初升高自主招生——数与式(含答案)

合集下载

历年高中自主招生数学考试试卷及答案

历年高中自主招生数学考试试卷及答案

高中自主招生考试数学试卷1、试卷分试题卷和答题卷两部分。

满分为100分,考试时间为70分钟。

2、答题时,应该在答题卷密封区内写明姓名、学校和准考证号码。

3、所有答案都必须做在答题卷标定的位置上,请务必注意试题序号和答题序号相对应。

一、选择题:(每个题目只有一个正确答案,每题4分,共32分) 1.计算tan602sin 452cos30︒+︒-︒的结果是( )A .2B .2C .1D .32.如图,边长为1的正方形ABCD 绕点A 逆时针旋转30︒到正方形AB C D ''',图中阴影部分的面积为( )A .313-B .33C .314-D .123.已知b a ,为实数,且1=ab ,设11+++=b b a a M ,1111+++=b a N ,则N M ,的大小关系是( )A .N M >B .N M =C .N M <D .无法确定 4. 一名考生步行前往考场, 10分钟走了总路程的41,估计步行不能准时到达,于是他改乘出租车赶往考场,他的行程与时间关系如图所示(假定总路程为1),则他到达考场所花的时间比一直步行提前了( )A .20分钟 B.22分钟 C.24分钟 D .26分钟5.二次函数1422++-=x x y 的图象如何移动就得到22x y -=的图象( ) A. 向左移动1个单位,向上移动3个单位。

B. 向右移动1个单位,向上移动3个单位。

C. 向左移动1个单位,向下移动3个单位。

D. 向右移动1个单位,向下移动3个单位。

6.下列名人中:①比尔•盖茨 ②高斯 ③刘翔 ④诺贝尔 ⑤陈景润 ⑥陈省身 ⑦高尔基 ⑧爱因斯坦,其中是数学家的是( )A .①④⑦B .②④⑧C .②⑥⑧D .②⑤⑥7.张阿姨准备在某商场购买一件衣服、一双鞋和一套化妆品,这三件物品的原价和优惠方式如下表所示:欲购买的 商品原价(元)优惠方式一件衣服 420 每付现金200元,返购物券200元,且付款时可以使用购物券 一双鞋 280 每付现金200元,返购物券200元,但付款时不可以使用购物券 一套化妆品300付款时可以使用购物券,但不返购物券ABC DB 'D 'C '请帮张阿姨分析一下,选择一个最省钱的购买方案. 此时,张阿姨购买这三件物品实际所付出的钱的总数为( )A . 500元B . 600元C . 700元D . 800元 8.向高为H 的水瓶中注水,注满为止,如果注水量V 与水深h 的函数关系的图象如上图所示,那么水瓶的形状是( )二、填空题:(每题6分,共30分)9. 若关于x 的分式方程3131+=-+x ax 在实数范围内无解,则实数=a _____. 10.三角形的两边长为4cm 和7cm ,则这个三角形面积的最大值为_____________cm 2. 11.对正实数b a ,作定义b a ab b a +-=*,若444=*x ,则x 的值是________.12.已知方程()0332=+-+x a x 在实数范围内恒有解,并且恰有一个解大于1小于2,则a 的取值范围是 .13.如果有2007名学生排成一列,按1、2、3、4、5、4、3、2、1、2、3、4、5、4、3、2、1……的规律报数,那么第2007名学生所报的数是 .三、解答题:(本题有4个小题,共38分)解答应写出文字说明, 证明过程或推演步骤。

2024年广东省深圳中学自主招生数学试题及答案

2024年广东省深圳中学自主招生数学试题及答案

2024年广东省深圳中学自主招生数学试卷一、填空题:本题共15小题,每小题3分,共45分。

1.______.2.方程在的正解为______.3.等腰的底边AC长为30,腰上的高为24,则的腰长为______.4.已知实数m,n满足,且,则______.5.若x为全体实数,则函数与的交点有______个.6.若,,则______.7.K为内一点,过点K作三边的垂线KM,KN,KP,若,,,,,则______.8.已知a,b,c,令a,b,c的最小值为,已知,若的最大值为M,则______.9.已知正方形OBAC,以OB为半径作圆,过A的直线交于M,Q,交BC与P,R为PQ中点,若,,则______.10.若a,b,c,d,e为两两不同的整数,则的最小值为______.11.PA,PB分别为和的切线,连接AB交于C交于D,且,已知和的半径分别为20和24,则______.12.已知a,b,c正整数,且只要则,设m的最小值为为最简分数,则______.13.对于任意实数x,y,定义运算符号*,且有唯一解,满足,,则______.14.已知正整数A,B,C且,满足,则______.15.等腰三角形边长均为整数,其的面积在数值上是周长的12倍,则所有可能的等腰三角形的腰长之和为______.答案和解析1.【答案】54【解析】解:,故答案为:利用同底数幂的乘法法则,有理数的混合运算法则进行计算,即可解答.本题考查了有理数的混合运算,同底数幂的乘法,准确熟练地进行计算是解题的关键.2.【答案】【解析】解:首先,考虑方程的两边统一分母.给定的方程是:,通过通分,我们可以将左边的两个分数合并为一个分数:,展开并化简分母和分子:分母:,分子:,于是原方程简化为:,进一步简化得到:,移项并除以假设,得:,解这个二次方程得到x的值:,,方程的正解为故答案为:根据解无理方程的步骤求解即可.本题考查无理方程,解题的关键是掌握无理方程的解题方法.3.【答案】【解析】解:等腰的底边AC长为30,腰上的高为24,的腰长为,故答案为:根据等腰三角形的性质和勾股定理即可得到结论.本题考查了等腰三角形的性质,熟练掌握等腰三角形的性质是解题的关键.4.【答案】50【解析】解:由题意可知,m,是方程的两个根,,即,,故答案为:由两个方程的形式可知,m,是方程的两个根,根据根与系数的关系得到与n的数量关系并代入计算即可.本题考查考查根与系数的关系、绝对值,确定m,是方程的两个根、掌握根与系数的关系是解题的关键.5.【答案】2【解析】解:方法①:,当时,,联立方程组,,整理,得,解得:,;当时,,联立方程组,,整理,得,解得:,,交点有2个.故答案为:方法②:图象法,在同一坐标系中画两个函数的图象.如图,两函数的交点有2个.根据二次函数的性质,分和两种情况把两函数解析式整理成一般形式,求x的值,确定交点个数即可.本题考查了二次函数的性质,利用分类讨论的思想,解题关键是根据x的取值范围去掉绝对值符号,整理成一般形式求解.6.【答案】0【解析】解:,,,所以故答案为:利用“代1”法将进行变形处理即可求得答案.本题主要考查了分式的化简求值,解题的技巧性在于“1”的巧妙应用.7.【答案】12【解析】解:连接AK、BK、CK,于点M,于点N,于点P,,,,,,,,,,,,,,,,,故答案为:连接AK、BK、CK,由,得,,,求得,,,可推导出,则,于是得到问题的答案.此题重点考查勾股定理的应用,正确地作出辅助线并且求得,,是解题的关键.8.【答案】14【解析】解:由题意,令,,,由,解得:,由,解得:,由,解得:,直线与直线的交点为,直线与的交点为,直线与的交点为,当时,,当时,,当时,,当时,,即,当时,;当时,;当时,;当时,综上所述,,即的最小值为,,故答案为:根据题意,令,,,联立方程组可求得直线与直线的交点为,直线与的交点为,直线与的交点为,再分情况进行分析:当时,;当时,;当时,;当时,进而求出M的值,即可得出答案.本题考查了一次函数与二元一次方程组,解二元一次方程组,熟练掌握一次函数与二元一次方程组,解二元一次方程组的方法是解题的关键.9.【答案】【解析】解:过P作直径FN,延长CO交于E,连MC、ME、MN、正方形ABOC,,为直径,,,又,,,,,正方形ABOC,,,又,≌,由得由得,即,,,,,,,故答案为:过P作直径FN,延长CO交于E,先证明,故再证明,故最后证明≌,故再换算即可.本题考查了正方形综合题,运用正方形性质,结合相似是解题关键.10.【答案】5【解析】解:,b,c,d为两两不同的整数,,,,,,的最小值为:故答案为:根据题意,a,b,c,d为两两不同的整数,可得,,,,,即可得的最小值为:本题考查了整式的混合运算,完全平方公式,熟练掌握整式混合运算法则,完全平方公式是解题的关键.11.【答案】125【解析】解:作,,,,,,,,,,,PB分别为和的切线,,,,,,,∽,∽,,,,故答案为:作,,,证,证,,证∽,∽,得出,即可解答.本题考查切线的性质,垂径定理,相似三角形的判定和性质,作辅助线,构造相似三角形是解题的关键.12.【答案】3【解析】解:,,,,,,,又,,即的最大值为2,,,为最简分数,故答案为:根据题意,,,,可得,,,进而得出,结合已知可得出,即的最大值为2,即可得出m的值,即的值,根据最简分数定义,即可得出答案.本题考查了分式的加减,最简分数定义,代数式求值,掌握分式的加减运算法则,最简分数定义是解题的关键.13.【答案】0【解析】解:令,则,即,令,,故答案为:根据新定义把变成据此解答即可.本题考查了实数的运算、数与式中的新定义问题,理解“*”的规定是关键.14.【答案】832【解析】解:,,,,,,,,,若尾数为7,则在1、4、9、6、5、6、9、4、1中,,此时A、B、C三个数为9、5、1,,此时A、B、C三个数为6、5、4,,此时A、B、C三个数为8、3、2,或8、7、2,下面开始验证,,不符合题意,,不符合题意,,符合题意,,不符合题意,综上,故答案为:根据平方的尾数和特征,从而得出ABC三个数的可能,再代入验证即可.本题主要考查尾数平方的特征,利用尾数和得出A、B、C三个数的可能性是解题的关键.15.【答案】560【解析】解:如图,作于点D,设腰长,底边,则,在中,,,,,故,,,,b为整数,,或,或,或,或,,可能的腰长之和为:故答案为:根据题意将腰长和底边设出来,通过面积和周长的关系建立关于a和b的等式,再利用分式取整的计算方法求解即可.本题主要考查了等腰三角形的性质等内容,熟练掌握相关知识是解题的关键.。

初升高数学自招试题汇编(含答案和解析)

初升高数学自招试题汇编(含答案和解析)

n) n ,
即 n3 3n2 3n 1 1 3(12 22 n2 ) 3n(n 1) n 2
∴12 22 n2 1 (n3 3 n2 1 n) n(n 1)(2n 1)
3 22
6
【2013·重点高中自招训练题】
【题目】给你一列数:1,1, 2,6, 24 ,( )。请你仔细观察这列数的排列规则,然后从
【2013·华二附中】
【题目】1, 2, 2,3,3,3, 4, 4, 4, 4,5,5,5,5,5, 第 2013个数是____________
【答案】 63
【解析】最后一个1, 2,3, 4, , n, 分别在第1,3, 6,10, , n(n 1) , 位 2
63 64 2016 , 62 63 1953 ,最后一个 62 在第 1953 位,
0
,
x1 2
1x 2
1
要使得经过一次操作后坐标变为 1,则倒数第 2 次操作坐标应为 1 , 2
要使操作一次后坐标为 1 ,则前一次坐标为 1 或 3 ,即 x y 或1 y
2
44
2
2
树形图如下所示:
可发现规律反向操作 n 层后,分母为 2n ,分子为所有全体小于 2n 的奇数
故答案为
1 2n
式 n 13 n3 2n2 3n 1,推导出12 22 32 n2 的计算公式。
【解析】 (n 1)3 n3 3n2 3n 1,
n3 (n 1)3 3(n 1)2 3(n 1) 1 ,
(n 1)3 (n 2)3 3(n 2)2 3(n 2) 1,
……
23 13 312 311, 所有式相加,得: (n 1)3 1 3(12 22 n2) 3(1 2

初中自主招生——数与式(含答案)

初中自主招生——数与式(含答案)

初中自主招生研讨——数与式(答案)【涉及知识点】1、数列(1)求和:基础、裂项、错位、倒序(2)其他:找规律、累加累乘等2、二重根式直接法、乘2除2法、解方程组、字母变形、平方法3、乘法公式(1)基础公式(7+3)(2)拓展公式4、因式分解(1)多项式的因数定理与余数定理(2)多项式除以多项式(综合除法)(3)一猜(有理根)二添、二拆、二除、二待(3)猜不中(无理根)二待、二凑(4次方凑平方和+平方差)5、代数式恒等变形(重中之重!!!)6、其他(1)简单计数与数论(2)三个非负数、两次有理化、【涉及方法】1、猜、凑2、配方法3、待定系数法4、换元法【涉及思想】1、消元与降次思想2、构造思想3、整体与讨论思想4、定义域与化简优先【题型一】基础题(指数计算、三个非负数等)【题型二】分式(化简、求值、求和)【题型三】二次根式(化简、求值、求和、二重根式)【题型四】整式(多项式、因式分解、乘法公式、化简、求值)【题型五】数列(找规律、简单计数、求和、新定义)【题型一】基础题(指数计算、三个非负数等)1、若()6255252=xxx,则x=________________。

【参考答案】2或-12、已知: 23a =,32b =,则1111a b +=++______________.【参考答案】13、已知()21240x y x y --+++=则32x y -=( )-1A 、 -2B 、 2C 、 1D 、 【参考答案】D4、已知实数a 满足2008a -a ,那么a -22008值是 ( ) (A )2009 (B ) 2008 (C ) 2007 (D ) 2006【参考答案】A【参考答案】-15、()1015323π-⎛⎫-+---= ⎪⎝⎭( ).A .4-B .12C .4D .2【参考答案】C7、有理数a ,b 在数轴上的位置如图所示,则a b +的值是( ).A .0小于B .0大于C .a 小于D .b 大于【参考答案】B8、若,,a b c。

自主招生数学试题及答案

自主招生数学试题及答案

自主招生数学试题及答案一、选择题(每题5分,共20分)1. 已知函数\( f(x) = x^2 - 4x + 4 \),求\( f(x) \)的最小值。

A. 0B. 1C. 2D. 42. 若\( \sin(2\theta) = 2\sin(\theta)\cos(\theta) \),求\( \theta \)的值。

A. \( \frac{\pi}{4} \)B. \( \frac{\pi}{2} \)C. \( \frac{3\pi}{4} \)D. \( \pi \)3. 已知等差数列\( \{a_n\} \)的首项为3,公差为2,求第10项的值。

A. 23B. 25C. 27D. 294. 一个圆的半径为5,求圆的面积。

A. 25πB. 50πC. 75πD. 100π二、填空题(每题5分,共20分)5. 若\( a \)和\( b \)是方程\( x^2 + 4x + 4 = 0 \)的两个根,则\( a + b \)的值为______。

6. 已知\( \cos(\alpha) = \frac{3}{5} \),\( \alpha \)在第一象限,求\( \sin(\alpha) \)的值。

7. 若一个等比数列的首项为2,公比为3,求该数列的第5项。

8. 一个长方体的长、宽、高分别是\( a \)、\( b \)、\( c \),求长方体的体积。

三、解答题(每题30分,共60分)9. 已知函数\( g(x) = \ln(x) + 2x - 6 \),求\( g(x) \)的导数。

10. 一个工厂生产某种产品,每件产品的成本为\( C(x) = 50 + 20x \),销售价格为\( P(x) = 120 - 0.5x \),其中\( x \)表示生产数量。

求工厂的盈亏平衡点。

答案:一、选择题1. B. 1(因为\( f(x) = (x-2)^2 \),当\( x = 2 \)时,\( f(x) \)取得最小值1)2. A. \( \frac{\pi}{4} \)(根据二倍角公式)3. A. 23(第10项为\( a_{10} = 3 + 9 \times 2 = 23 \))4. B. 50π(圆的面积公式为\( A = \pi r^2 \))二、填空题5. -4(根据韦达定理)6. \( \frac{4}{5} \)(根据勾股定理)7. 162(第5项为\( a_5 = 2 \times 3^4 = 162 \))8. \( abc \)(长方体体积公式)三、解答题9. \( g'(x) = \frac{1}{x} + 2 \)(对\( g(x) \)求导)10. 盈亏平衡点为\( x = 40 \)。

自主招生数学试题及答案

自主招生数学试题及答案

自主招生数学试题及答案一、选择题(每题5分,共20分)1. 已知函数\( f(x) = x^2 - 4x + 4 \),求\( f(x) \)的最小值。

A. 0B. 1C. 2D. 42. 若\( \sin(2\theta) = 2\sin(\theta)\cos(\theta) \),求\( \theta \)的值。

A. \( \frac{\pi}{4} \)B. \( \frac{\pi}{2} \)C. \( \frac{3\pi}{4} \)D. \( \pi \)3. 已知等差数列\( \{a_n\} \)的首项为3,公差为2,求第10项的值。

A. 23B. 25C. 27D. 294. 一个圆的半径为5,求圆的面积。

A. 25πB. 50πC. 75πD. 100π二、填空题(每题5分,共20分)5. 若\( a \)和\( b \)是方程\( x^2 + 4x + 4 = 0 \)的两个根,则\( a + b \)的值为______。

6. 已知\( \cos(\alpha) = \frac{3}{5} \),\( \alpha \)在第一象限,求\( \sin(\alpha) \)的值。

7. 若一个等比数列的首项为2,公比为3,求该数列的第5项。

8. 一个长方体的长、宽、高分别是\( a \)、\( b \)、\( c \),求长方体的体积。

三、解答题(每题30分,共60分)9. 已知函数\( g(x) = \ln(x) + 2x - 6 \),求\( g(x) \)的导数。

10. 一个工厂生产某种产品,每件产品的成本为\( C(x) = 50 + 20x \),销售价格为\( P(x) = 120 - 0.5x \),其中\( x \)表示生产数量。

求工厂的盈亏平衡点。

答案:一、选择题1. B. 1(因为\( f(x) = (x-2)^2 \),当\( x = 2 \)时,\( f(x) \)取得最小值1)2. A. \( \frac{\pi}{4} \)(根据二倍角公式)3. A. 23(第10项为\( a_{10} = 3 + 9 \times 2 = 23 \))4. B. 50π(圆的面积公式为\( A = \pi r^2 \))二、填空题5. -4(根据韦达定理)6. \( \frac{4}{5} \)(根据勾股定理)7. 162(第5项为\( a_5 = 2 \times 3^4 = 162 \))8. \( abc \)(长方体体积公式)三、解答题9. \( g'(x) = \frac{1}{x} + 2 \)(对\( g(x) \)求导)10. 盈亏平衡点为\( x = 40 \)。

初中升高中自主招生考试数学选

初中升高中自主招生考试数学选

初中升高中面向省内外自主招生考试数 学 试 卷(时间:120分钟 满分:150分)一、填空题(每题5分,共70分)1、分解因式:229124x y y -+-= .2、分式226x x x m--+在实数范围内恒有意义,则实数m 的取值范围是 3、已知a 、b 为非零实数,且满足 3227300a a b ab --=,则分式23a ba b+-= .4、如图1,AB 是⊙O 的直径,点E 是AB的中点,点F 是BE 的中点,AE 、BF 的延长线交于点P ,则APB ∠= . 5、若22044(2)x x x x -+=+-,则x= .6、如图2,⊙1O 在⊙2O 上无滑动地滚动4周后,刚好回到原来的位置,则⊙1O 与⊙2O 的面 积之比为 .7、把直线32y x =-向上平移6个单位后,再向右平移 个单位后,直线解析式仍为32y x =-.8、从编号分别是2、7、7、8、9的五个球中,任意取两个,它们的和刚好是偶数的概率是 .9、如图3,在△ABC 中,60,10,12B AB BC ∠=︒==,则边AC = .10、若二次函数2(12)5y x m x m =+--+的图象不经过第三象限,则实数m 的取值范围是 . 11、若点P 、Q 为线段AB 的两个不同的黄金分割点,AB=10,则PQ= .12、如图4,四边形ABCD 的对角线AC 、BD 相交于点O ,54,63DO AO BO CO ==,则 ABC ACDs s= .13、若y 与1x 成正比例,1x 与2x 成反比例,2x 与3x 成正比例,3x 与4x 成反比例…,则y 与2007x 成 比例. 14、一次函数483y x =-+的图象与y 轴、x 轴围成的三角形的内切圆半径 是 .二、选择题(每题5分,共20分) 15、若a 、b 、c 为实数,且c b ak a b a c b c===+++,则下列四个点中,不可能在正比 例函数y kx =的图象上的点是( ).A (-5,5)B (3,3)C (-4,-2)D (0,0)16、甲、乙、丙、丁四名运动员参加4³100米接力赛,如果甲必须安排在第二棒,那么,这四名运动员在比赛中的接棒顺序有( ).A 4种可能B 5种可能C 6种可能D 8种可能 17、△ABC 中,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,若a ab b a b c+=++, 则∠A 与∠B 的关系是( )A ∠A=∠B B ∠A=2∠BC 2∠A=∠BD ∠A +∠B >90° 18、若a 、b 为非零实数,下列说法正确的是( ) A 2214a ab b -+是非负数, B a b a b +≥- C 若a >b ,则11a b < D (1)a x b +>的解集为1bx a >+三、解答下列各题(共60分)19、计算下列各题(每题5分,共10分)(1) 222214()2442a a a a a a a a a+---÷--+-(2) 412(tan 601)--︒-20、已知二次函数2(1)413y x m x m =+++-. (1) 求证:此二次函数与x 轴有两个交点。

重点高中自主招生考试数学试卷精选全文

重点高中自主招生考试数学试卷精选全文

可编辑修改精选全文完整版重点高中自主招生考试数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分.).1.(3分)若不等式组的解集是x>3,则m的取值范围是()A.m>3 B.m≥3 C.m≤3 D.m<3解答:解:由x+7<4x﹣2移项整理得:﹣3x<﹣9,∴x>3,∵x>m,又∵不等式组的解集是x>3,∴m≤3.故选C.2.(3分)如图,在△ABC中.∠ACB=90°,∠ABC=15°,BC=1,则AC=()A.B.C.0.3 D.分析:本题中直角三角形的角不是特殊角,故过A作AD交BC于D,使∠BAD=15°,根据三角形内角和定理可求出∠DAC及∠ADC的度数,再由特殊角的三角函数值及勾股定理求解即可.解答:解:过A作AD交BC于D,使∠BAD=15°,∵△ABC中.∠ACB=90°,∠ABC=15°,∴∠BAC=75°,∴∠DAC=∠BAC﹣∠BAD=75°﹣15°=60°,∴∠ADC=90°﹣∠DAC=90°﹣60°=30°,∴AC=AD,又∵∠ABC=∠BAD=15°∴BD=AD,∵BC=1,∴AD+DC=1,设CD=x,则AD=1﹣x,AC=(1﹣x),∴AD2=AC2+CD2,即(1﹣x)2=(1﹣x)2+x2,解得:x=﹣3+2,∴AC=(4﹣2)=2﹣故选B.3.(3分)(2011•南漳县模拟)如图,AB为⊙O的一固定直径,它把⊙O分成上,下两个半圆,自上半圆上一点C作弦CD⊥AB,∠OCD的平分线交⊙O于点P,当点C在上半圆(不包括A,B两点)上移动时,点P()A.到CD的距离保持不变B.位置不变C.D.随C点移动而移动等分分析:连OP,由CP平分∠OCD,得到∠1=∠2,而∠1=∠3,所以有OP∥CD,则OP⊥AB,即可得到OP平分半圆APB.解答:解:连OP,如图,∵CP平分∠OCD,∴∠1=∠2,而OC=OP,有∠1=∠3∴∠2=∠3,∴OP∥CD,又∵弦CD⊥AB,∴OP⊥AB,∴OP平分半圆APB,即点P是半圆的中点.故选B.4.(3分)已知y=+(x,y均为实数),则y的最大值与最小值的差为()A.2﹣1 B.4﹣2C.3﹣2D.2﹣2分析:首先把y=+两边平方,求出定义域,然后利用函数的单调性求出函数的最大值和最小值,最后求差.解答:解:∵y=+,∴y2=4+2=4+2×,∵1≤x≤5,当x=3时,y的最大值为2,当x=1或5时,y的最小值为2,故当x=1或5时,y 取得最小值2,当x取1与5中间值3时,y取得最大值,故y的最大值与最小值的差为2﹣2,故选D.5.(3分)(2010•泸州)已知O为圆锥的顶点,M为圆锥底面上一点,点P在OM上.一只蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短路线的痕迹如图所示.若沿OM将圆锥侧面剪开并展开,所得侧面展开图是()A.B.C.D.考点:线段的性质:两点之间线段最短;几何体的展开图.分析:此题运用圆锥的性质,同时此题为数学知识的应用,由题意蜗牛从P点出发,绕圆锥侧面爬行,回到P点时所爬过的最短,就用到两点间线段最短定理.解答:解:蜗牛绕圆锥侧面爬行的最短路线应该是一条线段,因此选项A和B错误,又因为蜗牛从p点出发,绕圆锥侧面爬行后,又回到起始点P处,那么如果将选项C、D 的圆锥侧面展开图还原成圆锥后,位于母线OM上的点P应该能够与母线OM′上的点(P′)重合,而选项C还原后两个点不能够重合.故选D.点评:本题考核立意相对较新,考核了学生的空间想象能力.6.(3分)已知一正三角形的边长是和它相切的圆的周长的两倍,当这个圆按箭头方向从某一位置沿正三角形的三边做无滑动的旋转,直至回到原出发位置时,则这个圆共转了()A.6圈B.6.5圈C.7圈D.8圈分析:根据直线与圆相切的性质得到圆从一边转到另一边时,圆心要绕其三角形的顶点旋转120°,则圆绕三个顶点共旋转了360°,即它转了一圈,再加上在三边作无滑动滚动时要转6圈,这样得到它回到原出发位置时共转了7圈.解解:圆按箭头方向从某一位置沿正三角形的三边做无滑动的旋转,∵等边三角形的边长是和它相切的圆的周长的两倍,∴圆转了6圈,而圆从一边转到另一边时,圆心绕三角形的一个顶点旋转了三角形的一个外角的度数,圆心要绕其三角形的顶点旋转120°,∴圆绕三个顶点共旋转了360°,即它转了一圈,∴圆回到原出发位置时,共转了6+1=7圈.故选C.点评:本题考查了直线与圆的位置关系,弧长公式:l=(n为圆心角,R为半径);也考查了旋转的性质.7.(3分)二次函数y=ax2+bx+c的图象如下图,则以下结论正确的有:①abc>0;②b <a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1,m为实数)()A.2个B.3个C.4个D.5个解答:解:①由图象可知:a<0,b>0,c>0,abc<0,错误;②当x=﹣1时,y=a﹣b+c <0,即b>a+c,错误;③由对称知,当x=2时,函数值大于0,即y=4a+2b+c>0,正确;④当x=3时函数值小于0,y=9a+3b+c<0,且x=﹣=1,即a=﹣,代入得9(﹣)+3b+c<0,得2c<3b,正确;⑤当x=1时,y的值最大.此时,y=a+b+c,而当x=m 时,y=am2+bm+c,所以a+b+c>am2+bm+c,故a+b >am 2+bm ,即a+b >m (am+b ),正确.③④⑤正确.故选B . 8.(3分)如图,正△ABC 中,P 为正三角形内任意一点,过P 作PD ⊥BC ,PE ⊥AB ,PF ⊥AC 连结AP 、BP 、CP ,如果,那么△ABC 的内切圆半径为( )A . 1B .C . 2D .解答: 解:如图,过P 点作正△ABC 的三边的平行线,则△MPN ,△OPQ ,△RSP 都是正三角形,四边形ASPM ,四边形NCOP ,四边形PQBR 是平行四边形,故可知黑色部分的面积=白色部分的面积,又知S △AFP +S △PCD +S △BPE =,故知S △ABC =3,S △ABC =AB 2sin60°=3,故AB=2,三角形ABC 的高h=3,△ABC 的内切圆半径r=h=1.故选A .二、填空题(本大题共8小题,每小题3分,共24分) 9.(3分)与是相反数,计算=.解答:解:∵与|3﹣a ﹣|互为相反数,∴+|3﹣a ﹣|=0,∴3﹣a ﹣=0,解得a+=3,∴a+2+=3+2,根据题意,a >0,∴(+)2=5,∴+=.答案为:.10.(3分)若[x ]表示不超过x 的最大整数,,则[A ]=﹣2 .分析: 先根据零指数幂和分母有理化得到A=﹣,而≈1.732,然后根据[x ]表示不超过x的最大整数得到,[A ]=﹣2. 解答:解:∵A=++1=++1=+1=+1=﹣1﹣+1=﹣,∴[A ]=[﹣]=﹣2.故答案为﹣2.点本题考查了取整计算:[x ]表示不超过x 的最大整数.也考查了分母有理化和零指数幂.评:11.(3分)如图,M、N分别为△ABC两边AC、BC的中点,AN与BM交于点O,则=.分析:连接MN,设△MON的面积是s,由于M、N分别为△ABC两边AC、BC的中点,易知MN是△ABC的中位线,那么MN∥AB,MN=AB,根据平行线分线段成比例定理可得△MON∽△BOA,于是OM:OB=MN:AB=1:2,易求△BON的面积是2s,进而可知△BMN的面积是3s,再根据中点性质,可求△BCM的面积等于6s,同理可求△ABC的面积是12s,从而可求S△BON:S△ABC.解答:解:连接MN,设△MON的面积是s,∵M、N分别为△ABC两边AC、BC的中点,∴MN是△ABC的中位线,∴MN∥AB,MN=AB,∴△MON∽△BOA,∴OM:OB=MN:AB=1:2,∴△BON的面积=2s,∴△BMN的面积=3s,∵N是BC的中点,∴△BCM的面积=6s,同理可知△ABC的面积=12s,∴S△BON:S△ABC=2s:12s=1:6,故答案是.点评:本题考查了相似三角形的判定和性质、三角形中位线定理,解题的关键是连接MN,构造相似三角形.12.(3分)如图,已知圆O的面积为3π,AB为直径,弧AC的度数为80°,弧BD的度数为20°,点P为直径AB上任一点,则PC+PD的最小值为3.考点:轴对称-最短路线问题;勾股定理;垂径定理;圆心角、弧、弦的关系.专题:探究型.分析:先设圆O的半径为r,由圆O的面积为3π求出R的值,再作点C关于AB的对称点C′,连接OD,OC′,DC′,则DC′的长即为PC+PD的最小值,由圆心角、弧、弦的关系可知==80°,故BC′=100°,由=20°可知=120°,由OC′=OD可求出∠ODC′的度数,进而可得出结论.解答:解:设圆O的半径为r,∵⊙O的面积为3π,∴3π=πR2,即R=.作点C关于AB的对称点C′,连接OD,OC′,DC′,则DC′的长即为PC+PD的最小值,∵的度数为80°,∴==80°,∴=100°,∵=20°,∴=+=100°+20°=120°,∵OC′=OD,∴∠ODC′=30°∴DC′=2OD•cos30°=2×=3,即PC+PD的最小值为3.故答案为:3.13.(3分)从1,2,3,5,7,8中任取两数相加,在不同的和数中,是2的倍数的个数为a,是3的倍数的个数为b,则样本6、a、b、9的中位数是 5.5.分析:首先列举出所有数据的和,进而利用已知求出a,b的值,再利用中位数是一组数据重新排序后之间的一个数或之间两个数的平均数,由此即可求解.解答:解:根据从1,2,3,5,7,8中任取两数相加,可以得出所有可能:1+2=3,1+3=4,1+5=6,1+7=8,1+8=9,2+3=5,2+5=7,2+7=9,2+8=10,3+5=8,3+7=10,3+8=11,5+7=12,5+8=13,7+8=15,它们和中所有不同数据为:3,4,5,6,7,8,9,10,11,12,13,15,故是2的倍数的个数为a=5,是3的倍数的个数为b=5,则样本6、5、5、9按大小排列为:5,5,6,9,则这组数据的中位数是:=5.5,故答案为:5.5.14.(3分)由直线y=kx+2k﹣1和直线y=(k+1)x+2k+1(k是正整数)与x轴及y轴所围成的图形面积为S,则S的最小值是.分析:首先用k表示出两条直线与坐标轴的交点坐标,然后表示出围成的面积S,根据得到的函数的取值范围确定其最值即可.解答:解:y=kx+2k﹣1恒过(﹣2,﹣1),y=(k+1)x+2k+1也恒过(﹣2,﹣1),k为正整数,那么,k≥1,且k∈Z如图,直线y=kx+2k﹣1与X轴的交点是A(,0),与y轴的交点是B (0,2k﹣1)直线y=(k+1)x+2k+1与X轴的交点是C(,0),与y轴的交点是D (0,2k+1),那么,S四边形ABDC=S△COD﹣S△AOB,=(OC•OD﹣OA•OB),=[﹣],=(4﹣),=2﹣又,k≥1,且k∈Z,那么,2﹣在定义域k≥1上是增函数,因此,当k=1时,四边形ABDC的面积最小,最小值S=2﹣=.点评:本题考查了两条指向相交或平行问题,解题的关键是用k表示出直线与坐标轴的交点坐标并用k表示出围成的三角形的面积,从而得到函数关系式,利用函数的知识其最值问题.15.(3分)(2010•随州)如图,在矩形纸片ABCD中,AB=5cm,BC=10cm,CD上有一点E,ED=2cm,AD上有一点P,PD=3cm,过P作PF⊥AD交BC于F,将纸片折叠,使P点与E点重合,折痕与PF交于Q点,则PQ的长是cm.分析:过Q点作QG⊥CD,垂足为G点,连接QE,设PQ=x,根据折叠及矩形的性质,用含x的式子表示Rt△EGQ的三边,再用勾股定理列方程求x即可.解答:解:过Q点作QG⊥CD,垂足为G点,连接QE,设PQ=x,由折叠及矩形的性质可知,EQ=PQ=x,QG=PD=3,EG=x﹣2,在Rt△EGQ中,由勾股定理得EG2+GQ2=EQ2,即:(x﹣2)2+32=x2,解得:x=,即PQ=.16.(3分)(2010•随州)将半径为4cm的半圆围成一个圆锥,在圆锥内接一个圆柱(如图示),当圆柱的侧面的面积最大时,圆柱的底面半径是1cm.分析:易得扇形的弧长,除以2π也就得到了圆锥的底面半径,再加上母线长,利用勾股定理即可求得圆锥的高,利用相似可求得圆柱的高与母线的关系,表示出侧面积,根据二次函数求出相应的最值时自变量的取值即可.解答:解:扇形的弧长=4πcm,∴圆锥的底面半径=4π÷2π=2cm,∴圆锥的高为=2cm,设圆柱的底面半径为rcm,高为Rcm.=,解得:R=2﹣r,∴圆柱的侧面积=2π×r×(2﹣r)=﹣2πr2+4πr(cm2),∴当r==1cm时,圆柱的侧面积有最大值.三、解答题(72)17.(14分)已知抛物线y=﹣x2+bx+c(c>0)过点C(﹣1,0),且与直线y=7﹣2x只有一个交点.(1)求抛物线的解析式;(2)若直线y=﹣x+3与抛物线相交于两点A、B,则在抛物线的对称轴上是否存在点Q,使△ABQ是等腰三角形?若存在,求出Q点坐标;若不存在,说明理由.分析:(1)将C点坐标代入y=﹣x2+bx+c得c=b+1,联立抛物线y=﹣x2+bx+b+1与直线y=7﹣2x,转化为关于x的二元一次方程,令△=0求b的值即可;(2)直线y=﹣x+3与(1)中抛物线求A、B两点坐标,根据抛物线解析式求对称轴,根据线段AB为等腰三角形的腰或底,分别求Q点的坐标.解答:解:(1)把点C(﹣1,0)代入y=﹣x2+bx+c中,得﹣1﹣b+c=0,解得c=b+1,联立,得x2﹣(b+2)x+6﹣b=0,∵抛物线与直线只有一个交点,∴△=(b+2)2﹣4(6﹣b)=0,解得b=﹣10或2,∵c=b+1>0,∴b=2,∴抛物线解析式为y=﹣x2+2x+3;(2)存在满足题意的点Q.联立,解得或,则A(0,3),B(3,0),由抛物线y=﹣x2+2x+3,可知抛物线对称轴为x=1,由勾股定理,得AB=3,当AB为腰,∠A为顶角时,Q(1,3+)或(1,3﹣);当AB为腰,∠B为顶角时,Q(1,)或(1,﹣);当AB为底时,Q(1,1).故满足题意的Q点坐标为:(1,3+)或(1,3﹣)或(1,)或(1,﹣)或(1,1).18.(14分)有一河堤坝BCDF为梯形,斜坡BC坡度,坝高为5m,坝顶CD=6m,现有一工程车需从距B点50m的A处前方取土,然后经过B﹣C﹣D放土,为了安全起见,工程车轮只能停在离A、D处1m的地方即M、N处工作,已知车轮半经为1m,求车轮从取土处到放土处圆心从M到N所经过的路径长.分析:作出圆与BA,BC相切时圆心的位置G,与CD相切时圆心的位置P,与CD相切时圆心的位置I,分别求得各段的路径的长,然后求和即可.解答:解:当圆心移动到G的位置时,作GR⊥AB,GL⊥BC分别于点R,L.∵,∴∠CBF=30°,∴∠RGB=15°,∵直角△RGB中,tan∠RGB=,∴BR=GR•tan∠RGB=2﹣,则BL=BR=2﹣,则从M移动到G的路长是:AB﹣BR﹣1=50﹣(2﹣)﹣1=47+m,BC=2×5=10m,则从G移动到P的位置(P是圆心在C,且与BC相切时圆心的位置),GP=10﹣BL=10﹣(2﹣)=8+m;圆心从P到I(I是圆心在C,且与CD相切时圆心的位置),移动的路径是弧,弧长是:=m;圆心从I到N移动的距离是:6﹣1=5m,则圆心移动的距离是:(47+)+(8+)+5+=60+2+(m).19.(14分)如图,过正方形ABCD的顶点C在形外引一条直线分别交AB、AD延长线于点M、N,DM与BN交于点H,DM与BC交于点E,BN△AEF与DC交于点F.(1)猜想:CE与DF的大小关系?并证明你的猜想.(2)猜想:H是△AEF的什么心?并证明你的猜想.分析:(1)利用正方形的性质得到AD∥BC,DC∥AB,利用平行线分线段成比例定理得到,,从而得到,然后再利用AB=BC即可得到CE=DF;(2)首先证得△ADF≌△DCE,从而得到∠DAF=∠FDE,再根据∠DAF+∠ADE=90°得到AF⊥DE,同理可得FB⊥AE,进而得到H为△AEF的垂心.解答:解:(1)CE=DF;证明:∵正方形ABCD∴AD∥BC,DC∥AB∴,(∴∴又AB=BC∴CE=DF;(2)垂心.在△ADF与△DCE中,,∴△ADF≌△DCE(SAS),∴∠DAF=∠FDE,∵∠DAF+∠ADE=90°,∴AF⊥DE,同理FB⊥AE.H为△AEF的垂心.20.(15分)如图,已知菱形ABCD边长为,∠ABC=120°,点P在线段BC延长线上,半径为r1的圆O1与DC、CP、DP分别相切于点H、F、N,半径为r2的圆O2与PD延长线、CB延长线和BD分别相切于点M、E、G.(1)求菱形的面积;(2)求证:EF=MN;(3)求r1+r2的值.解答:(1)解:∵菱形ABCD边长为,∠ABC=120°,∴△ADC和△DBC都是等边三角形,∴菱形的面积=2S△DBC=2××(6)2=54;(2)证明:∵PM与PE都是⊙O2的切线,∴PM=PE,又∵PN与PF都是⊙O1的切线,∴PN=PF,∴PM﹣PN=PE﹣PB,即EF=MN;(3)解:∵BE与BG都是⊙O2的切线,∴BE=BG,∠O2BE=∠O2BG,O2E⊥BE,而∠EBG=180°﹣∠DBC=180°﹣60°=120°,∴∠O2BE=60°,∠EO2B=30°,∴BE=O2E=r2,∴BG=r2,∴DM=DG=6﹣r2,同理可得CF=r1,DN=DH=6﹣r1,∴MN=DM+DN=12﹣(r1+r2),∵EF=EB+BC+CF=r2+6+r1=6+(r1+r2),而EF=MN,∴6+(r1+r2)=12﹣(r1+r2),∴r1+r2=9.21.(15分)(2012•黄冈)如图,已知抛物线的方程C1:y=﹣(x+2)(x﹣m)(m>0)与x轴相交于点B、C,与y轴相交于点E,且点B在点C的左侧.(1)若抛物线C1过点M(2,2),求实数m的值;(2)在(1)的条件下,求△BCE的面积;(3)在(1)条件下,在抛物线的对称轴上找一点H,使BH+EH最小,并求出点H的坐标;(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE 相似?若存在,求m的值;若不存在,请说明理由.解答:解:(1)依题意,将M(2,2)代入抛物线解析式得:2=﹣(2+2)(2﹣m),解得m=4.(2)令y=0,即(x+2)(x﹣4)=0,解得x1=﹣2,x2=4,∴B(﹣2,0),C(4,0)在C1中,令x=0,得y=2,∴E(0,2).∴S△BCE=BC•OE=6.(3)当m=4时,易得对称轴为x=1,又点B、C关于x=1对称.如解答图1,连接EC,交x=1于H点,此时BH+EH最小(最小值为线段CE的长度).设直线EC:y=kx+b,将E(0,2)、C(4,0)代入得:y=x+2,当x=1时,y=,∴H(1,).(4)分两种情形讨论:①当△BEC∽△BCF时,如解答图2所示.则,∴BC2=BE•BF.由函数解析式可得:B(﹣2,0),E(0,2),即OB=OE,∴∠EBC=45°,∴∠CBF=45°,作FT⊥x 轴于点T,则∠BFT=∠TBF=45°,∴BT=TF.∴可令F(x,﹣x﹣2)(x>0),又点F在抛物线上,∴﹣x﹣2=﹣(x+2)(x﹣m),∵x+2>0,∵x>0,∴x=2m,F(2m,﹣2m﹣2).此时BF==2(m+1),BE=,BC=m+2,又∵BC2=BE•BF,∴(m+2)2=•(m+1),∴m=2±,∵m>0,∴m=+2.②当△BEC∽△FCB时,如解答图3所示.则,∴BC2=EC•BF.∵△BEC∽△FCB∴∠CBF=∠ECO,∵∠EOC=∠FTB=90°,∴△BTF∽△COE,∴,∴可令F(x,(x+2))(x>0)又∵点F在抛物线上,∴(x+2)=﹣(x+2)(x ﹣m),∵x>0,∴x+2>0,∴x=m+2,∴F(m+2,(m+4)),EC=,BC=m+2,又BC2=EC•BF,∴(m+2)2=•整理得:0=16,显然不成立.综合①②得,在第四象限内,抛物线上存在点F,使得以点B、C、F为顶点的三角形与△BCE相似,m=+2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初升高自主招生研讨——数与式(答案)【涉及知识点】1、数列(1)求和:基础、裂项、错位、倒序(2)其他:找规律、累加累乘等2、二重根式直接法、乘2除2法、解方程组、字母变形、平方法3、乘法公式(1)基础公式(7+3)(2)拓展公式4、因式分解(1)多项式的因数定理与余数定理(2)多项式除以多项式(综合除法)(3)一猜(有理根)二添、二拆、二除、二待(3)猜不中(无理根)二待、二凑(4次方凑平方和+平方差)5、代数式恒等变形(重中之重!!!)6、其他(1)简单计数与数论(2)三个非负数、两次有理化、【涉及方法】1、猜、凑2、配方法3、待定系数法4、换元法【涉及思想】1、消元与降次思想2、构造思想3、整体与讨论思想4、定义域与化简优先【题型一】基础题(指数计算、三个非负数等)【题型二】分式(化简、求值、求和)【题型三】二次根式(化简、求值、求和、二重根式)【题型四】整式(多项式、因式分解、乘法公式、化简、求值)【题型五】数列(找规律、简单计数、求和、新定义)【题型一】基础题(指数计算、三个非负数等)1、若()6255252=xxx,则x=________________。

【参考答案】2或-12、已知: 23a =,32b =,则1111a b +=++______________.【参考答案】13、已知()21240x y x y --+++=则32x y -=( )-1A 、 -2B 、 2C 、 1D 、 【参考答案】D4、已知实数a 满足2008a -a ,那么a -22008值是 ( ) (A )2009 (B ) 2008 (C ) 2007 (D ) 2006【参考答案】A【参考答案】-15、()1015323π-⎛⎫-+---= ⎪⎝⎭( ).A .4-B .12C .4D .2【参考答案】C7、有理数a ,b 在数轴上的位置如图所示,则a b +的值是( ).A .0小于B .0大于C .a 小于D .b 大于【参考答案】B8、若,,a b c。

【参考答案】3Oba9、设z y x ,,为整数且满足1||||20132012=-+-z y y x ,则代数式333||||||x z z y y x -+-+-的值为__________。

【参考答案】210、设实数x 、y 满足22111x x y x -+-=+,则x y += .【参考答案】011、按下列图示的程序计算,若开始输入的值为x =3,则最后输出的结果是 A .6 B .21 C .156 D .231【参考答案】D【题型二】分式(化简、求值、求和)1、分数10013分子、分母同时加上正整数n 后,变为整数,则这样的n 有________个. 【参考答案】22、课堂上,朱老师出了这样一道题:已知352009-=x ,求代数式)1x 3x 1(1x 1x 2x 22+-+÷-+-的值。

小明觉得直接代入计算太繁了,请你来帮他解决,并写出具体过程。

【参考答案】0.53、已知b a ,为实数,且1=ab ,设11+++=b b a a M ,1111+++=b a N ,则N M ,的大小关系是( )A .N M >B .N M =C .N M <D .无法确定【参考答案】B输入x计算的值>100 输出结果否是4、【参考答案】15、【参考答案】2或-16、【参考答案】7、【参考答案】32321a-8、设2222222212310071231007,13520133572015a b =++++=++++,则以下四个选项中最接近a b -的整数为( )A .252 B.504 C. 1007 D. 2013【参考答案】B9、已知:222212310011352001A =++++,222212310013572003B =++++,则与A B -最接近的整数是______________.【参考答案】50110、计算:111112233420132014++++=⨯⨯⨯⨯___________.11、【参考答案】12、【参考答案】【参考答案】7、47、814、若实数a 满足等式14a a -=+,则44a a -+的值为 .【参考答案】19415、若实数x 满足112=+x x ,则52x x ++的值为______。

【参考答案】116、已知03752=--x x,求()()()()1211222----+-x x x x =【参考答案】217、已知b a b a +=+111,则baa b +=___________. 【参考答案】-118、已知:2222411b a b a +=+,求20132012⎪⎭⎫⎝⎛+⎪⎭⎫⎝⎛b a a b =__________.【参考答案】2或019、若实数,a b 满足2222114a b a b +=+,则20132014b a a b ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭.【参考答案】0或-2【题型三】二次根式(化简、求值、求和、二重根式)2=__________.3、【参考答案】20034。

5、【参考答案】6、(1)设n 是给定的正整数,化简:()1111122-+++n n;......____________++=(2)根据(1)的结果,计算:2222221019113121121111+++++++++【参考答案】(1)nn +21 (2)10997、有________个实数x .【参考答案】118、已知2a =的小数部分为b ,那么()1a b -= .【参考答案】49、【参考答案】510、证明:2不是有理数。

【参考答案】略11、若为正有理数,、、c b a证明:(1)若b a +为有理数,则b a 、为有理数, (2)若c b a ++为有理数,则c b a 、、为有理数。

【参考答案】12=【参考答案】 13、【参考答案】14、【参考答案】15、若有理数b a ,_______________。

16、已知:y x 、为有理数,且满足,33421y x +=+求._________),(=y x17、(1)若实数a 使得212=--a a , 求12-+a a 的值; (2)若实数a 满足121≤≤a ,设1212-++--=a a a a P ,求证:P 一定是无理数. 【参考答案】(1)18、【参考答案】a b +a =ab +=【题型四】整式(多项式、因式分解、乘法公式、化简、求值)1、已知关于x 的多项式75212ax bx x x ++++(a 、b 为常数),且当2x =时,该多项式的值为8-,则当2x =-时,该多项式的值为 .【参考答案】403、若一多项式除以223x -,得到的商式为74x -,余式为52x -+,则此多项式是【参考答案】142681423+--x x x4、【参考答案】25、已知212x ax +-能分解成两个整系数的一次因式的积,则符合条件的整数a 的个数为( ) A. 3个 B. 4个 C. 6个 D. 8个【参考答案】C6、若218a ma ++在整数范围内可分解为两个一次因式的乘积,则整数m 不可能...是( ) A 、±9B 、 ±11C 、±12 D 、 ±19【参考答案】C7、已知998,997,996a b c ===,则2a ab ac bc --+=______________.【参考答案】28、因式分解:1ab a b --+= 。

【参考答案】(1)(1)a b --9、10、11、=12、13、14、15、16、【参考答案】17、已知()21321+=++++n n n ,这里n 为任意正整数,请你利用恒等式,推导出的计算公式。

【参考答案】332(1)331n n n n +=+++2222123.....n ++++18、(1){}10321,,,, ,求其中任意两个元素乘积之和 (2)⎭⎬⎫⎩⎨⎧10131211,,,, ,求其中任意偶数个元素乘积之和 【参考答案】(1)1320(2)9219、已知012=--x x ,那么代数式123+-x x 的值是_____.【参考答案】220、已知1393a b c +=+=+,则222a b c ab bc ca ++---的值为 .【参考答案】7622、若223894613M x xy y x y =-+-++ (,)x y 是实数,则M 的值一定是( ).(A ) 零 (B ) 负数 (C ) 正数 (D )整数 【参考答案】C【题型五】数列(找规律、简单计数、求和、新定义)1、如图,有棋子摆成这样,求第n 幅图有_________颗棋子。

【参考答案】2、定义①111=*,②()1111+=+**n n ,求=*1n【参考答案】n3、观察右图,根据规律,从2002到2004,箭头方向依次为( )(A) ↓→(B) →↑ (C) ↑→ (D) →↓【参考答案】C4、探索规律:根据下图中箭头指向的规律,从2008到2009再到2010,箭头的方向是【参考答案】A5、如果有2007名学生排成一列,按12345432123454321、、、、、、、、、、、、、、、、的规律报数,那么第2007名学生所报的数是 .【参考答案】36、 1,2,2,3,3,3,4,4,4,4,…..,第2013个数是_____________.【参考答案】637、在前1000个正整数1,2,3,…,1000中,数码1共出现了__________个∙∙∙∙∙∙(3)(2)(1)0 3 → 4 7 → 8 11 → … ↓ ↑ ↓ ↑ ↓ ↑ … 1 → 2 5 → 6 9 → 10 …【参考答案】3018、 在101010101028910,,,,, 这十个数中任取两个不同的数相减,则所有的正数差之和是________。

【参考答案】略9、对于正数x ,规定()f x = 1x x +,计算1()100f +1()99f +1()98f + …+1()3f +1()2f +(1)f +(2)f +(3)f + … +(98)f +(99)f +(100)f =__________.【参考答案】99.510、以下是面点师一个工作环节的数学模型:如图,在数轴上截取从0到1对应的线段,对折后(坐标1所对应的点与原点重合)再均匀地拉成1个单位长度的线段,这一过程称为一次操作(例如在第一次操作完成后,原来的坐标13,44变成12,原来的12变成1,等等),那么原数轴从0到1对应的线段上(除两个端点外)的点,在第n 次操作完成后((1)n ≥,恰好被拉到与1重合的点所对应的坐标为 .【参考答案】12、对于各数互不相等的正整数组()12n a a a ,,,(n 是不小于2的正整数),如果在i j <时有i j a a >,则称i a 与j a 是该数组的一个“逆序”,例如数组()2,3,1,4中有逆序“2,1”,“4,3”,“4,1”,“3,1”,其逆序数为4,现若各数互不相同的正整数组()123456a a a a a a ,,,,,的逆序数为2,则()654321a a a a a a ,,,,,的逆序数为___________.【参考答案】13。

相关文档
最新文档