k πϕπ=-,k Z ∈,因为02πϕ<≤,所以3πϕ=.故选:C 【点睛】本小题主要考查三角函数图象变换,属于中档题.11.C解析:C 【分析】由题意利用诱导公式得1sin cos :2C y x x π⎛⎫==- ⎪⎝⎭,根据函数()cos y A x ωϕ=+的图象变换规律,得出结论. 【详解】已知曲线1sin cos :2C y x x π⎛⎫==-⎪⎝⎭,2cos 23:C y x π⎛⎫=-⎪⎝⎭, ∴把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,可得cos 22y x π⎛⎫=- ⎪⎝⎭的图象,再把得到的曲线向左平移 12π个单位长度,得到曲线2cos 2cos 263:2C x x πππ⎛⎫⎛⎫+-=- ⎪ ⎪⎝⎭⎝⎭的图象,故选C .【点睛】本题主要考查函数()cos y A x ωϕ=+的图象变换规律,属于基础题.12.A解析:A 【分析】5()8f x f π⎛⎫≤ ⎪⎝⎭对任意的实数x 都成立,可得 58x π=时函数取得最大值,则函数满足518f π⎛⎫= ⎪⎝⎭,1108f π⎛⎫= ⎪⎝⎭,且()f x 在443,ππ⎛⎫-⎪⎝⎭单调,再利用排除法可得答案. 【详解】因为5()8f x f π⎛⎫≤ ⎪⎝⎭对任意的实数x 都成立,则58x π=时函数取得最大值,所以函数满足518f π⎛⎫=⎪⎝⎭,1108f π⎛⎫= ⎪⎝⎭,且()f x 在443,ππ⎛⎫-⎪⎝⎭单调, 对于A ,若23ω=,12πϕ=,可得2()sin 312f x x π⎛⎫=+ ⎪⎝⎭,5sin 182f ππ⎛⎫== ⎪⎝⎭,11sin 08f ππ⎛⎫== ⎪⎝⎭,3254412,,4,31222x x πππππππ⎛⎫⎛⎫⎡⎤∈-⇒+∈-⊆- ⎪⎪⎢⎥⎝⎭⎝⎭⎣⎦,则2()sin 312f x x π⎛⎫=+ ⎪⎝⎭在443,ππ⎛⎫- ⎪⎝⎭单调递增,故A 符合题意; 对于B ,若23ω=,1112πϕ=-,可得211()sin 312f x x π⎛⎫=-⎪⎝⎭,5sin 1182f ππ⎛⎫⎛⎫=-=-≠ ⎪ ⎪⎝⎭⎝⎭,故B 不符合题意; 对于C ,若13ω=,1124πϕ=-,可得111()sin 324f x x π⎛⎫=-⎪⎝⎭,5sin 1842f ππ⎛⎫⎛⎫=-=-≠ ⎪ ⎪⎝⎭⎝⎭,故C 不符合题意; 对于D ,若13ω=,724πϕ=,可得17()sin 324f x x π⎛⎫=+ ⎪⎝⎭,113sin 084f ππ⎛⎫==≠ ⎪⎝⎭,故D 不符合题意; 故选:A. 【点睛】方法点睛:特殊法是“小题小做”的重要策略,排除法解答选择题是高中数学一种常见的解题思路和方法,这种方法即可以提高做题速度和效率,又能提高准确性,这种方法主要适合下列题型:(1)求值问题(可将选项逐个验证);(2)求范围问题(可在选项中取特殊值,逐一排除);(3)图象问题(可以用函数性质及特殊点排除);(4)解方程、求解析式、求通项、求前n 项和公式问题等等.二、填空题13.【分析】用同角间的三角函数关系计算用诱导公式化简后再计算然后计算可得【详解】∵且∴∴故答案为:【点睛】方法点睛:本题考查诱导公式同角间的三角函数关系三角函数求值问题首先要进行化简应用诱导公式化简应用解析:-【分析】用同角间的三角函数关系计算sin α,用诱导公式化简后再计算.然后计算tan α,可得. 【详解】∵1cos 3α=,且02πα-<<,∴sin 3α==-, ∴()()()cos sin 2tan 2cos sin (tan )sin tan 3cos (sin )cos sin cos 22αππαπααααααππααααα--+---=====---⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭.故答案为:-. 【点睛】方法点睛:本题考查诱导公式,同角间的三角函数关系.三角函数求值问题,首先要进行化简,应用诱导公式化简,应用同角间的三角函数关系化简,最后才代入求值.应用诱导公式应牢记:奇变偶不变,符号看象限,应用同角间的三角函数关系应注意在应用平方关系求函数值需确定角的范围,以确定正弦余弦值的正负.14.【分析】首先根据诱导公式将然后结合两角和正弦公式的逆用化简即可求值【详解】sin347°cos148°+sin77°cos58°=sin(270°+77°)cos(90°+58°)+sin77°co解析:2【分析】首先根据诱导公式将sin347cos77︒=-︒、cos148sin58︒=-︒,然后结合两角和正弦公式的逆用化简,即可求值 【详解】sin 347°cos 148°+sin 77°cos 58°=sin(270°+77°)cos(90°+58°)+sin 77°cos 58° =(-cos 77°)·(-sin 58°)+sin 77°cos 58° =sin 58°cos 77°+cos 58°sin 77° =sin(58°+77°) =sin 135°=2故答案为:2【点睛】本题考查了利用三角函数的诱导公式、两角和正弦公式化简求值,注意有大角要根据诱导公式将其转化为小角,进而应用三角恒等变换化简求值15.【分析】构造角再用两角和的余弦公式及二倍公式打开【详解】故答案为:【点睛】本题是给值求值题关键是构造角应注意的是确定三角函数值的符号解析:26- 【分析】 构造角22643πππαα⎛⎫+=+- ⎪⎝⎭,cos 4πα⎛⎫+ ⎪⎝⎭求,再用两角和的余弦公式及二倍公式打开. 【详解】()50,,,444πππαπα⎛⎫∈+∈ ⎪⎝⎭,sin 42πα⎛⎫+=< ⎪⎝⎭,cos 4πα⎛⎫∴+= ⎪⎝⎭,22cos 22cos 1443ππαα⎛⎫⎛⎫+=+-= ⎪ ⎪⎝⎭⎝⎭,sin 22sin cos 444πππααα⎛⎫⎛⎫⎛⎫+=+⋅+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭cos 2cos 2cos 2cos sin 2sin 6434343πππππππαααα⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫+=+-=+++ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦2132⎛=⨯+= ⎝⎭故答案为:26【点睛】本题是给值求值题,关键是构造角,应注意的是确定三角函数值的符号.16.【分析】把表示为的函数利用函数的性质求出当最大时的值进而可求出的值【详解】设则所以易得当时取得最小值取得最大值此时故答案为:【点睛】本题考查平面向量的有关计算利用函数的思想求最值是一种常见思路属于中【分析】把cos θ表示为|b|的函数,利用函数的性质求出当θ最大时|b|的值,进而可求出a b -的值. 【详解】 设()0b x x =>,则()22·222b a b a b b x +=⋅+=+,22|2+|=448a b a a b b +⋅+=+,所以()2·2cos 28b a bb a bx θ+==++易得cos 0θ>,()()()2222222222211cos 124811411222263x x x x x x θ+===+⎛⎫-++--+⎪+++⎝⎭, 当24x =时,2cos θ取得最小值,θ取得最大值,此时22||=212ab a a b b --⋅+=-=【点睛】本题考查平面向量的有关计算,利用函数的思想求最值是一种常见思路.属于中档题.17.【分析】根据平面向量数量积的定义求出与并计算出平面向量的模再利用公式即可求解【详解】由平面向量的数量积的定义可得即所以在方向上的投影为故答案为:【点睛】本题主要考查了平面向量的数量积的定义以及向量的 解析:14【分析】根据平面向量数量积的定义求出12e e ⋅与a b ⋅,并计算出平面向量b 的模b ,再利用公式,即可求解. 【详解】由平面向量的数量积的定义,可得1221211cos11()322e e e e π⋅=⋅=⨯⨯-=-, 222222111111()(2)22122a b e e e e e e e e ⋅=+-=+⋅-=--=,22221112221(2)4444()172e e e e e e b =-=-⋅+=-⨯-+=,即7b =,所以a 在b 方向上的投影为127a b b⋅==. 【点睛】本题主要考查了平面向量的数量积的定义,以及向量的投影的应用,其中解答中熟记平面向量的数量积的计算公式,以及向量的投影的计算是解答本题的关键,着重考查了推理与运算能力,属于中档试题.18.【分析】以点B 为坐标原点建立平面直角坐标系如下图所示由已知条件得出点坐标圆M 的方程设由得出再设(为参数)代入中根据三角函数的值域可求得最大值【详解】以点B 为坐标原点建立平面直角坐标系如下图所示因为在解析:116【分析】以点B 为坐标原点,建立平面直角坐标系如下图所示,由已知条件得出点坐标,圆M 的方程,设(),P x y ,由AP AB AD λμ=+,得出134y x λμ⎧=-⎪⎪⎨⎪=⎪⎩,再设3cos 1sin x y θθ=+⎧⎨=+⎩(θ为参数),代入λμ+中,根据三角函数的值域,可求得最大值. 【详解】以点B 为坐标原点,建立平面直角坐标系如下图所示,因为在矩形ABCD 中,3AB =,4=AD ,所以圆M 的半径为3+4512r -==, 所以()0,0B ,()0,3A ,()4,0C ,()4,3D,()3,1M ,圆M 的方程为()()22311x y -+-=,设(),P x y ,又AP AB AD λμ=+,所以()()(),30,34,0x y λμ-=-+,解得134y x λμ⎧=-⎪⎪⎨⎪=⎪⎩, 又点P 是圆M 上的点,所以3cos 1sin x y θθ=+⎧⎨=+⎩(θ为参数),所以()1sin 3cos 517sin 1+1+34312124+y x θθβθλμ+=+--+=-=,其中3tan 4β=, 所以,当()sin 1βθ-=时,λμ+取得最大值116, 故答案为:116.【点睛】本题考查向量的线性表示,动点的轨迹中的最值问题,属于中档题.19.【分析】先根据函数为奇函数结合的取值范围可求得的值化简可得由求得可得出进而得出关于的不等式组由此可得出实数的最大值【详解】函数是奇函数则函数在区间上单调递减则解得因此的最大值是故答案为:【点睛】本题 解析:2【分析】先根据函数()y f x =为奇函数结合ϕ的取值范围可求得ϕ的值,化简可得()sin f x x ω=-,由,64x ππ⎡⎤∈-⎢⎥⎣⎦求得,64x πωπωω⎡⎤∈-⎢⎥⎣⎦,可得出,,6422πωπωππ⎡⎤⎡⎤-⊆-⎢⎥⎢⎥⎣⎦⎣⎦,进而得出关于ω的不等式组,由此可得出实数ω的最大值. 【详解】函数()()()cos 0,0f x x ωϕωϕπ=+>≤≤是奇函数,则()0cos 0f ϕ==,0ϕπ≤≤,2πϕ∴=,()cos sin 2f x x x πωω⎛⎫∴=+=- ⎪⎝⎭.,64x ππ⎡⎤∈-⎢⎥⎣⎦,,64x πωπωω⎡⎤∴∈-⎢⎥⎣⎦. 函数()y f x =在区间,64ππ⎡⎤-⎢⎥⎣⎦上单调递减,则,,6422πωπωππ⎡⎤⎡⎤-⊆-⎢⎥⎢⎥⎣⎦⎣⎦, 62420πωππωπω⎧-≥-⎪⎪⎪∴≤⎨⎪>⎪⎪⎩,解得02ω<≤,因此,ω的最大值是2.故答案为:2. 【点睛】本题考查三角函数的图象与性质,主要考查利用奇偶性与单调性求参数,考查计算能力,属中等题.20.【分析】周期为先考查一个周期函数判断零点个数及坐标再结合周期性即可求解【详解】是函数的一个周期当时当时只有四个零点在上恰有4个零点实数m 的取值范围为故答案为:【点睛】本题考查函数的零点个数求参数注意 解析:517[,)36ππ 【分析】()f x 周期为2π,先考查一个周期函数,判断零点个数及坐标,再结合周期性,即可求解【详解】2x π=是函数()f x 的一个周期,当[0,2]x π时,5cos [,]44()5sin [0,][,2]244x x f x x x πππππ⎧∈⎪⎪=⎨⎪+∈⋃⎪⎩当[0,2]x π时,()f x 只有四个零点5745,,,6633ππππ, 在[0,]m 上恰有4个零点,实数m 的取值范围为517[,)36ππ. 故答案为:517[,)36ππ. 【点睛】本题考查函数的零点个数求参数,注意函数图像和性质的应用,属于中档题.三、解答题21.(1)最小正周期为π;(2)5,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦,. 【分析】(1)由三角函数恒等变换化简函数得()sin 2f x x =,由三角函数的周期公式可得答案;(2)由余弦的二倍角公式和辅助角公式得()gx 2sin23x π=-(),再由正弦函数的性质可求得函数的单调增区间. 【详解】 解:(1)函数()22sin cos 12cos 1cos 2sin 24444f x x x x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+--=--=⨯-= ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,所以函数()f x 的最小正周期为22ππ=. (2)()()22sin 22cos 1sin 2g x f x x x x x x =-=-=)2sin 23x π=-(),令222232k x k k Z πππππ-≤-≤+∈,,得51212k x k k Z ππππ-≤≤+∈,, 所以函数()g x 的单调增区间为51212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦,,. 【点睛】方法点睛:解决三角函数的周期和单调性等相关问题,先利用三角函数的恒等变换化简函数为一个角一个三角函数,再运用整体思想代入是常用的方法.22.(1)()sin 23f x x π⎛⎫=+ ⎪⎝⎭;(2)08πϕ<≤【分析】(1)利用二倍角公式以及辅助角公式可得()sin 23f x x πω⎛⎫=+ ⎪⎝⎭,再由22T ππω==即可求解.(2)由三角函数的平移变换可得()cos 23g x x π⎛⎫=+⎪⎝⎭,设()()()212h x f x g x x π⎛⎫=-=+ ⎪⎝⎭,将不等式化为()h x 在区间,66ππϕϕ⎛⎫---+ ⎪⎝⎭上单调递增,只需22,22,2,124422x k k k Z πππππϕϕππ⎛⎫⎡⎤+∈---+⊆-++∈ ⎪⎢⎥⎝⎭⎣⎦即可. 【详解】(1)()2sin 2()sin cos 1cos 22x f x x x x x ωωωωω=+=++-12sin 2sin 223x x x πωωω⎛⎫=+=+ ⎪⎝⎭, 又0>ω,22T ππω==,解得1ω=, 所以()sin 23f x x π⎛⎫=+ ⎪⎝⎭.(2)由题意可得()sin 2cos 2433g x x x πππ⎡⎤⎛⎫⎛⎫=++=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 设()()()sin 2cos 233h x f x g x x x ππ⎛⎫⎛⎫=-=+-+ ⎪ ⎪⎝⎭⎝⎭223412x x πππ⎛⎫⎛⎫=+-=+ ⎪ ⎪⎝⎭⎝⎭,12,,66x x ππϕϕ⎛⎫∈---+ ⎪⎝⎭,当12x x >时,()()()()1212f x f x g x g x ->-恒成立,即()()()()1122f x g x f x g x ->-恒成立, 即()()12h x h x >恒成立,()h x ∴在区间,66ππϕϕ⎛⎫---+ ⎪⎝⎭上单调递增,,66x ππϕϕ⎛⎫∈---+ ⎪⎝⎭,则22,22,2,124422x k k k Z πππππϕϕππ⎛⎫⎡⎤+∈---+⊆-++∈ ⎪⎢⎥⎝⎭⎣⎦, 224222422244k k ππϕπππϕπππϕϕ⎧--≥-+⎪⎪⎪∴-+≤+⎨⎪⎪--<-+⎪⎩,8380k k πϕππϕπϕ⎧≤-⎪⎪⎪∴≤+⎨⎪>⎪⎪⎩, 08πϕ∴<≤【点睛】关键点点睛:本题考查了三角恒等变换、三角函数的平移变换,三角函数的单调性,解题的关键是结合不等式将问题转化为()()()212h x f x g x x π⎛⎫=-=+ ⎪⎝⎭在区间是单调递增函数,考查了计算能力、分析能力以及转化能力. 23.(1)①②2)7k =-. 【分析】利用数量积的定义求解出a b ⋅的值;(1)将所求模长平方,从而得到关于模长和数量积的式子,代入求得模长的平方,再开平方得到结果;(2)向量互相垂直得到数量积等于零,由此建立方程,解方程求得结果. 【详解】由已知得:cos ,48cos12016a b a b a b ⋅=⋅=⨯⨯=- (1)①222216326448a b a a b b +=+⋅+=-+= 43a b ∴+=②2224216164256256256768a b a a b b -=-⋅+=++= 42163a b ∴-=(2)若2a b +与ka b -垂直,则()()20a b ka b +⋅-=()222120ka k a b b ∴+-⋅-=即:1616(21)2640k k ---⨯=,解得:7k =- 【点睛】本题考查利用数量积求解向量的模长、利用数量积与向量垂直的关系求解参数的问题.求解向量的模长关键是能够通过平方运算将问题转化为模长和数量积运算的形式,从而使问题得以求解.24.(1)2)6π. 【分析】(1)由已知利用向量的数量积的 定义可求||||cos120a b a b =︒,然后由222||()2a b a b a a b b +=+=++可求(2)设a 与a b +的夹角θ,代入向量的夹角公式2()cos ||||423a ab a a a b θ+==+⨯可求θ【详解】 解:(1)||4a =,||2b =,且a 与b 夹角为120︒∴1||||cos12042()42a b a b =︒=⨯⨯-=-∴222||()2164a b a b a a b b +=+=++=+-(2)设a 与a b +的夹角θ则2()3cos ||||42383a ab a a a b θ+====+⨯0θπ∴6πθ=.【点睛】本题主要考查了向量的数量积的定义及向量的数量积的性质的简单应用,属于基础试题 25.(1)1()sin 462f x x π⎛⎫=-- ⎪⎝⎭,单调递增区间为,21226k k ππππ-+⎡⎤⎢⎥⎣⎦,k Z ∈;(2)()0,2. 【分析】(1)根据正弦和余弦的二倍角公式化简可得1()sin 262f x x πω⎛⎫=-- ⎪⎝⎭,由222T ππω==,解得2ω=,带入正弦函数的递增区间242262k x k πππππ-≤-≤+,化简即可得解; (2)根据三角函数的平移和伸缩变换可得()sin 216g x x π⎛⎫=++ ⎪⎝⎭,根据题意只需要max min [()2][()2]g x m g x -<<+,分别在263x ππ≤≤范围内求出()g x 的最值即可得解. 【详解】(1)2()cos cos f x x x x ωωω=-12(cos 21)22x x ωω=-+ 1sin 262x πω⎛⎫=-- ⎪⎝⎭由222T ππω==,解得2ω=所以,1()sin 462f x x π⎛⎫=-- ⎪⎝⎭ ∵242262k x k πππππ-≤-≤+∴224233k x k ππππ-≤≤+∴21226k k x ππππ-≤≤+ ∴()f x 的单调递增区间为,21226k k ππππ-+⎡⎤⎢⎥⎣⎦,k Z ∈ (2)依题意得()sin 216g x x π⎛⎫=++ ⎪⎝⎭因为|()|2g x m -<,所以()2()2g x m g x -<<+因为当2,63x ππ⎡⎤∈⎢⎥⎣⎦时,()2()2g x m g x -<<+恒成立所以只需max min [()2][()2]g x m g x -<<+转化为求()g x 的最大值与最小值当2,63x ππ⎡⎤∈⎢⎥⎣⎦时,()y g x =为单调减函数所以max ()1126g x g π⎛⎫==+= ⎪⎝⎭,()min21103g x g π⎛⎫==-+= ⎪⎝⎭, 从而max [()2]0g x -=,min [()2]2g x +=,即02m <<所以m 的取值范围是()0,2. 【点睛】本题考查了三角函数的单调性和最值,考查了三角函数的辅助角公式和平移伸缩变换,有一定的计算量,属于中档题.本题关键点有: (1)三角函数基本量的理解应用; (2)三角函数图像平移伸缩变换的方法; (3)恒成立思想的理解及转化. 26.(1)()2sin 24f x x π⎛⎫=+⎪⎝⎭;(2)单调递增区间为0,8π⎡⎤⎢⎥⎣⎦,单调递减区间为,82ππ⎡⎤⎢⎥⎣⎦,()f x 值域为⎡⎤⎣⎦. 【分析】(1)利用最高点与最低点坐标可求出A 和周期T ,由2T πω=可求得ω的值,再将点,28M π⎛⎫⎪⎝⎭代入即可求得ϕ的值,进而可得函数()f x 的解析式;(2)解不等式222242k x k πππππ-≤+≤+,k Z ∈,可得()f x 的单调的增区间,再与0,2π⎡⎤⎢⎥⎣⎦求交集即可得()f x 在0,2π⎡⎤⎢⎥⎣⎦上的单调区间,利用单调性求出最值即得值域. 【详解】(1)因为()f x 图象上相邻两个最高点和最低点分别为,28π⎛⎫ ⎪⎝⎭,5,28π⎛⎫- ⎪⎝⎭所以2A =,52882T πππ=-=,则T π=, 又2||T πω=,0>ω,所以2ω=,()2sin(2)f x x ϕ=+, 又图象过点,28π⎛⎫ ⎪⎝⎭,所以22sin 28πϕ⎛⎫=⨯+ ⎪⎝⎭,即sin 14πϕ⎛⎫+= ⎪⎝⎭,所以242k ππϕπ+=+,k Z ∈,即24k πϕπ=+,k Z ∈.又||2ϕπ<,所以4πϕ=,所以()2sin 24f x x π⎛⎫=+ ⎪⎝⎭.(2)由222242k x k πππππ-≤+≤+,k Z ∈,得388k x k ππππ-≤≤+,k Z ∈, 所以()f x 的单调递增区间为3,88k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈, 又0,2x π⎡⎤∈⎢⎥⎣⎦,所以()f x 的单调递增区间为0,8π⎡⎤⎢⎥⎣⎦, 同理()f x 的单调递减区间为,82ππ⎡⎤⎢⎥⎣⎦.又(0)2sin 4f π==28f π⎛⎫= ⎪⎝⎭,2f π⎛⎫= ⎪⎝⎭所以当0,2x π⎡⎤∈⎢⎥⎣⎦时,()f x 值域为⎡⎤⎣⎦. 【点睛】关键点点睛:本题解题的关键点是由五点法作图的特点得出相邻两个最高点和最低点横坐标之差的绝对值为半个周期,纵坐标为振幅,利用峰点或谷点坐标求ϕ,利用整体代入法求()f x 的单调区间,利用单调性求最值.。
(典型题)高中数学必修四第二章《平面向量》检测卷(答案解析)

一、选择题1.已知向量a 、b 满足||||2a b a b ==⋅=,若,,1x y R x y ∈+=,则1|(1)|2x a xb ya y b ⎛⎫-+++- ⎪⎝⎭的最小值为( ) A .1 B .3 C .7 D .32.如图,在ABC 中,AD AB ⊥,2AD =,3DC BD =,则AC AD ⋅的值为( )A .3B .8C .12D .16 3.已知ABC 中,2AB AC ==,120CAB ∠=,若P 是其内一点,则AP AB ⋅的取值范围是( )A .(4,2)--B .(2,0)-C .(2,4)-D .(0,2)4.若向量a ,b 满足|a 10 ,b =(﹣2,1),a •b =5,则a 与b 的夹角为( ) A .90° B .60° C .45° D .30°5.已知正方形ABCD 的边长为2,EF 为该正方形内切圆的直径,P 在ABCD 的四边上运动,则PE PF ⋅的最大值为( )A 2B .1C .2D .226.已知ABC ,若对任意m R ∈,BC mBA CA -≥恒成立,则ABC 为( ) A .锐角三角形 B .钝角三角形 C .直角三角形 D .不确定 7.已知向量()a 1,2=,()b x,2=-,且a b ⊥,则a b +等于( ).A 5B .5C .42D 31 8.ABC 是边长为1的等边三角形,CD 为边AB 的高,点P 在射线CD 上,则AP CP ⋅的最小值为( )A .18- B .116- C .316- D .09.已知抛物线2:4C y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若2FP QF =,则||QF =( )A .8B .4C .6D .310.已知ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,向量(,)m a b b c =++,(,)n c b a =-,若//m n ,则C =( )A .56πB .23πC .3πD .6π 11.如图所示,在ABC 中,点D 在线段BC 上,且3BD DC =,若AD AB AC λμ=+,则λμ=( )A .12B .13C .2D .23 12.已知平面上的非零..向量a ,b ,c ,下列说法中正确的是( ) ①若//a b ,//b c ,则//a c ;②若2a b =,则2a b =±;③若23x y a b a b +=+,则2x =,3y =;④若//a b ,则一定存在唯一的实数λ,使得a b λ=.A .①③B .①④C .②③D .②④二、填空题13.已知ABC ,点P 是平面上任意一点,且AP AB AC λμ=+(,λμ∈R ),给出以下命题:①若1AB λ=,1AC μ=,则P 为ABC 的内心;②若1λμ==,则直线AP 经过ABC 的重心;③若1λμ+=,且0μ>,则点P 在线段BC 上;④若1λμ+>,则点P 在ABC 外; ⑤若01λμ<+<,则点P 在ABC 内.其中真命题为______14.已知平面向量,,a b c 满足()()||2,||2||a c b c a b a b -⋅-=-==.则c 的最大值是________.15.圆O 为△ABC 的外接圆,半径为2,若2AB AC AO +=,且OA AC =,则向量BA 在向量BC 方向上的投影为_____.16.已知正方形ABCD 的边长为4,若3BP PD =,则PA PB ⋅的值为_________________. 17.已知腰长为2的等腰直角△ABC 中,M 为斜边AB 的中点,点P 为该平面内一动点,若2PC =,则()()4PA PB PC PM ⋅+⋅⋅的最小值 ________.18.已知平面向量2a =,3b =,4c =,4d =,0a b c d +++=,则()()a b b c +⋅+=______. 19.在矩形ABCD 中,2AB =,1AD =,动点P 满足||1AP =,设向量AP AB AD λμ=+,则λμ+的取值范围为____________.20.在ABC △中,已知4CA =,3CP =,23ACB π∠=,点P 是边AB 的中点,则CP CA ⋅的值为_____.三、解答题21.已知ABC 中C ∠是直角,CA CB =,点D 是CB 的中点,E 为AB 上一点.(1)设CA a =,CD b =,当12AE AB =,请用a ,b 来表示AB ,CE . (2)当2AE EB =时,求证:AD CE ⊥.22.已知a ,b ,c 在同一平面内,且()1,2a =.(1)若35c =,且//a c ,求c ;(2)若2b =,且()()2a b a b +⊥-,求a 与b 的夹角的余弦值. 23.已知()()1,,3,2a m b ==-.(1)若()a b b +⊥,求m 的值;(2)若·1a b =-,求向量b 在向量a 方向上的投影.24.已知单位向量1e ,2e 的夹角为60︒,向量12a e e =+,21b e te =-,t R ∈. (1)若//a b ,求t 的值;(2)若2t =,求向量a ,b 的夹角.25.已知单位向量1e ,2e ,的夹角为23π,向量12a e e λ=-,向量1223b e e =+. (1)若//a b ,求λ的值;(2)若a b ⊥,求||a .26.已知△ABC 中,角A 、B 、C 的对边为a ,b ,c ,向量m (2cos sin )2C C =-,, n =(cos2sin )2C C ,,且m n ⊥. (1)求角C ; (2)若22212a b c =+,试求sin()A B -的值【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】利用已知条件求出向量a 、b 的夹角,建立直角坐标系把所求问题转化为解析几何问题.【详解】设a 、b 所成角为θ,由||||2==a b ,2a b, 则1cos 2θ=,因为0θπ≤≤ 所以3πθ=, 记a OA =,b OB =,以OA 所在的直线为x 轴,以过O 点垂直于OA 的直线为y 轴,建立平面直角坐标系,则()2,0A ,(B ,所以()2,0a OA ==,(1,b OB ==,()(1)2x a xb x -+=-,所以((1)2x a xb x -+=-=,表示点()P x 与点()2,0A 两点间的距离,由,,1x y R x y ∈+=113222ya y b y x ⎛⎫⎛⎛⎫+-=+=-- ⎪ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭, 所以1322ya y b x ⎛⎫⎛+-=- ⎪ ⎝⎭,表示点()P x 与点3,22Q ⎛ ⎝⎭两点间的距离, ∴1|(1)|2x a xb ya y b ⎛⎫-+++- ⎪⎝⎭的最小值转化为 P 到,A Q 两点的距离和最小,()P x 在直线y =上, ()2,0A 关于直线y =的对称点为(R -,PQ PA ∴+的最小值为QR == 故选:C【点睛】关键点点睛:本题考查了向量模的坐标运算以及模转化为两点之间距离的转化思想,解题的关键是将向量的模转化为点()P x 到()2,0A 、32Q ⎛ ⎝⎭两点间的距离,考查了运算求解能力. 2.D解析:D【分析】利用AB 、AD 表示向量AC ,再利用平面向量数量积的运算性质可求得AC AD ⋅的值.【详解】()3343AC AD DC AD BD AD AD AB AD AB =+=+=+-=-, AD AB ⊥,则0⋅=AD AB ,所以,()224344216AC AD AD AB AD AD ⋅=-⋅==⨯=.【点睛】方法点睛:求两个向量的数量积有三种方法:(1)利用定义:(2)利用向量的坐标运算;(3)利用数量积的几何意义.具体应用时可根据已知条件的特征来选择,同时要注意数量积运算律的应用.3.C解析:C【分析】以A 为坐标原点,以过点A 垂直于BC 的直线为y 轴,建立平面直角坐标系,求出()3,1B --,()3,1C -,设(),P x y ,因为点P 是其内一点,所以3x 3-<<,10y -<<,计算3AP AB x y ⋅=--得最值,即可求解.【详解】建立如图所示的空间直角坐标系:则()0,0A ,因为120CAB ∠=,所以30ABC ACB ∠=∠=,可得2cos303= ,2sin301,所以()3,1B -- ,()3,1C -, 设(),P x y ,因为点P 是其内一点,所以33,10x y <<-<<,()(),3,13AP AB x y x y ⋅=⋅--=--, 当3x =1y =-时AP AB ⋅最大为((()3314-⨯--=,当3,1x y ==-时AP AB ⋅最小为(()3312--=-, 所以AP AB ⋅的取值范围是(2,4)-,故选:C【点睛】关键点点睛:本题解题的关键点是建立直角坐标系,将数量积利用坐标表示,根据点(),P x y 是其内一点,可求出,x y 的范围,可求最值.4.C【详解】 由题意可得22(2)15b =-+=,所以2cos ,52a b a b a b ⋅===⋅,又因为,[0,180]<>∈a b ,所以,45<>=a b ,选C.5.B解析:B【分析】作出图形,利用平面向量的线性运算以及数量积的运算性质可得出21P OP E PF =⋅-,求得OP 的最大值,由此可求得PE PF ⋅的最大值.【详解】如下图所示:由题可知正方形ABCD 的内切圆的半径为1,设该内切圆的圆心为O ,()()()()2221PE PF OE OP OF OP OP OE OP OE OP OE OP ⋅=-⋅-=-+⋅--=-=-,由图象可知,当点P 为ABCD 的顶点时,2OP 取得最大值2,所以PE PF ⋅的最大值为1.故选:B.【点睛】本题考查平面向量数量积最值的计算,考查计算能力,属于中等题.6.C解析:C【分析】在直线AB 上取一点D ,根据向量减法运算可得到DC CA ≥,由垂线段最短可确定结论.【详解】在直线AB 上取一点D ,使得mBA BD =,则BC mBA BC BD DC -=-=,DC CA ∴≥.对于任意m R ∈,都有不等式成立,由垂线段最短可知:AC AD ⊥,即AC AB ⊥, ABC ∴为直角三角形.故选:C .【点睛】本题考查与平面向量结合的三角形形状的判断,关键是能够利用平面向量数乘运算和减法运算的几何意义准确化简不等式.7.B解析:B【分析】由向量垂直可得0a b ⋅=,求得x ,及向量b 的坐标表示,再利用向量加法的坐标运算和向量模的坐标运算可求得模.【详解】 由a b ⊥,可得0a b ⋅=,代入坐标运算可得x-4=0,解得x=4,所以a b + ()5,0=,得a b +=5,选B. 【点睛】求向量的模的方法:一是利用坐标()22,a x y a x y =⇒=+,二是利用性质2a a =,结合向量数量积求解.8.C解析:C【分析】建立平面直角坐标系,()0,P t ,t ≤,则 223(2416⋅=-=--AP CP t t ,进而可求最小值.【详解】以D 点为坐标原点,DC 所在直线为y 轴,DA 所在直线为x 轴建立直角坐标系,1(,0)2A ,1(,0)2B -,(0,2C ,设()0,P t ,其中2t ≤1(,)2AP t =-,(0,CP t ==,223(16⋅==-AP CP t t ,当t =时取最小值为316-,所以AP CP ⋅的最小值为316-. 故选:C【点睛】本题考查了平面向量的数量积运算,用坐标法求最值问题,考查了运算求解能力,属于一般题目.9.D解析:D【分析】设点()1,P t -、(),Q x y ,由2FP QF =,可计算出点Q 的横坐标x 的值,再利用抛物线的定义可求出QF .【详解】设点()1,P t -、(),Q x y ,易知点()1,0F ,()2,FP t =-,()1,QF x y =--,()212x ∴-=-,解得2x =,因此,13QF x =+=,故选D.【点睛】本题考查抛物线的定义,解题的关键在于利用向量共线求出相应点的坐标,考查计算能力,属于中等题.10.B解析:B【分析】由//m n ,可得()()()0a b a c b b c +⨯--⨯+=.结合余弦定理,可求角C .【详解】(,),(,)m a b b c n c b a =++=-,且//m n ,()()()0a b a c b b c ∴+⨯--⨯+=,整理得222c a b ab =++. 又22212cos ,cos 2c a b ab C C =+-∴=-. ()20,,3C C ππ∈∴=. 故选:B.【点睛】本题考查向量共线的坐标表示和余弦定理,属于基础题.11.B解析:B【分析】 由向量的运算法则,化简得1344AD AB AC =+,再由AD AB AC λμ=+,即可求得,λμ 的值,即可求解.【详解】由向量的运算法则,可得34=+=+AD AB BD AB BC 313()444AB AC AB AB AC =+-=+, 因为AD AB AC λμ=+,所以13,44λμ==,从而求得13λμ=, 故选:B .【点睛】该题考查的是有关向量的基本定理,在解题的过程中,需要利用向量直角的关系,结合三角形法则,即可求得结果,属于基础题. 12.B解析:B 【分析】根据向量共线定理判断①④,由模长关系只能说明向量a ,b 的长度关系判断②,举反例判断③.【详解】对于①,由向量共线定理可知,//a b ,则存在唯一的实数1λ,使得1λa b ,//b c ,则存在唯一的实数2λ,使得2λb c ,由此得出存在唯一的实数12λλ⋅,使得12a c λλ=⋅,即//a c ,则①正确;对于②,模长关系只能说明向量a ,b 的长度关系,与方向无关,则②错误; 对于③,当a b =时,由题意可得()5x y a a +=,则5x y +=,不能说明2x =,3y =,则③错误;由向量共线定理可知,④正确;故选:B.【点睛】本题主要考查了向量共线定理以及向量的定义,属于中档题.二、填空题13.②④【分析】①可得在的角平分线上但不一定是内心;②可得在BC 边中线的延长线上;③利用向量线性运算得出可判断;④得出根据向量加法的平行四边形法则可判断;⑤令可判断【详解】①若则因为是和同向的单位向量则解析:②④【分析】①可得P 在BAC ∠的角平分线上,但不一定是内心;②可得P 在BC 边中线的延长线上;③利用向量线性运算得出=BP BC μ可判断;④得出()1CP CB AC λλμ=++-,根据向量加法的平行四边形法则可判断;⑤令1132=λμ=-,可判断.【详解】 ①若1ABλ=,1ACμ=,则AB AC AP ABAC=+,因为,AB AC ABAC是和,AB AC 同向的单位向量,则P 在BAC ∠的角平分线上,但不一定是内心,故①错误;②若1λμ==,则AP AB AC =+,则根据平行四边形法则可得,P 在BC 边中线的延长线上,故直线AP 经过ABC 的重心,故②正确;③若1λμ+=,且0μ>,则()1=AP AB AC AB AB AC μμμμ=-+-+,即()==AP AB AB AC AC AB μμμ--+-,即=BP BC μ,则点P 在线段BC 上或BC 的延长线上,故③错误;④若1λμ+>,()()11AP AB AC AC λλλμ=+-++-,整理可得()1CP CB AC λλμ=++-,10λμ+->,根据向量加法的平行四边形法则可判断点P 在ABC 外,故④正确;⑤若01λμ<+<,则令1132=λμ=-,,则1132AP AB AC =-+,则根据向量加法的平行四边形法则可判断点P 在ABC 外,故⑤错误. 故答案为:②④. 【点睛】本题考查向量基本定理的应用,解题的关键是正确利用向量的线性运算进行判断,合理的进行转化,清楚向量加法的平行四边形法则.14.【分析】设根据得到取中点为D 又由中点坐标得到再由得到的范围然后由求解【详解】设如图所示:因为所以取中点为D 因为所以解得所以所以点C 是以D 为圆心半径为的圆上运动又因为所以当AOB 共线时取等号所以所以【解析:3【分析】设,,OA a OB b OC c ===,根据||2,||2||a b a b -==,得到||2,||2||AB OA OB ==,取AB 中点为D ,又()()2a c b c CA CB -⋅-=⋅=,由中点坐标得到CD ==⎭2OA OB AB -≤=,得到||OA OD ⎛= 范围,然后由||||||||3c OC OD DC OD =≤+≤+.【详解】设,,OA a OB b OC c ===, 如图所示:因为||2,||2||a b a b -==, 所以||2,||2||AB OA OB ==, 取AB 中点为D ,因为()()2a c b c CA CB -⋅-=⋅=,所以2222||||24AB CB CA CB CA CB CA =-=+-⋅=, 解得228CB CA +=,所以22212322CB CA CD CB CA CB CA ⎛⎫+==++⋅= ⎪⎝⎭所以点C 是以D 3的圆上运动, 又因为2OA OB AB -≤=,所以2OB ≤,当A ,O ,B 共线时,取等号,所以2221||222OA OB OD OB OA OB OA ⎛⎫+==++⋅ ⎪⎝⎭, ()222112104322OB OA AB OB =+-=-≤, 所以||||||||333c OC OD DC OD =≤+≤+≤. 【点睛】关键点点睛:平面向量的中点坐标公式的两次应用:一是22CB CA CD ⎛⎫+= ⎪⎝⎭||2,||2||AB OA OB ==求得定值,得到点C 是以D 为圆心的圆上,实现数形结合;二是||2OA OD ⎛= ⎝⎭2OA OB AB -≤=确定范围,然后由||||||c OC OD DC =≤+求解.15.3【分析】根据向量关系即可确定的形状再根据向量投影的计算公式即可求得结果【详解】因为圆O 为△ABC 的外接圆半径为2若故可得是以角为直角的直角三角形又因为且外接圆半径是故可得则故向量在向量方向上的投影解析:3 【分析】根据向量关系,即可确定ABC 的形状,再根据向量投影的计算公式,即可求得结果.【详解】因为圆O 为△ABC 的外接圆,半径为2,若2AB AC AO +=, 故可得ABC 是以角A 为直角的直角三角形.又因为OA AC =,且外接圆半径是2, 故可得224BC OA AC ===,则AB =,AB cos ABC BC ∠==,故向量BA 在向量BC 方向上的投影为32AB cos ABC ⨯∠==. 故答案为:3. 【点睛】本题考查向量数量积的几何意义,属中档题.16.6【分析】建立平面直角坐标系求得点P 的坐标进而得到的坐标再利用数量积的坐标运算求解【详解】如图所示建立平面直角坐标系:则设因为解得所以所以所以故答案为:【点睛】本题主要考查平面向量的坐标表示和数量积解析:6 【分析】建立平面直角坐标系,求得点P 的坐标,进而得到,PA PB 的坐标,再利用数量积的坐标运算求解. 【详解】如图所示建立平面直角坐标系:则()()()()04,00,40,44A B C D ,,,,,设(),P x y ,()(),,4,4BP x y PD x y ==--, 因为3BP PD =,()()3434x x y y ⎧=⨯-⎪⎨=⨯-⎪⎩,解得33x y =⎧⎨=⎩,所以()3,3P ,所以()()3,1,3,3PA PB =-=--, 所以()()()33136PA PB ⋅=-⨯-+⨯-=, 故答案为:6. 【点睛】本题主要考查平面向量的坐标表示和数量积运算,还考查了运算求解的能力,属于中档题.17.【详解】如图建立平面直角坐标系∴当sin 时得到最小值为故选 解析:48322-【详解】如图建立平面直角坐标系,()((P 2cos θ2sin θA 22B22M 02-,,,,,,,∴()()((42cos θ2θ22cos θ2θ24PA PB PC PM ⎡⎤⋅+⋅=+⋅-++⎣⎦,,()(22cos θ2sin θ2cos θ2sin θ216sin θ322sin θ32⎡⎤⋅+=++⎣⎦,,, 当sin θ1=-时,得到最小值为48322-48322-18.【分析】根据得到然后两边平方结合求得再由求解即可【详解】因为所以所以所以因为所以故答案为:【点睛】本题主要考查平面向量的数量积运算还考查了运算求解的能力属于中档题解析:52【分析】根据0a b c d +++=,得到++=-a b c d ,然后两边平方结合2a =,3b =,4c =,4d =,求得⋅+⋅+⋅a b a c b c ,再由()()a b b c +⋅+=2⋅+⋅+⋅+a b a c b c b 求解即可. 【详解】因为0a b c d +++=, 所以++=-a b c d ,所以()()22++=-a b cd ,所以()()()()2222222+++⋅+⋅+⋅=-a b c a b a c b c d ,因为2a =,3b =,4c =,4d =, 所以132⋅+⋅+⋅=-a b a c b c , ()()a b b c +⋅+=252⋅+⋅+⋅+=a b a c b c b . 故答案为:52【点睛】本题主要考查平面向量的数量积运算,还考查了运算求解的能力,属于中档题.19.【分析】由已知得应用向量的运算律求出关系利用三角换元结合正弦函数的有界性即可求解【详解】在矩形中令其中最小值最大值分别为的取值范围为故答案为:【点睛】本题考查向量的模长以及向量的数量积运算解题的关键解析:⎡⎢⎣⎦. 【分析】由已知得2||1AP =,应用向量的运算律,求出,λμ关系,利用三角换元结合正弦函数的有界性,即可求解. 【详解】在矩形ABCD 中,,0AB AD AB AD ⊥∴⋅=22222222||()41AP AB AD AB AD λμλμλμ=+=+=+=,令12cos ,sin ,cos sin sin()22λθμθλμθθθϕ==+=+=+,其中1tan 2ϕ=,λμ+最小值、最大值分别为22-,λμ+的取值范围为55,⎡⎤-⎢⎥⎣⎦. 故答案为:55,⎡⎤-⎢⎥⎣⎦【点睛】本题考查向量的模长以及向量的数量积运算,解题的关键用换元法将问题转化为求三角函数的最值,属于中档题.20.6【分析】根据平方处理求得即可得解【详解】在中已知点是边的中点解得则故答案为:6【点睛】此题考查平面向量的基本运算关键在于根据向量的运算法则求出模长根据数量积的运算律计算求解解析:6 【分析】 根据()12CP CA CB =+,平方处理求得2CB =,()12CP CA CA CB CA ⋅=+⋅即可得解. 【详解】在ABC △中,已知4CA =,3CP 23ACB π∠=,点P 是边AB 的中点, ()12CP CA CB =+ ()222124CP CA CB CA CB =++⋅ 211316842CB CB ⎛⎫⎛⎫=++⨯- ⎪ ⎪⎝⎭⎝⎭,解得2CB = 则()()21111162462222CP CA CA CB CA CA CB CA ⎛⎫⎛⎫⋅=+⋅=+⋅=+⨯⨯-= ⎪ ⎪⎝⎭⎝⎭. 故答案为:6 【点睛】此题考查平面向量的基本运算,关键在于根据向量的运算法则求出模长,根据数量积的运算律计算求解.三、解答题21.(1)2AB b a =-,12CE a b =+;(2)证明见解析. 【分析】(1)求出2CB b =,利用AB CB CA =-与12CE CA AB =+化简可得答案; (2)以C 点为坐标原点,以CB ,CA 为x ,y 轴,建立如图所示平面直角坐标系,设()0,A a , 求出,2a AD a ⎛⎫=- ⎪⎝⎭,2,33a a CE ⎛⎫= ⎪⎝⎭, 可得0AD CE ⋅=,进而可得答案.【详解】(1)∵CA a =,CD b =,点D 是CB 的中点, ∴2CB b =,∴2AB CB CA b a =-=-,∵()1112222CE CA AE a AB a b a a b =+=+=+-=+. (2)以C 点为坐标原点,以CB ,CA 为x ,y 轴,建立如图所示平面直角坐标系,设()0,A a ,∴B 点坐标为(),0a ,另设点E 坐标为(),x y ,∵点D 是CB 的中点, ∴点D 坐标为,02a ⎛⎫⎪⎝⎭, 又∵2AE EB =,∴()(),2,x y a a x y -=--,∴23a x =,3a y =, 所以,2a AD a ⎛⎫=-⎪⎝⎭,2,33a a CE ⎛⎫= ⎪⎝⎭, 所以()20233a a aAD CE a ⋅=⨯+-⨯=, ∴AD CE ⊥.【点睛】方法点睛:平面向量数量积的计算问题,往往有两种形式,一是利用数量积的定义式,二是利用数量积的坐标运算公式,涉及几何图形的问题,先建立适当的平面直角坐标系,可起到化繁为简的妙用.22.(1)()3,6c =或()3,6c =--;(2)10-. 【分析】(1)设(),c x y =,由平面向量平行的坐标表示及模的坐标表示可得2y x=⎧=即可得解;(2)由平面向量垂直可得()()20a b a b +⋅-=,再由平面向量数量积的运算可得1a b ⋅=-,最后由cos ,a ba b a b⋅=⋅即可得解. 【详解】(1)设(),c x y =,因为()1,2a =,//a c ,35c =,所以235y x x y =⎧+=⎪⎩36x y =⎧⎨=⎩或36x y =-⎧⎨=-⎩, 所以()3,6c =或()3,6c =--;(2)因为()1,2a =,所以14a =+又()()2a b a b +⊥-,2b =,所以()()22225220a b a b aa b ba b +⋅-=+⋅-=+⋅-⨯=,所以1a b ⋅=-, 所以cos ,5a b a b a b⋅===⨯⋅【点睛】本题考查了平面向量共线及模的坐标表示,考查了平面向量数量积的应用及运算求解能力,属于中档题. 23.(1)8m =(2)【分析】(1)先得到()4,2a b m +=-,根据()a b b +⊥可得()0a b b +⋅=,即可求出m ;(2)根据·1a b =-求出m=2,再根据cos ,a b b a b b a b⋅=⋅求b 在向量a 方向上的投影.【详解】()()14,2a b m +=-;()a b b +⊥;()34220m ∴⋅--=;8m ∴=;()2321a b m ⋅=-=-;2m ∴=;()1,2a ∴=;b ∴在向量a 方向上的投影为cos ,55a b b a b b a b⋅=⋅==-.【点睛】本题主要考查了向量坐标的加法和数量积的运算,向量垂直的充要条件及向量投影的计算公式,属于中档题. 24.(1)1t =-;(2)23π. 【分析】(1)根据题意,设a kb =,则有122112()()e e k e te kte ke +=-=-+,分析可得11ktk=-⎧⎨=⎩,解可得t 的值;(2)根据题意,设向量a ,b 的夹角为θ;由数量积的计算公式可得a 、||b 以及a b , 由cos a b a bθ⋅=计算可得答案.【详解】(1)∵根据题意,向量12a e e =+,21b e te =-,若//a b ,则设a kb =, 则有122112()()e e k e te kte ke +=-=-+,则有11kt k =-⎧⎨=⎩,解可得1t =-;(2)根据题意,设向量a ,b 的夹角为θ;若2t =,则212b e e =-,则2221||(2)3b e e =-=,则||3b =, 又由12a e e =+,则2212||()3a e e =+=,则||3a =, 又由12213()(2)2a b e e e e =+-=-,则312cos 2||||3a b a b θ-===-⨯,又由0θπ,则23πθ=; 故向量a ,b 的夹角为23π. 【点睛】本题考查向量数量积的计算,涉及向量模的计算公式,属于基础题.25.(1)23-;(2 【分析】(1)由//a b ,所以存在唯一实数t,使得b ta =,建立方程组可得答案;(2)由已知求得12e e ⋅,再由a b ⊥得()()1212230e e e e λ-⋅+=,可解得λ,再利用向量的模的计算方法可求得答案. 【详解】(1)因为//a b ,所以存在唯一实数t,使得b ta =,即()121223e e t e e λ+=-, 所以23t tλ=⎧⎨=-⎩,解得23λ=-;(2)由已知得122111cos32e e π⋅=⨯⨯=-,由a b ⊥得()()1212230e e e e λ-⋅+=,即()12+32302λλ⎛⎫-⨯--= ⎪⎝⎭,解得4λ=,所以124a e e =-,所以22121212||416821a e e e e e e =-=+-⋅=||21a =.【点睛】本题考查向量平行的条件和向量垂直的条件,以及向量的模的计算,属于中档题.26.(1)60C =︒;(2. 【分析】(1)利用两个向量垂直的性质,两个向量数量积公式以及二倍角公式,求得cos C 的值,可得C 的值.(2)利用两角差的正弦公式,正弦定理和余弦定理化简,可得结果. 【详解】(1)由题意知,0m n =,即222cos2sin 02CC -=,21cos 2(1cos )0C C +--=, 22cos cos 10C C +-=,即cos 1C =-,或1cos 2C =, 因为0C π<<,所以60C =︒. (2)2222221122a b c a b c =+⇒-=,222222sin()sin cos sin cos 2222a a c b b b c a A B A B B A R ac R bc+-+--=-=- ()222214442a b c c sinC cR cR R -=====. 【点睛】本题主要考查两个向量数量积公式,两角差的正弦公式,正弦定理和余弦定理的应用,属于中档题.。
人教A版高中数学必修四测试题及答案全套

人教A版高中数学必修四测试题及答案全套人教A版高中数学必修四测试题及答案全套阶段质量检测(一)一、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.在0°~360°的范围内,与-510°终边相同的角是()A。
330° B。
210° C。
150° D。
30°2.若sinα = 3/3,π/2 < α < π,则sin(α+π/2) = ()A。
-6/3 B。
-1/2 C。
16/2 D。
33.已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是()A。
2 B。
2sin1 C。
2sin1 D。
sin24.函数f(x) = sin(x-π/4)的图象的一条对称轴是()A。
x = π/4 B。
x = π/2 C。
x = -π/4 D。
x = -π/25.化简1+2sin(π-2)·cos(π-2)得()A。
sin2+cos2 B。
cos2-sin2 C。
sin2-cos2 D。
±cos2-sin26.函数f(x) = tan(x+π/4)的单调增区间为()A。
(kπ-π/2.kπ+π/2),k∈Z B。
(kπ。
(k+1)π),k∈ZC。
(kπ-4π/4.kπ+4π/4),k∈Z D。
(kπ-3π/4.kπ+3π/4),k∈Z7.已知sin(π/4+α) = 1/√2,则sin(π/4-α)的值为()A。
1/3 B。
-1/3 C。
1/2 D。
-1/28.设α是第三象限的角,且|cosα| = α/2,则α的终边所在的象限是()A。
第一象限 B。
第二象限 C。
第三象限 D。
第四象限9.函数y = cos2x+sinx在[-π/6.π/6]的最大值与最小值之和为()A。
3/4 B。
2 C。
1/3 D。
4/310.将函数y = sin(x-π/3)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象向左平移一个单位,得到的图象对应的解析式为()A。