山西省运城市2014-2015年九年级第一次质量预测数学试题卷及答案
2014--2015学年第一学期教学质量检测试题卷九年级数学

2014—2015学年第一学期教学质量检测试题卷九年级数学注意事项:满分100分,时间是100分钟一、选择题(每小题3分,共24分)下列标志既是轴对称图形又是中心对称图形的是( )2.下列说法中正确的是 ( )A.“明天降雨的概率是90%”表示明天有90%的时间降雨B.某次抽奖活动中奖的概率为1100,说明每买100张奖券,一定有一次中奖 C.“打开电视,正在播放《新闻联播》”是必然事件D.口袋中装有2个红球和1个白球,从中摸出2个球其中必有红球3.已知关于x 的一元二次方程2(m 1)210x x -+-=有两个不相等的实数根,则m 的取值范围是( )A. m>0B. m<0C. m>0且m ≠1D. m ≥0,且m ≠1 4.关于反比例函数6y x=,下列说法错误的是( ) A.(-2,-3)在函数图象上 B.当x >0时,y 随x 的增大而减小 C.图象位于二四象限 D.P (-1,a ),Q (2,b )在函数图象上,则a<b5.将二次函数22(1)1y x =--的图象向左平移2个单位,再向下平移3个单位,平移后的二次函数解析式为( )A. 22(3)4y x =--B. 22(1)4y x =+-C. 22(3)2y x =-+D. 22(2)3y x =--6.如图,已知⊙O 是△ABD 的外接圆,AB 是⊙O 的直径,CD 是⊙O 的弦,若∠ABD=58°,则∠BCD 的度数是( )A. 40°B. 58°C. 32°D. 42°7.如图在平行四边形ABCD 中,∠ABC 的平分线BF 分别与AC 、AD 交于点E 、F,AB=3,BC=5, AE EC 的值为 ( ) A . 3:5 B. 2:3 C. 5:8 D. 3:88.二次函数()20y ax bx c a =++≠的图象如图所示,则下列说法:①a>0 ;②2a+b=0;③ a+b+c>0;④当-1<x<3时,y>0;⑤240b ac ->,q 其中正确的个数是( ).A. 1B. 2C. 3D. 4二、填空题(每小题2分,共14分)9.方程20x x +=的根是 .10.如图,以点O 为圆心的两个同心圆,大圆的弦AB 是小圆的切线,点P 为切点,小圆的半径为3cm,AB=8cm ,则大圆的半径为 (cm).11.如图,把一个圆形转盘按1:2:3:4的比例分成A 、B 、C 、D 四个扇形区域,自由转动转盘,停止后 落在B 区域(指针落在分界线时重转)的概率为 . 12.已知A (-2,1y ),B (1,2y ),C (2,3y )是抛物线()m x y ++-=21上的三点,则321,y y y ,的大小关系为 .13.如图,在平面直角坐标系中,Rt △OAB 中,∠ABO=90°,点A 的坐标为(3,1),若将△OAB 绕点O 逆时针旋转90°后,A 点到达/A 点,则/A 的坐标是 .14.如图,菱形OABC 中,点C 的坐标为(3,4),点A 在x 轴的正半轴上,反比例函数xk y =()0>x 的图象经过点B ,则k 的值为 . 15.Rt △AOB 在平面直角坐标系内的位置如图所示,点O 为原点,点A (0,8),点B (6,0),点P 在线段AB 上,且AP=6.在x 轴上存在点Q ,使得以B 、P 、Q 为顶点的三角形与△AOB 相似,则点Q 的坐标为 .三、解答题(本大题共8个题目,满分62分)16.(6分)解方程:01322=--x x17.(6分)一个不透明的袋子里装有分别标注2、4、6的3个小球(小球除数字外,其余都相同),另有3张背面完全一样,正面分别写有数字6、7、8的卡片,先从袋子中任意摸出一个球,再从这3张背面朝上的卡片中任意摸出一张,记录两次得到的数字.(1)请你用列表或画树状图的方法,表示出所有可能出现的结果.(2)小红和小莉做游戏,制定了两个游戏规则:规则1:若两次摸出的数字,至少有一个是“6”,小红赢;否则,小莉赢.规则2:若摸出的卡片上的数字是球上数字的整数倍时,小红赢;否则,小莉赢.18. (7分)如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC 的顶点均在格点上,请按要求完成下列问题:(1)画出将△ABC 绕点B 按逆时针方向选择90°后所得到的△11BC A ;(2)求线段BC 旋转到B 1C 的过程中,点C 所经过的路径长.(结果保留π)19. (8分)学校去年年底的绿化面积为5000平方米,预计到明年年底增加到7200平方米,求学校这两年绿化面积的年平均增长率.20. (8分)如图,直线MN 交⊙O 于A 、B 两点,AD 平分∠OAM交⊙O 于D ,过D 作DE ⊥MN 于点E.求证:DE 是⊙O 的切线.21. (8分)如图,在直角坐标系中,矩形OABC 的顶点O 与坐标原点重合,点A 、C 分别在坐标轴上,点B 的坐标为(8,4),反比例函数()016>=x xy 的图象分别与AB 、BC 相交于点M 、N.若点P 在y 轴上,且△OPM 的面积与四边形BMON 的面积相等,求点P 的坐标.22. (9分)如图,在平行四边形ABCD 中,DE 交BC 于F ,交AB 的延长线于E ,且∠EDB=∠C.(1)求证:△ADE ∽△DBE ;(2)若DE=9cm,AE=12cm,求DC 的长.23. (10分)如图,一次函数221+-=x y 分别交y 轴、x 轴于A 、B 两点,抛物线c bx x y ++-=2过A 、B 两点.(1)求这条抛物线的解析式;(2)作垂直于x 轴的直线x=t ,在第一象限内交直线AB 于点M ,交这条抛物线于点N.当t 取何值时,MN 有最大值.(3)在(2)的情况下,以A 、M 、N 、D 为顶点作平行四边形,直接写出第四个顶点D 的坐标.。
2014-2015学年九年级第一次质量模拟试卷及答案

2015年九年级第一次质量预测数学模拟试卷(一)(满分120分,考试时间100分钟)学校:___________ 班级:_________ 姓名:________ 分数:__________一、选择题(每小题3分,共24分)1.与-3的差为0的数是()A.3 B.-3 C.1 3D.13-2.下列图形中,不是轴对称图形的是()A.B. C. D.3.国家统计局公布2013年中国国内生产总值568 845亿元,同比增长7.7%,完成了年初设定的7.5%的目标.请你以亿元为单位用科学记数法表示2013年我国的国内生产总值为(结果保留两个有效数字)()A.5.6×1013B.5.7×1013C.5.7×105D.5.6×1054.过正方体上底面的对角线和下底面一顶点的平面截去一个三棱锥所得到的几何体如图所示,则它的俯视图为()A.B.C.D.5.不等式4-3x≥2x-6的非负整数解有()A.1个B.2个C.3个D.4个6.如图,双曲线myx=与直线y kx b=+相交于点M,N,且点M的坐标为(1,3),点N的纵坐标为-1.根据图象信息可得关于x的方程mkx bx=+的解为()A.-3,1 B.-3,3 C.-1,1 D.-1,37.如图,正方形OABC的两边OA,OC分别在x轴、y轴的正半轴上,点D(5,3)在边AB上,以C为中心,把△CDB旋转90°,则旋转后点D的对应点D'的坐标是()A.(2,10)B.(-2,0) C.(2,10)或(-2,0)D.(10,2)或(-2,0)8.如图,⊙O的半径OD⊥弦AB于点C,连接AO并延长,交⊙O于点E,连接CE.若AB=8,CD=2,则CE的长为()A.215B.8C.210D.213二、填空题(每小题3分,共21分)9.当x=_______时,分式55xx--无意义.10.菱形ABCD中,若对角线AC=8cm,BD=6cm,则边长AB=_______cm.11.已知圆锥的底面半径为1,全面积为4π,则圆锥的母线长为_______.12.甲、乙、丙三位同学打乒乓球,想通过“手心手背”游戏来决定其中哪两个人先打,规则如下:三个人同时各用一只手随机出示手心或手背,若只有两个人手势相同(都是手心或都是手背),则这两人先打;若三人手势相同,则重新决定.那么通过一次“手心手背”游戏能决定甲打乒乓球的概率是_______.13.如图,平行四边形OABC的顶点O在坐标原点,顶点A,C在反比例函数kyx=(0x>)的图象上,点A的横坐标为4,点B的横坐标为6,且平行四边形OABC的面积为9,则k的值为_________.yxOABCFED CBANMEDCBA第13题图第14题图第15题图14.如图,在△ABC中,∠BAC=30°,AB=AC,AD是BC边上的中线,∠ACE=12∠BAC,CE交AB于点E,交AD于点F.若BC=2,则EF的长为_________.15.如图,在矩形ABCD中,AD AB>,将矩形ABCD折叠,使点C与点A重合,折痕为MN,连接CN.若△CDN的面积与△CMN的面积之比为1:4,则MNBM的值为_________.三、解答题(本大题共8小题,满分75分)16.(8分)先化简,再求值:2311221x xx x x x-⎛⎫-÷-⎪+++⎝⎭,其中x满足x2-x-1=0.NMxyOxyODC BAEDC BAO第6题图第7题图第8题图O EDC BA P x y O F ED CBA GP ABC DE H Oy x17. (9分)为了推广阳光体育运动的广泛开展,引导学生走向操场,走进大自然,走到阳光下,积极参加体育锻炼,学校准备购买一批运动鞋供学生借用.现从各年级随机抽取了部分学生的鞋号,绘制出如下的统计图1和图2,请根据有关信息,解答下列问题:m %10%20%30%25%38号37号34号35号36号图18106412人数鞋号1224610838号37号34号35号36号图2(1)本次接受随机抽样调查的学生人数为_______,图1中m 的值是_____; (2)求本次调查获取的样本数据的众数和中位数;(3)根据样本数据,若学校计划购买200双运动鞋,建议购买35号运动鞋多少双? 18. (9分)如图,矩形ABCD 的对角线AC ,BD 相交于 点O ,DE ∥AC ,CE ∥BD .(1)求证:四边形OCED 为菱形;(2)连接AE ,BE ,AE 与BE 相等吗?请说明理由.19. (9分)如图,将透明三角形纸片P AB 的直角顶点P 落在第四象限,顶点A ,B 分别落在反比例函数ky x=图象的两支上,且PB ⊥x 轴于点C ,P A ⊥y 轴于点D ,AB 分别与x 轴,y 轴相交于点F ,E .已知B (1,3). (1)k =_________;(2)试说明AE =BF ; (3)当四边形ABCD 的面积为214时,求点P 的坐标.20. (9分)钓鱼岛是我国固有领土,为测量钓鱼岛东西两端A ,B 的距离,如图,勘测飞机在距海平面垂直高度为1公里的点C 处,测得端点A 的俯角为45°,然后沿着平行于AB 的方向飞行3.2公里到点D ,并测得端点B 的俯角为37°,求钓鱼岛两端A ,B 的距离.(结果精确到0.1公里,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,2≈1.41)37°45°NCDBMA21. (10分)某工程机械厂根据市场需求,计划生产A ,B 两种型号的大型挖掘机共100台,该厂所筹生产资金不少于22 400万元,但不超过22 500万元,且所筹资金全部用于生产此两型挖掘机,所生产的此两型挖掘机可全部售出,此两型挖掘机的生产成本和售价如下表:型号A B 成本(万元/台) 200 240 售价(万元/台)250300(1)该厂对这两型挖掘机有哪几种生产方案?(2)该厂如何生产能获得最大利润?(3)根据市场调查,每台B 型挖掘机的售价不会改变,每台A 型挖掘机的售价将会提高 m 万元(m >0),该厂应该如何生产获得最大利润?(注:利润=售价-成本) 22. (10分)如图,在△ABC 中,∠B =45°,O 为AC 上一个动点,过O 作∠POQ =135°,且∠POQ与AB 交于P ,与BC 交于Q .(1)如图1,若11AB AOBC CO ==,,则OP OQ=______. (2)如图2,若1132AB AO BC CO ==,,求OP OQ 的值,写出求解过程. (3)如图3,若1325AB OP BC OQ ==,,则AOCO =_____.图3图2图1A COPQ B ACO PQB Q POCBA23. (11分)如图,在平面直角坐标系中,抛物线243y x bx c =-++与x 轴交于A ,D 两点,与y轴交于点B ,四边形OBCD 是矩形,点A 的坐标为(1,0),点B 的坐标为(0,4).已知点E (m ,0)是线段DO 上的动点,过点E 作PE ⊥x 轴交抛物线于点P ,交BC 于点G ,交BD 于点H . (1)求该抛物线的解析式.(2)当点P 在直线BC 上方时,请用含m 的代数式表示PG 的长度.(3)在(2)的条件下,是否存在这样的点P ,使得以P ,B ,G 为顶点的三角形与△DEH 相似?若存在,求出此时m 的值;若不存在,请说明理由.。
2014---2015学年九年级质量抽测数学试题附答案

2014---2015学年九年级质量抽测数学试题(总分120分 考试时间120分钟)注意事项:1. 本试题分第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷为选择题,30分;第Ⅱ卷为非选择题,90分;全卷共6页.2. 数学试题答案卡共8页.答题前,考生务必将自己的姓名、考号、考试科目等涂写在试题和答题卡上,考试结束,试题和答题卡一并收回.3. 第Ⅰ卷每题选出答案后,都必须用2B 铅笔把答题卡上对应题目的答案标号【ABCD 】涂黑.如需改动,先用橡皮擦干净,再改涂其它答案.第Ⅱ卷按要求用0.5mm 碳素笔答在答题卡的相应位置上.4. 考试时,不允许使用科学计算器.第Ⅰ卷(选择题 共30分)一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分. 1. |﹣|的相反数是( )A .2B .C . ﹣2D .﹣3. 用矩形纸片折出直角的平分线,下列折法正确的是( ) ....4. 下列运算中,正确的是( )A .39±=B .236(a )a =C .3a 2a 6a ⋅=D .632-=-5. 如下图,△ABC 经过位似变换得到△DEF ,点O 是位似中心且OA=AD ,则△ABC 与△DEF 的面积比是( )A .1:6B . 1:5C .1:4D .1:2 6. 在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩(m ) 1.50 1.60 1.65 1.70 1.75 1.80 人数 1 2 4 3 3 2这些运动员跳高成绩的中位数和众数分别是( )A . 1.65,1.70B .1.70,1.65C . 1.70,1.70D . 3,47. 如下图,半径为5的⊙P 与y 轴相交于M (0,-4),N (0,-10)两点,则圆心P 的坐标为( )A .(5,-4)B .(4,-5)C .(4,-7)D .(5,-7)8. 二次函数y=ax 2+bx+c 的图象如图所示,则一次函数y=ax+b 与反比例函数y=xc在同一平面直角坐标系中的大致图象为( )9. 一次数学课上,老师请同学们在一张长为18厘米,宽为16厘米的矩形纸板上,剪下一个腰长为10厘米的等腰三角形,且要求等腰三角形的一个顶点与矩形的一个顶点重合,其他两个顶点在矩形的边上,则剪下的等腰三角形的面积为( )平方厘米A .50B .50或40C .50或40或30D .50或30或2010. 如图,正方形ABCD 中,点E 、F 分别在BC 、CD 上,△AEF 是等边三角形,连接AC 交EF 于G ,下列结论:①BE=DF , ②∠DAF=15°, ③AC 垂直平分EF , ④BE+DF=EF , ⑤S △CEF =2S △ABE . 其中正确结论有( )个.第5题图 第7题图 第10题图第Ⅱ卷(非选择题 共90分)A .B .C .D .二、填空题:本大题共8小题,其中11-14题每小题3分,15-18题每小题4分,共28分.只要13.甲、乙两人玩猜数字游戏,甲猜一个数字记为x,乙猜一个数字记为y,且x,y分别取1,2,3,4,则点(x,y)在反比例函数y4=的图像上的概率为___________.DC'B'CB A第12题图第15题图第16题图15.如图,△ABC是等腰直角三角形,∠ACB=90°,BC=AC,把△ABC绕点A按顺时针方向旋转45°后得到△AB′C′,若AB=2,则线段BC在上述旋转过程中所扫过部分(阴影部分)的面积是_________(结果保留π).16.如图,在边长相同的小正方形组成的网格中,点A,B,C,D都在这些小正方形的顶点上,AB,CD相交于点P,则tan∠APD的值是___________.17.我们把按照一定顺序排列的一列数称为数列,如1,3,9,19,33,…就是一个数列,如果一个数列从第二个数起,每一个数与它前一个数的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做这个等差数列的公差.如2,4,6,8,10就是一个等差数列,它的公差为2.如果一个数列的后一个数与前一个数的差组成的新数列是等差数列,则称这个数列为二阶等差数列.例如数列1,3,9,19,33,…,它的后一个数与前一个数的差组成的新数列是2,6,10,14,…,这是一个公差为4的等差数列,所以,数列1,3,9,19,33,…是一个二阶等差数列.那么,请问二阶等差数列1,3,7,13,…的第五个数应是_________.第18题图18. 如图,已知点A (0,0),B ( 3 ,0),C (0,1),在△ABC 内依次作等边三角形,使一边在x 轴上,另一个顶点在BC 边上,作出的等边三角形分别是第1个△AA 1B 1,第2个△B1A 2B 2,第3个△B 2A 3B 3,…,则第n 个等边三角形的面积等于 .三、解答题:本大题共7小题,共62分.解答要写出必要的文字说明、证明过程或演算步骤. 19. (本题满分7分,第⑴题3分,第⑵题4分)(1)计算:(2) 先化简,再求值:(a+)÷(1+).其中a 是不等式组⎩⎨⎧<-≤-81302a a 的整数解.20.(本题满分8分) 为了解中考体育科目训练情况,改进训练方法,减轻学生负担,某县教育局从全县九年级学生中随机抽取了部分学生进行了一次中考体育科目测试(把测试结果分为四个等级:A 级:优秀;B 级:良好;C 级:及格;D 级:不及格),并将测试结果绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题:(1)本次抽样测试的学生人数是 ;(2)图1中∠α的度数是 ,并把图2条形统计图补充完整;(3)全县九年级共有学生8500名,如果全部参加这次中考体育科目测试,请估计不及格的人数为 .21.(本题满分8分)如图,为了缓解交通拥堵,方便行人,在济南路计划修建一座横断面为梯形ABCD的过街天桥,若天桥斜坡AB的坡角 BAD为35゜,斜坡CD的坡度为i=1:1.2(垂直高度CE 与水平宽度DE的比),上底BC=10m,天桥高度CE=5m,求天桥下底AD的长度?(结果精确到0.1m,参考数据:sin35゜≈ 0.57,cos 35゜≈ 0.82,tan35゜≈ 0.70)22.(本题满分8分) 如图,直线PQ与⊙O相交于点A、B,BC是⊙O的直径,BD平分∠CBQ交⊙O于点D,过点D作DE⊥PQ,垂足为E.(1)求证:DE与⊙O相切;(2)连结AD,已知BC=10,BE=2,求BD的长.23. (本题满分8分)为响应市政府“创建国家森林城市”的号召,某小区计划购进A、B两种树苗共17棵,已知A种树苗每棵80元,B种树苗每棵60元.(1)若购进A、B两种树苗刚好用去1220元,问购进A、B两种树苗各多少棵?(2)若购买B种树苗的数量少于A种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用.24.(本题满分11分) 已知,在△ABC中,∠BAC=90°,∠ABC=45°,点D为直线BC上一动点(点D不与点B,C重合).以AD为边作正方形ADEF,连接CF.(1)如图1,当点D在线段BC上时.求证CF+CD=BC;(2)如图2,当点D在线段BC的延长线上时,其他条件不变,请直接写出CF,BC,CD三条线段之间的关系;(3)如图3,当点D在线段BC的反向延长线上时,且点A,F分别在直线BC的两侧,其他条件不变;①请直接写出CF,BC,CD三条线段之间的关系;②若正方形ADEF的边长为2,对角线AE,DF相交于点O,连接OC.求OC的长度.25.(本题满分12分) 如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为Q(2,-1),且与y 轴交于点C(0,3),与x轴交于A、B两点(点A在点B的右侧),点P是该抛物线上一动点,从点C沿抛物线向点A运动(点P与A不重合),过点P作PD∥y轴,交AC于点D.(1)求该抛物线的函数关系式;(2)当△ADP是直角三角形时,求点P的坐标;(3)在题(2)的结论下,若点E在x轴上,点F在抛物线上,问是否存在以A、P、E、F为顶点的平行四边形?若存在,求点F的坐标;若不存在,请说明理由.数学试题参考答案及评分标准一.二、填空题: 11-14题每小题3分,15-18题每小题4分,共28分.只要求填写最后结果. 11.()()b a b a a -+ 12. 33013.16314. 5,1≠≥a a 且15.4π16. 2 17. 21 18.三、解答题:19. (本题满分7分,第⑴题3分,第⑵题4分)(1)解:原式=0.5+1+32-1=0.5+32 ……………………3分(2) 解:原式=()()112222122122-=--∙--=-+-÷-+-a a a a a a a a a a . ………………2分解不等式组得2,1,0,30=<≤a a 所以………………3分只有当a =0时,原式有意义,原式=-1.(因为分式的分母不为0,除数不为0,所以本题中的a 不能取1和2) …………………………4分20.解:(1)40 ……………………2分(2) 540……………………4分 图略,为14人. ………………6分 (3)1700.……………………8分 21.……………… 2分……………… 4分…………… 6分…………………7分…………………8分22.证明:(1)连结OD ,则OD=OB, ∴∠OBD=∠ODB. ………………… 1分 ∵BD 平分∠CBQ , ∴∠OBD=∠DBQ.∵ DE ⊥PQ , ∴∠BED=90°. ………… 2分 ∴ ∠EBD + ∠BDE = 90°. ∴ ∠EDB + ∠BDO = 90°. 即:∠ODE = 90°.………………………… 3分 ∴ DE ⊥OD , ∴DE 是⊙O 的切线. ………… 4分(2)连结CD , 则∠CDB = 90°=∠BED, ……………… 5分∵ ∠CBD =∠DBE.∴ △CBD ∽△DBE.……………………………6分∴BD BC =BEBD. …………7分 即:BD 2=BC ·BE=10×2=20, ∴ BD=25, …………………8分23. 解:⑴设购进A 种树苗x 棵,则购进B 种树苗(17-x )棵,根据题意得: 80x +60(17- x )=1220 …………………2分 解得x =10 …………………3分 ∴ 17- x =7答:购进A 种树苗10棵,B 种树苗7棵 …………………4分 ⑵设购进A 种树苗x 棵,则购进B 种树苗(17-x )棵,根据题意得:17-x < x 解得x > …………………5分购进A 、B 两种树苗所需费用为80x +60(17- x )=20 x +1020…………………6分则费用最省需x 取最小整数9,此时17- x =8,费用为20×9+1020=1200(元). …………7分 答:费用最省方案为:购进A 种树苗9棵,B 种树苗8棵. 这时所需费用为1200元.……8分24.证明:(1)∵∠BAC=90°,∠ABC=45°, ∴∠ACB=∠ABC=45°, ∴AB=AC ,…………………1分 ∵四边形ADEF 是正方形, ∴AD=AF ,∠DAF=90°, ∵∠BAD=90°﹣∠DAC , ∠CAF=90°﹣∠DAC ,∴∠BAD=∠CAF , …………………2分 在△BAD 和△CAF 中,,∴△BAD ≌△CAF (SAS ),…………3分∴BD=CF ,∵BD+CD=BC ,∴CF+CD=BC ;…………………4分(2)CF ﹣CD=BC ;…………………6分(3)①CD ﹣CF=BC …………………8分 ②∵∠BAC=90°,∠ABC=45°,∴∠ACB=∠ABC=45°,∴AB=AC , ∵四边形ADEF 是正方形,∴AD=AF ,∠DAF=90°, ∵∠BAD=90°﹣∠BAF ,∠CAF=90°﹣∠BAF ,∴∠BAD=∠CAF ,∵在△BAD 和△CAF 中,∴△BAD ≌△CAF (SAS ),…………9分 ∴∠ACF=∠ABD , ∵∠ABC=45°, ∴∠ABD=135°, ∴∠ACF=∠ABD=135°, ∴∠FCD=90°,∴△FCD 是直角三角形. …………………10分 ∵正方形ADEF 的边长为2且对角线AE 、DF 相交于点O . ∴DF=AD=4,∵O 为斜边DF 中点.∴OC=DF=2.…………………11分25.解:(1)∵抛物线的顶点为Q (2,-1)设………………… 1分 将C (0,3)代入上式,得………………… 2分∴即。
山西省运城市2014-2015年名校联合考试数学试题(二)

山西省运城市名校2014-2015年九年级联合考试数学试题时间 120分钟 满分120分 2015、1、12一、填空题(每小题3分共24分)1、(2013·烟台)已知实数a ,b 分别满足a 2-6a +4=0,b 2-6b +4=0,且a ≠b ,则b a +ab 的值是( )A .7B .-7C .11D .-112、 (2014·武汉)如图,PA ,PB 切⊙O 于A ,B 两点,CD 切⊙O 于点E ,交PA ,PB 于C ,D.若⊙O 的半径为r ,△PCD 的周长等于3r ,则tan ∠APB 的值是( )A .51213B .125C .3513D .23133、 (2014·泸州)如图,在平面直角坐标系中,⊙P 的圆心坐标是(3,a)(a >3),半径为3,函数y =x 的图象被⊙P 截得的弦AB 的长为42,则a 的值是( )A .4B .3+ 2C .3 2D .3+ 34、(2014·厦门)已知某校女子田径队23人年龄的平均数和中位数都是13岁,但是后来发现其中一位同学的年龄登记错误,将14岁写成15岁,经重新计算后,正确的平均数为a 岁,中位数为b 岁,则下列结论中正确的是( )A .a <13,b =13B .a <13,b <13C .a >13,b <13D .a >13,b =135、用图中两个可自由转动的转盘做“配紫色”游戏:分别旋转两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色,可配成紫色的概率是( )A.14B.34C.13D.126、(2013·安徽)如图,随机闭合开关K1,K2,K3中的两个,则能让两盏灯泡同时发光的概率为( )A.16B.13C.12D.237、(2014·泸州)如图,在直角梯形ABCD中,DC∥AB,∠DAB=90°,AC⊥BC,AC=BC,∠ABC的平分线分别交AD,AC于点E,F,则BFEF的值是( )A.2-1 B.2+ 2C.2+1D. 28(2014·天津)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,且关于x的一元二次方程ax2+bx+c-m=0没有实数根,有下列结论:①b2-4ac>0;②abc<0;③m>2.其中,正确结论的个数是( )A.0B.1C.2D.3二、填空题(每小题3分24分)9、(2013·自贡)已知关于x的方程x2-(a+b)x+ab-1=0,x1,x2是此方程的两个实数根,现给出三个结论:①x1≠x2;②x1x2<ab;③x12+x22<a2+b2.则正确结论的序号是__ __.10、如图,已知A点从(1,0)点出发,以每秒1个单位的速度沿着x轴的正方向运动,经过t秒后,以O,A为顶点作菱形OABC,使B,C点都在第一象限内,且∠AOC=60°,又以P(0,4)为圆心,PC为半径的圆恰好与OA所在的直线相切,则t=____.11、(2013·巴中)在-1,3,-2这三个数中,任选两个数的积作为k的值,使反比例函数y=kx的图象在第一、三象限的概率是____.12、(2013·黄石)甲、乙两人玩猜数字游戏,游戏规则如下:有四个数字0,1,2,3,先由甲心中任选一个数字,记为m,再由乙猜甲刚才所选的数字,记为n.若m,n满足|m-n|≤1,则称甲、乙两人“心有灵犀”,则甲、乙两人“心有灵犀”的概率是___.13、(2013·泰州)如图,平面直角坐标系xOy 中,点A ,B 的坐标分别为(3,0),(2,-3),△A B′O′是△ABO 关于A 的位似图形,且O′的坐标为(-1,0),则点B′的坐标为____.14、 (2014·遵义)“今有邑,东西七里,南北九里,各开中门,出东门一十五里有木,问:出南门几何步而见木?”这段话摘自《九章算术》,意思是说:如图,矩形城池ABCD ,东边城墙AB 长9里,南边城墙AD 长7里,东门点E ,南门点F 分别是AB ,AD 的中点,EG ⊥AB ,FH ⊥AD ,EG =15里,HG 经过A 点,则FH =____里.15、 (2014·咸宁)如图,在△ABC 中,AB =AC =10,点D 是边BC 上一动点(不与B ,C 重合),∠ADE =∠B =α,DE 交AC 于点E ,且cos α=45.下列结论:①△ADE ∽△ACD ;②当BD =6时,△ABD 与△DCE 全等;③△DCE 为直角三角形时,BD 为8或252;④0<CE ≤6.4.其中正确的是__ __.(把你认为正确结论的序号都填上)16、 (2013·苏州)如图,在平面直角坐标系中,四边形OABC 是边长为2的正方形,顶点A ,C 分别在x ,y 轴的正半轴上.点Q 在对角线OB 上,且QO =OC ,连接CQ 并延长CQ 交边AB 于点P.则点P 的坐标为__ __.三、解答题(共72分)17、 (2013·南京)如图,AD 是⊙O 的切线,切点为A ,AB 是⊙O 的弦,过点B 作BC ∥AD ,交⊙O 于点C ,连接AC ,过点C 作CD ∥AB ,交AD 于点D ,连接AO 并延长交BC 于点M ,交过点C 的直线于点P ,且∠BCP =∠ACD.(1)判断直线PC 与⊙O 的位置关系,并说明理由; (2)若AB =9,BC =6,求PC 的长.(12分)18、(2014·宁波)作为宁波市政府民生实事之一的公共自行车建设工作已基本完成,某部门对今年4月份中的7天进行了公共自行车日租车量的统计,结果如图:(1)求这7天日租车量的众数、中位数和平均数;(2)用(1)中的平均数估计4月份(30天)共租车多少万车次?(3)市政府在公共自行车建设项目中共投入9600万元,估计2014年共租车3200万车次,每车次平均收入租车费0.1元,求2014年租车费收入占总投入的百分率.(精确到0.1%)(10分)19、(2013·绵阳)为了从甲、乙两名选手中选拔一个参加射击比赛,现对他们进行一次测验,两个人在相同条件下各射靶10次,为了比较两人的成绩,制作了如下统计图表:图1甲、乙射击成绩统计表图2甲、乙射击成绩折线图(1)请补全上述图表;(请直接在表中填空和补全折线图)(2)如果规定成绩较稳定者胜出,你认为谁应胜出?说明你的理由;(3)如果希望(2)中的另一名选手胜出,根据图表中的信息,应该制定怎样的评判规则?为什么?(8分)20、(2013·荆门)经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,如果这三种情况是等可能的,当三辆汽车经过这个十字路口时.(1)求三辆车全部同向而行的概率;(2)求至少有两辆车向左转的概率;(3)由于十字路口右拐弯处是通往新建经济开发区的,因此交管部门在汽车行驶高峰时段对车流量作了统计,发现汽车在此十字路口向右转的频率为25,向左转和直行的频率均为310.目前在此路口,汽车左转、右转、直行的绿灯亮的时间分别为30秒,在绿灯亮总时间不变的条件下,为了缓解交通拥挤,请你用统计的知识对此路口三个方向的绿灯亮的时间做出合理的调整.(10分)21、(2014·武汉)如图,Rt△ABC中,∠ACB=90°,AC=6 cm,BC=8 cm,动点P从点B出发,在BA边上以每秒5 cm的速度向点A匀速运动,同时动点Q从点C出发,在CB 边上以每秒4 cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.(1)若△BPQ与△ABC相似,求t的值;(2)连接AQ,CP,若AQ⊥CP,求t的值.(12分)22、(2013·衢州)(1)提出问题如图①,在等边△ABC中,点M是BC上的任意一点(不含端点B,C),连接AM,以AM为边作等边△AMN,连接CN.求证:∠ABC=∠ACN.(2)类比探究如图②,在等边△ABC中,点M是BC延长线上的任意一点(不含端点C),其他条件不变,(1)中结论∠ABC=∠ACN还成立吗?请说明理由.(3)拓展延伸如图③,在等腰△ABC中,BA=BC,点M是BC上的任意一点(不含端点B,C),连接AM,以AM为边作等腰△AMN,使顶角∠AMN=∠ABC.连接CN.试探究∠ABC与∠ACN 的数量关系,并说明理由.(10分)23、已知y关于x的函数y=(k-1)x2-2kx+k+2的图象与x轴有交点.(1)求k的取值范围;(2)若x1,x2是函数图象与x轴两个交点的横坐标,且满足(k-1)x12+2kx2+k+2=4x1x2.①求k的值;②当k≤x≤k+2时,请结合函数图象确定y的最大值和最小值.(10分)。
山西省运城市2014-2015年名校九年级上学期期末联考数学试题及答案

山西省运城市名校2014-2015年九年级上学期期末考试数学试题时间120分钟 满分120分 2015、1、20 一、选择题(每小题3分共30分)1.若双曲线y =kx的图象经过第二、四象限,则k 的取值范围是( ) A .k >0 B .k <0 C .k ≠0 D .不存在2.已知点A (11x y ,)、B (22x y ,)是反比例函数(0>k )图象上的两点,若210x x <<,则有( )A .210y y <<B .120y y <<C .021<<y yD .012<<y y 3.二次函数y=(x-1)2+2 的最小值是 ( )A 、2B 、-2C 、-1D 、14.井冈山景区为估计该地区国家保护动物穿山甲的只数,先捕捉20只穿山甲给它们分别作上标志,然后放回,待有标志的穿山甲完全回归山林后,第二次捕捉40只穿山甲,发现其中2只有标志。
从而估计该地区有穿山甲( )A .400只B .600只C .800只D .1000只5.如图,抛物线)0(2>++=a c bx ax y 的对称轴是直线x=1,且经过点P (3,0),则c b a +-的值为( )A 、0B 、-1C 、 1D 、 2第5题 第6题6.如图,在▱ABCD 中,E 为CD 上一点,连接AE 、BD ,且AE 、BD 交于点F ,S △DEF :S △ABF =4:25,则DE :EC=( )A 、2:5B 、2:3C 、3:5D 、3:27.在Rt △ABC 中,∠C =90°,若tan A =34,则sin A 等于( ).A.43B.34C.53D.358.在相同时刻的物高与影长成比例,如果高为1.5m 的测杆的影长为2.5m ,那么影长为30m 的旗杆的高是( ) A .20m B .16m C .18m D .15m9.方程0)2)(1(=+-x x 的解是( )A .1=xB .2-=xC .2,121=-=x xD .2,121-==x x 10.某种药品原价为36元/盒.经过连续两次降价后售价为25元/盒.设平均每次降价的百分率为x ,根据题意所列方程正确的是( ) A .36(1-x )2=36-25 B .36 (1-2x) =25 C .36(1-x )2=25 D .36(1-x 2)=25二、填空题(每小题3分共24分)11.若关于x 的一元二次方程kx 2﹣2x ﹣1=0有两个不相等的实数根,则实数k 的取值范围是12.若两个连续偶数的积是224,则这两个数的和是__________13.已知抛物线y=x 2+bx+c 的部分图象如图所示,若y>0,则x 的取值范围是 。
2014-2015年第一学期九年级数学试题答案

2014---2015学年度第一学期期末质量检测九年级数学试题 (答案)一、选择题(请把选择题答案填在下列表格中,每题3分,满分36分)二、填空题(本大题共8小题,每小题3分,共24分.) 13.1414. 24π 15. 35︒ 16. 80 17. 10 18. 2 三、解答题19.解: 1)设平均每次下调的百分率为x , 则6000(1-x )2=4860, 解得:x 1=0.1=10%, x 2=1.9(舍).故平均每周下调的百分率为10%.……………………5分 (2)方案1优惠:4860×100×(1-0.98)=9720(元); 方案2可优惠:80×100=8000(元). 故方案1优惠.…………………………9分 20. 解:设小明的身高为x 米,则CD=EF=x 米. 在Rt △ACD 中,∠ADC=90°,tan ∠CAD=AD CD ,即tan30°=xAD,AD=3x --2分 在Rt △BEF 中,∠BFE=90°,tan ∠EBF=EF BF ,即tan60°=x BF ,BF=x 33 ---4分 由题意得DF=2,∴BD=DF-BF=2-x 33,∵AB=AD+BD=4,∴3x+2-x 33=4 --7分即x=3.答:小明的身高为3米.------------------------------------------------------------------------9分21. 解:(1)把A点(1,4)分别代入反比例函数y=,一次函数y=x+b,得k=1×4,1+b═4,解得k=4,b=3,反比例函数的解析式是y=,一次函数解析式是y=x+3;…………4分(每个解析式2分)(2)如图,当x=﹣4时,y=﹣1,B(﹣4,﹣1),当y=0时,x+3=0,x=﹣3,C(﹣3,0)S△AOB=S△AOC+S△BOC==;…………8分(3)∵B(﹣4,﹣1),A(1,4),∴根据图象可知:当x>1或﹣4<x<0时,一次函数值大于反比例函数值.…………12分22.解:(1)∵x%+15%+10%+45%=1,∴x=30;…………1分∵调查的总人数=90÷45%=200(人),…………2分∴B等级人数=200×30%=60(人);C等级人数=200×10%=20(人),…………4分(求出1个1分)如图:…………5分(2)2500×(10%+30%)=1000(人),所以估计每周课外阅读时间量满足2≤t<4的人数为1000人;…………7分(3)3人学习组的3个人用甲表示,2人学习组的2个人用乙表示,画树状图为:,共有20种等可能的结果数,其中选出的2人来自不同小组占12种,…………10分所以选出的2人来自不同小组的概率==.…………12分23.(1)证明:∵AB是⊙O的切直径,∴∠ADB=90°,又∵∠BAD=∠BED,∠BED=∠DBC,∴∠BAD=∠DBC,∴∠BAD+∠ABD=∠DBC+∠ABD=90°,∴∠ABC=90°,∴BC是⊙O的切线;…………6分(2)解:∵∠BAD=∠DBC,∠C=∠C,∴△ABC∽△BDC,∴=,即BC2=AC•CD=(AD+CD)•CD=10,∴BC=.…………12分22.………………1分………………6分∴P 点的坐标为(5,2)………………12分………………7分………10分………………11分。
山西省运城市2014-2015年九年级上学期期末联合考试数学试题及答案

山西省运城市名校2014-2015上学期期末联合考试数学试题(时间:120分钟 满分:120分)2015、1、13 一、选择题(每题3分,共45分)1.如图所示几何体的主(正)视图是( )A .B .C .D .2.一个口袋中装有 4个白球,1个红球,7个黄球,搅匀后随机从袋中摸出 1个球是白球的概率是( ) A 21 B 31 C 41 D 513.抛物线42-=x y 的顶点坐标是( )A (2,0)B (-2,0)C (1,-3)D (0,-4)4.若x 1,x 2是一元二次方程2560x x -+=的两个根,则12x x +的值是( ) A .1 B .5 C .5- D .65.身高1.6米的小芳站在一棵树下照了一张照片,小明量得照片上小芳的高度是1.2厘米,树的高度为6厘米,则树的实际高度大约是( )A .8米B .4.5米C .8厘米D .4.5厘米6.顺次连结一个四边形各边中点所得的四边形必定是( )。
A 、平行四边形 B 、矩形 C 、菱形 D 、正方形.7. 如图,Rt △ABC 中,∠ACB =90°,∠A =50°,将其折叠,使点A 落在边CB 上A ′处,折痕为CD ,则A DB '∠=( )A .40°B .30°C .20°D .10°8. 如图,在Rt △ABC 中,CD 是斜边AB 上的中线,已知CD =2,AC =3, 则sinB 的值是( )A. 2 3B. 3 2C. 3 4D. 4 39.已知线段AB=1,C 是线段AB 的黄金分割点,则AC 的长度为( ) A.215- B .253- C .215-或253- D .以上都不对10.如图,在菱形ABCD 中,∠ABC =60°.AC =4. 则BD 的长为( )CABD (第8题图)第7题图A 'B DAC(A )38 (B )34 (C )32 (D )8 11. 如图,AB ∥CD ,BO :OC= 1:4,点E 、F 分别是OC , OD 的中点,则EF :AB 的值为( )A 、1B 、2C 、3D 、412.上海世博会的某纪念品原价168元,连续两次降价a %后售价为128元. 下列所列方程中正确的是( )A .128)% 1(1682=+aB .128)% 1(1682=-a C .128)% 21(168=-a D .128)% 1(1682=-a13.已知点A (11x y ,)、B (22x y ,)是反比例函数xky =(0>k )图象上的两点,若210x x <<,则有( )A .210y y <<B .120y y <<C .021<<y yD .012<<y y14.把抛物线2y x =-向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为( ).A .2(1)3y x =---B .2(1)3y x =-+-C .2(1)3y x =--+ D .2(1)3y x =-++15.定义[,,a b c ]为函数2y ax bx c =++的特征数, 下面给出特征数为 [2m ,1 – m , –1– m] 的函数的一些结论: ① 当m = – 3时,函数图象的顶点坐标是(31,38); ② 当m > 0时,函数图象截x 轴所得的线段长度大于23; ③ 当m < 0时,函数在x >41时,y 随x 的增大而减小; ④ 当m ≠ 0时,函数图象经过同一个点. 其中正确的结论有( )A. ①②③④B. ①②④C. ①③④D. ②④ 二、填空题(每空3分,共18分)16. 已知点A (2,m )在函数xy 2=的图象上,那么m=_________。
2014-2015学年第一学期期末质量检测九年级数学试卷附答案

2014-2015学年第一学期期末质量检测九年级数学试卷(本试卷共三个大题,26个小题,时间90分钟,满分120分)一、精心选一选(本大题共16小题。
1-6题,每题2分;7-16题,每题3分,共42分)每小题给出的4个选项中只有一个符合题意,请将所选选项的字母代号写在题中的括号内. 1. 一元二次方程02=-x x 的解为……………………………………………【 】 A.1=x B.0=x C.0,121==x x D.0,121=-=x x 2.在平面直角坐标系中,点M (3,-5)关于原点对称的点的坐标是……………【 】 A .(-3,-5) B .(3,5) C .(5,-3) D .( -3,5) 3.下列各点中,在函数xy 2-=的图象上的是…………………………………【 】 A.(2,1) B.(-2,1) C.(2,-2) D.(1,2)4. 顶点坐标为(-2,3),开口方向和大小与抛物线y =x 2相同的解析式为…【 】A .y =(x -2)2+3B .y =(x +2)2-3C .y =(x +2)2+3D .y =-(x +2)2+35. 盒子里有3支红色笔芯,2支黑色笔芯,每支笔芯除颜色外均相同.从中任意拿出一支笔芯,则拿出黑色笔芯的概率是………………………………………【 】A .23B .15C .25D . 356. Rt △ABC 中∠C =90°,AC =3cm ,BC =4cm ,则它的外心与顶点C 的距离为……【 】 A .2.4cm B .2.5cm C .3cm D .4cm7.向上发射一枚炮弹,经x 秒后的高度为y 米,且时间与高度关系为y =ax 2+bx .若此炮弹在第6秒与第15秒时的高度相等,则下列几个时刻高度最高的是……【 】 A. 第8秒 B.第10秒 C.第12秒 D. 第14秒 8. 如图,⊙O 的直径CD ⊥EF 于G ,若∠EOD =50°,则∠DCF 等于………………【 】 A.80° B. 50° C. 40° D. 25°9.如图,为了测量一池塘的宽DE ,在岸边找一点C ,测得CD =30m ,在DC 的延长线上找一点A ,测得AC=5m ,过点A 作AB ∥DE ,交EC 的延长线于B ,测得AB =6m ,则池塘的宽DE 为…………………………………………………………………【 】 A.25m B.30m C.36m D.40m10. 已知:如图,PA 切⊙O 于点A ,PB 切⊙O 于点B ,如果∠APB =60°,⊙O 半径是3,则劣弧AB 的长为…………………………………………………………【 】 A .π B .6π C .2π D .3π11.面积为2的直角三角形一直角边长为x ,另一直角边长为y ,则y 与x 的变化 规律用图象大致表示为……………………………………………………………【 】12.已知反比例函数y =xm52 的图象上有A (x 1,y 1)、B (x 2,y 2)两点,当 x 1<x 2<0时,y 1<y 2,则m 的取值范围是………………………………………【 】A.m <0B.m >0C.m <52 D.m >52 13.如图所示,在一边靠墙(墙足够长)的空地上,修建一个面积为640m 2的矩形临时仓库,仓库一边靠墙,另三边用总长为80 m 的栅栏围成,若设栅栏AB 的长为 xm ,则下列各方程中,符合题意的是………………………………………………【 】 A .21x (80-x )=640 B .21x (80-2x )=640 C .x (80-2x )=640 D . x (80-x )=640第8题图第9题图 第10题图第13题图第14题图第15题图第16题图14. 如图,若P 为△ABC 的边AB 上一点(AB >AC ),则下列条件不一定能保证 △ACP ∽△ABC 的有…………………………………………………………………【 】A.∠ACP =∠BB.∠APC =∠ACBC.AC AP AB AC =D.AB ACBC PC = 15.如图,一次函数与反比例函数的图象相交于A 、B 两点,则图中使反比例函数的值小于一次函数的值的x 的取值范围是…………………………………………【 】 A.x <-1 B.x >2 C.-1<x <0或x >2 D.x <-1或0<x <2 16.如图,量角器的直径与含30°角的直角三角板ABC 的斜边AB 重合,射线CP 从CA 处出发沿顺时针方向以每秒2度的速度旋转,CP 与量角器的半圆弧交于点E ,当第30秒时,点E 在量角器上对应的读数是……………………………………【 】 A. 120° B.150° C.75° D. 60°二、细心填一填(本大题共4小题,每小题3分,共12分)把答案直接写在题中的横线上.17. 圆锥的母线长5cm ,底面半径长3cm ,那么它的侧面展开图的面积是 . 18. 如图,△ABC 中,E 、F 分别是AB 、AC 上的两点,且,若△AEF 的面积为3,则四边形EBCF 的面积为 .19. 如图,在平面内将Rt △ABC 绕着直角顶点C 逆时针旋转90°得到Rt △EFC .若AB =1BC =,则阴影部分的面积为 .20.如图,Rt △ABC 中,∠ACB =90°,∠ABC =60°,BC =4cm ,D 为BC 的中点,若动点E 以1cm /s 的速度从A 点出发,沿着A →B →A 的方向运动,设E 点的运动时间为t 秒(0≤t <12),连接DE ,当△BDE 是直角三角形时,t 的值为 .第18题图 第19题图第20题图三、专心解一解(本题满分66分)请认真读题,冷静思考.解答题应写出文字说明、解答过程.21. (本题满分9分) 已知双曲线xky的图象经过点A (-1,2). (1)求该反比例函数的解析式.(2)若B (b ,m )、C (c ,n )是该双曲线上的两个点,且b <c ,判断m ,n 的大小关系.(3)判断关于x 的一元二次方程k x 2+2x -1=0的根的情况.22. (本题满分10分)如图,方格纸中每个小正方形的边长都是单位1,△ABC 在平面直角坐标系中的位置如图所示.(1)将△ABC 绕点B 顺时针方向旋转 90o后得△A 1BC 1,画出△A 1BC 1,并直接写 出点C 1的坐标为 . (2)把△ABC 以点C 为位似中心同侧 放大,使放大前后对应边长的比为1:2, 画作出△A 2B 2C ,并直接写出点B 2的坐标 为 .23. (本题满分11分)在一副扑克牌中,拿出黑桃3、黑桃4、黑桃5、黑桃6四张牌,小刚从中随机摸出一张记下牌面上的数字为x,再由小明从剩下的牌中随机摸出一张,记下牌面上的数字为y,组成一对数(x,y).(1)用列表法或树状图表示出(x,y)的所有可能出现的结果;(2)求小刚、小明各摸一次扑克牌所确定的一对数是方程x+y=9的解的概率.24.(本题满分11分)如图所示,AB 是⊙O 的直径,AD 与⊙O 相切于点A ,DE 与⊙O 相切于点E ,点C 为DE 延长线上一点,且CE =CB .(1)求证:BC 为⊙O 的切线; (2)若AB =4,AD =1,求线段CE 的长.25. (本题满分12分)某商场出售一批进价为3元的小工艺品,在市场营销中发现此工艺品的日销售单价x (单位:元)与日销售量y (单位:个)之间有如下关系:(1) (2)设经营此小工艺品的日销售利润为S元,求出S 与x 之间的函数关系式; (3)物价局规定小商品的利润不得高于进价的200%,请你求出当日销售单价x 定为多少时,才能获得最大日销售利润?最大日销售利润是多少?26. (本题满分13分)如图,抛物线y=ax2+52x-2与x轴相交于点A(1,0)与点B ,与y轴相交于点C.(1)确定抛物线的解析式;(2)连接AC、BC,△AOC与△COB相似吗?并说明理由.(3)点N在抛物线的对称轴上,在抛物线上是否存在点M,使得以点N、M、A、B为顶点的四边形是平行四边形?若存在,求出对应的点M、N的坐标;若不存在,请说明理由.备用图九年级数学答案一、1.C 2.D 3.B 4.C 5.C 6.B 7.B 8.D 9.C 10. C 11. C 12.D 13.A 14.D 15.D 16.A二、17. π15 18.24 19. 1-π 20. 4或7或9 三、21.解:(1)由题意可知,12-=k ,∴k =-2-----------------2分 (2)∵k =-2<0,∴y 随x 的增大而增大-----------------4分 又∵b <c ,∴m <n-----------------6分(3)△=22-4×(-2)×(-1)=-4<0 -----------------8分∴关于x 的一元二次方程k x 2+2x -1=0没有实数根-----------------9分22.如图 (1)作图 3分 C 1(2,3)2分 (2) 作图 3分 B 2(1,-2) 2分23.解:(1)分析题意,用树状图表示为:--------------5分所以共有12种等可能的结果,即(3,4)(3,5)(3,6)(4,3)(4,5)(4,6)(5,3)(5,4)(5,6)(6,3)(6,4)(6,5) -----------7分(2)满足所确定的一对数是方程x+y=9的解的结果有4种:(3,6)(4,5)(5,4)(6,3) -----------9分此事件记作A ,则P(A)=31124= -----------11分 24 (1)证明:连接OE,O C …………1分∵DE 与⊙O 相切于点E ∴∠OEC =90° -----------3分 ∵OE=OB CB=CE OC=OC∴△CEO ≌△CBO -----------5分 ∴∠OBC=∠OEC =90° -----------6分 ∴BC 为⊙O 的切线 -----------7分 (2)过点D 作D F ⊥BC 于F …………………8分 设CE=x ∵CE,CB 为⊙O 切线 ∴CB=CE=x ∵DE,DA 为⊙O 切线 ∴DE=DA=1∴DC=x+1………………………………9分 ∵∠DAB=∠ABC =∠DFB= 90° ∴四边形ADFB 为矩形 ∴DF=AB=4 BF=AD=1 ∴FC=x-1Rt △CDF 中,(x+1)2-(x-1)2=16 -----------10分 x=4 ∴CE=4 -----------11分25.解:(1)由表中数据规律可知x 与y 的乘积一定,为105×4=420 -----------2分所以函数关系式为xy 420= -----------3分 (2)S=(x-3)x420-----------5分=4201260+-x-----------7分 (3)由题意可知:x ≤3+3×200% ∴3≤x ≤9 -----------8分 ∵k=-1260<0九年级数学试卷共8页,第11页∴S 随x 的增大而增大∴当x=9时,S 的值最大 -----------10分最大值为280 -----------11分∴当日销售单价定为9元时,才能获得最大日销售利润是280元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
山西省运城市2014-2015年九年级第一次质量预测数学试题卷时间120分钟满分120分2015.9.29一、选择题(每小题3分,共24分)在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列各组数中,互为相反数的两个数是A.错误!未找到引用源。
和+2 B.5和错误!未找到引用源。
C.错误!未找到引用源。
和6 D.错误!未找到引用源。
和错误!未找到引用源。
2.如图所示的几何体是由一个正方体切去一个小正方体形成的,从正面看到的平面图形为3.黄河农场各用10块面积相同的试验田种植甲、乙两种麦子,收获后对两种麦子产量(单位:吨/亩)的数据统计如下:错误!未找到引用源。
,则由上述数据推断乙种麦子产量比较稳定的依据是A.错误!未找到引用源。
B.错误!未找到引用源。
C.错误!未找到引用源。
D.错误!未找到引用源。
4.下列各式计算正确的是A.错误!未找到引用源。
B.错误!未找到引用源。
C.错误!未找到引用源。
D.错误!未找到引用源。
5.如图,错误!未找到引用源。
ABC中,BE、CF分别是么错误!未找到引用源。
ABC、错误!未找到引用源。
ACB的角平分线,错误!未找到引用源。
A=50°,那么错误!未找到引用源。
BDC的度数为A.105°B.115°C.125°D.135°6.第22届冬季奥运会于2014年2月7日在俄罗斯索契开幕,到冰壶比赛场馆服务的大学生志愿者中,有3名来自莫斯科国立大学,有5名来自圣彼得堡国立大学,现从这8名志愿者中随机抽取1人,这名志愿者来自莫斯科国立大学的概率是A.错误!未找到引用源。
B.错误!未找到引用源。
C.错误!未找到引用源。
D.错误!未找到引用源。
7.如图,D是△ABC内一点,BD错误!未找到引用源。
CD,AD=12,BD=8,CD =6,E,F,G,H分别是AB,AC,CD,BD的中点,则四边形EFGH的周长是A.14 B.18 C.20 D.228.观察二次函数错误!未找到引用源。
的图象,下列四个结论中:①错误!未找到引用源。
;②错误!未找到引用源。
;③错误!未找到引用源。
;④错误!未找到引用源。
.正确结论的个数有A.4个B.3个C.2个D.1个二、填空题(每小题3分,共21分)9.计算2sin30°=________.10.中央电视台统计显示,南京青奥会开幕式直播有超过2亿观众通过央视收看,2亿用科学记数法可记为________.11.请你写出一个大于1而小于5的无理数________.12.在平面直角坐标系中,直线错误!未找到引用源。
与直线错误!未找到引用源。
导的交点坐标为(4,3),则方程错误!未找到引用源。
的解为________.13.冯老师为了响应市政府“绿色出行”的号召,上下班方式由自驾车改为骑自行车.已知冯老师家距学校15 km ,自驾车的速度是自行车速度的2倍,骑自行车所用时间比自驾车所用时间多错误!未找到引用源。
h .如果设骑自行车的速度为错误!未找到引用源。
km/h ,则由题意可列方程为________. 14.如图,将矩形纸片ABCD 沿EF 折叠,使点B 与CD 的中点重合,若AB =2,BC =3,则△FCB'与△B'DG 的面积之比为________.15.在平面直角坐标系中,已知点A (-4,2),B (-2,-2),以原点O 为位似中心,把△ABO 放大为原来的2倍,则点A 的对应点A'的坐标是________. 三、解答题(本大题共8个小题,共75分)16.(本题8分)课堂上,王老师出了这样一道题: 已知错误!未找到引用源。
,求代数式错误!未找到引用源。
的值,小明觉得直接代入计算太复杂了,同学小刚帮他解决了问题,并解释说:“结果与错误!未找到引用源。
无关”,解答过程如下:原式=错误!未找到引用源。
………………① =错误!未找到引用源。
………………②=错误!未找到引用源。
…………………………③=错误!未找到引用源。
……………………………………④ 当错误!未找到引用源。
,原式=错误!未找到引用源。
.(1)从原式到步骤①,用到的数学知识有:________________; (2)步骤②中的空白处的代数式为:________________;(3)从步骤③到步骤④,用到的数学知识有:________________. 17.(本题9分)在信息快速发展的社会,“信息消费”已成为人们生活的重要部分.郑州市的一个社区随机抽取部分家庭,调查每月用于信息消费的金额,数据整理成如图所示的不完整统计图和表格.已知A 、B 两组户数直方图的高度比为1:5,请结合图表中相关数据回答下列问题:月消费额分组统计表(1)A 组的频数是,本次调查样本的容量是________; (2)补全直方图(需标明C 组频数)________;(3)若该社区有1500户住户,请估计月信息消费额不少于300元的户数是多少?18.(本题9分)如图1,小颖将一组对边平行的纸条沿EF 折叠,点A 、B 分别落在A'、B ’处,线段FB'与AD 交于点M .(1)如图1,△MEF的形状是________;(2)如图2,小颖又将纸条的另一部分CFMD沿MN折叠,点C、D分别落在C'、D'处,且使MD'经过点F,请你猜想四边形MNFE的形状,并说明理由;(3)当错误!未找到引用源。
BFE=________度时,四边形MNFE是菱形.19.(本题9分)住在郑东新区的小明想知道“中原第一高楼”有多高,他登上了附近的另一个高层酒店的顶层某处,已知小明所处位置距离地面有160米高,测得“中原第一高楼”顶部的仰角为37°,测得“中原第一高楼”底部的俯角为45°,请你用初中数学知识帮助小明解决这个问题.(请你画出示意图,并说明理由.)(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0. 75).20.(本题9分)如图,已知反比例函数错误!未找到引用源。
与一次函错误!未找到引用源。
相交于A、B两点,AC错误!未找到引用源。
轴于点C.若△OAC的面积为1,且tan错误!未找到引用源。
AOC=2.(1)求反比例函数与一次函数的表达式;(2)请直接写出B点的坐标,并指出当错误!未找到引用源。
为何值时,反比例函数错误!未找到引用源。
的值小于一次函数错误!未找到引用源。
的值.21.(本题10分)某旅馆有客房120间,每间房的日租金为160元,每天都客满,旅馆装修后要提高租金,经市场调查发现,如果每间客房的日租金增加10元,那么客房每天出租数会减少6间,不考虑其他因素,旅馆将每间客房的日租金提高到多少元时,客房日租金的总收入最高?比装修前日租金总收入增加多少元?22.(本题10分)如图①,正方形AEFG的边长为1,正方形ABCD的边长为3,且点F在AD上.(1)求错误!未找到引用源。
;(2)把正方形AEFG绕点A按逆时针方向旋转45°得图②,求图②中的错误!未找到引用源。
;(3)把正方形AEFG绕点A旋转一周,在旋转的过程中,错误!未找到引用源。
存在最大值与最小值,请直接写出最大值,最小值.23.(本题11分)已知抛物线错误!未找到引用源。
与错误!未找到引用源。
轴交于A、B两点,与错误!未找到引用源。
轴交于点C,其中点B在错误!未找到引用源。
轴的正半轴上,点C在错误!未找到引用源。
轴的正半轴上,OB=2,OC=8,抛物线的对称轴是直线错误!未找到引用源。
.(1)求抛物线的表达式;(2)连接AC、BC,若点E是线段AB上的一个动点(与点A、点B不重合),过点E作EF∥AC交BC于点F,连接CE,设AE的长为错误!未找到引用源。
,△CEF的面积为S,求S与错误!未找到引用源。
之间的函数关系式,并写出自变量错误!未找到引用源。
的取值范围;(3)在(2)的基础上,试说明S是否存在最大值,若存在,请求出S的最大值,并求出此时点E的坐标;若不存在,请说明理由.2015年九年级第一次质量预测数学 参考答案一、选择题(每小题3分,共24分)1. C2. A3. B4. C5. B6. D7. D8. C 二、填空题(每小题3分,共21分)9. 1; 10. 8210⨯; 11. 答案不唯一,如π 12. 43x y =⎧⎨=⎩;13.1515123x x -=; 14. 16:9 ; 15.A '(8-,4)或A '(8,4-). 三、解答题(本大题共8小题,共75分) 16.解:(1)因式分解,通分,分解因式中的完全平方公式和平方差公式,分式的基本性质; (写对一个即可) ……………… 3分 (2)221x x -+(或2(1)1x x -+);………6分 (3)约分(或分式的基本性质). ………………8分17. 解:(1)A 组的频数是: 2 ;调查样本的容量是: 50 ; ……………………… 4分(2)C 组的频数是:50×40%=20,如图.…………………6分(3)∵ 1500×(28%+8%)=540,∴ 全社区捐款不少于300元的户数是540户.…………………9分 18. 解:(1)△MEF 是等腰三角形;…………… 2分 (2)四边形MNFE 为平行四边形,…………… 3分 理由如下:∵AD ∥BC , ∴∠MEF=∠EFB .由折叠知∠MFE=∠EFB , 故∠MEF=∠MFE . ∴ME =MF ,同理NF =MF .…………… 5分 ∴ME =NF . 又∵ME ∥NF ,∴四边形MNFE 为平行四边形.…………… 7分 (3) 60.…………… 9分 19.解:如图所示,…………… 2分AB 代表小明所处位置到地面的距离,即160AB =米, CD 代表“中原第一高楼”, ………………… 3分 作AE ⊥CD 于点E.由题意可知,四边形ABDE 是矩形,所以160AB DE ==米. 在Rt △ADE 中,∵tan DEDAE AE∠=,160DE =, ∴160tan 451AE==,∴160AE =.…………… 5分 在R t △AEC 中,∵tan CEAEC AE∠=,160AE =,∴tan 370.75160CE ==,∴120CE =,…………… 7分 ∴120160280CD CE DE =+=+=(米), ∴“中原第一高楼”高280米. ……………9分20.解:(1)∵点A 在11ky x=的图象上,S △ACO =1,∴1212k =⨯=,又∵10k <,∴12k =-. ∴反比例函数的表达式为12y x=-.……………2分 设点A (a ,2a-),0a <, ∵在R t △AOC 中,tan 2ACAOC OC ∠==,∴22a a-=-, ∵0a <, ∴1a =-. ∴A (1-,2).∵点A (1-,2)在221y k x =+上,∴221k =-+,∴21k =-. ∴一次函数的表达式为21y x =-+. ……………5分 (2)点B 坐标为(2,1-),……………7分 观察图象可知,当1x <-或02x <<时,反比例函数1y 的值小于一次函数2y 的值. …………… 9分21.设每间客房的日租金提高10x 元,则每天客房出租数会减少6x 间.设装修后客房日租金总收入为y ,……………1分则y =(160+10x )(120-6x ),……………4分即y =-60(x -2)2+19 440. ∵x ≥0,且120-6x >0,∴0≤x <20.当x =2时,y max =19 440. ……………7分这时每间客房的日租金为160+10×2=180(元). ……………8分装修后比装修前日租金总收入增加19 440-120×160=240(元). ……………9分答:每间客房的日租金提高到180元时,客房日租金的总收入最高;装修后比装修前日租金总收入增加240元. ……………10分22. 解:(1)∵点F 在AD 上, ∴AF =3DF =∴119(3222DBF S DF AB =⨯⨯=-=-△××3.……………3分 (2)连结AF , 由题意易知AF BD ∥,∴92DBF ABD S S ==△△.…………… 6分(3)152;32.…………… 10分 23. 解:(1)∵点B 在x 轴的正半轴上,点C 在y 轴的正半轴上,2OB =,8OC =,∴点B 的坐标为(2,0),点C 的坐标为(0,8). ……… 2分 又∵抛物线y =ax 2+bx +c 的对称轴是直线x =-2, ∴由抛物线的对称性可得点A 的坐标为(-6,0). ∵点C (0,8)在抛物线y =ax 2+bx +c 的图象上, ∴c =8,将A (-6,0)、B (2,0) 分别代入y =ax 2+bx +c ,得⎩⎪⎨⎪⎧0=36a -6b +80=4a +2b +8 ⎩⎨⎧a =-23b =-83∴所求抛物线的表达式为y =-23x 2-83x +8. ………3分(2)依题意,AE =m ,则BE =8-m , ∵OA =6,OC =8,由勾股定理得AC =10,∵EF ∥AC , ∴△BEF ∽△BAC . ∴ EF AC =BEAB. 即EF 10=8-m8 . ∴EF =40-5m 4.过点F 作FG ⊥AB ,垂足为G ,则sin ∠FEG =sin ∠CAB =45.∴FG EF =45. ∴ FG =45×40-5m 4=8-m . ∴ S =S △BCE -S △BFE =12(8-m )×8-12(8-m )(8-m )=-12m 2+4m .…………… 7分自变量m 的取值范围是0<m <8. …………… 8分(3)存在. …………… 9分理由:∵ S =-12m 2+4m =-12(m -4)2+8,且-12<0,∴ 当m =4时,S 有最大值,S 最大值=8.此时,点E 的坐标为(—2,0) …………… 11分。