数学八年级上册 全册全套试卷培优测试卷
八年级数学上册全册全套试卷(培优篇)(Word版 含解析)

八年级数学上册全册全套试卷(培优篇)(Word 版 含解析)一、八年级数学三角形填空题(难)1.如图,ABC ∆的面积为1,第一次操作:分别延长AB ,BC ,CA 至点111,,A B C ,使111,,A B AB B C BC C A CA ===,顺次连接111,,A B C ,得到111A B C ∆;第二次操作:分别延长111111,,A B B C C A 至点222,,A B C ,使2111A B A B =,2111B C B C =,2111C A C A =,顺次连接222,,A B C ,得到222A B C ∆,…;按此规律,要使得到的三角形的面积超过2020,最少需经过__________次操作.【答案】4【解析】【分析】连接111,,AC B A C B ,根据两个三角形等底同高可得111111111,C A B C AB A B C A BC B C A B CA ABC S S S S S S S ======从而得出第一次操作:11177A B C ABC S S ∆∆==<2020;同理可得第二次操作22211127749A B C A B C S S ∆∆===<2020……直至第四次操作4443334772401A B C A B C S S ∆∆===>2020,即可得出结论.【详解】解:连接111,,AC B A C B∵111,,A B AB B C BC C A CA ===根据等底同高可得:111111111,,C A B C AB ABC A B C A BC ABC B C A B CA ABC S S S S SS S S S ====== ∴111111111,C A B C AB A B C A BC B C A B CA ABC S S S S S S S ======∴第一次操作:11177A B C ABC S S ∆∆==<2020同理可得第二次操作22211127749A B C A B C S S ∆∆===<2020第三次操作333222377343A B C A B C S S ∆∆===<2020第四次操作4443334772401A B C A B C S S ∆∆===>2020故要使得到的三角形的面积超过2020,最少需经过4次操作,故答案为:4.【点睛】此题考查的是三角形的面积关系和探索规律,掌握两个三角形等底同高时,面积相等是解决此题的关键.2.如图,在平面直角坐标系xOy 中,点A 、B 分别在x 轴的正半轴、y 轴的正半轴上移动,点M 在第二象限,且MA 平分∠BAO ,做射线MB ,若∠1=∠2,则∠M 的度数是_______。
八年级上册数学 全册全套试卷(培优篇)(Word版 含解析)

八年级上册数学 全册全套试卷(培优篇)(Word 版 含解析) 一、八年级数学三角形填空题(难) 1.如图,C 在直线BE 上,∠=︒,∠A m ABC 与ACE ∠的角平分线交于点1A ,则1A =_____︒;若再作11A BE A CE ∠∠、的平分线,交于点2A ;再作22A BE A CE ∠∠、的平分线,交于点3A ;依此类推,10A ∠= _________︒.【答案】(2m ) (1024m ) 【解析】【分析】 根据“角平分线定义”和“三角形的外角等于与它不相邻的两个内角和”求出规律,直接利用规律解题.【详解】解:∵∠A 1=∠A 1CE-∠A 1BC=12∠ACE-12∠ABC=12(∠ACE-∠ABC )=12∠A=2m °. 依此类推∠A 2=224m m ︒︒=,∠A 3=328m m ︒︒=,…,∠A 10=1021024m m ︒︒=. 故答案为:()2m ;()1024m . 【点睛】此题主要考查了三角形的内角和外角之间的关系以及角平分线的定义,三角形的外角等于与它不相邻的两个内角和.2.将等边三角形、正方形、正五边形按如图所示的位置摆放,如果∠1=40°,∠2=50°,那么∠ 3的度数等于______________.【答案】12°【解析】等边三角形的内角的度数是60°,正方形的内角度数是90°,正五边形的内角的度数是108°,则∠3=360°-60°-90°-108°-∠1-∠2=12°.点睛:本题考查的是多边形的内角,熟知正三角形、正四边形、正五边形各内角的度数是解答此题的关键.3.如图,在△ABC中,BD、BE分别是△ABC的高线和角平分线,点F在CA的延长线上,FH⊥BE交BD于点G,交BC于点H.下列结论:①∠DBE=∠F;②∠BEF=1 2(∠BAF+∠C);③∠FGD=∠ABE+∠C;④∠F=12(∠BAC﹣∠C);其中正确的是_____.【答案】①②③④【解析】【分析】①根据BD⊥FD,FH⊥BE和∠FGD=∠BGH,证明结论正确;②根据角平分线的定义和三角形外角的性质证明结论正确;③根据垂直的定义和同角的余角相等的性质证明结论正确;④证明∠DBE=∠BAC-∠C,根据①的结论,证明结论正确.【详解】解:①∵BD⊥FD,∴∠FGD+∠F=90°,∵FH⊥BE,∴∠BGH+∠DBE=90°,∵∠FGD=∠BGH,∴∠DBE=∠F,故①正确;②∵BE平分∠ABC,∴∠ABE=∠CBE,∠BEF=∠CBE+∠C,∴2∠BEF=∠ABC+2∠C,∠BAF=∠ABC+∠C,∴2∠BEF=∠BAF+∠C,∴∠BEF=12(∠BAF+∠C),故②正确;③∵∠AEB=∠EBC+∠C,∵∠ABE=∠EBC,∴∠AEB=∠ABE+∠C,∵BD⊥FC,FH⊥BE,∴∠FGD=90︒-∠DFH,∠AEB=90︒-∠DFH,∴∠FGD=∠AEB∴∠FGD=∠ABE+∠C.故③正确;④∠ABD=90°-∠BAC,∠DBE=∠ABE-∠ABD=∠ABE-90°+∠BAC=∠CBD-∠DBE-90°+∠BAC,∵∠CBD=90°-∠C,∴∠DBE=∠BAC-∠C-∠DBE,由①得,∠DBE=∠F,∴∠F=∠BAC-∠C-∠DBE,∴∠F=12(∠BAC-∠C);故④正确,故答案为①②③④.【点睛】本题考查的是三角形内角和定理,正确运用三角形的高、中线和角平分线的概念以及三角形外角的性质是解题的关键4.如图,在△ABC中,∠B和∠C的平分线交于点O,若∠A=50°,则∠BOC=_____.【答案】115°.【解析】【分析】根据三角形的内角和定理得出∠ABC+∠ACB=130°,然后根据角平分线的概念得出∠OBC+∠OCB,再根据三角形的内角和定理即可得出∠BOC的度数.【详解】解;∵∠A=50°,∴∠ABC+∠ACB=180°﹣50°=130°,∵∠B和∠C的平分线交于点O,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∴∠OBC+∠OCB=12×(∠ABC+∠ACB)=12×130°=65°,∴∠BOC=180°﹣(∠OBC+∠OCB)=115°,故答案为:115°.【点睛】本题考查了三角形的内角和定理和三角形的角平分线的概念,关键是求出∠OBC +∠OCB 的度数.5.已知ABC 中,90A ∠=,角平分线BE 、CF 交于点O ,则BOC ∠= ______ .【答案】135【解析】解:∵∠A =90°,∴∠ABC +∠ACB =90°,∵角平分线BE 、CF 交于点O ,∴∠OBC +∠OCB =45°,∴∠BOC =180°﹣45°=135°.故答案为:135°.点睛:本题考查了角平分线的定义、三角形的内角和定理:三角形的内角和等于180°.6.如图,在△ABC 中,∠A =60°,若剪去∠A 得到四边形BCDE ,则∠1+∠2=______.【答案】240.【解析】【详解】试题分析:∠1+∠2=180°+60°=240°.考点:1.三角形的外角性质;2.三角形内角和定理.二、八年级数学三角形选择题(难)7.在多边形内角和公式的探究过程中,主要运用的数学思想是( )A .化归思想B .分类讨论C .方程思想D .数形结合思想【答案】A【解析】【分析】根据多边形内角和定理:(n-2)·180(n≥3)且n 为整数)的推导过程即可解答. 【详解】解:多边形内角和定理:(n-2)·180(n≥3)且n 为整数),该公式推导的基本方法是从n 边形的一个顶点出发引出(n-3)条对角线,将n 边形分割为(n-2)个三角形,这(n-2)个三角形的所有内角之和正好是n 边形的内角和,体现了化归思想.故答案为A.【点睛】本题主要考查了在数学的学习过程应用的数学思想,弄清推导过程是解答此题的关键.8.已知非直角三角形ABC中,∠A=45°,高BD与CE所在直线交于点H,则∠BHC的度数是()A.45°B.45° 或135°C.45°或125°D.135°【答案】B【解析】【分析】①△ABC是锐角三角形时,先根据高线的定义求出∠ADB=90°,∠BEC=90°,然后根据直角三角形两锐角互余求出∠ABD,再根据三角形的一个外角等于与它不相邻的两个内角的和列式进行计算即可得解;②△ABC是钝角三角形时,根据直角三角形两锐角互余求出∠BHC=∠A,从而得解.【详解】①如图1,△ABC是锐角三角形时,∵BD、CE是△ABC的高线,∴∠ADB=90°,∠BEC=90°,在△ABD中,∵∠A=45°,∴∠ABD=90°-45°=45°,∴∠BHC=∠ABD+∠BEC=45°+90°=135°;②如图2,△ABC是钝角三角形时,∵BD、CE是△ABC的高线,∴∠A+∠ACE=90°,∠BHC+∠HCD=90°,∵∠ACE=∠HCD(对顶角相等),∴∠BHC=∠A=45°.综上所述,∠BHC的度数是135°或45°.故选B.【点睛】本题主要考查了三角形的内角和定理,三角形的高线,难点在于要分△ABC是锐角三角形与钝角三角形两种情况讨论,作出图形更形象直观.9.如图,七边形ABCDEFG中,AB,ED的延长线交于点O,若∠1,∠2,∠3,∠4的外角和等于215°,则∠BOD的度数为()A.20°B.35°C.40°D.45°【答案】B【解析】【分析】由外角和内角的关系可求得∠1、∠2、∠3、∠4的和,由五边形内角和可求得五边形OAGFE的内角和,则可求得∠BOD.【详解】解:∵∠1、∠2、∠3、∠4的外角的角度和为215°,∴∠1+∠2+∠3+∠4+215°=4×180°,∴∠1+∠2+∠3+∠4=505°,∵五边形OAGFE内角和=(5-2)×180°=540°,∴∠1+∠2+∠3+∠4+∠BOD=540°,∴∠BOD=540°-505°=35°,故选:B .【点睛】本题主要考查多边形的内角和,利用内角和外角的关系求得∠1、∠2、∠3、∠4的和是解题的关键.10.在下列图形中,正确画出△ABC 的AC 边上的高的图形是( )A .B .C .D .【答案】C【解析】【分析】 △ABC 的AC 边上的高的就是通过顶点B 作的AC 所在直线的垂线段,根据定义即可作出判断.【详解】解:△ABC 的AC 边上的高的就是通过顶点B 作的AC 所在直线的垂线段.根据定义正确的只有C . 故选:C .【点睛】本题考查了三角形的高线的定义,理解定义是关键.11.已知直线m n ,将一块含45︒角的直角三角板ABC 按如图方式放置,其中斜边BC 与直线n 交于点D .若125∠=︒,则2∠的度数为( )A .60︒B .65︒C .70︒D .75︒【答案】C【解析】【分析】 先求出∠AED=∠1+∠B=25°+45°=70°,再根据平行线的性质可知∠2=∠AED=70°.【详解】设直线n 与AB 的交点为E 。
数学八年级上册 全册全套试卷培优测试卷

数学八年级上册全册全套试卷培优测试卷一、八年级数学三角形填空题(难)1.如图,△ABC中,点D、E、F分别在三边上,E是AC的中点,AD、BE、CF交于一点G,BD=2DC,S△GEC=3,S△GDC=4,则△ABC的面积是_____.【答案】30【解析】【分析】由于BD=2DC,那么结合三角形面积公式可得S△ABD=2S△ACD,而S△ABC=S△ABD+S△ACD,可得出S△ABC=3S△ACD,而E是AC中点,故有S△AGE=S△CGE,于是可求S△ACD,从而易求S△ABC.【详解】解:∵BD=2DC,∴S△ABD=2S△ACD,∴S△ABC=3S△ACD.∵E是AC的中点,∴S△AGE=S△CGE.又∵S△GEC=3,S△GDC=4,∴S△ACD=S△AGE+S△CGE+S△CGD=3+3+4=10,∴S△ABC=3S△ACD=3×10=30.故答案为30.【点睛】本题考查了三角形的面积公式、三角形之间的面积加减计算.注意同底等高的三角形面积相等,面积相等、同高的三角形底相等.2.如图,在△ABC中,∠B=50°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=_______°.【答案】65【解析】如图,∵AE 平分∠DAC ,CE 平分∠ACF ,∴∠1=12∠DAC ,∠2=12∠ACF , ∴∠1+∠2=12(∠DAC+∠ACF ), 又∵∠DAC+∠ACF=(180°-∠BAC )+(180°-∠ACB )=360°-(∠BAC+∠ACB ),且 ∠BAC+∠ACB=180°-∠ABC=180°-50°=130°,∴∠1+∠2=12(360°-130°)=115°, ∴在△ACE 中,∠E=180°-(∠1+∠2)=180°-115°=65°.3.如图,在ABC ∆中,AD 是BC 边上的高,AE 平分BAC ∠,若130∠=,220∠=,则B ∠=__________.【答案】50°【解析】【分析】由角平分线的定义和已知可求出∠BAC ,由AD 是BC 边上的高和已知条件可以求出∠C,然后运用三角形内角和定理,即可完成解答.【详解】解:∵AE 平分BAC ∠,若130∠=∴BAC ∠=2160∠=;又∵AD 是BC 边上的高,220∠=∴C ∠=90°-270∠= 又∵BAC ∠+∠B+∠C=180°∴∠B=180°-60°-70°=50°故答案为50°.【点睛】本题考查了角平分线、高的定义以及三角形内角和的知识,考查知识点较多,灵活运用所学知识是解答本题的关键.4.如图,△ABC中,∠A = 40°,∠B = 72°,CE平分∠ACB,CD⊥AB于D,DF⊥CE,则∠CDF =_________度.【答案】74°【解析】【分析】【详解】试题分析:首先根据三角形的内角和定理求得∠ACB的度数,以及∠BCD的度数,根据角平分线的定义求得∠BCE的度数,则∠ECD可以求解,然后在△CDF中,利用内角和定理即可求得∠CDF的度数.∵∠A=40°,∠B=70°,∴∠ACB=180°﹣∠A﹣∠B=70°.∵CE平分∠ACB,∠ACB=35°.∵CD⊥AB于D,∴∠CDA=90°,∠ACD=180°﹣∠A﹣∴∠ACE=12∠CDA=50°.∴∠ECD=∠ACD﹣∠ACE=15°.∵DF⊥CE,∴∠CFD=90°,∴∠CDF=180°﹣∠CFD﹣∠DCF=75°.考点:三角形内角和定理.5.如图,小亮从A点出发前进5m,向右转15°,再前进5m,又向右转15°…,这样一直走下去,他第一次回到出发点A时,一共走了______m.【答案】120.【解析】【分析】由题意可知小亮所走的路线为正多边形,根据多边形的外角和定理即可求出答案.【详解】解:∵小亮从A点出发最后回到出发点A时正好走了一个正多边形,∴该正多边形的边数为n=360°÷15°=24,则一共走了24×5=120米,故答案为:120.【点睛】本题主要考查了多边形的外角和定理.任何一个多边形的外角和都是360°,用外角和求正多边形的边数可直接用360°除以一个外角度数.6.将两张三角形纸片如图摆放,量得∠1+∠2+∠3+∠4=220°,则∠5=__.【答案】40°【解析】【分析】直接利用三角形内角和定理得出∠6+∠7的度数,进而得出答案.【详解】如图所示:∠1+∠2+∠6=180°,∠3+∠4+∠7=180°,∵∠1+∠2+∠3+∠4=220°,∴∠1+∠2+∠6+∠3+∠4+∠7=360°,∴∠6+∠7=140°,∴∠5=180°-(∠6+∠7)=40°.故答案为40°.【点睛】主要考查了三角形内角和定理,正确应用三角形内角和定理是解题关键.二、八年级数学三角形选择题(难)7.如图,△ABC的面积为3,BD:DC=2:1,E是AC的中点,AD与BE相交于点P,那么四边形PDCE的面积为()A.13B.710C.35D.1320【答案】B【解析】【分析】连接CP.设△CPE的面积是x,△CDP的面积是y.根据BD:DC=2:1,E为AC的中点,得△BDP的面积是2y,△APE的面积是x,进而得到△ABP的面积是4x.再根据△ABE的面积是△BCE的面积相等,得4x+x=2y+x+y,解得y=43x,再根据△ABC的面积是3即可求得x、y的值,从而求解.【详解】连接CP,设△CPE的面积是x,△CDP的面积是y.∵BD:DC=2:1,E为AC的中点,∴△BDP的面积是2y,△APE的面积是x,∵BD:DC=2:1∴△ABD的面积是4x+2y∴△ABP的面积是4x.∴4x+x=2y+x+y,解得y=43x.又∵△ABC的面积为3∴4x+x=32,x=310.则四边形PDCE的面积为x+y=710.故选B.【点睛】此题能够根据三角形的面积公式求得三角形的面积之间的关系.等高的两个三角形的面积比等于它们的底的比;等底的两个三角形的面积比等于它们的高的比.8.如图,D是△ABC的边BC上任意一点,E、F分别是线段AD、CE的中点,且△ABC的面积为40cm2,则△BEF的面积是()cm2.A .5B .10C .15D .20【答案】B【解析】【分析】 根据三角形的中线把三角形分成两个面积相等的三角形解答即可.【详解】∵点E 是AD 的中点,∴S △ABE =12S △ABD ,S △ACE =12S △ADC , ∴S △ABE +S △ACE =12S △ABC =12×40=20cm 2, ∴S △BCE =12S △ABC =12×40=20cm 2, ∵点F 是CE 的中点,∴S △BEF =12S △BCE =12×20=10cm 2. 故选B.【点睛】 本题考查了三角形的面积,主要利用了三角形的中线把三角形分成两个面积相等的三角形,原理为等底等高的三角形的面积相等.9.已知:如图,D 、E 、 F 分别是△ABC 的三边的延长线上一点,且AB =BF ,BC =CD ,AC =AE ,ABC S ∆=5cm 2,则DEF S ∆的值是( )A .15 cm 2B .20 cm 2C .30 cm 2D .35 cm 2【答案】D【解析】【分析】连接AD ,BE ,CF .根据等底同高的两个三角形面积相等,得到所有小三角形面积都等于△ABC 的面积,故△DEF 的面积等于7倍的△ABC 面积,即可得出结果.【详解】连接AD ,BE ,CF .∵BC =CD ,∴S △ACD =S △ABC =5,S △FCD =S △BCF .同理S △AEB =S △ABC =5,S △AED =S △ACD =5;S △AEB =S △BEF =5,S △BFC =S △ABC =5;∴S △FCD =S △BCF =5,∴S △EFD =7 S △ABC =35(cm 2).故选D .【点睛】本题是面积及等积变换综合题目,考查了三角形的面积及等积变换,本题有一定难度,需要通过作辅助线,运用三角形中线等分三角形的面积才能得出结果.10.把一副直角三角板按如图所示的方式摆放在一起,其中C 90∠=,F 90∠=,D 30∠=,A 45∠=,则12∠∠+等于( )A .270B .210C .180D .150【答案】B【解析】【分析】 利用三角形的外角等于不相邻的两内角和,和三角形内角和为180︒,可解出答案.【详解】如图,AB 与DE 交于点G ,AB 与EF 交于点H ,∵∠1=∠A+∠DGA ,∠2=∠B+∠FHB,∠DGA=∠BGE,∠FHB=∠AHE,在三角形GEH 中,∠BGE+∠AHE =180︒-∠E=120︒,∴∠1+∠2= ∠A+∠B+∠BGE+∠AHE=90︒+120︒=210.【点睛】本题考查了三角形的外角性质,内角和定理,熟练掌握即可解题.11.如图,AB ∥CD ,点E 在线段BC 上,CD=CE ,若∠ABC=30°,则∠D 为( )A .85°B .75°C .60°D .30°【答案】B【解析】 分析:先由AB ∥CD ,得∠C=∠ABC=30°,CD=CE ,得∠D=∠CED ,再根据三角形内角和定理得,∠C+∠D+∠CED=180°,即30°+2∠D=180°,从而求出∠D .详解:∵AB ∥CD ,∴∠C=∠ABC=30°,又∵CD=CE ,∴∠D=∠CED ,∵∠C+∠D+∠CED=180°,即30°+2∠D=180°,∴∠D=75°.故选B .点睛:此题考查的是平行线的性质及三角形内角和定理,解题的关键是先根据平行线的性质求出∠C ,再由CD=CE 得出∠D=∠CED ,由三角形内角和定理求出∠D .12.小明把一副直角三角板如图摆放,其中90,45,30C F A D ∠=∠=︒∠=︒∠=︒,则a β∠+∠等于( )A.180︒B.210︒C.360︒D.270︒【答案】B【解析】【分析】根据三角形外角性质分别表示出∠α与∠β,然后进一步计算即可.【详解】如图所示,利用三角形外角性质可知:∠α=∠1+∠D,∠β=∠4+∠F,∴∠α+∠β=∠1+∠D+∠4+∠F,∵∠1=∠2,∠3=∠4,∴∠α+∠β=∠2+∠D+∠3+∠F=90°+30°+90°=210°,故选:B.【点睛】本题主要考查了三角形外角性质的运用,熟练掌握相关概念是解题关键.三、八年级数学全等三角形填空题(难)13.已知:如图,在长方形ABCD中,AB=4,AD=6.延长BC到点E,使CE=2,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动,设点P的运动时间为t秒,当t的值为_____秒时,△ABP和△DCE全等.【答案】1或7【解析】【分析】分点P 在线段BC 上和点P 在线段AD 上两种情况解答即可.【详解】设点P 的运动时间为t 秒,则BP=2t ,当点P 在线段BC 上时,∵四边形ABCD 为长方形,∴AB=CD ,∠B=∠DCE=90°,此时有△ABP ≌△DCE ,∴BP=CE ,即2t=2,解得t=1;当点P 在线段AD 上时,∵AB=4,AD=6,∴BC=6,CD=4,∴AP=BC+CD+DA=6+4+6=16,∴AP=16-2t ,此时有△ABP ≌△CDE ,∴AP=CE ,即16-2t=2,解得t=7;综上可知当t 为1秒或7秒时,△ABP 和△CDE 全等.故答案为1或7.【点睛】本题考查了全等三角形的判定,判定三角形全等方法有:ASA 、SAS 、AAS 、SSS 、HL .解决本题时注意分情况讨论,不要漏解.14.如图,在△ABC 中,∠C=090,点D 在AB 上,BC=BD,DE ⊥AB 交AC 于点E ,△ABC 的周长为12,△ADE 的周长为6,则BC 的长为_______【答案】3【解析】【分析】连接BE ,由斜边直角边判定Rt BDE ∆≅ Rt BCE ∆,从而DE CE =,再由△ABC 的周长 △ADE 的周长即可求得BC 的长.【详解】如图:连接BE ,DE ⊥AB ,090BDE ∴∠=,在Rt BDE ∆和Rt BCE ∆中,BE BE BD BC =⎧⎨=⎩, ∴Rt BDE ∆≅ Rt BCE ∆,DE CE ∴=,∴△ABC 的周长=AB+BC+AC=2BC+AD+AE+DE=12,△ADE 的周长= AD+AE+DE =6,∴BC=3,故答案为3.【点睛】本题考查三角形全等的判定和性质以及和三角形有关的线段,连接BE 构造全等三角形是解答此题的关键.15.如图所示,∠E =∠F =90°,∠B =∠C ,AE =AF ,结论:①EM =FN ;②AF∥EB ;③∠FAN =∠EAM ;④△ACN ≌△ABM 其中正确的有 .【答案】①③④【解析】【分析】由∠E=∠F=90°,∠B=∠C ,AE=AF ,利用“AAS”得到△ABE 与△ACF 全等,根据全等三角形的对应边相等且对应角相等即可得到∠EAB 与∠FAC 相等,AE 与AF 相等,AB 与AC 相等,然后在等式∠EAB=∠FAC 两边都减去∠MAN ,得到∠EAM 与∠FAN 相等,然后再由∠E=∠F=90°,AE=AF ,∠EAM=∠FAN ,利用“ASA”得到△AEM 与△AFN 全等,利用全等三角形的对应边相等,对应角相等得到选项①和③正确;然后再∠C=∠B ,AC=AB ,∠CAN=∠BAM ,利用“ASA”得到△ACN 与△ABM 全等,故选项④正确;若选项②正确,得到∠F 与∠BDN 相等,且都为90°,而∠BDN 不一定为90°,故②错误.【详解】解:在△ABE和△ACF中,∠E=∠F=90°,AE=AF,∠B=∠C,∴△ABE≌△ACF,∴∠EAB=∠FAC,AE=AF,AB=AC,∴∠EAB-∠MAN=∠FAC-∠NAM,即∠EAM=∠FAN,在△AEM和△AFN中,∠E=∠F=90°,AE=AF,∠EAM=∠FAN,∴△AEM≌△AFN,∴EM=FN,∠FAN=∠EAM,故选项①和③正确;在△ACN和△ABM中,∠C=∠B,AC=AB,∠CAN=∠BAM(公共角),∴△ACN≌△ABM,故选项④正确;若AF∥EB,∠F=∠BDN=90°,而∠BDN不一定为90°,故②错误,则正确的选项有:①③④.故答案为①③④16.如图,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正△ABC和正△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下五个结论:①AD=BE;②PQ∥AE;③AP=BQ;④CO平分∠AOE;⑤∠AOB=60°.恒成立的结论有__.(把你认为正确的序号都填上)【答案】①②③④⑤【解析】【分析】根据等边三角形的性质及SAS即可证明△ACD≌△BCE即可求解.【详解】①△ABC和△DCE均是等边三角形,点A,C,E在同一条直线上,∴AC=BC,EC=DC,∠BCE=∠ACD=120°∴△ACD≌△ECB∴AD=BE,故本选项正确;②∵△ACD≌△ECB∴∠CBQ=∠CAP,又∵∠PCQ=∠ACB=60°,CB=AC,∴△BCQ≌△ACP,∴CQ=CP,又∠PCQ=60°,∴△PCQ为等边三角形,∴∠QPC=60°=∠ACB,∴PQ∥AE,故本选项正确;③∵∠ACB=∠DCE=60°,∴∠BCD=60°,∴∠ACP=∠BCQ,∵AC=BC,∠DAC=∠QBC,∴△ACP≌△BCQ(ASA),∴CP=CQ,AP=BQ,故本选项正确;④∵BC∥DE,∴∠CBE=∠BED,∵∠CBE=∠DAE,∴∠AOB=∠OAE+∠AEO=60°,同理可得出∠AOE=120°,∵D,O,C,E四点共圆,∴∠OCD=∠OED,∴∠OAC=∠OCD,∴∠DCE=∠AOC=60°,∴OC平分∠AOE,故④正确;⑤∵△ABC、△DCE为正三角形,∴∠ACB=∠DCE=60°,AC=BC,DC=EC,∴∠ACB+∠BCD=∠DCE+∠BCD,∴∠ACD=∠BCE,∴△ACD≌△BCE(SAS),∴∠CAD=∠CBE,∴∠AOB=∠CAD+∠CEB=∠CBE+∠CEB,∵∠ACB=∠CBE+∠CEB=60°,∴∠AOB=60°,故本选项正确.综上所述,正确的结论是①②③④⑤.【点睛】本题考查等边三角形的性质、全等三角形的判定与性质,利用旋转不变性,找到不变量,是解题关键.17.AD、BE是△ABC的高,这两条高所在的直线相交于点O,若BO=AC,则∠ABC=______.【答案】45°或135°【解析】【分析】分别讨论△ABC为锐角三角形时、∠A、∠B、∠C分别为钝角时和∠A为直角时五种情况,利用AAS证明△BOD≌△ACD,可得BD=AD,根据等腰直角三角形的性质即可得答案.【详解】①如图,当△ABC为锐角三角形时,∵AD、BE为△ABC的两条高,∴∠CAD+∠AOE=90°,∠CBE+∠BOD=90°,∵∠BOD=∠AOE,∴∠CAD=∠OBD,又∵∠ODB=∠ADC=90°,OB=AC,∴△BOD≌△ACD,∴AD=BD,∵AD⊥BC,∴∠ABC=45°,②如图,当∠B为钝角时,∵∠C+∠CAD=90°,∠O+∠CAD=90°,∴∠C=∠O,又∵∠ADC=∠ODB=90°,OB=AC,∴△BOD≌△ACD,∴BD=AD,∵AD⊥BC,∴∠ABD=45°,∴∠ABC=180°-45°=135°.③如图,当∠A为钝角时,同理可证:△BOD≌△ACD,∴AD=BD.∴∠ABC=45°,④如图,当∠C为钝角时,同理可证:△BOD≌△ACD,∴AD=BD.∴∠ABC=45°.⑤当∠B为直角时,点O、D、B重合,OB=0,不符合题意,当∠C为直角时,点O、C、D、E重合,CD=0,不符合题意,如图,当∠A为直角时,点A、E、O重合,∵OB=AC,∠CAB=90°,∴△ABC是等腰直角三角形,∴∠ABC=45°.综上所述:∠ABC的度数为45°或135°.故答案为:45°或135°【点睛】本题主要考查全等三角形的判定与性质,全等三角形的判定方法有:SSS、AAS、ASA、SAS、HL等,注意:SAS时,角必须是两边的夹角,SSA和AAA不能判定两个三角形全等.灵活运用分类讨论的思想是解题关键.18.如图,四边形ABCD是正方形,直线l1、l2、l3分别过A、B、C三点,l1∥l2∥l3,若l1与l2之间的距离为4,l2与l3之间的距离为5,则正方形的边长为______.【答案】41【解析】解:过B作直线BF⊥l3于F,交直线l1于点E.∵l1∥l3,∴∠AEB=∠BFC=90°,∴BE=4,BF=5.∵ABCD是正方形,∴AB=BC,∠ABC=90°,∴∠ABE+∠CBF=90°.∵∠ABE+∠BAE=90°,∴∠BAE=∠CBF.在△ABE和△BCF中,∵∠BAE=∠CBF,∠AEB=∠BFC,AB=BC,∴△ABE≌△BCF,∴AE=BF=5.在Rt△AEB中,AB=22=41.故答案为41.AE BE=2254点睛:本题考查了全等三角形的性质和判定,正方形的性质的应用,解答本题的关键是能正确作出辅助线,并进一步求出△ABE≌△BCF,难度适中.四、八年级数学全等三角形选择题(难)19.在和中,,高,则和的关系是( ) A.相等B.互补C.相等或互补D.以上都不对【答案】C【解析】试题解析:当∠C′为锐角时,如图1所示,∵AC=A′C′,AD=A′D′,AD⊥BC,A′D′⊥B′C′,∴Rt△ADC≌Rt△A′D′C′,∴∠C=∠C′;当∠C为钝角时,如图3所示,∵AC=A′C′,AD=A′D′,AD⊥BC,A′D′⊥B′C′,∴Rt△ACD≌Rt△A′C′D′,∴∠C=∠A′C′D′,∴∠C+∠A′C′B′=180°.故选C.20.在△ABC与△DEF中,下列各组条件,不能判定这两个三角形全等的是()A.AB=DE,∠B=∠E,∠C=∠F B.AC=DE,∠B=∠E,∠A=∠FC.AC=DF,BC=DE,∠C=∠D D.AB=EF,∠A=∠E,∠B=∠F【答案】B【解析】利用全等三角形的判定定理,分析可得:A、AB=DE,∠B=∠E,∠C=∠F可利用AAS证明△ABC与△DEF全等;B、∠A=∠F,∠B=∠E,AC=DE,对应边不对应,不能证明△ABC与△DEF全等;C、AC=DF,BC=DE,∠C=∠D可利用ASA证明△ABC与△DEF全等;D、AB=EF,∠A=∠E∠B=∠F可利用SAS证明△ABC与△DEF全等;故选:D.点睛:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.21.如图所示,把腰长为1的等腰直角三角形折叠两次后,得到的一个小三角形的周长是()A.2B.1+22C.2D2-1【答案】B 【解析】第一次折叠后,等腰三角形的底边长为1,腰长为22; 第一次折叠后,等腰三角形的底边长为2,腰长为12,所以周长为1122122++=+. 故答案为B.22.如图,点P 、Q 分别是边长为6cm 的等边ABC △边AB 、BC 上的动点,点P 从顶点 A ,点Q 从顶点B 同时出发,且它们的速度都为1cm/s ,下面四个结论:①BQ AM =②ABQ △≌CAP △③CMQ ∠的度数不变,始终等于60︒④当第 2秒或第4秒时,PBQ △为直角三角形,正确的有( )个.A .1B .2C .3D .4【答案】C【解析】 ∵点P 、Q 速度相同,∴AP BQ =.在ACP △和ABQ △中,60AP BQ CAP ABQ AC BA =⎧⎪∠==︒⎨⎪=⎩, ∴ACP △≌BAQ △,故②正确.则AQC CPB ∠=∠.即B BAQ BAQ AMP ∠+∠=∠+∠.∴60AMP B ∠=∠=︒.则60CMQ AMP ∠=∠=︒,故③正确.∵APM ∠不一定等于60︒.∴AP AM ≠.∴BQ AM ≠.故①错误.设时间为t,则AP=BQ=t,PB=4-t①当∠PQB=90°时,∵∠B=60°,∴PB=2BQ,得6-t=2t,t=2 ;②当∠BPQ=90°时,∵∠B=60°,∴BQ=2BP,得t=2(6-t),t=4;∴当第2秒或第4秒时,△PBQ为直角三角形.∴④正确.故选C.点睛:本题考查了等边三角形的性质、全等三角形的判定与性质、直角三角形的性质等知识点,综合性强,难度较大.23.已知OD平分∠MON,点A、B、C分别在OM、OD、ON上(点A、B、C都不与点O重合),且AB=BC, 则∠OAB与∠BCO的数量关系为()A.∠OAB+∠BCO=180°B.∠OAB=∠BCOC.∠OAB+∠BCO=180°或∠OAB=∠BCO D.无法确定【答案】C【解析】根据题意画图,可知当C处在C1的位置时,两三角形全等,可知∠OAB=∠BCO;当点C处在C2的位置时,根据等腰三角形的性质和三角形的外角的性质,∠OAB+∠BCO=180°.故选C.24.下列四组条件中,能够判定△ABC和△DEF全等的是()A.AB=DE,BC=EF,∠A=∠D B.AC=EF,∠C=∠F,∠A=∠DC.∠A=∠D,∠B=∠E,∠C=∠F D.AC=DF,BC=DE,∠C=∠D【答案】D【解析】根据三角形全等的判定定理:SSS、SAS、ASA、AAS、HL,逐一判断:A、AB=DE,BC=EF,∠A=∠D,不符合“SAS”定理,不能判断全等;B、AC=EF,∠C=∠F,∠A=∠D,不符合“ASA”定理,不能判断全等;C、∠A=∠D,∠B=∠E,∠C=∠F ,“AAA”不能判定全等;不符合“SAS ”定理,不对应,不能判断全等;D 、AC=DF ,BC=DE ,∠C=∠D ,可利用“SAS ”判断全等;故选:D .点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.五、八年级数学轴对称三角形填空题(难)25.如图,在等边ABC ∆中取点P 使得PA ,PB ,PC 的长分别为3, 4, 5,则APC APB S S ∆∆+=_________.【答案】936 【解析】【分析】把线段AP 以点A 为旋转中心顺时针旋转60︒得到线段AD ,由旋转的性质、等边三角形的性质以及全等三角形的判定定理SAS 证得△ADB ≌△APC ,连接PD ,根据旋转的性质知△APD 是等边三角形,利用勾股定理的逆定理可得△PBD 为直角三角形,∠BPD =90︒,由△ADB ≌△APC 得S △ADB =S △APC ,则有S △APC +S △APB =S △ADB +S △APB =S △ADP +S △BPD ,根据等边3S △ADP +S △BPD =332+12×3×4=936+. 【详解】将线段AP 以点A 为旋转中心顺时针旋转60︒得到线段AD ,连接PD∴AD =AP ,∠DAP =60︒,又∵△ABC 为等边三角形,∴∠BAC =60︒,AB =AC ,∴∠DAB +∠BAP =∠PAC +∠BAP ,∴∠DAB =∠PAC ,又AB=AC,AD=AP∴△ADB ≌△APC∵DA =PA ,∠DAP =60︒,∴△ADP 为等边三角形, 在△PBD 中,PB =4,PD =3,BD =PC =5,∵32+42=52,即PD 2+PB 2=BD 2,∴△PBD 为直角三角形,∠BPD =90︒,∵△ADB ≌△APC ,∴S △ADB =S △APC ,∴S △APC +S △APB =S △ADB +S △APB =S △ADP +S △BPD =3×32+12×3×4=936+. 故答案为:9364+.【点睛】本题考查了等边三角形的性质与判定,解题的关键是熟知旋转的性质作出辅助线进行求解.26.如图,1AB A B =,1112A B A A =,2223A B A A =,3334A B A A =,…,当2n ≥,70A ∠=︒时,11n n n A A B --∠=__________.【答案】1702n -︒ 【解析】【分析】先根据三角形外角的性质及等腰三角形的性质分别求出121B A A ∠,232B A A ∠及343B A A ∠的度数,再找出规律即可得出11n n n A A B --∠的度数.【详解】解:∵在1ABA ∆中,70A ∠=︒,1AB A B =∴170BA A A ∠==︒∠∵1112A A A B =,1BA A ∠是121A A B ∆的外角∴12111211703522B A A A B A BA A ︒∠=∠===︒∠ 同理可得,2321217017.542B A A BA A ︒∠===︒∠,343131708.7582B A A BA A ︒∠===︒∠ ∴111702n n n n A A B ---︒∠=. 故答案为:1702n -︒ 【点睛】 本题考查的是等腰三角形的性质及三角形外角的性质,根据特殊情况找出规律是解题关键.27.如图,在△ABC 中,P ,Q 分别是BC ,AC 上的点,PR ⊥AB ,PS ⊥AC ,垂足分别是R ,S ,若AQ PQ =,PR PS =,那么下面四个结论:①AS AR =;②QP //AR ;③△BRP ≌△QSP ;④BRQS ,其中一定正确的是(填写编号)_____________.【答案】①,②【解析】【分析】连接AP ,根据角平分线性质即可推出①,根据勾股定理即可推出AR=AS ,根据等腰三角形性质推出∠QAP=∠QPA ,推出∠QPA=∠BAP ,根据平行线判定推出QP ∥AB 即可;在Rt △BRP 和Rt △QSP 中,只有PR=PS .无法判断△BRP ≌△QSP 也无法证明BRQS .【详解】解:连接AP①∵PR ⊥AB ,PS ⊥AC ,PR=PS ,∴点P 在∠BAC 的平分线上,∠ARP=∠ASP=90°,∴∠SAP=∠RAP ,在Rt △ARP 和Rt △ASP 中,由勾股定理得:AR 2=AP 2-PR 2,AS 2=AP 2-PS 2,∵AP=AP ,PR=PS ,∴AR=AS ,∴①正确;②∵AQ=QP ,∴∠QAP=∠QPA ,∵∠QAP=∠BAP ,∴∠QPA=∠BAP ,∴QP ∥AR ,∴②正确;③在Rt △BRP 和Rt △QSP 中,只有PR=PS ,不满足三角形全等的条件,故③④错误;故答案为:①②.【点睛】本题主要考查了角平分线的性质与勾股定理的应用,熟练掌握根据垂直与相等得出点在角平分线上是解题的关键.28.如图,在ABC ∆和DBC ∆中,40A ∠=,2AB AC ==,140BDC ∠=,BD CD =,以点D 为顶点作70MDN ∠=,两边分别交,AB AC 于点,M N ,连接MN ,则AMN ∆的周长为_______.【答案】4【解析】【分析】延长AB至F,使BF=CN,连接DF,通过证明△BDF≌△CDN,及△DMN≌△DMF,从而得出MN=MF,△AMN的周长等于AB+AC的长.【详解】延长AB至F,使BF=CN,连接DF.∵BD=CD,且∠BDC=140°,∴∠BCD=∠DBC=20°.∵∠A=40°,AB=AC=2,∴∠ABC=∠ACB=70°,∴∠DBA=∠DCA=90°.在Rt△BDF和Rt△CND中,∵BF=CN,∠DBA=∠DCA,DB=DC,∴△BDF≌△CDN,∴∠BDF=∠CDN,DF=DN.∵∠MDN=70°,∴∠BDM+∠CDN=70°,∴∠BDM+∠BDF=70°,∴∠FDM=70°=∠MDN.∵DF=DN,∠FDM=∠MDN,DM=DM,∴△DMN≌△DMF,∴MN=MF,∴△AMN的周长是:AM+AN+MN=AM+MB+BF+AN=AB+AC=4.故答案为:4.【点睛】本题主要利用等腰三角形的性质来证明三角形全等,构造全等三角形是解答本题的关键.29.如图,在3×3的正方形网格中,格线的交点称为格点,以格点为顶点的三角形称为格点三角形.图中的△ABC为格点三角形,在图中最多能画出_____个格点三角形与△ABC成【答案】6【解析】【分析】根据网格结构分别确定出不同的对称轴,然后作出轴对称三角形即可得解.【详解】如图,最多能画出6个格点三角形与△ABC 成轴对称.故答案为:6.【点睛】本题考查了利用轴对称变换作图,熟练掌握网格结构并准确找出对应点的位置是解题的关键,本题难点在于确定出不同的对称轴.30.如图,30AOB ∠=︒,P 是AOB ∠内一点,10PO =.若Q 、R 分别是边OA 、OB 上的动点,则PQR ∆周长的最小值为_______.【解析】【分析】作点P关于OB的对称点P′,点P关于OA的对称点P″,连接P′P″交OB于R,交OA于Q,连接PR、PQ,如图3,利用对称的性质得到△PQR周长=P′P″,根据两点之间线段最短可判断此时△PQR周长最小,最小值为P′P″的长,再证明△P′OP″为等边三角形得到P′P″=OP′=OP=10,从而得到△PQR周长的最小值【详解】解:作点P关于OB的对称点P′,点P关于OA的对称点P″,连接P′P″交OB于R,交OA于Q,连接PR、PQ,如图3,则OP=OP′,OP=OP″,RP=RP′,QP=QP″,∴△PQR周长=PR+RQ+PQ=RP′+RQ+QP″=P′P″,∴此时△PQR周长最小,最小值为P′P″的长,∵由对称性可知OP=OP′,OP=OP″,PP′⊥OB,PP″⊥OA,∴∠1=∠2,∠3=∠4,∴∠P′OP″=∠1+∠2+∠3+∠4=2∠2+2∠3=2∠BOA=60°,∴△P′OP″为等边三角形,∴P′P″=OP′=OP=10,故答案是:10.【点睛】本题考查了几何变换综合题:熟练掌握轴对称的性质和等边三角形的性质;会利用两点之间线段最短解决最短路径问题.六、八年级数学轴对称三角形选择题(难)31.已知等边三角形的边长为3,点P为等边三角形内任意一点,则点P到三边的距离之和为( )A 3B33C.32D.不能确定【答案】B【解析】已知,如图,P为等边三角形内任意一点,PD、PE、PF分别是点P到边AB、BC、AC的距离,连接AP 、BP 、CP ,过点A 作AH ⊥BC 于点H ,已知等边三角形的边长为3,可求得高线AH =332,因S △ABC =12BC •AH =12AB •PD+12BC•PE +12AC •PF ,所以12×3×AH =12×3×PD +12×3×PE +12×3×PF ,即可得PD +PE +PF =AH =332,即点P 到三角形三边距离之和为332.故选B.点睛:本题考查了等边三角形的性质,根据三角形的面积求点P 到三边的距离之和等于等边三角形的高是解题的关键,作出图形更形象直观.32.如图,30MON ∠=︒.点1A ,2A ,3A ,⋯,在射线ON 上,点1B ,2B ,3B ,⋯,在射线OM 上,112A B A ∆,223A B A ∆,334A B A ∆,⋯均为等边三角形,若11OA =,则201920192020A B A ∆的边长为( )A .20172B .20182C .20192D .20202【答案】B【解析】【分析】 根据等边三角形的性质和30MON ∠=︒,可求得1130∠=︒OB A ,进而证得11OA B ∆是等腰三角形,可求得2OA 的长,同理可得22OA B ∆是等腰三角形,可得222=A B OA ,同理得规律333、、=⋅⋅⋅=n n n A B OA A B OA ,即可求得结果. 【详解】解:∵30MON ∠=︒,112A B A ∆是等边三角形,∴11260∠=︒B A A ,1112A B A A =∴1111230∠=∠-∠=︒OB A B A A MON ,∴11∠=∠OB A MON ,则11OA B ∆是等腰三角形,∴111=A B OA ,∵11OA =,∴11121==A B A A OA =1,21122=+=OA OA A A ,同理可得22OA B ∆是等腰三角形,可得222=A B OA =2,同理得23342==A B 、34482==A B ,根据以上规律可得:2018201920192=A B ,即201920192020A B A ∆的边长为20182,故选:B .【点睛】本题属于探索规律题,主要考查了等边三角形的性质、等腰三角形的判定与性质,掌握等边三角形的三个内角都是60°、等角对等边和探索规律并归纳公式是解题的关键.33.如图,在等边三角形ABC 中,在AC 边上取两点M 、N ,使∠MBN =30°.若AM =m ,MN =x ,CN =n ,则以x ,m ,n 为边长的三角形的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .随x ,m ,n 的值而定【答案】C【解析】【分析】 将△ABM 绕点B 顺时针旋转60°得到△CBH .连接HN .想办法证明∠HCN =120°HN =MN =x 即可解决问题.【详解】将△ABM 绕点B 顺时针旋转60°得到△CBH .连接HN .∵△ABC 是等边三角形,∴∠ABC =∠ACB =∠A =60°.∵∠MON =30°,∴∠CBH +∠CBN =∠ABM +∠CBN =30°,∴∠NBM =∠NBH .∵BM =BH ,BN =BN ,∴△NBM ≌△NBH ,∴MN =NH =x .∵∠BCH=∠A=60°,CH=AM=n,∴∠NCH=120°,∴x,m,n为边长的三角形△NCH是钝角三角形.故选C.【点睛】本题考查了等边三角形的性质、全等三角形的判定和性质、旋转的性质等知识,解题的关键是学会利用旋转法添加辅助线,构造全等三角形解决问题,属于中考常考题型.34.如图,已知AD为ABC∆的高线,AD BC=,以AB为底边作等腰Rt ABE∆,连接ED,EC,延长CE交AD于F点,下列结论:①DAE CBE∠=∠;②CE DE⊥;③BD AF=;④AED∆为等腰三角形;⑤BDE ACES S∆∆=,其中正确的有( )A.①③B.①②④C.①③④D.①②③⑤【答案】D【解析】【分析】①根据等腰直角三角形的性质即可证明∠CBE=∠DAE,再得到△ADE≌△BCE;②根据①结论可得∠AEC=∠DEB,即可求得∠AED=∠BEG,即可解题;③证明△AEF≌△BED即可;④根据△AEF≌△BED得到DE=EF, 又DE⊥CF,故可判断;⑤易证△FDC是等腰直角三角形,则CE=EF,S△AEF=S△ACE,由△AEF≌△BED,可知S△BDE =S△ACE,所以S△BDE=S△ACE.【详解】①∵AD为△ABC的高线,∴CBE+∠ABE+∠BAD=90°,∵Rt△ABE是等腰直角三角形,∴∠ABE=∠BAE=∠BAD+∠DAE=45°,AE=BE,∴∠CBE+∠BAD=45°,∴∠DAE=∠CBE,故①正确;在△DAE和△CBE中,AE BEDAE CBEAD BC⎧⎪∠∠⎨⎪⎩===,∴△ADE≌△BCE(SAS);②∵△ADE≌△BCE,∴∠EDA=∠ECB,∵∠ADE+∠EDC=90°,∴∠EDC+∠ECB=90°,∴∠DEC=90°,∴CE⊥DE;故②正确;③∵∠BDE=∠ADB+∠ADE,∠AFE=∠ADC+∠ECD,∴∠BDE=∠AFE,∵∠BED+∠BEF=∠AEF+∠BEF=90°,∴∠BED=∠AEF,在△AEF和△BED中,BDE AFEBED AEFAE BE∠∠⎧⎪∠∠⎨⎪⎩===,∴△AEF≌△BED(AAS),∴BD=AF故③正确;∵△AEF≌△BED∴DE=EF, 又DE⊥CF,∴△DEF为等腰直角三角形,故④错误;④∵AD=BC,BD=AF,∴CD=DF,∵AD⊥BC,∴△FDC是等腰直角三角形,∵DE⊥CE,∴EF=CE,∴S△AEF=S△ACE,∵△AEF≌△BED,∴S△AEF=S△BED,∴S△BDE=S△ACE.故④正确;故选:D.【点睛】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△BFE≌△CDE是解题的关键.35.如图,P为∠AOB内一定点,M、N分别是射线OA、OB上一点,当△PMN周长最小时,∠MPN=110°,则∠AOB=()A.35°B.40°C.45°D.50°【答案】A【解析】【分析】作P关于OA,OB的对称点P1,P2.连接OP1,OP2.则当M,N是P1P2与OA,OB的交点时,△PMN的周长最短,根据对称的性质可以证得:∠OP1M=∠OPM=50°,OP1=OP2=OP,根据等腰三角形的性质求解.【详解】作P关于OA,OB的对称点P1,P2.连接OP1,OP2.则当M,N是P1P2与OA,OB的交点时,△PMN的周长最短,连接P1O、P2O,∵PP1关于OA对称,∠MPN=110°∴∠P1OP=2∠MOP,OP1=OP,P1M=PM,∠OP1M=∠OPM,同理可得:∠P2OP=2∠NOP,OP=OP2,∴∠P1OP2=∠P1OP+∠P2OP=2(∠MOP+∠NOP)=2∠AOB,OP1=OP2=OP,∴△P1OP2是等腰三角形.∴∠OP2N=∠OP1M,∴∠P1OP2=180°-110°=70°,∴∠AOB=35°,故选A.【点睛】考查了对称的性质,解题关键是正确作出图形和证明△P1OP2是等腰三角形是.36.如图,在△ABC中,BI,CI分别平分∠ABC,∠ACB,过I点作DE∥BC,交AB于D,交AC于E,给出下列结论:①△DBI是等腰三角形;②△ACI是等腰三角形;③AI平分∠B AC;④△ADE周长等于AB+AC.其中正确的是( )A.①②③B.②③④C.①③④D.①②④【答案】C【解析】【分析】根据角平分线的性质、平行线的性质、等腰三角形的判定与性质分别对各选项分析判断后利用排除法求解.【详解】①∵IB平分∠ABC,∴∠DBI=∠CBI.∵DE∥BC,∴∠DIB=∠CBI,∴∠DBI=∠DIB,∴BD=DI,∴△DBI是等腰三角形.故本选项正确;②∵∠BAC不一定等于∠ACB,∴∠IAC不一定等于∠ICA,∴△ACI不一定是等腰三角形.故本选项错误;③∵三角形角平分线相交于一点,BI,CI分别是∠ABC和∠ACB的平分线,∴AI平分∠BAC.故本选项正确;④∵BD=DI,同理可得EI=EC,∴△ADE的周长=AD+DI+EI+AE=AD+BD+EC+AE=AB+AC.故本选项正确;其中正确的是①③④.故选C.【点睛】本题考查了等腰三角形的判定与性质,熟记三角形的角平分线相交于一点是解题的关键.七、八年级数学整式的乘法与因式分解选择题压轴题(难)37.已知n16++是一个有理数的平方,则n不能取以下各数中的哪一个() 221-D.9A.30 B.32 C.18【答案】B【解析】【分析】分多项式的三项分别是乘积二倍项时,利用完全平方公式分别求出n的值,然后选择答案即可.【详解】2n是乘积二倍项时,2n+216+1=216+2×28+1=(28+1)2,此时n=8+1=9,216是乘积二倍项时,2n+216+1=2n+2×215+1=(215+1)2,此时n=2×15=30,1是乘积二倍项时,2n+216+1=(28)2+2×28×2-9+(2-9)2=(28+2-9)2,此时n=-18,综上所述,n可以取到的数是9、30、-18,不能取到的数是32.故选B.【点睛】本题考查了完全平方式,难点在于要分情况讨论,熟记完全平方公式结构是解题的关键.38.已知a,b,c是△ABC的三边长,且满足a2+2b2+c2-2b(a+c)=0,则此三角形是( )A.等腰三角形 B.等边三角形C.直角三角形 D.不能确定【答案】B【解析】【分析】运用因式分解,首先将所给的代数式恒等变形;借助非负数的性质得到a=b=c,即可解决问题.【详解】∵a2+2b2+c2﹣2b(a+c)=0,∴(a﹣b)2+(b﹣c)2=0;∵(a﹣b)2≥0,(b﹣c)2≥0,∴a﹣b=0,b﹣c=0,∴a=b=c,∴△ABC为等边三角形.故选B.【点睛】本题考查了因式分解及其应用问题.解题的关键是牢固掌握因式分解的方法,灵活运用因式分解来分析、判断、推理活解答.39.计算,得()A.B.C.D.【答案】C【解析】【分析】直接提取公因式(-3)m-1,进而分解因式即可.【详解】(-3)m+2×(-3)m-1=(-3)m-1(-3+2)=-(-3)m-1.故选C.【点睛】此题主要考查了提取公因式法分解因式,正确分解因式是解题关键.40.如图所示的是用4个全等的小长方形与1个小正方形密铺而成的正方形图案,已知该图案的面积为144,小正方形的面积为4,若分别用x 、y (x y >)表示小长方形的长和宽,则下列关系式中错误的是( )A .22100x y +=B .2x y -=C .12x y +=D .35xy =【答案】A【解析】【分析】 由正方形的面积公式可求x +y =12,x ﹣y =2,可求x =7,y =5,即可求解.【详解】由题意可得:(x +y )2=144,(x ﹣y )2=4,∴x +y =12,x ﹣y =2,故B 、C 选项不符合题意;∴x =7,y =5,∴xy =35,故D 选项不符合题意;∴x 2+y 2=84≠100,故选项A 符合题意. 故选A .【点睛】本题考查了完全平方公式的几何背景,解答本题需结合图形,利用等式的变形来解决问题.41.下列分解因式正确的是( )A .24(4)x x x x -+=-+B .2()x xy x x x y ++=+C .2()()()x x y y y x x y -+-=-D .244(2)(2)x x x x -+=+-【答案】C【解析】【分析】根据因式分解的步骤:先提公因式,再用公式法分解即可求得答案.注意分解要彻底.【详解】A. ()244x x x x -+=-- ,故A 选项错误; B. ()21x xy x x x y ++=++,故B 选项错误; C. ()()()2x x y y y x x y -+-=- ,故C 选项正确;D. 244x x -+=(x-2)2,故D 选项错误,故选C.【点睛】本题考查了提公因式法,公式法分解因式.注意因式分解的步骤:先提公因式,。
八年级上册数学 全册全套试卷(培优篇)(Word版 含解析)

八年级上册数学 全册全套试卷(培优篇)(Word 版 含解析)一、八年级数学三角形填空题(难)1.如图,在平面直角坐标系xOy 中,点A 、B 分别在x 轴的正半轴、y 轴的正半轴上移动,点M 在第二象限,且MA 平分∠BAO ,做射线MB ,若∠1=∠2,则∠M 的度数是_______。
【答案】45︒【解析】【分析】根据三角形内角与外角的关系可得2M MAB ∠∠∠=+由角平分线的性质可得MAB MAO ∠∠=根据三角形内角和定理可得OBA OAB BOA 180∠∠∠++=︒易得∠M 的度数。
【详解】在ABM 中,2∠是ABM 的外角∴2M MAB ∠∠∠=+由三角形内角和定理可得OBA OAB BOA 180∠∠∠++=︒∵BOA 90∠=︒∴OBA OAB 90∠∠+=︒∵MA 平分BAO ∠∴BAO 2MAB ∠∠=由三角形内角与外角的关系可得12BAO BOA 90BAO ∠∠∠∠∠+=+=︒+ ∵12∠∠=∴2290BAO ∠∠=︒+又∵2M MAB ∠∠∠=+∴222M 2MAB 2M BAO ∠∠∠∠∠=+=+∴90BAO 2M BAO ∠∠∠︒+=+2M 90∠=︒M 45∠=︒【点睛】本题考查三角形外角的性质,即三角形的外角等于与之不相邻的两个内角的和。
2.如图,在△ABC 中,∠B 和∠C 的平分线交于点O ,若∠A =50°,则∠BOC =_____.【答案】115°.【解析】【分析】根据三角形的内角和定理得出∠ABC+∠ACB=130°,然后根据角平分线的概念得出∠OBC+∠OCB,再根据三角形的内角和定理即可得出∠BOC的度数.【详解】解;∵∠A=50°,∴∠ABC+∠ACB=180°﹣50°=130°,∵∠B和∠C的平分线交于点O,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∴∠OBC+∠OCB=12×(∠ABC+∠ACB)=12×130°=65°,∴∠BOC=180°﹣(∠OBC+∠OCB)=115°,故答案为:115°.【点睛】本题考查了三角形的内角和定理和三角形的角平分线的概念,关键是求出∠OBC+∠OCB 的度数.3.一个多边形的内角和是外角和的72倍,那么这个多边形的边数为_______.【答案】9【解析】【分析】根据多边形的内角和公式(n-2)•180°与外角和定理列出方程,然后求解即可.【详解】解:设这个多边形是n边形,根据题意得,(n-2)•180°=72×360°,解得:n=9.故答案为:9.【点睛】本题考查了多边形的内角和公式与外角和定理,多边形的外角和与边数无关,任何多边形的外角和都是360°.4.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内时,∠A与∠1+∠2之间有始终不变的关系是__________.【答案】2∠A=∠1+∠2【解析】【分析】根据∠1与∠AED的2倍和∠2与∠ADE的2倍都组成平角,结合△AED的内角和为180°可求出答案.【详解】∵△ABC纸片沿DE折叠,∴∠1+2∠AED=180°,∠2+2∠ADE=180°,∴∠AED=12(180°−∠1),∠ADE=12(180°−∠2),∴∠AED+∠ADE=12(180°−∠1)+12(180°−∠2)=180°−12(∠1+∠2)∴△ADE中,∠A=180°−(∠AED+∠ADE)=180°−[180°−12(∠1+∠2)]=12(∠1+∠2),即2∠A=∠1+∠2.故答案为:2∠A=∠1+∠2.【点睛】本题考查的是三角形内角和定理,熟知三角形的内角和等于180°及图形翻折变换的性质是解答此题的关键.5.如果一个n边形的内角和等于它的外角和的3倍,则n=______.【答案】8【解析】【分析】根据多边形内角和公式180°(n-2)和外角和为360°可得方程180(n-2)=360×3,再解方程即可.【详解】解:由题意得:180(n-2)=360×3,解得:n=8,故答案为:8.【点睛】此题主要考查了多边形内角和与外角和,要结合多边形的内角和公式与外角和的关系来寻求等量关系,构建方程即可求解.6.如图所示,在四边形ABCD中,AD⊥AB,∠C=110°,它的一个外角∠ADE=60°,则∠B 的大小是_____.【答案】40°【解析】【分析】根据外角的概念求出∠ADC的度数,再根据垂直的定义、四边形的内角和等于360°进行求解即可得.【详解】∵∠ADE=60°,∴∠ADC=120°,∵AD⊥AB,∴∠DAB=90°,∴∠B=360°﹣∠C﹣∠ADC﹣∠A=40°,故答案为40°.【点睛】本题考查了多边形的内角和外角,掌握四边形的内角和等于360°、外角的概念是解题的关键.二、八年级数学三角形选择题(难)7.如图,四边形ABCD中,E、F、G、H依次是各边中点,O是四边形ABCD内一点,若四边形AEOH、四边形BFOE、四边形CGOF的面积分别为7、9、10,则四边形DHOG的面积为()A.7B.8C.9D.10【答案】B【解析】分析:连接OC,OB,OA,OD,易证S△OBF=S△OCF,S△ODG=S△OCG,S△ODH=S△OAH,S△OAE=S△OBE,所以S四边形AEOH+S四边形CGOF=S四边形DHOG+S四边形BFOE,所以可以求出S四边形DHOG.详解:连接OC,OB,OA,OD,∵E、F 、G 、H 依次是各边中点,∴△AOE 和△BOE 等底等高,∴S △OAE =S △OBE ,同理可证,S △OBF =S △OCF ,S △ODG =S △OCG ,S △ODH =S △OAH ,∴S 四边形AEOH +S 四边形CGOF =S 四边形DHOG +S 四边形BFOE ,∵S 四边形AEOH =7,S 四边形BFOE =9,S 四边形CGOF =10,∴7+10=9+S 四边形DHOG ,解得,S 四边形DHOG =8.故选B.点睛:本题考查了三角形的面积.解决本题的关键将各个四边形划分,充分利用给出的中点这个条件,证得三角形的面积相等,进而证得结论.8.已知直线m n ,将一块含45︒角的直角三角板ABC 按如图方式放置,其中斜边BC 与直线n 交于点D .若125∠=︒,则2∠的度数为( )A .60︒B .65︒C .70︒D .75︒【答案】C【解析】【分析】 先求出∠AED=∠1+∠B=25°+45°=70°,再根据平行线的性质可知∠2=∠AED=70°.【详解】设直线n 与AB 的交点为E 。
数学八年级上册 全册全套试卷(培优篇)(Word版 含解析)

数学八年级上册全册全套试卷(培优篇)(Word版含解析)一、八年级数学全等三角形解答题压轴题(难)1.如图,△ABC中,D是BC的中点,过D点的直线GF交AC于F,交AC的平行线BG于G点,DE⊥DF,交AB于点E,连结EG、EF.(1)求证:BG=CF;(2)请你判断BE+CF与EF的大小关系,并说明理由.【答案】(1)详见解析;(2)BE+CF>EF,证明详见解析【解析】【分析】(1)先利用ASA判定△BGD≅CFD,从而得出BG=CF;(2)利用全等的性质可得GD=FD,再有DE⊥GF,从而得到EG=EF,两边之和大于第三边从而得出BE+CF>EF.【详解】解:(1)∵BG∥AC,∴∠DBG=∠DCF.∵D为BC的中点,∴BD=CD又∵∠BDG=∠CDF,在△BGD与△CFD中,∵DBG DCFBD CDBDG CDF∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BGD≌△CFD(ASA).∴BG=CF.(2)BE+CF>EF.∵△BGD≌△CFD,∴GD=FD,BG=CF.又∵DE⊥FG,∴EG=EF(垂直平分线到线段端点的距离相等).∴在△EBG中,BE+BG>EG,即BE+CF>EF.【点睛】本题考查了三角形全等的判定和性质,要注意判定三角形全等的一般方法有:SSS、SAS、AAS、ASA、HL.2.如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F(1)证明:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.【答案】(1)证明见解析(2)90°(3)AP=CE【解析】【分析】(1)、根据正方形得出AB=BC,∠ABP=∠CBP=45°,结合PB=PB得出△ABP ≌△CBP,从而得出结论;(2)、根据全等得出∠BAP=∠BCP,∠DAP=∠DCP,根据PA=PE得出∠DAP=∠E,即∠DCP=∠E,易得答案;(3)、首先证明△ABP和△CBP全等,然后得出PA=PC,∠BAP=∠BCP,然后得出∠DCP=∠E,从而得出∠CPF=∠EDF=60°,然后得出△EPC是等边三角形,从而得出AP=CE.【详解】(1)、在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°,在△ABP和△CBP中,又∵ PB=PB ∴△ABP ≌△CBP(SAS),∴PA=PC,∵PA=PE,∴PC=PE;(2)、由(1)知,△ABP≌△CBP,∴∠BAP=∠BCP,∴∠DAP=∠DCP,∵PA=PE,∴∠DAP=∠E,∴∠DCP=∠E,∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPF=∠EDF=90°;(3)、AP=CE理由是:在菱形ABCD中,AB=BC,∠ABP=∠CBP,在△ABP和△CBP中,又∵ PB=PB ∴△ABP≌△CBP(SAS),∴PA=PC,∠BAP=∠DCP,∵PA=PE,∴PC=PE,∴∠DAP=∠DCP,∵PA=PC ∴∠DAP=∠E,∴∠DCP=∠E∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPF=∠EDF=180°﹣∠ADC=180°﹣120°=60°,∴△EPC是等边三角形,∴PC=CE,∴AP=CE考点:三角形全等的证明3.已知4AB cm=,3AC BD cm==.点P在AB上以1/cm s的速度由点A向点B运动,同时点Q在BD上由点B向点D运动,它们运动的时间为()t s.(1)如图①,AC AB⊥,BD AB⊥,若点Q的运动速度与点P的运动速度相等,当1t=时,ACP△与BPQ是否全等,请说明理由,并判断此时线段PC和线段PQ的位置关系;(2)如图②,将图①中的“AC AB⊥,BD AB⊥”为改“60CAB DBA∠=∠=︒”,其他条件不变.设点Q的运动速度为/xcm s,是否存在实数x,使得ACP△与BPQ 全等?若存在,求出相应的x、t的值;若不存在,请说明理由.【答案】(1)全等,PC与PQ垂直;(2)存在,11tx=⎧⎨=⎩或232tx=⎧⎪⎨=⎪⎩【解析】【分析】(1)利用SAS证得△ACP≌△BPQ,得出∠ACP=∠BPQ,进一步得出∠APC+∠BPQ=∠APC+∠ACP=90°得出结论即可;(2)由△ACP≌△BPQ,分两种情况:①AC=BP,AP=BQ,②AC=BQ,AP=BP,建立方程组求得答案即可.【详解】解:(1)当t=1时,AP=BQ=1,BP=AC=3,又∠A=∠B=90°,在△ACP和△BPQ中,AP BQA BAC BP=⎧⎪∠=∠⎨⎪=⎩,∴△ACP≌△BPQ(SAS).∴∠ACP=∠BPQ,∴∠APC+∠BPQ=∠APC+∠ACP=90°.∴∠CPQ=90°,即线段PC 与线段PQ 垂直.(2)①若△ACP ≌△BPQ ,则AC=BP ,AP=BQ ,34t t xt =-⎧⎨=⎩, 解得11t x =⎧⎨=⎩, ②若△ACP ≌△BQP ,则AC=BQ ,AP=BP ,34xt t t =⎧⎨=-⎩, 解得232t x =⎧⎪⎨=⎪⎩, 综上所述,存在11t x =⎧⎨=⎩或232t x =⎧⎪⎨=⎪⎩使得△ACP 与△BPQ 全等. 【点睛】本题考查全等三角形的判定与性质,在解题时注意分类讨论思想的运用.4.(1)如图(1),已知:在△ABC 中,∠BAC=90°,AB=AC ,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D 、E .求证:DE=BD+CE .(2)如图(2),将(1)中的条件改为:在△ABC 中,AB=AC ,D 、A 、E 三点都在直线m 上,并且有∠BDA=∠AEC=∠BAC =α,其中α为任意锐角或钝角.请问结论DE=BD+CE 是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)如图(3),D 、E 是D 、A 、E 三点所在直线m 上的两动点(D 、A 、E 三点互不重合),点F 为∠BAC 平分线上的一点,且△ABF 和△ACF 均为等边三角形,连接BD 、CE ,若∠BDA=∠AEC=∠BAC ,求证:△DEF 是等边三角形.【答案】(1)见解析;(2)成立,理由见解析;(3)见解析【解析】【分析】(1)因为DE=DA+AE ,故通过证BDA AEC ≅△△,得出DA=EC ,AE=BD ,从而证得DE=BD+CE.(2)成立,仍然通过证明BDA AEC ≅△△,得出BD=AE ,AD=CE ,所以DE=DA+AE=EC+BD.(3)由BDA AEC ≅△△得BD=AE ,=BDA AEC ∠∠,ABF 与ACF 均等边三角形,得==60BA AC ︒∠F ∠F ,FB=FA ,所以=BA BA AC AC ∠F +∠D ∠F +∠E ,即FBD FAB ≅∠∠,所以BDF AEF ≅△△,所以FD=FE ,BFD AFE ≅∠∠,再根据=60BFD FA BFA =︒∠+∠D ∠,得=60AF FA =︒∠E +∠D ,即=60FE =︒∠D ,故DFE △是等边三角形.【详解】证明:(1)∵BD ⊥直线m ,CE ⊥直线m∴∠BDA =∠CEA=90°,∵∠BAC =90°∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°∴∠CAE=∠ABD ,又AB=AC ,∴△ADB ≌△CEA∴AE=BD ,AD=CE ,∴DE=AE+AD= BD+CE(2)∵∠BDA =∠BAC=α,∴∠DBA+∠BAD=∠BAD +∠CAE=180°—α∴∠DBA=∠CAE ,∵∠BDA=∠AEC=α,AB=AC∴△ADB≌△CEA,∴AE=BD,AD=CE∴DE=AE+AD=BD+CE(3)由(2)知,△ADB≌△CEA, BD=AE,∠DBA =∠CAE∵△ABF和△ACF均为等边三角形,∴∠ABF=∠CAF=60°∴∠DBA+∠ABF=∠CAE+∠CAF,∴∠DBF=∠FAE∵BF=AF,∴△DBF≌△EAF∴DF=EF,∠BFD=∠AFE∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°∴△DEF为等边三角形.【点睛】利用全等三角形的性质证线段相等是证两条线段相等的重要方法.5.如图,A(0,4)是直角坐标系y轴上一点,动点P从原点O出发,沿x轴正半轴运动,速度为每秒1个单位长度,以P为直角顶点在第一象限内作等腰Rt△APB.设P点的运动时间为t秒.(1)若AB∥x轴,如图1,求t的值;(2)设点A关于x轴的对称点为A′,连接A′B,在点P运动的过程中,∠OA′B的度数是否会发生变化,若不变,请求出∠OA′B的度数,若改变,请说明理由.(3)如图2,当t=3时,坐标平面内有一点M(不与A重合)使得以M、P、B为顶点的三角形和△ABP全等,请直接写出点M的坐标.【答案】(1)4;(2)∠OA ′B 的度数不变,∠OA ′B =45︒,理由见解析;(3)点M 的坐标为(6,﹣4),(4,7),(10,﹣1)【解析】【分析】(1)利用等腰直角三角形的性质以及平行线的性质,可证明△AOP 为等腰直角三角形,从而求得答案;(2)根据对称的性质得:PA =PA '=PB ,由∠PAB +∠PBA =90°,结合三角形内角和定理即可求得∠OA 'B =45°;(3)分类讨论:分别讨论当△ABP ≌△MBP 、△ABP ≌△MPB 、△ABP ≌△MPB 时,点M 的坐标的情况;过点M 作x 轴的垂线、过点B 作y 轴的垂线,利用等腰直角三角形的性质及全等三角形的判定和性质求得点M 的坐标即可.【详解】(1)∵AB ∥x 轴,△APB 为等腰直角三角形,∴∠PAB =∠PBA =∠APO =45°,∴△AOP 为等腰直角三角形,∴OA =OP =4.∴t =4÷1=4(秒),故t 的值为4.(2)如图2,∠OA ′B 的度数不变,∠OA ′B =45°,∵点A 关于x 轴的对称点为A ′,∴PA =PA ',又AP =PB ,∴PA =PA '=PB ,∴∠PAA '=∠PA 'A ,∠PBA '=∠PA 'B ,又∵∠PAB +∠PBA =90°,∴∠PAA '+∠PA 'A +∠PA 'B +∠PBA '=180()PAB PBA ∠∠︒-+180=︒-90°=90°,∴∠AA 'B =45°,即∠OA 'B =45°;(3)当t =3时,M 、P 、B 为顶点的三角形和△ABP 全等,①如图3,若△ABP ≌△MBP ,则AP =PM ,过点M 作MD ⊥OP 于点D ,∵∠AOP =∠PDM ,∠APO =∠DPM ,∴△AOP ≌△MDP (AAS ),∴OA =DM =4,OP =PD =3,∴M 的坐标为:(6,-4).②如图4,若△ABP ≌△MPB ,则AB PM =,过点M 作M E ⊥x 轴于点E ,过点B 作BG ⊥x 轴于点G ,过点B 作BF ⊥y 轴于点F ,∵△APB 为等腰直角三角形,则△MPB 也为等腰直角三角形,∴∠BAP =∠MPB=45︒,PA PB =∵139023∠+∠=︒=∠+∠, ∴12∠=∠∴Rt AOP Rt PGB ≅∴34BG OP PG AO ====,∵BG ⊥x 轴BF ,⊥y 轴∴四边形BGOF 为矩形,∴3OP BG ==,则431AF OA OF =-=-=347BF OG OP PG ==+=+=在Rt ABF 和Rt PME 中∠BAF =45︒+1∠,∠MPE =45︒+2∠,∴∠BAF =∠MPE∵AB PM =∴Rt ABF Rt PME ≅∴71ME BF PE AF ====,∴M 的坐标为:(4,7),③如图5,若△ABP ≌△MPB ,则AB PM =,过点M 作M E ⊥x 轴于点D ,过点B 作BG ⊥x 轴于点E ,过点B 作BF ⊥y 轴于点F ,∵△APB 为等腰直角三角形,则△MPB 也为等腰直角三角形,∴∠BAP =∠MPB=45︒,PA PB =∵139023∠+∠=︒=∠+∠,∴12∠=∠∴Rt AOP Rt PEB ≅∴34BE OP PE AO ====,∵BE ⊥x 轴BF ,⊥y 轴∴四边形BEOF 为矩形,∴3OP BG ==,则431AF OA OF =-=-=347BF OE OP PE ==+=+=在Rt ABF 和Rt PMD 中∵BF ⊥y 轴∴42∠=∠∵42ABF PMD ∠∠∠+=∠+∴ABF PMD ∠∠=∵AB PM =∴Rt ABF Rt PMD ≅∴17MD AF PD BF ====,∴M 的坐标为:(10,﹣1).综合以上可得点M 的坐标为:(6,﹣4),(4,7),(10,﹣1).【点睛】本题考查了等腰三角形的性质,全等三角形的判定和性质,矩形的判定和性质,第(3)小题要注意分类讨论,作此类型的题要结合图形,构建适当的辅助线,寻找相等的量才能得出结论.二、八年级数学轴对称解答题压轴题(难)6.如图,在平面直角坐标系中,已知点A(2,3),点B(﹣2,1).(1)请运用所学数学知识构造图形求出AB的长;(2)若Rt△ABC中,点C在坐标轴上,请在备用图1中画出图形,找出所有的点C后不用计算写出你能写出的点C的坐标;(3)在x轴上是否存在点P,使PA=PB且PA+PB最小?若存在,就求出点P的坐标;若不存在,请简要说明理由(在备用图2中画出示意图).【答案】(1)AB=52)C2(0,7),C4(0,-4),C5(-1,0)、C6(1,0);(3)不存在这样的点P.【解析】【分析】(1)如图,连结AB,作B关于y轴的对称点D,利用勾股定理即可得出AB;(2)分别以A,B,C为直角顶点作图,然后直接得出符合条件的点的坐标即可;(3)作AB的垂直平分线l3,则l3上的点满足PA=PB,作B关于x轴的对称点B′,连结AB′,即x轴上使得PA+PB最小的点,观察作图即可得出答案.【详解】解:(1)如图,连结AB ,作B 关于y 轴的对称点D ,由已知可得,BD =4,AD =2.∴在Rt △ABD 中,AB =25(2)如图,①以A 为直角顶点,过A 作l 1⊥AB 交x 轴于C 1,交y 轴于C 2 .②以B 为直角顶点,过B 作l 2⊥AB 交x 轴于C 3,交y 轴于C 4.③以C 为直角顶点,以AB 为直径作圆交坐标轴于C 5、 C 6、 C 7.(用三角板画找出也可) 由图可知,C 2(0,7),C 4(0,-4),C 5(-1,0)、 C 6(1,0).(3)不存在这样的点P .作AB 的垂直平分线l 3,则l 3上的点满足PA =PB ,作B 关于x 轴的对称点B ′,连结AB ′,由图可以看出两线交于第一象限.∴不存在这样的点P .【点睛】本题考查了勾股定理,构造直角三角形,中垂线和轴对称--路径最短问题的综合作图分析,解题的关键是学会分类讨论,学会画好图形解决问题.7.(1)问题发现:如图1, ABC 和ADE 均为等边三角形,点B D E 、、在同一直线上,连接.CE①求证: BD CE =; ②求BEC ∠的度数.(2)拓展探究:如图2, AB C 和ADE 均为等腰直角三角形,90BAC DAE ∠=∠=︒,点B D E 、、在同一直线上AF ,为ADE 中DE 边上的高,连接.CE①求BEC ∠的度数:②判断线段AF BE CE 、、之间的数量关系(直接写出结果即可).()3解决问题:如图3,AB 和ADE 均为等腰三角形,BAC DAE n ∠=∠=,点B D E 、、在同一直线上,连接CE .求AEC ∠的度数(用含n 的代数式表示,直接写出结果即可).【答案】(1)①证明见解析;②60°;(2)①90°;②BE =CE+2AF ;(3)∠AEC =90°+12n ︒. 【解析】【分析】(1)根据等边三角形的性质得AB=AC,AD=AE, ∠DAE=∠BAC=60°,根据SAS 进一步证明△BAD ≌△CAE,依据其性质可得 BD CE =,再根据对应角相等求出BEC ∠的度数;(2)根据等腰直角三角形的性质得AB=AC,AD=AE, ∠DAE=∠BAC=90°,根据SAS 进一步证明△BAD ≌△CAE ,根据对应角相等求出BEC ∠的度数;因为DE=2AF,BD=EC,结合线段的和差关系得出结论;(3)根据等腰三角形的性质得AB=AC,AD=AE, ∠DAE=∠BAC=n °,根据SAS 进一步证明△BAD ≌△CAE ,根据对应角相等求出得出∠ADB=BEC ∠的度数,结合内角和用n 表示∠ADE 的度数,即可得出结论.【详解】(1)①∵△ABC和△ADE均为等边三角形(如图1),∴ AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAC-∠DAC=∠DAE-∠DAC,∴∠BAD=∠CAE.∴△BAD≌△CAE(SAS)∴ BD=CE.②由△CAE≌△BAD,∴∠AEC=∠ADB=180°-∠ADE=120°.∴∠BEC=∠AEC-∠AED=120°-60°=60°.(2)①∵△ABC和△ADE均为等腰直角三角形(如图2),∴ AB=AC,AD=AE,∠ADE=∠AED=45°,∵∠BAC=∠DAE=90°,∴∠BAC-∠DAC=∠DAE-∠DAC,∴∠BAD=∠CAE.∴△BAD≌△CAE(SAS).∴ BD=CE,∠AEC=∠ADB=180°-∠ADE=135°.∴∠BEC=∠AEC-∠AED=135°-45°=90°.② BE=CE+2AF.(3)如图3:∠AEC=90°+12n ,理由如下,∵△ABC和△ADE均为等腰直角三角形,∴ AB=AC,AD=AE,∠ADE=∠AED=n°,∴∠BAC-∠DAC=∠DAE-∠DAC,∴∠BAD=∠CAE.∴△BAD≌△CAE(SAS).∴ ∠AEC=∠ADB=180°-∠ADE=180°-1801809022n n . ∴∠AEC=90°+12n ︒.【点睛】本题考查等边三角形、等腰直角三角形的性质及旋转型三角形全等,掌握全等常见模型及由特殊到一般找出解题规律是解答此题的关键.8.在等边ABC ∆中,点O 在BC 边上,点D 在AC 的延长线上且OA OD =.(1)如图1,若点O 为BC 中点,求COD ∠的度数;(2)如图2,若点O 为BC 上任意一点,求证AD AB BO =+.(3)如图3,若点O 为BC 上任意一点,点D 关于直线BC 的对称点为点P ,连接,AP OP ,请判断AOP ∆的形状,并说明理由.【答案】(1)30;(2)见解析;(3)AOP ∆是等边三角形,理由见解析.【解析】【分析】(1)根据三角形的等边三角形的性质可求1302CAO BAC ∠=∠=︒且,90AO BC AOC ⊥∠=︒,根据OA OD =,等腰三角形的性质得到D ∠的度数,再通过内角和定理求AOD ∠,即可求出COD ∠的度数.(2)过O 作//OE AB ,OE 交AD 于E 先证明COE ∆为等边三角形,再根据等边三角形的性质求120AEO ∠=︒,120DCO ∠=︒,再证明()AOE DOC AAS ∆≅∆,得到CD EA =,再通过证明得到EA BO =、AB AC =通过,又因为AD AC CD =+,通过等量代换即可得到答案.(3)通过作辅助线先证明()ODF OPF SAS ∆≅∆,得到OP OD =,又因为OA OD =,得到AO=OP,证得AOP∆为等腰三角形,如解析辅助线,由(2)可知得AOE DOC∆≅∆得到AOE DOC∠=∠,通过角的关系得到60AOP COE∠=∠=°,即可证得AOP∆是等边三角形.【详解】(1)∵ABC∆为等边三角形∴60BAC∠=︒∵O为BC中点∴1302CAO BAC∠=∠=︒且,90AO BC AOC⊥∠=︒∵OA OD=∴AOD∆中,30D CAO∠=∠=︒∴180120AOD D CAO∠=︒-∠-∠=︒∴30COD AOD AOC∠=∠-∠=︒(2)过O作//OE AB,OE交AD于E∵//OE AB∴60EOC ABC∠=∠=︒60CEO CAB∠=∠=︒∴COE∆为等边三角形∴OE OC CE==180120AEO CEO∠=︒-∠=︒180120DCO ACB∠=︒-∠=︒又∵OA OD=∴EAO CDO∠=∠在AOE∆和COD∆中AOE DOCEAO CDOOA OD∠=∠⎧⎪∠=∠⎨⎪=⎩∴()AOE DOC AAS∆≅∆∴CD EA=∵EA AC CE=-BO BC CO=-∴EA BO=∴BO CD=,∵AB AC=,AD AC CD=+∴AD AB BO=+(3)AOP∆为等边三角形证明过程如下:连接,PC PD,延长OC交PD于F ∵P D、关于OC对称∴,90 PF DF PFO DFO=∠=∠=︒在ODF∆与OPF∆中,PF DFPFO DFOOF OF=⎧⎪∠=∠⎨⎪=⎩∴()ODF OPF SAS∆≅∆∴OP OD=,POC DOC∠=∠∵OA OD=∴AO=OP∴AOP∆为等腰三角形过O作//OE AB,OE交AD于E 由(2)得AOE DOC∆≅∆∴AOE DOC∠=∠又∵POC DOC∠=∠∴AOE POF∠=∠∴AOE POE POF POE ∠+∠=∠+∠即AOP COE ∠=∠∵AB ∥OE ,∠B=60°∴60COE B ∠=∠=︒∴60AOP COE ∠=∠=°∴AOP ∆是等边三角形. 【点睛】本题是考查了全等三角形和等边三角形的综合性问题,灵活应用全等三角形的性质得到边与角的关系,以及等边三角形的性质是解答此题的关键.9.数学课上,张老师举了下面的例题:例1 等腰三角形ABC 中,110A ∠=,求B 的度数.(答案:35)例2 等腰三角形ABC 中,40A ∠=,求B 的度数.(答案:40或70或100) 张老师启发同学们进行变式,小敏编了如下两题:变式1: 等腰三角形ABC 中,∠A=100°,求B 的度数.变式2: 等腰三角形ABC 中,∠A= 45° ,求B 的度数.(1)请你解答以上两道变式题.(2)解(1)后,小敏发现,A ∠的度数不同,得到B 的度数的个数也可能不同.如果在等腰三角形ABC 中,设A x ∠=,当B 只有一个度数时,请你探索x 的取值范围.【答案】(1)变式1: 40°;变式2: 90°或67.5°或45°;(2)90°≤<180°或x=60°【解析】【分析】(1)根据等腰三角形的性质和三角形内角和定理,分类讨论,即可得到答案;(2)在等腰三角形ABC 中,当B 只有一个度数时,A ∠只能作为顶角时,或∠A=60°,进而可得到答案.【详解】变式1:∵等腰三角形ABC 中,∠A=100°,∴∠A 为顶角,∠B 为底角,∴∠B =1801002-=40°; 变式2: ∵等腰三角形ABC 中,∠A= 45° ,∴当AB=BC 时,∠B =90° ,当AB=AC 时, ∠B =67.5° ,当BC=AC 时 ∠B =45° ;(2)等腰三角形ABC 中,设A x ∠=,当90°≤x <180°,∠A 为顶角,此时,B 只有一个度数,当x=60°时,三角形ABC 是等边三角形,此时,B 只有一个度数,综上所述:90°≤x <180°或x=60°【点睛】本题主要考查等腰三角形的性质,分类讨论思想的应用,是解题的关键.10.如图,在△ABC 中,AB =AC =2,∠B =40°,点D 在线段BC 上运动(D 不与B 、C 重合),连接AD ,作∠ADE =40°,DE 交线段AC 于E 点.(1)当∠BDA =115°时,∠BAD =___°,∠DEC =___°;(2)当DC 等于多少时,△ABD 与△DCE 全等?请说明理由;(3)在点D 的运动过程中,△ADE 的形状可以是等腰三角形吗?若可以,请直接写出∠BDA 的度数;若不可以,请说明理由.【答案】(1) 25,115;(2)当DC =2时,△ABD ≌△DCE ,理由见解析;(3)可以;当∠BDA 的度数为110°或80°时,△ADE 的形状是等腰三角形.【解析】【分析】(1)根据三角形内角和定理,将已知数值代入即可求出BAD ∠,根据平角的定义,可求出EDC ∠的度数,根据三角形内和定理,即可求出DEC ∠.(2)当AB DC =时,利用AAS 可证明ABD DCE ∆≅∆,即可得出2AB DC ==. (3)假设ADE ∆是等腰三角形,分为三种情况讨论:①当AD AE =时,40ADE AED ∠=∠=︒,根据AED C ∠>∠,得出此时不符合;②当DA DE =时,求出70DAE DEA ∠=∠=︒,求出BAC ∠,根据三角形的内角和定理求出BAD ∠,根据三角形的内角和定理求出BDA ∠即可;③当EA ED =时,求出DAC ∠,求出BAD ∠,根据三角形的内角和定理求出ADB ∠.【详解】(1)在BAD 中,40B ∠= ,115BDA ∠=,1801804011525BAD ABD BDA ∴∠=︒-∠-∠=︒-︒-︒=︒,1801801154025EDC ADB ADE ∠=︒-∠-∠=︒-︒-︒=︒.AB AC =,40B ∠=,40B C ∴∠=∠=,1801804025115C E DC D E C ︒-∠-∠=︒-︒-︒=∠=︒.故答案为:25,115;(2)当2DC =时,ABD DCE ∆≅∆.理由如下:40C ∠=,140EDC DEC ∴∠+∠=︒,又40ADE ∠=,140ADB EDC ∴∠+∠=︒,ADB DEC ∴∠=∠.在ABD △和DCE ∆中,B C ∠=∠,ADB DEC ∠=∠,当AB DC =时,()ABD DCE AAS ∆≅∆,2AB DC ∴==;(3)AB AC =,40B C ∴∠=∠=︒,分三种情况讨论:①当AD AE =时,40ADE AED ∠=∠=︒,AED C ∠>∠,∴此时不符合; ②当DA DE =时,即1(18040)702DAE DEA ∠=∠=︒-︒=︒,1804040100BAC ∠=︒-︒-︒=︒,1007030BAD ∴∠=︒-︒=︒;1803040110BDA ∴∠=︒-︒-︒=︒;③当EA ED =时,40ADE DAE ∠=∠=︒,1004060BAD ∴∠=︒-︒=︒,180604080BDA ∴∠=︒-︒-︒=︒;∴当110ADB ∠=︒或80︒时,ADE ∆是等腰三角形.【点睛】本题考查了学生对等腰三角形的判定与性质,全等三角形的判定与性质,三角形内角和定理等知识点的理解和掌握,此题涉及到的知识点较多,综合性较强.三、八年级数学整式的乘法与因式分解解答题压轴题(难)11.阅读下列材料:利用完全平方公式,可以将多项式2(0)ax bx c a ++≠变形为2()a x m n ++的形式,我们把这种变形方法,叫做配方法.运用配方法及平方差公式能对一些多项式进行因式分解.例如:22222111111251151151124112422242222x x x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++=++-+=+-=+++- ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭根据以上材料,解答下列问题:(1)用配方法将281x x +-化成2()x m n ++的形式,则281=x x +- ________; (2)用配方法和平方差公式把多项式228x x --进行因式分解;(3)对于任意实数x ,y ,多项式222416x y x y +--+的值总为______(填序号).①正数②非负数 ③ 0【答案】(1)2(4)17x +-;(2)(2)(4)x x +-;(3)①【解析】【分析】(1)根据材料所给方法解答即可;(2)材料所给方法进行解答即可;(3)局部进行因式分解,最后写成非负数的积的形式即可完成解答.【详解】解:(1)281x x +-=2816116x x ++--2(4)17x +-.(2)原式=22118x x -+--=2(1)9x --=(13)(13)x x -+--=(2)(4)x x +-.(3)222416x y x y +--+=()()22214411x x y y -++-++=()()221211x y -+-+>11故答案为①.【点睛】本题考查了配方法,根据材料学会配方法并灵活运用配方法解题是解答本题的关键.12.若一个正整数x 能表示成22a b -(,a b 是正整数,且a b >)的形式,则称这个数为“明礼崇德数”,a 与b 是x 的一个平方差分解. 例如:因为22532=-,所以5是“明礼崇德数”,3与2是5的平方差分解;再如:22222222()M x xy x xy y y x y y =+=++-=+-(,x y 是正整数),所以M 也是“明礼崇德数”,()x y +与y 是M 的一个平方差分解.(1)判断:9_______“明礼崇德数”(填“是”或“不是”);(2)已知2246N x y x y k =-+-+(,x y 是正整数,k 是常数,且1x y >+),要使N 是“明礼崇德数”,试求出符合条件的一个k 值,并说明理由;(3)对于一个三位数,如果满足十位数字是7,且个位数字比百位数字大7,称这个三位数为“七喜数”.若m 既是“七喜数”,又是“明礼崇德数”,请求出m 的所有平方差分解.【答案】(1)是;(2)k=-5;(3)m=279,222794845=-,222792011=-.【解析】【分析】(1)根据9=52-42,确定9是“明礼崇德数”;(2)根据题意分析N 应是两个完全平方式的差,得到k=-5,将k=-5代入计算即可将N 平方差分解,得到答案;(3)确定“七喜数”m 的值,分别将其平方差分解即可.【详解】(1)∵9=52-42,∴9是“明礼崇德数”,故答案为:是;(2)当k=-5时,N 是“明礼崇德数”,∵当k=-5时,22465N x y x y =-+--,=224649x y x y -+-+-,=22(44)(69)x x y y ++-++,=22(2)(3)x y +-+,=(23)(23)x y x y ++++--=(5)(1)x y x y ++--.∵,x y 是正整数,且1x y >+,∴N 是正整数,符合题意,∴当k=-5时,N 是“明礼崇德数”;(3)由题意得:“七喜数”m=178或279,设m=22a b -=(a+b )(a-b ),当m=178时,∵178=2⨯89,∴892a b a b +=⎧⎨-=⎩,得45.543.5a b =⎧⎨=⎩(不合题意,舍去); 当m=279时,∵279=3⨯93=9⨯31,∴①933a b a b +=⎧⎨-=⎩,得4845a b =⎧⎨=⎩,∴222794845=-, ②319a b a b +=⎧⎨-=⎩,得2011a b =⎧⎨=⎩,∴222792011=-, ∴既是“七喜数”又是“明礼崇德数”的m 是279,222794845=-,222792011=-.【点睛】此题考查因式分解,熟练掌握平方差公式和完全平方公式是解此题的前提,(3)是此题的难点,解题时需根据百位与个位数字的关系确定具体的数据,再根据“明礼崇德数”的要求进行平方差分解.13.图①是一个长为2m 、宽为2n 的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)请用两种不同的方法求图②中阴影部分的面积: 方法1: 方法2:(2)观察图②请你写出下列三个代数式:(m+n )2,(m ﹣n )2,mn 之间的等量关系. ;(3)根据(2)题中的等量关系,解决:已知:a ﹣b=5,ab=﹣6,求:(a+b )2的值;【答案】(1)(m-n)2;(m+n)2-4mn;(2)(m-n)2=(m+n)2-4mn;(3)1.【解析】【分析】(1)方法1:表示出阴影部分的边长,然后利用正方形的面积公式列式;方法2:利用大正方形的面积减去四周四个矩形的面积列式;(2)根据不同方法表示的阴影部分的面积相同解答;(3)根据(2)的结论整体代入进行计算即可得解.【详解】解:(1)方法1:∵阴影部分的四条边长都是m-n,是正方形,∴阴影部分的面积=(m-n)2方法2:∵阴影部分的面积=大正方形的面积减去四周四个矩形的面积∴阴影部分的面积=(m+n)2-4mn;(2)根据(1)中两种计算阴影部分的面积方法可知(m-n)2=(m+n)2-4mn;(3)由(2)可知(a+b)2=(a-b)2+4ab,∵a-b=5,ab=-6,∴(a+b)2=(a-b)2+4ab=52+4×(-6)=25-24=1.【点睛】本题考查几何图形与完全平方公式,应从整体和部分两方面来理解完全平方公式的几何意义;主要围绕图形面积展开分析.14.阅读理解题:定义:如果一个数的平方等于﹣1,记为i2=﹣1,这个数i叫做虚数单位.那么形如a+bi (a,b为实数)的数就叫做复数,a叫这个复数的实部,b叫做这个复数的虚部,它的加,减,乘法运算与整式的加,减,乘法运算类似.例如计算:(2+i)+(3﹣4i)=5﹣3i.(1)填空:i3=,2i4=;(2)计算:①(2+i)(2﹣i);②(2+i)2;(3)若两个复数相等,则它们的实部和虚部必须分别相等,完成下列问题:已知:(x+3y)+3i=(1﹣x)﹣yi,(x,y为实数),求x,y的值.(4)试一试:请你参照i2=﹣1这一知识点,将m2+25(m为实数)因式分解成两个复数的积.【答案】(1)i;2(2)①5②3+4i(3)x=5,y=﹣3(4)m2+25=(m+5i)(m﹣5i)【分析】(1)根据同底数幂的乘法法则及2i 的概念直接运算;(2)利用平方差、完全平方公式把原式展开,根据21i =-计算即可;(3)根据虚数定义得出方程组,解方程组即可;(4)根据21i =- 将25转化为2(-5)i ,再利用平方差公式进行因式分解即可。
八年级数学上册全册全套试卷(培优篇)(Word版 含解析)

八年级数学上册全册全套试卷(培优篇)(Word 版 含解析)一、八年级数学三角形填空题(难)1.如图,ABC ∆的面积为1,第一次操作:分别延长AB ,BC ,CA 至点111,,A B C ,使111,,A B AB B C BC C A CA ===,顺次连接111,,A B C ,得到111A B C ∆;第二次操作:分别延长111111,,A B B C C A 至点222,,A B C ,使2111A B A B =,2111B C B C =,2111C A C A =,顺次连接222,,A B C ,得到222A B C ∆,…;按此规律,要使得到的三角形的面积超过2020,最少需经过__________次操作.【答案】4【解析】【分析】连接111,,AC B A C B ,根据两个三角形等底同高可得111111111,C A B C AB A B C A BC B C A B CA ABC S S S S S S S ======从而得出第一次操作:11177A B C ABC S S ∆∆==<2020;同理可得第二次操作22211127749A B C A B C S S ∆∆===<2020……直至第四次操作4443334772401A B C A B C S S ∆∆===>2020,即可得出结论.【详解】解:连接111,,AC B A C B∵111,,A B AB B C BC C A CA ===根据等底同高可得:111111111,,C A B C AB ABC A B C A BC ABC B C A B CA ABC S S S S SS S S S ====== ∴111111111,C A B C AB A B C A BC B C A B CA ABC S S S S S S S ======∴第一次操作:11177A B C ABC S S ∆∆==<2020同理可得第二次操作22211127749A B C A B C S S ∆∆===<2020第三次操作333222377343A B C A B C S S ∆∆===<2020第四次操作4443334772401A B C A B C S S ∆∆===>2020故要使得到的三角形的面积超过2020,最少需经过4次操作,故答案为:4.【点睛】此题考查的是三角形的面积关系和探索规律,掌握两个三角形等底同高时,面积相等是解决此题的关键.2.某多边形内角和与外角和共1080°,则这个多边形的边数是__________.【答案】6【解析】∵多边形内角和与外角和共1080°,∴多边形内角和=1080°−360°=720°,设多边形的边数是n ,∴(n−2)×180°=720°,解得n=6.故答案为6.点睛:先根据多边形的外角和为360°求出其内角和,再根据多边形内角和定理即可求出多边形的边数.3.如图所示,小明从A 点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…,照这样下去,他第一次回到出发地A 点时,(1)左转了____次;(2)一共走了_____米.【答案】11 120【解析】∵360÷30=12,∴他需要走12−1=11次才会回到原来的起点,即一共走了12×10=120米.故答案为11,120.4.图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5= 度.【答案】360°.【解析】【分析】根据多边形的外角和等于360°解答即可.【详解】由多边形的外角和等于360°可知,∠1+∠2+∠3+∠4+∠5=360°,故答案为360°.【点睛】本题考查的是多边形的内角和外角,掌握多边形的外角和等于360°是解题的关键.5.如图,在△ABC中,∠ABC、∠ACB的平分线BE、CD相交于点F,∠A=60°,则∠BFC=______.【答案】120【解析】【分析】根据角平分线的定义可得出∠CBF=12∠ABC、∠BCF=12∠ACB,再根据内角和定理结合∠A=60°即可求出∠BFC的度数.【详解】∵∠ABC、∠ACB的平分线BE、CD相交于点F,∴∠CBF=12∠ABC,∠BCF=12∠ACB.∵∠A=60°,∴∠ABC+∠ACB=180°﹣∠A=120°,∴∠BFC=180°﹣(∠CBF+BCF)=180°﹣12(∠ABC+∠ACB)=120°.故答案为120°.【点睛】本题考查了三角形内角和定理,根据角平分线的定义结合三角形内角和定理求出角的度数是解题的关键.6.如图所示,将△ABC沿着DE翻折,若∠1+∠2=80°,则∠B=_____度.【答案】40.【解析】【分析】利用三角形的内角和和四边形的内角和即可求得.【详解】∵△ABC沿着DE翻折,∴∠1+2∠BED=180°,∠2+2∠BDE=180°,∴∠1+∠2+2(∠BED+∠BDE)=360°,而∠1+∠2=80°,∠B+∠BED+∠BDE=180°,∴80°+2(180°﹣∠B)=360°,∴∠B=40°.故答案为:40°.【点睛】本题考查图形的折叠变化及三角形的内角和定理.关键是要理解折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,只是位置变化.二、八年级数学三角形选择题(难)7.如图,在△ABC中,点M、N是∠ABC与∠ACB三等分线的交点.若∠A=60°,则∠BMN的度数为( )A.45°B.50°C.60°D.65°【答案】B【解析】分析:过点N作NG⊥BC于G,NE⊥BM于E,NF⊥CM于F,根据角平分线上的点到角的两边的距离相等可得NE=NG=NF,再根据到角的两边距离相等的点在角的平分线上判断出MN平分∠BMC,然后根据三角形内角和等于180°求出∠ABC+∠ACB,再根据角的三等分求出∠MBC+∠MCB的度数,然后利用三角形内角和定理求出∠BMC的度数,从而得解.详解:如图,过点N作NG⊥BC于G,NE⊥BM于E,NF⊥CM于F,∵∠ABC的三等分线与∠ACB的三等分线分别交于点M、N,∴BN平分∠MBC,CN平分∠MCB,∴NE=NG,NF=NG,∴NE=NF,∴MN平分∠BMC,∴∠BMN=12∠BMC,∵∠A=60°,∴∠ABC+∠ACB=180°−∠A=180°−60°=120°,根据三等分,∠MBC+∠MCB=23(∠ABC+∠ACB)=23×120°=80°.在△BMC中,∠BMC=180°−(∠MBC+∠MCB)=180°−80°=100°.∴∠BMN=12×100°=50°;故选:B.点睛:本题考查了三角形的内角和定理:三角形内角和为180°;角平分线的性质:角平分线上的点到角两边的距离相等.熟记性质和定理是解本题的关键.8.适合下列条件的△ABC中, 直角三角形的个数为①111345a b c,,;===②6a=,∠A=45°;③∠A=32°, ∠B=58°;④72425a b c ===,,;⑤22 4.a b c ===,,⑥::3:4:5a b c =⑦::12:13:15A B C ∠∠∠=⑹5,25,5a b c === A .2个B .3个C .4个D .5个【答案】C【解析】 根据勾股定理的逆定理,可分别求出各边的平方,然后计算判断:222111+345≠()()(),故①不能构成直角三角形;当a=6,∠A=45°时,②不足以判定该三角形是直角三角形;根据直角三角形的两锐角互余,可由∠A+∠B=90°,可知③是直角三角形;根据72=49,242=576,252=625,可知72+242=252,故④能够成直角三角形;由三角形的三边关系,2+2=4可知⑤不能构成三角形;令a=3x ,b=4x ,c=5x ,可知a 2+b 2=c 2,故⑥能够成直角三角形;根据三角形的内角和可知⑦不等构成直角三角形;由a 2=5,b 2=20,c 2=25,可知a 2+b 2=c 2,故⑧能够成直角三角形.故选:C.点睛:此题主要考查了直角三角形的判定,解题关键是根据角的关系,两锐角互余,和边的关系,即勾股定理的逆定理,可直接求解判断即可,比较简单.9.如图,直线a ∥b ,若∠1=50°,∠3=95°,则∠2的度数为( )A .35°B .40°C .45°D .55°【答案】C【解析】【分析】 根据三角形的一个外角等于与它不相邻的两个内角的和,得到∠4的度数,再根据平行线的性质,即可得出∠2的度数.【详解】解:如图,根据三角形外角性质,可得∠3=∠1+∠4,∴∠4=∠3-∠1=95°-50°=45°,∵a∥b,∴∠2=∠4=45°.故选C.【点睛】本题考查了平行线的性质,以及三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并准确识图是解题的关键.10.一个多边形的内角和比它的外角和的2倍还大180°,这个多边形的边数为()A.7 B.8 C.9 D.10【答案】A【解析】设这个多边形的边数为x,根据题意可得:x-=⨯+,180(2)2360180x=.解得:7故选A.11.如图,△ABC的角平分线CD、BE相交于F,∠A=90°,EG∥BC,且CG⊥EG于G,下列结论:①∠CEG=2∠DCB;②∠DFB=∠CGE;③∠ADC=∠GCD;④CA平分∠BCG;其中正确的个数是()A.1B.2C.3D.4【答案】C【解析】【分析】根据平行线、角平分线、垂直的性质及三角形内角和定理依次判断即可得出答案.【详解】①∵EG∥BC,∴∠CEG=∠ACB.又∵CD是△ABC的角平分线,∴∠CEG=∠ACB=2∠DCB,故正确;④无法证明CA平分∠BCG,故错误;③∵∠A=90°,∴∠ADC+∠ACD=90°.∵CD平分∠ACB,∴∠ACD=∠BCD,∴∠ADC+∠BCD=90°.∵EG∥BC,且CG⊥EG,∴∠GCB=90°,即∠GCD+∠BCD=90°,∴∠ADC=∠GCD,故正确;②∵∠EBC+∠ACB=∠AEB,∠DCB+∠ABC=∠ADC,∴∠AEB+∠ADC=90°+(∠ABC+∠ACB)=135°,∴∠DFE=360°﹣135°﹣90°=135°,∴∠DFB=45°=∠CGE,∴∠CGE=2∠DFB,∴∠DFB=∠CGE,故正确.故选C.点睛:本题主要考查的是三角形内角和定理,熟知直角三角形的两锐角互余是解答此题的关键.12.如图,将一张含有30角的三角形纸片的两个顶点叠放在矩形的两条对边上,若∠的大小为()∠=,则1244α-A.14B.16C.90α-D.44【答案】A【解析】分析:依据平行线的性质,即可得到∠2=∠3=44°,再根据三角形外角性质,可得∠3=∠1+30°,进而得出结论.详解:如图,∵矩形的对边平行,∴∠2=∠3=44°,根据三角形外角性质,可得:∠3=∠1+30°,∴∠1=44°﹣30°=14°.故选A.点睛:本题主要考查了平行线的性质以及三角形外角性质的运用,解题时注意:两直线平行,同位角相等.三、八年级数学全等三角形填空题(难)13.如图,在ABC中,点A的坐标为()0,1,点B的坐标为()0,4,点C的坐标为()4,3,点D在第二象限,且ABD与ABC全等,点D的坐标是______.【答案】(-4,2)或(-4,3)【解析】【分析】【详解】把点C向下平移1个单位得到点D(4,2),这时△ABD与△ABC全等,分别作点C,D关于y轴的对称点(-4,3)和(-4,2),所得到的△ABD与△ABC全等.故答案为(-4,2)或(-4,3).14.如图,△ABC是等边三角形,AE=CD,AD、BE相交于点P,BQ⊥DA于Q,PQ=3,EP=1,则DA的长是________.【答案】7【解析】试题解析:∵△ABC为等边三角形,∴AB=CA,∠BAE=∠ACD=60°;又∵AE=CD,在△ABE和△CAD中,AB CABAE ACDAE CD⎧⎪∠∠⎨⎪⎩===∴△ABE≌△CAD;∴BE=AD,∠CAD=∠ABE;∴∠BPQ=∠ABE+∠BAD=∠BAD+∠CAD=∠BAE=60°;∵BQ⊥AD,∴∠AQB=90°,则∠PBQ=90°-60°=30°;∵PQ=3,∴在Rt△BPQ中,BP=2PQ=6;又∵PE=1,∴AD=BE=BP+PE=7.故答案为7.15.如图,在△ABC中,AB=AC,点D是BC的中点,点E是△ABC内一点,若∠AEB=∠CED=90°,AE=BE,CE=DE=2,则图中阴影部分的面积等于__________.【答案】4【解析】【分析】作DG⊥BE于G,CF⊥AE于F,可证△DEG≌△CEF,可得DG=CF,则是S△BDE=S△AEC,由D 是BC中点可得S△BED=2,即可求得阴影部分面积.【详解】作DG⊥BE于G,CF⊥AE于F,∴∠DGE=∠CFE=90°,∵∠AEB=∠DEC=90°,∴∠GED+∠DEF=90°,∠DEF+∠CEF=90°,∴∠GED=∠CEF,又∵DE=EC,∴△GDE≌△FCE,∴DG=CF,∵S△BED=12BE•DG,S△BED=12AE•CF,AE=BE,∴S△BED=S△BED,∵D是BC的中点,∴S△BDE=S△EDC=1222⨯⨯=2,∴S阴影=2+2=4,故答案为4.【点睛】本题考查了全等三角形的判定与性质,正确添加辅助线构造全等三角形是解题的关键.16.如图所示,∠E=∠F=90°,∠B=∠C,AE=AF,结论:①EM=FN;②AF∥EB;③∠FAN=∠EAM;④△ACN≌△ABM其中正确的有.【答案】①③④【解析】【分析】由∠E=∠F=90°,∠B=∠C,AE=AF,利用“AAS”得到△ABE与△ACF全等,根据全等三角形的对应边相等且对应角相等即可得到∠EAB与∠FAC相等,AE与AF相等,AB与AC相等,然后在等式∠EAB=∠FAC两边都减去∠MAN,得到∠EAM与∠FAN相等,然后再由∠E=∠F=90°,AE=AF,∠EAM=∠FAN,利用“ASA”得到△AEM与△AFN全等,利用全等三角形的对应边相等,对应角相等得到选项①和③正确;然后再∠C=∠B,AC=AB,∠CAN=∠BAM,利用“ASA”得到△ACN与△ABM全等,故选项④正确;若选项②正确,得到∠F与∠BDN相等,且都为90°,而∠BDN不一定为90°,故②错误.【详解】解:在△ABE和△ACF中,∠E=∠F=90°,AE=AF,∠B=∠C,∴△ABE≌△ACF,∴∠EAB=∠FAC,AE=AF,AB=AC,∴∠EAB-∠MAN=∠FAC-∠NAM,即∠EAM=∠FAN,在△AEM和△AFN中,∠E=∠F=90°,AE=AF,∠EAM=∠FAN,∴△AEM≌△AFN,∴EM=FN,∠FAN=∠EAM,故选项①和③正确;在△ACN和△ABM中,∠C=∠B,AC=AB,∠CAN=∠BAM(公共角),∴△ACN ≌△ABM ,故选项④正确;若AF ∥EB ,∠F=∠BDN=90°,而∠BDN 不一定为90°,故②错误,则正确的选项有:①③④.故答案为①③④17.如图,在平面直角坐标系xOy 中,点A 、B 分别在x 轴的正半轴、y 轴的正半轴上移动,点M 在第二象限,且MA 平分∠BAO ,做射线MB ,若∠1=∠2,则∠M 的度数是_______。
八年级数学上册全册全套试卷(培优篇)(Word版 含解析)

八年级数学上册全册全套试卷(培优篇)(Word版含解析)一、八年级数学全等三角形解答题压轴题(难)1.(1)如图1,在Rt△ABC 中,AB AC=,D、E是斜边BC上两动点,且∠DAE=45°,将△ABE绕点A逆时针旋转90后,得到△AFC ,连接DF.(1)试说明:△AED≌△AFD ;(2)当BE=3,CE=9时,求∠BCF 的度数和DE的长;(3)如图2,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,D是斜边BC所在直线上一点,BD=3,BC=8,求DE 2的长.【答案】(1)略(2)∠BCF=90° DE=5 (3)34或130【解析】试题分析:()1由ABE AFC≌,得到AE AF=,BAE CAF∠=∠,45,EAD∠=45,BAE CAD∴∠+∠=45,CAF CAD∴∠+∠=即45.DAF∠=EAD DAF∠=∠,从而得到.AED AFD≌()2由△AED AFD≌得到ED FD=,再证明90DCF∠=︒,利用勾股定理即可得出结论.()3过点A作AH BC⊥于H,根据等腰三角形三线合一得,14.2AH BH BC===1DH BH BD=-=或7,DH BH BD=+=求出AD的长,即可求得2DE.试题解析:()1ABE AFC≌,AE AF=,BAE CAF∠=∠,45,EAD∠=90,BAC∠=45,BAE CAD∴∠+∠=45,CAF CAD∴∠+∠=即45.DAF∠=在AED和AFD中,{AF AEEAF DAEAD AD,=∠=∠=.AED AFD∴≌()2AED AFD≌,ED FD∴=,,90.AB AC BAC =∠=︒45B ACB ∴∠=∠=︒,45ACF ,∠=︒ 90.BCF ∴∠=︒设.DE x =,9.DF DE x CD x ===- 3.FC BE ==222,FC DC DF +=()22239.x x ∴+-=解得: 5.x =故 5.DE = ()3过点A 作AH BC ⊥于H ,根据等腰三角形三线合一得,1 4.2AH BH BC === 1DH BH BD =-=或7,DH BH BD =+= 22217AD AH DH =+=或65.22234DE AD ==或130.点睛:D 是斜边BC 所在直线上一点,注意分类讨论.2.如图,在ABC ∆中,90C ∠=︒,4cm AC BC ==,点D 是斜边AB 的中点.点E 从点B 出发以1cm/s 的速度向点C 运动,点F 同时从点C 出发以一定的速度沿射线CA 方向运动,规定当点E 到终点C 时停止运动.设运动的时间为x 秒,连接DE 、DF .(1)填空:ABC S ∆=______2cm ;(2)当1x =且点F 运动的速度也是1cm/s 时,求证:DE DF =;(3)若动点F 以3cm /s 的速度沿射线CA 方向运动,在点E 、点F 运动过程中,如果存在某个时间x ,使得ADF ∆的面积是BDE ∆面积的两倍,请你求出时间x 的值.【答案】(1)8;(2)见解析;(3)45或4. 【解析】【分析】(1)直接可求△ABC 的面积;(2)连接CD ,根据等腰直角三角形的性质可求:∠A=∠B=∠ACD=∠DCB=45°,即BD=CD ,且BE=CF ,即可证△CDF ≌△BDE ,可得DE=DF ;(3)分△ADF 的面积是△BDE 的面积的两倍和△BDE 与△ADF 的面积的2倍两种情况讨论,根据题意列出方程可求x 的值.【详解】解:(1)∵S △ABC =12⨯AC×BC ∴S △ABC =12×4×4=8(cm 2) 故答案为:8(2)如图:连接CD∵AC=BC ,D 是AB 中点∴CD 平分∠ACB又∵∠ACB=90°∴∠A=∠B=∠ACD=∠DCB=45°∴CD=BD依题意得:BE=CF∴在△CDF与△BDE中BE CFB DCABD CD=⎧⎪∠=∠⎨⎪=⎩∴△CDF≌△BDE(SAS)∴DE=DF(3)如图:过点D作DM⊥BC于点M,DN⊥AC于点N,∵AD=BD,∠A=∠B=45°,∠AND=∠DMB=90°∴△ADN≌△BDM(AAS)∴DN=DM当S△ADF=2S△BDE.∴12×AF×DN=2×12×BE×DM∴|4-3x|=2x∴x1=4,x2=45综上所述:x=45或4【点睛】本题考查了动点问题的函数图象,全等三角形的性质和判定,利用分类思想解决问题是本题的关键.3.如图(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm,点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动,他们的运动时间为t(s).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,请说明理由(2)判断此时线段PC和线段PQ的关系,并说明理由。
数学八年级上册 全册全套试卷(培优篇)(Word版 含解析)

数学八年级上册全册全套试卷(培优篇)(Word版含解析)一、八年级数学全等三角形解答题压轴题(难)1.在平面直角坐标系中,直线AB分别交x轴,y轴于A(a,0),B(0,b),且满足a2+b2+4a﹣8b+20=0.(1)求a,b的值;(2)点P在直线AB的右侧;且∠APB=45°,①若点P在x轴上(图1),则点P的坐标为;②若△ABP为直角三角形,求P点的坐标.【答案】(1)a=﹣2,b=4;(2)①(4,0);②P点坐标为(4,2),(2,﹣2).【解析】【分析】(1)利用非负数的性质解决问题即可.(2)①根据等腰直角三角形的性质即可解决问题.②分两种情形:如图2中,若∠ABP=90°,过点P作PC⊥OB,垂足为C.如图3中,若∠BAP=90°,过点P作PD⊥OA,垂足为D.分别利用全等三角形的性质解决问题即可.【详解】(1)∵a2+4a+4+b2﹣8b+16=0∴(a+2)2+(b﹣4)2=0∴a=﹣2,b=4.(2)①如图1中,∵∠APB=45°,∠POB=90°,∴OP=OB=4,∴P(4,0).故答案为(4,0).②∵a=﹣2,b=4∴OA=2OB=4又∵△ABP为直角三角形,∠APB=45°∴只有两种情况,∠ABP=90°或∠BAP=90°①如图2中,若∠ABP=90°,过点P作PC⊥OB,垂足为C.∴∠PCB=∠BOA=90°,又∵∠APB=45°,∴∠BAP=∠APB=45°,∴BA=BP,又∵∠ABO+∠OBP=∠OBP+∠BPC=90°,∴∠ABO=∠BPC,∴△ABO≌△BPC(AAS),∴PC=OB=4,BC=OA=2,∴OC=OB﹣BC=4﹣2=2,∴P(4,2).②如图3中,若∠BAP=90°,过点P作PD⊥OA,垂足为D.∴∠PDA=∠AOB=90°,又∵∠APB=45°,∴∠ABP=∠APB=45°,∴AP=AB,又∵∠BAD+∠DAP=90°,∠DPA+∠DAP=90°,∴∠BAD=∠DPA,∴△BAO≌△APP(AAS),∴PD=OA=2,AD=OB=4,∴OD=AD﹣0A=4﹣2=2,∴P(2,﹣2).综上述,P点坐标为(4,2),(2,﹣2).【点睛】本题属于三角形综合题,考查了等腰直角三角形的判定和性质,全等三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造全等三角形解决问题.2.(1)如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段EF,BE,FD之间的数量关系.小明同学探究的方法是:延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论是(直接写结论,不需证明);(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是BC,CD上的点,且∠EAF是∠BAD的二分之一,上述结论是否仍然成立,并说明理由.(3)如图3,四边形ABCD是边长为5的正方形,∠EBF=45°,直接写出三角形DEF的周长.【答案】(1)EF=BE+DF.(2)成立,理由见解析;(3)10.【解析】【分析】(1)如图1,延长FD到G,使得DG=DC,先证△ABE≌△ADG,得到AE=AG,∠BAE=∠DAG,进一步根据题意得∠EAF=∠GAF,再证明△AEF≌△AGF,得到EF=FG,最后运用线段的和差证明即可.(2)如图2,延长FD到点G.使DG=BE.连结AG,证得△ABE≌△ADG,得到AE=AG,∠BAE=∠DAG,再结合题意得到∠EAF=∠GAF,再证明△AEF≌△AGF,得到EF=FG,最后运用线段的和差证明即可.(3)如图3,延长DC到点G,截取CG=AE,连接BG,先证△AEB≌△CGB,得到BE=BG,∠ABE=∠CBG,结合已知条件得∴∠CBF+∠CBG=45°,再证明△EBF≌△GBF,得到EF=FG,最后求三角形的周长即可.【详解】解答:(1)解:如图1,延长FD到G,使得DG=DC在△ABE和△ADG中,∵DC DGB ADGAB AD=⎧⎪∠=∠⎨⎪=⎩∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=12∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD-∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,∵AE AGEAF GAFAF AF=⎧⎪∠=∠⎨⎪=⎩,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF;故答案为:EF=BE+DF.(2)解:结论EF=BE+DF仍然成立;理由:如图2,延长FD到点G.使DG=BE.连结AG在△ABE和△ADG中,∵DG BEB ADGAB AD=⎧⎪∠=∠⎨⎪=⎩,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=12∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD-∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,∵AE AGEAF GAF AF AF=⎧⎪∠=∠⎨⎪=⎩,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF;(3)解:如图3,延长DC到点G,截取CG=AE,连接BG,在△AEB与△CGB中,∵AE CGA BOG AF BF=⎧⎪∠=∠⎨⎪=⎩,∴△AEB≌△CGB(SAS),∴BE=BG,∠ABE=∠CBG.∵∠EBF=45°,∠ABC=90°,∴∠ABE+∠CBF=45°,∴∠CBF+∠CBG=45°.在△EBF与△GBF中,∵BE BGEBF GBF BF BF=⎧⎪∠=∠⎨⎪=⎩,∴△EBF≌△GBF(SAS),∴EF=GF,∴△DEF的周长=EF+ED+CF=AE+CF+DE+DF=AD+CD=10.【点睛】本题主要考查了三角形全等的判定和性质,灵活运用全等三角形的性质和判定是解答本题的关键.但本题分为三问,难度不断增加,对提升思维能力大有好处.3.(1)如图1,在Rt△ABC 中,AB AC=,D、E是斜边BC上两动点,且∠DAE=45°,将△ABE绕点A逆时针旋转90后,得到△AFC,连接DF .(1)试说明:△AED≌△AFD;(2)当BE=3,CE=9时,求∠BCF的度数和DE 的长;(3)如图2,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,D 是斜边BC所在直线上一点,BD=3,BC=8,求DE2的长.【答案】(1)略(2)∠BCF=90° DE=5 (3)34或130【解析】试题分析:()1由ABE AFC≌,得到AE AF=,BAE CAF∠=∠,45,EAD∠=45,BAE CAD∴∠+∠=45,CAF CAD∴∠+∠=即45.DAF∠=EAD DAF∠=∠,从而得到.AED AFD≌()2由△AED AFD≌得到ED FD=,再证明90DCF∠=︒,利用勾股定理即可得出结论.()3过点A作AH BC⊥于H,根据等腰三角形三线合一得,14.2AH BH BC===1DH BH BD=-=或7,DH BH BD=+=求出AD的长,即可求得2DE.试题解析:()1ABE AFC≌,AE AF=,BAE CAF∠=∠,45,EAD∠=90,BAC∠=45,BAE CAD∴∠+∠=45,CAF CAD∴∠+∠=即45.DAF∠=在AED和AFD中,{AF AEEAF DAEAD AD,=∠=∠=.AED AFD∴≌()2AED AFD≌,ED FD ∴=,,90.AB AC BAC =∠=︒45B ACB ∴∠=∠=︒,45ACF ,∠=︒ 90.BCF ∴∠=︒设.DE x =,9.DF DE x CD x ===- 3.FC BE ==222,FC DC DF +=()22239.x x ∴+-=解得: 5.x =故 5.DE = ()3过点A 作AH BC ⊥于H ,根据等腰三角形三线合一得,1 4.2AH BH BC === 1DH BH BD =-=或7,DH BH BD =+= 22217AD AH DH =+=或65.22234DE AD ==或130.点睛:D 是斜边BC 所在直线上一点,注意分类讨论.4.如图,∠BAD=∠CAE=90°,AB=AD ,AE=AC ,AF ⊥CB ,垂足为F .(1)求证:△ABC ≌△ADE ;(2)求∠FAE 的度数;(3)求证:CD=2BF+DE .【答案】(1)证明见解析;(2)∠FAE=135°;(3)证明见解析.【解析】【分析】(1)根据已知条件易证∠BAC=∠DAE ,再由AB=AD ,AE=AC ,根据SAS 即可证得△ABC ≌△ADE ;(2)已知∠CAE=90°,AC=AE ,根据等腰三角形的性质及三角形的内角和定理可得∠E=45°,由(1)知△BAC ≌△DAE ,根据全等三角形的性质可得∠BCA=∠E=45°,再求得∠CAF=45°,由∠FAE=∠FAC+∠CAE 即可得∠FAE 的度数;(3)延长BF 到G ,使得FG=FB ,易证△AFB ≌△AFG ,根据全等三角形的性质可得AB=AG ,∠ABF=∠G ,再由△BAC ≌△DAE ,可得AB=AD ,∠CBA=∠EDA ,CB=ED ,所以AG=AD ,∠ABF=∠CDA ,即可得∠G=∠CDA ,利用AAS 证得△CGA ≌△CDA ,由全等三角形的性质可得CG=CD ,所以CG=CB+BF+FG=CB+2BF=DE+2BF .【详解】(1)∵∠BAD=∠CAE=90°,∴∠BAC+∠CAD=90°,∠CAD+∠DAE=90°,∴∠BAC=∠DAE ,在△BAC 和△DAE 中,AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩, ∴△BAC ≌△DAE (SAS );(2)∵∠CAE=90°,AC=AE ,∴∠E=45°,由(1)知△BAC ≌△DAE ,∴∠BCA=∠E=45°,∵AF ⊥BC ,∴∠CFA=90°,∴∠CAF=45°,∴∠FAE=∠FAC+∠CAE=45°+90°=135°;(3)延长BF 到G ,使得FG=FB ,∵AF ⊥BG ,∴∠AFG=∠AFB=90°,在△AFB和△AFG中,BF FAFB AFGAF AFG=⎧⎪∠=∠⎨⎪=⎩,∴△AFB≌△AFG(SAS),∴AB=AG,∠ABF=∠G,∵△BAC≌△DAE,∴AB=AD,∠CBA=∠EDA,CB=ED,∴AG=AD,∠ABF=∠CDA,∴∠G=∠CDA,在△CGA和△CDA中,GCA DCACGA CDAAG AD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△CGA≌△CDA,∴CG=CD,∵CG=CB+BF+FG=CB+2BF=DE+2BF,∴CD=2BF+DE.【点睛】本题考查全等三角形的判定与性质,解决第3问需作辅助线,延长BF到G,使得FG=FB,证得△CGA≌△CDA是解题的关键.5.已知点P是线段MN上一动点,分别以PM,PN为一边,在MN的同侧作△APM,△BPN,并连接BM,AN.(Ⅰ)如图1,当PM=AP,PN=BP且∠APM=∠BPN=90°时,试猜想BM,AN之间的数量关系与位置关系,并证明你的猜想;(Ⅱ)如图2,当△APM,△BPN都是等边三角形时,(Ⅰ)中BM,AN之间的数量关系是否仍然成立?若成立,请证明你的结论;若不成立,试说明理由.(Ⅲ)在(Ⅱ)的条件下,连接AB得到图3,当PN=2PM时,求∠PAB度数.【答案】(1)BM=AN,BM⊥AN.(2)结论成立.(3)90°.【解析】【分析】(1)根据已知条件可证△MBP≌△ANP,得出MB=AN,∠PAN=∠PMB,再延长MB交∠=︒,因此有BM⊥AN;AN于点C,得出MCN90(2)根据所给条件可证△MPB≌△APN,得出结论BM=AN;(3)取PB的中点C,连接AC,AB,通过已知条件推出△APC为等边三角形,∠PAC=∠PCA=60°,再由CA=CB,进一步得出∠PAB的度数.【详解】解:(Ⅰ)结论:BM=AN,BM⊥AN.理由:如图1中,∵MP=AP,∠APM=∠BPN=90°,PB=PN,∴△MBP≌△ANP(SAS),∴MB=AN.延长MB交AN于点C.∵△MBP≌△ANP,∴∠PAN=∠PMB,∵∠PAN+∠PNA=90°,∴∠PMB+∠PNA=90°,∴∠MCN=180°﹣∠PMB﹣∠PNA=90°,∴BM⊥AN.(Ⅱ)结论成立理由:如图2中,∵△APM,△BPN,都是等边三角形∴∠APM=∠BPN=60°∴∠MPB=∠APN=120°,又∵PM=PA,PB=PN,∴△MPB≌△APN(SAS)∴MB=AN.(Ⅲ)如图3中,取PB的中点C,连接AC,AB.∵△APM,△PBN都是等边三角形∴∠APM=∠BPN=60°,PB=PN∵点C是PB的中点,且PN=2PM,∴2PC=2PA=2PM=PB=PN,∵∠APC=60°,∴△APC为等边三角形,∴∠PAC=∠PCA=60°,又∵CA=CB,∴∠CAB=∠ABC=30°,∴∠PAB=∠PAC+∠CAB=90°.【点睛】本题是一道关于全等三角形的综合性题目,充分考查了学生对全等三角形的判定定理及其性质的应用的能力,此类题目常常需要数形结合,借助辅助线才得以解决,因此,作出合理正确的辅助线是解题的关键.二、八年级数学轴对称解答题压轴题(难)6.如图,将两个全等的直角三角形△ABD、△ACE拼在一起(图1).△ABD不动,(1)若将△ACE绕点A逆时针旋转,连接DE,M是DE的中点,连接MB、MC(图2),证明:MB=MC.(2)若将图1中的CE向上平移,∠CAE不变,连接DE,M是DE的中点,连接MB、MC (图3),判断并直接写出MB、MC的数量关系.(3)在(2)中,若∠CAE的大小改变(图4),其他条件不变,则(2)中的MB、MC的数量关系还成立吗?说明理由.【答案】(1)见解析;(2)MB=MC.理由见解析;(3)MB=MC还成立,见解析.【解析】【分析】(1)连接AM,根据全等三角形的对应边相等可得AD=AE,AB=AC,全等三角形对应角相等可得∠BAD=∠CAE,再根据等腰三角形三线合一的性质得到∠MAD=∠MAE,然后利用“边角边”证明△ABM和△ACM全等,根据全等三角形对应边相等即可得证;(2)延长DB、AE相交于E′,延长EC交AD于F,根据等腰三角形三线合一的性质得到BD=BE′,然后求出MB∥AE′,再根据两直线平行,内错角相等求出∠MBC=∠CAE,同理求出MC∥AD,根据两直线平行,同位角相等求出∠BCM=∠BAD,然后求出∠MBC=∠BCM,再根据等角对等边即可得证;(3)延长BM交CE于F,根据两直线平行,内错角相等可得∠MDB=∠MEF,∠MBD=∠MFE,然后利用“角角边”证明△MDB和△MEF全等,根据全等三角形对应边相等可得MB=MF,然后根据直角三角形斜边上的中线等于斜边的一半证明即可.【详解】(1)如图(2),连接AM,由已知得△ABD≌△ACE,∴AD=AE,AB=AC,∠BAD=∠CAE.∵MD=ME,∴∠MAD=∠MAE,∴∠MAD-∠BAD=∠MAE-∠CAE,即∠BAM=∠CAM.在△ABM和△ACM中,AB=AC,∠BAM=∠CAM,AM=AM,∴△ABM≌△ACM(SAS),∴MB=MC.(2)MB=MC.理由如下:如图(3),延长CM交DB于F,延长BM到G,使得MG=BM,连接CG.∵CE∥BD,∴∠MEC=∠MDF,∠MCE=∠MFD.∵M是ED的中点,∴MD=ME.在△MCE和△MFD中,∠MCE=∠MFD,∠MEC=∠MDF,MD=ME,∴△MCE≌△MFD(AAS).∴MF=MC.∴在△MFB和△MCG中,MF=MC,∠FMB=∠CMG,BM=MG,∴△MFB≌△MCG(SAS).∴FB=GC,∠MFB=∠MCG,∴CG∥BD,即G、C、E在同一条直线上.∴∠GCB=90°.在△FBC和△GCB中,FB=GC,∠FBC=∠GCB,BC=CB,∴△FBC≌△GCB(SAS).∴FC=GB.∴MB=12GB=12FC=MC.(3)MB=MC还成立.如图(4),延长BM交CE于F,延长CM到G,使得MG=CM,连接BG.∵CE∥BD,∴∠MDB=∠MEF,∠MBD=∠MFE.又∵M是DE的中点,∴MD=ME.在△MDB和△MEF中,∠MDB=∠MEF,∠MBD=∠MFE,MD=ME,∴△MDB≌△MEF(AAS),∴MB=MF.∵CE∥BD,∴∠FCM=∠BGM.在△FCM和△BGM中,CM=MG,∠CMF=∠GMB,MF=MB,∴△FCM≌△BGM(SAS).∴CF=BG,∠FCM=∠BGM.∴CF//BG,即D、B、G在同一条直线上.在△CFB和△BGC中,CF=BG,∠FCB=∠GBC,CB=BC,∴△CFB≌△BGC(SAS).∴BF=CG.∴MC=12CG=12BF=MB.【点睛】本题考查了全等三角形的判定与性质,等腰三角形三线合一的性质,等角对等边的性质,直角三角形斜边上的中线等于斜边的一半的性质,以及三角形的中位线定理,综合性较强,但难度不大,作辅助线构造出等腰三角形或全等三角形是解题的关键.7.定义:如果一条线段将一个三角形分成2个小等腰三角形,我们把这条线段叫做这个三角形的“好线”:如果两条线段将一个三角形分成3个小等腰三角形,我们把这两条线段叫做这个三角形的“好好线”.理解:(1)如图1,在ABC ∆中,AB AC =,点D 在AC 边上,且AD BD BC ==,求A ∠的大小;(2)在图1中过点C 作一条线段CE ,使BD ,CE 是ABC ∆的“好好线”;在图2中画出顶角为45的等腰三角形的“好好线”,并标注每个等腰三角形顶角的度数(画出一种即可);应用:(3)在ABC ∆中,27B ∠=,AD 和DE 是ABC ∆的“好好线”,点D 在BC 边上,点E 在AC 边上,且AD BD =,DE CE =,请求出C ∠的度数.【答案】(1)36°;(2)见详解;(3)18°或42°【解析】【分析】(1)利用等边对等角得到三对角相等,设∠A=∠ABD=x ,表示出∠BDC 与∠C ,列出关于x 的方程,求出方程的解得到x 的值,即可确定出∠A 的度数.(2)根据(1)的解题过程作出△ABC 的“好好线”;45°自然想到等腰直角三角形,过底角一顶点作对边的高,发现形成一个等腰直角三角形和直角三角形.直角三角形斜边的中线可形成两个等腰三角形;第二种情形以一底角作为新等腰三角形的底角,则另一底角被分为45°和22.5°,再以22.5°分别作为等腰三角形的底角或顶角,易得其中作为底角时所得的三个三角形恰都为等腰三角形;(3)用量角器,直尺标准作27°角,而后确定一边为BA ,一边为BC ,根据题意可以先固定BA 的长,而后可确定D 点,再分别考虑AD 为等腰三角形的腰或者底边,兼顾A 、E 、C 在同一直线上,易得2种三角形ABC ;根据图形易得∠C 的值;【详解】解:(1)∵AB=AC ,∴∠ABC=∠C ,∵BD=BC=AD ,∴∠A=∠ABD ,∠C=∠BDC ,设∠A=∠ABD=x,则∠BDC=2x,∠C=°180-2x可得°180-22x x∴x=36°则∠A=36°;(2)如图所示:(3)如图所示:①当AD=AE时,∵2x+x=27°+27°,∴x=18°;②当AD=DE时,∵27°+27°+2x+x=180°,∴x=42°;综上所述,∠C为18°或42°的角.【点睛】本题主要考查了三角形内角、外角间的关系及等腰三角形知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.8.已知在△ABC中,AB=AC,射线BM、BN在∠ABC内部,分别交线段AC于点G、H.(1)如图1,若∠ABC=60°,∠MBN=30°,作AE⊥BN于点D,分别交BC、BM于点E、F.①求证:∠1=∠2;②如图2,若BF=2AF,连接CF,求证:BF⊥CF;(2)如图3,点E为BC上一点,AE交BM于点F,连接CF,若∠BFE=∠BAC=2∠CFE,求ABFACFSS的值.【答案】(1)①见解析;②见解析;(2)2【解析】【分析】(1)①只要证明∠2+∠BAF=∠1+∠BAF=60°即可解决问题;②只要证明△BFC≌△ADB,即可推出∠BFC=∠ADB=90°;(2)在BF上截取BK=AF,连接AK.只要证明△ABK≌CAF,可得S△ABK=S△AFC,再证明AF=FK=BK,可得S△ABK=S△AFK,即可解决问题;【详解】(1)①证明:如图1中,∵AB=AC,∠ABC=60°∴△ABC是等边三角形,∴∠BAC=60°,∵AD⊥BN,∴∠ADB=90°,∵∠MBN=30°,∠BFD=60°=∠1+∠BAF=∠2+∠BAF,∴∠1=∠2②证明:如图2中,在Rt △BFD 中,∵∠FBD =30°,∴BF =2DF ,∵BF =2AF ,∴BF =AD ,∵∠BAE =∠FBC ,AB =BC ,∴△BFC ≌△ADB ,∴∠BFC =∠ADB =90°,∴BF ⊥CF(2)在BF 上截取BK =AF ,连接AK.∵∠BFE =∠2+∠BAF ,∠CFE =∠4+∠1,∴∠CFB =∠2+∠4+∠BAC ,∵∠BFE =∠BAC =2∠EFC ,∴∠1+∠4=∠2+∠4∴∠1=∠2,∵AB =AC ,∴△ABK ≌CAF ,∴∠3=∠4,S △ABK =S △AFC ,∵∠1+∠3=∠2+∠3=∠CFE =∠AKB ,∠BAC =2∠CEF ,∴∠KAF =∠1+∠3=∠AKF ,∴AF =FK =BK ,∴S △ABK =S △AFK ,∴ABF AFCS 2S ∆∆=. 【点睛】本题考查全等三角形的判定和性质、等边三角形的性质、等腰三角形的判定和性质、直角三角形30度角性质等知识,解题的关键是能够正确添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.9.知识背景:我们在第十一章《三角形》中学习了三角形的边与角的性质,在第十二章《全等三角形》中学习了全等三角形的性质和判定,在第十三章《轴对称》中学习了等腰三角形的性质和判定.在一些探究题中经常用以上知识转化角和边,进而解决问题.问题:如图1,ABC 是等腰三角形,90BAC ∠=︒,D 是BC 的中点,以AD 为腰作等腰ADE ,且满足90DAE ∠=︒,连接CE 并延长交BA 的延长线于点F ,试探究BC 与CF 之间的数量关系.图1发现:(1)BC 与CF 之间的数量关系为 .探究:(2)如图2,当点D 是线段BC 上任意一点(除B 、C 外)时,其他条件不变,试猜想BC 与CF 之间的数量关系,并证明你的结论.图2拓展:(3)当点D 在线段BC 的延长线上时,在备用图中补全图形,并直接写出BCF 的形状.备用图【答案】(1)BC CF =;(2)BC CF =,证明见解析;(3)画图见解析,等腰直角三角形.【解析】【分析】(1)根据等腰三角形的性质即可得BC CF =;(2)由等腰直角三角形的性质可得()ABD ACE SAS ∴≌,再根据全等三角形的性质及等角对等边即可证明;(3)作出图形,根据等腰三角形性质易证()ABD ACE SAS ∴≌,进而根据角度的代换,得出结论.【详解】解:(1)BC CF =.∵△ABC 是等腰三角形,且90BAC ∠=︒,AB AC ∴=,45B ACB ∠=∠=︒.90DAE ∠=︒,DAE BAC ∴=∠∠,DAE DAC BAC DAC ∴∠-∠=∠-∠,BAD CAE ∴∠=∠. ADE 是以AD 为腰的等腰三角形,AD AE ∴=.在ABD △与ACE △中,AB AC =,BAD CAE ∠=∠,AD AE =, ()ABD ACE SAS ∴≌,45ACE B ∴∠=∠=︒.45ACB =︒∠,90BCF ACB ACE ∴∠=∠+∠=︒,90B F ∴∠+∠=︒,45F ∴∠=︒,B F ∴∠=∠,BC CF ∴=.(2)BC CF =.证明:ABC 是等腰三角形,且90BAC ∠=︒,AB AC ∴=,45B ACB ∠=∠=︒.90DAE ∠=︒,DAE BAC ∴=∠∠,DAE DAC BAC DAC ∴∠-∠=∠-∠,BAD CAE ∴∠=∠. ADE 是以AD 为腰的等腰三角形,AD AE ∴=.在ABD △与ACE △中,AB AC =,BAD CAE ∠=∠,AD AE =, ()ABD ACE SAS ∴≌,45ACE B ∴∠=∠=︒.45ACB =︒∠,90BCF ACB ACE ∴∠=∠+∠=︒,90B F ∴∠+∠=︒,45F ∴∠=︒,B F ∴∠=∠,BC CF ∴=.(3)BCF 是等腰直角三角形.提示:如图,ABC 是等腰三角形,90BAC ∠=︒,AB AC ∴=,45B ACB ∠=∠=︒.90DAE ∠=︒,DAE BAC ∴=∠∠,DAE DAC BAC DAC ∴∠+∠=∠+∠,BAD CAE ∴∠=∠.ADE 是以AD 为腰的等腰三角形,AD AE ∴=.在ABD △与ACE △中,AB AC =,BAD CAE ∠=∠,AD AE =,()ABD ACE SAS ∴≌,45ACE B ∴∠=∠=︒.45ACB =︒∠,90BCF ACB ACE ∴∠=∠+∠=︒,90B BFC ∴∠+∠=︒,45BFC ∴∠=︒,B BFC ∴∠=∠, BCF ∴是等腰三角形,90BCF ∠=︒, BCF ∴是等腰直角三角形.【点睛】本题考查等腰三角形及全等三角形的性质,熟练运用角度等量代换及等腰三角形的性质是解题的关键.10.如图,已知ABC ∆()AB AC BC <<,请用无刻度直尺和圆规,完成下列作图(不要求写作法,保留作图痕迹):(1)在边BC 上找一点M ,使得:将ABC ∆沿着过点M 的某一条直线折叠,点B 与点C能重合,请在图①中作出点M;∆沿着过点N的某一条直线折叠,点B能落在(2)在边BC上找一点N,使得:将ABC⊥,请在图②中作出点N.边AC上的点D处,且ND AC【答案】(1)见详解;(2)见详解.【解析】【分析】(1)作线段BC的垂直平分线,交BC于点M,即可;(2)过点B作BO⊥BC,交CA的延长线于点O,作∠BOC的平分线交BC于点N,即可.【详解】(1)作线段BC的垂直平分线,交BC于点M,即为所求.点M如图①所示:(2)过点B作BO⊥BC,交CA的延长线于点O,作∠BOC的平分线交BC于点N,即为所求.点N如图②所示:【点睛】本题主要考查尺规作图,掌握尺规作线段的中垂线和角平分线,是解题的关键.三、八年级数学整式的乘法与因式分解解答题压轴题(难)11.一个四位正整数m各个数位上的数字互不相同且都不为0,四位数m的前两位数字之和为5,后两位数字之和为11,称这样的四位数m为“半期数”;把四位数m的各位上的数字依次轮换后得到新的四位数m′,设m′=abcd,在m′的所有可能的情况中,当|b+2c﹣a ﹣d|最小时,称此时的m′是m的“伴随数”,并规定F(m′)=a2+c2﹣2bd;例如:m=2365,则m′为:3652,6523,5236,因为|6+10﹣3﹣2|=11,|5+4﹣6﹣3|=0,|2+6﹣5﹣6|=3,0最小,所以6523叫做2365的“伴随数”,F(5236)=52+32﹣2×2×6=10.(1)最大的四位“半期数”为;“半期数”3247的“伴随数”是.(2)已知四位数P=abcd是“半期数”,三位数Q=2ab,且441Q﹣4P=88991,求F(P')的最大值.【答案】(1)4192,7324;(2)42.【解析】【分析】(1)根据“半期数”的定义分析最大的四位“半期数”应该是千位最大,最大只能为4,所以百位是1,十位最大是9,个位是2,所以最大半期数为:4192,分析3247的所有可能为,2473,4732,7324.根据题意|b +2c ﹣a ﹣d |最小的数是7324,所以3247的“伴随数”是:7324.(2)根据定义可知a +b =5,c +d =11.再根据441Q ﹣4P =88991,可以算出P 的值,从而求出F (P ')的最大值.【详解】解;(1)根据题意可得最大的四位“半期数”应该是千位最大,最大只能为4,所以百位是1,十位最大是9,个位是2,所以最大半期数为:4192.∵3247的所有可能为,2473,4732,7324.∵|4+14﹣2﹣3|=13,|7+6﹣4﹣2|=7,|3+4﹣7﹣4|=4, 4最小,所以7324为3247的“伴随数”.故答案为4192;7324.(2)∵P 为“半期数”∴a +b =5,c +d =11,∴b =5﹣a ,d =11﹣c ,∴P =1000a +100(5﹣a )+10c +11﹣c =900a +9c +511.∵Q =200+10a +c ,∴441Q ﹣4P =88991,∴441(200+10a +c )﹣4(900a +9c +511)=88991 化简得:2a +c =7①当a =1时,c =5,此时这个四位数为1456符合题意;②当a =2时,c =3,此时这个四位数为2338不符合题意,舍去;③当a =3时,c =1,不符合题意,舍去;综上所述:这个四位数只能是1456,则P '可能为4561,5614,6145.∵|5+12﹣4﹣1|=12,|6+2﹣5﹣4|=1,|1+8﹣6﹣5|=2,1最小,所以5614为P 的“伴随数”,∴F (5614)=a 2+c 2﹣2bd =25+1﹣2×6×4=﹣22;F (4561)=a 2+c 2﹣2bd =16+36﹣2×5×1=42;F (6145)=a 2+c 2﹣2bd =36+16﹣2×1×5=42;∴F (P ')的最大值为42.【点睛】解决本道题的关键是理解好半期数的定义:一个四位正整数m 各个数位上的数字互不相同且都不为0,四位数m 的前两位数字之和为5,后两位数字之和为11,称这样的四位数m 为“半期数”,然后根据当|b +2c ﹣a ﹣d |最小时,称此时的m '是m 的“伴随数”来确定伴随数.12.我们知道某些代数恒等式可用一些卡片拼成的图形面积来解释,例如:图A 可以用来解释2222()a ab b a b ++=+,实际上利用一些卡片拼成的图形面积也可以对某些二次三项式进行因式分解.(1)图B 可以解释的代数恒等式是 ;(2)现有足够多的正方形和矩形卡片(如图C ),试画出..一个用若干张1号卡片、2号卡片和3号卡片拼成的矩形(每两块纸片之间既不重叠,也无空隙,拼出的图中必须保留拼图的痕迹),使该矩形的面积为2223a ab b ++,并利用你所画的图形面积对2223a ab b ++进行因式分解.【答案】(1)2222()a ab a a b +=+;(2)()()22232a ab b a b a b ++=++ 【解析】试题分析:(1)根据图所示,可以得到长方形长为2a ,宽为a+b ,面积为:2a (a+b ),或四个小长方形和正方形面积之和;(2)①根据题意,可以画出相应的图形然后完成因式分解.试题解析:(1)()2222a ab a a b +=+ (2)①根据题意,可以画出相应的图形,如图所示②因式分解为:()()22232a ab b a b a b ++=++13.探究阅读材料:“若x 满足()()806030x x --=,求()()228060x x -+-的值” 解:设()80x a -=,()60x b -=,则()()806030x x ab --==,()()806020a b x x +=-+-=,所以()()22228060x x a b -+-=+()22220230340a b ab =+-=-⨯=.解决问题:(1)若x 满足()()451520x x --=-,求()()224515x x -+-的值. (2)若x 满足()()22202020184040x x -+-=,求()()20202018x x --的值. (3)如图,正方形ABCD 的边长为x ,20AE =,30CG =,长方形EFGD 的面积是700,四边形NGDH 和MEDQ 都是正方形,PQDH 是长方形,求图中阴影部分的面积(结果必须是一个具体的数值).【答案】(1)940;(2)2018;(3)2900【解析】【分析】(1)根据材料提供的方法进探究,设(45-x )=a ,(x-15)=b ,则有()()451520x x ab --==-,()()4515=30a b x x +=-+-,据此即可求出()()224515x x -+-的值; (2)(2020-x )=m ,( x-2018)=n ,则()()2222202020184040,2x x m n m n -+-=+=+=,则可求出()()20202018x x --的值; (3)根据题意知S 四EFGD =(x-20)(x-30)=700,知S 正MEDQ =(x-20)2,S 正DHNG =(x-30)2,S 四PQDN =(x-20)(x-30)=700,设x-20=a ,30-x=b ,则有-ab=700,据此即可求出阴影部分的面积.【详解】解:(1)设(45-x )=a ,(x-15)=b ,则有()()451520x x ab --==-,()()4515=30a b x x +=-+-∴()()()()2222224515=230220940x x a b a b ab -+-+=+-=-⨯-=;(2)(2020-x )=m ,( x-2018)=n ,则()()2222202020184040,2x x m n m n -+-=+=+=∴()()20202018x x --=-()()20202018x x -- ()()222+-44040-201822m n m n mn +-===∴()()20202018x x --=-mn=2018;(3)根据题意知S 四EFGD =(x-20)(x-30)=700,S 正MEDQ =(x-20)2,S 正DHNG =(x-30)2,S 四PQDN =(x-20)(x-30)=700设x-20=a ,30-x=b ,∴-ab=700,∴()()()()222222302021027001500x x a b a b ab -+-=+=+-=-⨯-=∴S 阴影=1500+700+700=2900故答案为:(1)940;(2)2018;(3)2900【点睛】本题考查完全平方公式,换元法等知识,解题的关键是学会利用换元法解决问题,熟练掌握完全平方公式.14.仔细阅读下面例题,解答问题:例题:已知二次三项式2x 4x m -+有一个因式是()x 3+,求另一个因式以及m 的值. 解:设另一个因式为()x n +,得()()2x 4x m x 3x n -+=++则()22x 4x m x n 3x 3n -+=+++ {n 34m 3n +=-∴=.解得:n 7=-,m 21=- ∴另一个因式为()x 7-,m 的值为21-问题:仿照以上方法解答下面问题:已知二次三项式22x 3x k +-有一个因式是()2x 5-,求另一个因式以及k 的值.【答案】()4,x + 20.【解析】【分析】根据例题中的已知的两个式子的关系,二次三项式2x 4x m -+的二次项系数是1,因式是()x 3+的一次项系数也是1,利用待定系数法求出另一个因式.所求的式子22x 3x k +-的二次项系数是2,因式是()2x 5-的一次项系数是2,则另一个因式的一次项系数一定是1,利用待定系数法,就可以求出另一个因式.【详解】解:设另一个因式为()x a +,得()()22x 3x k 2x 5x a +-=-+则()222x 3x k 2x 2a 5x 5a +-=+-- {2a 535a k -=∴-=-解得:a 4=,k 20=故另一个因式为()x 4+,k 的值为20【点睛】正确读懂例题,理解如何利用待定系数法求解是解本题的关键.15.阅读材料:要把多项式am+an+bm+bn 因式分解,可以先把它进行分组再因式分解:am+an+bm+bn=(am +an )+(bm +bn )=a (m +n )+b (m +n )=(a +b )(m +n ),这种因式分解的方法叫做分组分解法.(1)请用上述方法因式分解:x 2-y 2+x-y(2)已知四个实数a 、b 、c 、d 同时满足a 2+ac=12k ,b 2+bc=12k .c 2+ac=24k ,d 2+ad=24k ,且a≠b ,c≠d ,k≠0①求a+b+c 的值;②请用含a 的代数式分别表示b 、c 、d【答案】(1)(x −y )(x +y +1);(2)①0a b c ++=;②3b a =-,2c a =,3d a =-【解析】【分析】(1)将x 2 - y 2分为一组,x-y 分为一组,前一组利用平方差公式化为(x+y)(x-y),再提取公因式即可求解.(2)①已知22a ac b bc +=+=12k ,可得220a b ac bc -+-=,将等号左边参照(1)因式分解,即可求解.②由a 2+ac=12k ,c 2+ac=24k 可得2(a 2+ac)= c 2+ac ,即可得出c=2a ,同理得出3b a =-,3d a =-【详解】(1)x 2-y 2+x-y = (x 2 -y 2)+(x-y)=(x+y)(x-y)+(x-y)=(x-y)(x+y+1)故答案为:(x-y)(x+y+1)(2)①22a ac b bc +=+=12k220a b ac bc -+-=()()0a b a b c -++=∵a b∴0a b c ++=②∵a 2+ac=12k ,c 2+ac=24k2(a 2+ac)= c 2+ac∴2a 2+ac- c 2=0得(2a-c)(a+c)=0∵a 2+ac=12k ≠0即a(a+c)≠0∴c=2a ,a 2=4k∵b 2+bc=12k∴b 2+2ba=3a 2则(a −b )(3a +b )=0∵a ≠b∴3b a =-同理可得d 2+ad=24k ,c 2+ac=24kd 2+ad=c 2+ac(d −c )(a +d +c )=0∵c d ≠∴0a d c ++=∴3d a =-故答案为:0a b c ++=;3b a =-,2c a =,3d a =-【点睛】本题考查了用提取公因式法、运用公式法、分组分解法进行因式分解.四、八年级数学分式解答题压轴题(难)16.有甲、乙两名采购员去同一家公司分别购买两次饲料,两次购买的饲料价格分别为m 元/千克和n 元/千克,且m≠n ,两名采购员的采购方式也不同,其中甲每次购买800千克,乙每次用去800元,而不管购买多少千克的饲料。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学八年级上册 全册全套试卷培优测试卷 一、八年级数学三角形填空题(难) 1.如图,C 在直线BE 上,∠=︒,∠A m ABC 与ACE ∠的角平分线交于点1A ,则1A =_____︒;若再作11A BE A CE ∠∠、的平分线,交于点2A ;再作22A BE A CE ∠∠、的平分线,交于点3A ;依此类推,10A ∠= _________︒.【答案】(2m ) (1024m ) 【解析】【分析】 根据“角平分线定义”和“三角形的外角等于与它不相邻的两个内角和”求出规律,直接利用规律解题.【详解】解:∵∠A 1=∠A 1CE-∠A 1BC=12∠ACE-12∠ABC=12(∠ACE-∠ABC )=12∠A=2m °. 依此类推∠A 2=224m m ︒︒=,∠A 3=328m m ︒︒=,…,∠A 10=1021024m m ︒︒=. 故答案为:()2m ;()1024m . 【点睛】此题主要考查了三角形的内角和外角之间的关系以及角平分线的定义,三角形的外角等于与它不相邻的两个内角和.2.如图,在△ABC 中,∠B=50°,三角形的外角∠DAC 和∠ACF 的平分线交于点E ,则∠AEC =_______°.【答案】65【解析】如图,∵AE 平分∠DAC ,CE 平分∠ACF ,∴∠1=12∠DAC ,∠2=12∠ACF , ∴∠1+∠2=12(∠DAC+∠ACF ), 又∵∠DAC+∠ACF=(180°-∠BAC )+(180°-∠ACB )=360°-(∠BAC+∠ACB ),且 ∠BAC+∠ACB=180°-∠ABC=180°-50°=130°,∴∠1+∠2=12(360°-130°)=115°, ∴在△ACE 中,∠E=180°-(∠1+∠2)=180°-115°=65°.3.如图,1BA 和1CA 分别是ABC ∆的内角平分线和外角平分线,2BA 是1A BD ∠的角平分线, 2CA 是1A CD ∠的角平分线,3BA 是2A BD ∠的角平分线,3CA 是2A CD ∠的角平分线,若1A α∠=,则2018A ∠=_____________【答案】20172α【解析】【分析】 根据角平分线的定义可得∠A 1BC=12∠ABC ,∠A 1CD=12∠ACD ,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACD=∠A+∠ABC ,∠A 1CD=∠A 1BC+∠A 1,整理即可得解,同理求出∠A 2,可以发现后一个角等于前一个角的12,根据此规律即可得解. 【详解】∵A 1B 是∠ABC 的平分线,A 1C 是∠ACD 的平分线,∴∠A 1BC=12∠ABC ,∠A 1CD=12∠ACD , 又∵∠ACD=∠A+∠ABC,∠A 1CD=∠A 1BC+∠A 1,∴12(∠A+∠ABC )=12∠ABC+∠A 1, ∴∠A 1=12∠A , ∵∠A 1=α.同理理可得∠A 2=12∠A 1=12α,∠A 3=12∠A 2=212α, ……, ∴∠A 2018=20172α, 故答案为20172α.【点睛】本题主要考查的是三角形内角和定理,熟知三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义是解题的关键.4.已知一个多边形的内角和与外角和的差是1260°,则这个多边形边数是 .【答案】12【解析】试题解析:根据题意,得(n-2)•180-360=1260,解得:n=11.那么这个多边形是十一边形.考点:多边形内角与外角.5.如图,△ABC 中,∠BAC =70°,∠ABC 的平分线与∠ACB 的外角平分线交于点O ,则∠BOC =_____度.【答案】35【解析】【分析】根据三角形的一个外角等于与它不相邻的两个内角的和可得∠BAC+∠ABC =∠ACE ,∠BOC+∠OBC =∠OCE ,再根据角平分线的定义可得∠OBC =12∠ABC ,∠OCE =1 2∠ACE,然后整理可得∠BOC=12∠BAC.【详解】解:由三角形的外角性质,∠BAC+∠ABC=∠ACE,∠BOC+∠OBC=∠OCE,∵∠ABC的平分线与∠ACB的外角平分线交于点O,∴∠OBC=12∠ABC,∠OCE=12∠ACE,∴12(∠BAC+∠ABC)=∠BOC+12∠ABC,∴∠BOC=12∠BAC,∵∠BAC=70°,∴∠BOC=35°,故答案为:35°.【点睛】本题考查了三角形的内角和定理、三角形的外角性质,掌握三角形的一个外角等于与它不相邻的两个内角的和的性质,要注意整体思想的利用.6.三角形三边长分别为 3,1﹣2a,8,则 a 的取值范围是 _______.【答案】﹣5<a<﹣2.【解析】【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边;即可求a的取值范围,再将a的取值范围在数轴上表示出来即可.【详解】由三角形三边关系定理得8-3<1-2a<8+3,即-5<a<-2.即a的取值范围是-5<a<-2.【点睛】本题考查的知识点是三角形三边关系,在数轴上表示不等式的解集,解一元一次不等式组,解题关键是根据三角形三边关系定理列出不等式.二、八年级数学三角形选择题(难)7.如图,在△ABC中,点D是BC边上的一点,E,F分别是AD,BE的中点,连结CE,CF,若S△CEF=5,则△ABC的面积为()A.15 B.20 C.25 D.30【答案】B【解析】【分析】根据题意,利用中线分的三角形的两个图形面积相等,便可找到答案【详解】解:根据等底同高的三角形面积相等,可得∵F是BE的中点,S△CFE=S△CFB=5,∴S△CEB=S△CEF+S△CBF=10,∵E是AD的中点,∴S△AEB=S△DBE,S△AEC=S△DEC,∵S△CEB=S△BDE+S△CDE∴S△BDE+S△CDE=10∴S△AEB+S△AEC=10∴S△ABC=S△BDE+S△CDE+S△AEB+S△AEC=20故选:B.【点睛】熟悉三角形中线的拓展性质:分其两个三角形的面积是相等的,这样便可在实际问题当中家以应用.8.马小虎在计算一个多边形的内角和时,由于粗心少算了2个内角,其和等于830,则该多边形的边数是( )A.7B.8C.7或8D.无法确定【答案】C【解析】【分析】n边形的内角和是(n-2)•180°,即为180°的(n-2)倍,多边形的内角一定大于0度,小于180度,因而多边形中,除去2个内角外,其余内角和与180度的商加上2,以后所得的数值,比这个数值大1或2的整数就是多边形的边数.【详解】设少加的2个内角和为x度,边数为n.则(n-2)×180=830+x,即(n-2)×180=4×180+110+x,因此x=70,n=7或x=250,n=8.故该多边形的边数是7或8.故选C.【点睛】本题考查了多边形的内角和定理,正确理解多边形内角的大小的特点,以及多边形的内角和定理是解决本题的关键.9.能够铺满地面的正多边形组合是()A.正三角形和正五边形B.正方形和正六边形C.正方形和正五边形D.正五边形和正十边形【答案】D【解析】【分析】正多边形的组合能否铺满地面,关键是要看位于同一顶点处的几个角之和能否为360°.若能,则说明能铺满;反之,则说明不能铺满.【详解】解:A、正五边形和正三边形内角分别为108°、60°,由于60m+108n=360,得m=6-95 n,显然n取任何正整数时,m不能得正整数,故不能铺满,故此选项错误;B、正方形、正六边形内角分别为90°、120°,不能构成360°的周角,故不能铺满,故此选项错误;C、正方形、正五边形内角分别为90°、108°,当90n+108m=360,显然n取任何正整数时,m不能得正整数,故不能铺满,故此选项错误;D、正五边形和正十边形内角分别为108、144,两个正五边形与一个正十边形能铺满地面,故此选项正确.故选:D.【点睛】此题主要考查了平面镶嵌,两种或两种以上几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.需注意正多边形内角度数=180°-360°÷边数.10.如图,在长方形网格中,每个小长方形的长为2,宽为1,A、B两点在网格格点上,若点C也在网格格点上,以A、B、C为顶点的三角形面积为2,则满足条件的点C个数是()A.2 B.4 C.3 D.5【答案】B【解析】如图,满足条件的点C 共有4个.故选B .11.已知直线m n ,将一块含45︒角的直角三角板ABC 按如图方式放置,其中斜边BC 与直线n 交于点D .若125∠=︒,则2∠的度数为( )A .60︒B .65︒C .70︒D .75︒【答案】C【解析】【分析】 先求出∠AED=∠1+∠B=25°+45°=70°,再根据平行线的性质可知∠2=∠AED=70°.【详解】设直线n 与AB 的交点为E 。
∵AED ∠是BED ∆的一个外角,∴1AED B ∠=∠+∠,∵45B ∠=︒,125∠=︒,∴452570AED ∠=︒+︒=︒,∵m n ,∴270AED ∠=∠=︒.故选C .【点睛】本题主要考查了平行线的性质以及三角形外角性质,解题的关键是借助平行线和三角形内外角转化角.12.如图,在△ABC 中,∠ABC 的平分线与∠ACB 的外角平分线相交于D 点,∠A=50°,则∠D=( )A .15°B.20°C.25°D.30°【答案】C 【解析】根据角平分线的定义和三角形的外角的性质即可得到∠D=12∠A.解:∵∠ABC的平分线与∠ACB的外角平分线相交于D点,∴∠1=12∠ACE,∠2=12∠ABC,又∠D=∠1﹣∠2,∠A=∠ACE﹣∠ABC,∴∠D=12∠A=25°.故选C.三、八年级数学全等三角形填空题(难)13.如图,在四边形ABCD中,AD=4,CD=3,∠ABC=∠ACB=∠ADC=45°,则BD的长为 .【答案】41.【解析】作AD′⊥AD,AD′=AD,连接CD′,DD′,如图:∵∠BAC+∠CAD=∠DAD′+∠CAD,即∠BAD=∠CAD′,在△BAD与△CAD′中,BA CABAD CADAD AD=⎧⎪∠=∠'⎨⎪='⎩,∴△BAD≌△CAD′(SAS),∴BD=CD′.∠DAD′=90°由勾股定理得DD′=22()=32=42AD AD+',∠D′DA+∠ADC=90°由勾股定理得CD′=22()=932=41DC DD+'+∴BD=CD′=41,故答案为41.14.如图,P为等边△ABC内一点,∠APC=150°,且∠APD=30°,AP=6,CP=3,DP=7,则BD的长为______.【答案】34【解析】【分析】将△CPA绕点C逆时针旋转60°得到△CEB,连接EP,由全等三角形的性质可得CE=CP,∠ECB=∠PCA,∠CEB=∠CPA=150°,BE=AP=6,结合等边三角形的性质可得出∠ECP=60°,进而证明△ECP为等边三角形,由等边△ECP的性质进而证明D、P、E三点共线以及∠DEB=90°,最后利用勾股定理求出BD的长度即可.【详解】将△CPA绕点C逆时针旋转60°得到△CEB,连接EP,∴CE=CP,∠ECB=∠PCA,∠CEB=∠CPA=150°,BE=AP=6,∵等边△ABC,∴∠ACP+∠PCB=60°,∴∠ECB+∠PCB=60°,即∠ECP=60°,∴△ECP为等边三角形,∴∠CPE=∠CEP=60°,PE=6,∴∠DEB=90°,∵∠APC =150°,∠APD =30°,∴∠DPC =120°,∴∠DPE =180°,即D 、P 、E 三点共线,∴ED =3+7=10,∴BD =22DE BE =234.故答案为234.【点睛】本题主要考查全等三角形的性质、勾股定理、等边三角形的判定与性质以及三点共线的判定,运用旋转构造全等三角形是解题的关键.15.如图,在△ABC 中,AC=BC ,∠ACB=90°,M 是AB 边上的中点,点D 、E 分别是AC 、BC 边上的动点,连接DM 、ME 、CM 、DE, DE 与CM 相交于点F 且∠DME=90°.则下列5个结论: (1)图中共有两对全等三角形;(2)△DEM 是等腰三角形; (3)∠CDM=∠CFE ;(4)AD 2+BE 2=DE 2;(5)四边形CDME 的面积发生改变.其中正确的结论有( )个.A .2B .3C .4D .5【答案】B【解析】【分析】 根据等腰三角形的性质,三角形内角和定理,得出:△AMC ≌△BMC 、△AMD ≌△CME 、△CMD ≌△BME,根据全等三角形的性质得出DM=ME 得出△DEM 是等腰三角形,及∠CDM=∠CFE ,再逐个判断222AD +BE =DE CEM CDM ADM CDM ACM ABC CDME 1S =S +S =S +S =S =S 2△△△△△△四边形 即可得出结论.【详解】解:如图在Rt △ABC 中,∠ACB=90°,M 为AB 中点,AB=BC∴AM=CM=BM ,∠A=∠B=∠ACM=∠BCM=45°,∠AMC=∠BMC=90°∵∠DME=90°.∴∠1+∠2=∠2+∠3=∠3+∠4=90°∴∠1=∠3,∠2=∠4在△AMC 和△BMC 中AM=BM MC MC AC BC ⎧⎪=⎨⎪=⎩∴△AMC ≌△BMC在△AMD 和△CME 中A=MCE AM=CM 1=3∠∠⎧⎪⎨⎪∠∠⎩∴△AMD ≌△CME在△CDM 和△BEMDCM=B CM=BM 2=4∠∠⎧⎪⎨⎪∠∠⎩∴△CMD ≌△CME共有3对全等三角形,故(1)错误∵△AMD ≌△BME∴DM=ME∴△DEM 是等腰三角形,(2)正确∵∠DME=90°.∴∠EDM=∠DEM=45°,∴∠CDM=∠1+∠A=∠1+45°,∴∠EDM=∠3+∠DEM=∠3+45°,∴∠CDM=∠CFE,故(3)正确在Rt △CED 中,222CE CD DE +=∵CE=AD ,BE=CD∴222AD +BE =DE 故(4)正确(5)∵△ADM ≌△CEM∴ADM CEM S =S △△∴CEM CDM ADM CDM ACM ABC CDME 1S =S +S =S +S =S =S 2△△△△△△四边形 不变,故(5)错误 故正确的有3个故选:B【点睛】本题主要考查了等腰直角三角形的判定与性质、全等三角形的判定与性质、勾股定理等知识,通过推理论证每个命题的正误是解决此类题目的关键.16.如图,在四边形ABCD 中,∠DAB =∠DCB =90°,CB =CD ,AC =6,则四边形ABCD 的面积是_________.【答案】18.【解析】【分析】根据已知线段关系,将△ACD 绕点C 逆时针旋转90°,CD 与CB 重合,得到△CBE ,证明A 、B 、E 三点共线,则△ACE 是等腰直角三角形,四边形面积转化为△ACE 面积.【详解】∵CD =CB ,且∠DCB =90°,∴将△ACD 绕点C 逆时针旋转90°,CD 与CB 重合,得到△CBE ,∴∠CBE =∠D ,AC =EC ,∠DCA =∠BCE .根据四边形内角和360°,可得∠D +∠ABC =180°,∴∠CBE +∠ABC =180°,∴A 、B 、E 三点共线,∴△ACE 是等腰直角三角形,∴四边形ABCD 面积=△ACE 面积= 12AC 2=18.故答案为:18.【点睛】本题考查了旋转的性质以及转化思想,解决这类问题要结合已知线段间的数量关系和位置关系进行旋转,使不规则图形转化为规则图形.17.如图,要在河流的南边,公路的左侧M 区处建一个工厂,位置选在到河流和公路的距离相等,并且到河流与公路交叉A 处的距离为1cm(指图上距离),则图中工厂的位置应在_____.【答案】∠BAC 的平分线上,与A 相距1cm 的地方.【解析】【分析】由已知条件及要求满足的条件,根据角平分线的性质作答,注意距A1cm 处.【详解】工厂的位置应在∠BAC 的平分线上,与A 相距1cm 的地方;理由:角平分线上的点到角两边的距离相等.【点睛】此题考查角平分线的性质:角平分线上的任意一点到角的两边距离相等.作图题一定要找到相关的知识为依托,同时满足多个要求时,要逐个满足.18.如图,直线l 上有三个正方形a ,b ,c ,若a ,c 的边长分别为5和12,则b 的面积为_________________.【答案】169【解析】解:由于a 、b 、c 都是正方形,所以AC =CD ,∠ACD =90°;∵∠ACB +∠DCE =∠ACB +∠BAC =90°,即∠BAC =∠DCE ,∠ABC =∠CED =90°,AC =CD ,∴△ACB ≌△DCE ,∴AB =CE ,BC =DE ; 在Rt △ABC 中,由勾股定理得:AC 2=AB 2+BC 2=AB 2+DE 2,即S b =S a +S c =22512 =169. 故答案为:169.点睛:此题主要考查对全等三角形和勾股定理的综合运用,结合图形求解,对图形的理解能力要比较强.四、八年级数学全等三角形选择题(难)19.如图,把ΔABC 剪成三部分,边AB ,BC ,AC 放在同一直线上,点O 都落在直线MN上,直线MN ∥AB .在ΔABC 中,若∠AOB =125°,则∠ACB 的度数为( )A .70°B .65°C .60°D .85°【答案】A【解析】【分析】利用平行线间的距离处处相等,可知点O 到BC 、AC 、AB 的距离相等,得出O 为三条角平分线的交点,根据三角形内角和定理和角平分线的定义即可得出结论.【详解】如图1,过点O 作OD ⊥BC 于D ,OE ⊥AC 于E ,OF ⊥AB 于F .∵MN ∥AB ,∴OD =OE =OF (平行线间的距离处处相等).如图2:过点O 作OD '⊥BC 于D ',作OE '⊥AC 于E ',作OF '⊥AB 于F '.由题意可知:OD =OD ',OE =OE ',OF =OF ',∴OD '=OE '=OF ',∴图2中的点O 是三角形三个内角的平分线的交点.∵∠AOB =125°,∴∠OAB +∠OBA =180°-125°=55°,∴∠CAB +∠CBA =2×55°=110°,∴∠ACB =180°-110°=70°.故选A .【点睛】本题考查了三角形的内心,平行线间的距离处处相等,角平分线定义,解答本题的关键是判断出OD =OE =OF .20.如图,在▱ABCD 中,AD =2AB ,F 是AD 的中点,作CE ⊥AB ,垂足E 在线段AB 上,连接EF 、CF ,则下列结论中①∠DCF =123,1x x ==-∠BCD ;②EF =CF ;③S △BEC =2S △CEF ;④∠DFE =3∠AEF .一定成立的是( )A.①②B.①③④C.①②③D.①②④【答案】D【解析】①∵F是AD的中点,∴AF=FD,∵在?ABCD中,AD=2AB,∴AF=FD=CD,∴∠DFC=∠DCF,∵AD∥BC,∴∠DFC=∠FCB,∴∠DCF=∠BCF,∴∠DCF=12∠BCD,故此选项正确;延长EF,交CD延长线于M,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A=∠MDF,∵F为AD中点,∴AF=FD,在△AEF和△DFM中,∠A=∠FDMAF=DF∠AFE=∠DFM,∴△AEF≌△DMF(ASA),∴FE=MF,∠AEF=∠M,∵CE⊥AB,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF,∴FC=FM,故②正确;③∵EF=FM,∴S△EFC=S△CFM,∵MC>BE,∴S△BEC<2S△EFC故S△BEC=2S△CEF错误;④设∠FEC=x,则∠FCE=x,∴∠DCF=∠DFC=90°-x,∴∠EFC=180°-2x,∴∠EFD=90°-x+180°-2x=270°-3x,∵∠AEF=90°-x,∴∠DFE=3∠AEF,故此选项正确.故正确的有:①②④.故选D.21.如图,AB=AC,BD⊥AC于D,CE⊥AB于E,BD、CE交于O,连结AO,则图中共有全等三角形的对数为()A.2对B.3对C.4对D.5对【答案】C【解析】【分析】先根据条件,利用AAS可知△ADB≌△AEC,然后再利用HL、ASA即可判断△AOE≌△AOD,△BOE≌△COD,△AOC≌△AOB.【详解】∵AB=AC,BD⊥AC于D,CE⊥AB于E,∴∠ADB=∠AEC=90°,∵∠A为公共角,∴△ADB≌△AEC,(AAS)∴AE=AD,∠B=∠C∴BE=CD,∵AE=AD,OA=OA,∠ADB=∠AEC=90°,∴△AOE≌△AOD(HL),∴∠OAC=∠OAB,∵∠B=∠C,AB=AC,∠OAC=∠OAB,∴△AOC≌△AOB.(ASA)∵∠B=∠C,BE=CD,∠ODC=∠OEB=90°,∴△BOE≌△COD(ASA).综上:共有4对全等三角形,故选C.【点睛】本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.做题时要从已知条件开始结合全等的判定方法逐一验证,由易到难,不重不漏.22.如图,∠C =∠D =90°,若添加一个条件,可使用“HL”判定Rt △ABC 与Rt △ABD 全等,则以下给出的条件适合的是( )A .AC =ADB .AB =ABC .∠ABC =∠ABD D .∠BAC =∠BAD【答案】A 【解析】 根据题意可知∠C=∠D=90°,AB=AB ,然后由AC=AD ,可根据HL 判定两直角三角形全等,故符合条件;而B 答案只知道一边一角,不能够判定两三角形全等,故不正确;C 答案符合AAS ,证明两三角形全等,故不正确;D 答案是符合AAS ,能证明两三角形全等,故不正确.故选A.23.如图,Rt ABC ∆中,90C =∠,3,4,5,AC BC AB ===AD 平分BAC ∠.则:ACD ABD S S ∆∆=( )A .3:4B .3:5C .4:5D .2:3【答案】B【解析】 如图,过点D 作DE ⊥AB 于点E ,由角平分线的性质可得出DE=CD ,由全等三角形的判定定理HL 得出△ADC ≌△ADE ,故可得出AE=AC=3,由AB=5求出BE=2,设CD=x ,则DE=x ,BD=4﹣x ,再根据勾股定理知DE 2+BE 2=BD 2,即x 2+22=(4﹣x )2,求出x=32,进而根据等高三角形的面积,可得出:S △ACD :S △ABD =CD :BD=12×32×3:12×32×5=3:5.故选:B .点睛:本题考查的是角平分线的性质,熟知角平分线上的点到角两边的距离相等是解答此题的关键.24.已知111122,A B C A B C △△的周长相等,现有两个判断:①若21212112,A A B C B A A C ==,则111222A B C A B C △≌△;②若12=A A ∠∠,1122=A C A C ,则111222A B C A B C △≌△,对于上述的两个判断,下列说法正确的是( )A .①,②都正确B .①,②都错误C .①错误,②正确D .①正确,②错误 【答案】A【解析】【分析】根据SSS 即可推出△111A B C ≅△222A B C ,判断①正确;根据相似三角形的性质和判定和全等三角形的判定推出即可.【详解】解:①△111A B C ,△222A B C 的周长相等,1122A B A B =,1122AC A C =,1122B C B C ∴=,∴△111A B C ≅△222()A B C SSS ,∴①正确;②如图,延长11A B 到1D ,使1111B D B C =,,延长22A B 到2D ,使2222B D B C =,∴111111A D A B B C =+,222222A D A B B C =+,∵111122,A B C A B C △△的周长相等,1122=A C A C∴1122A D A D =,在△111A B D和△222A B D中1122121122==A D A DA AA C A C=⎧⎪∠∠⎨⎪⎩,∴△111A B D≅△222A B D(SAS)∴12=D D∠∠,∵1111B D B C=,2222B D B C=∴1111=D D C B∠∠,2222=D D C B∠∠,又∵1111111=A B C D D C B∠∠+∠,2222222=A B C D D C B∠∠+∠,∴1112221==2A B C A B C D∠∠∠,在△111A B C和△222A B C中111222121122===A B C A B CA AA C A C∠∠⎧⎪∠∠⎨⎪⎩,∴△111A B C≅△222A B C(AAS),∴②正确;综上所述:①,②都正确.故选:A.【点睛】本题考查了全等三角形的判定、等腰三角形的性质,能构造全等三角形、综合运用定理进行推理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,而AAA和SSA不能判断两三角形全等.五、八年级数学轴对称三角形填空题(难)25.如图,点A的坐标是(2,2),若点P在x轴上,且△APO是等腰三角形,则点P有_____个.【答案】4【解析】【分析】由A点坐标可得2,∠AOP=45°,分别讨论OA为腰和底边,求出点P在x轴正半轴和负半轴时,△APO是等腰三角形的P点坐标即可.【详解】(1)当点P在x轴正半轴上,①如图,以OA为腰时,∵A的坐标是(2,2),∴∠AOP=45°,OA=22,当∠AOP为顶角时,OA=OP=22,当∠OAP为顶角时,AO=AP,∴OPA=∠AOP=45°,∴∠OAP=90°,∴OP=2OA=4,∴P的坐标是(4,0)或(22,0).②以OA为底边时,∵点A的坐标是(2,2),∴∠AOP=45°,∵AP=OP,∴∠OAP=∠AOP=45°,∴∠OPA=90°,∴OP=2,∴P点坐标为(2,0).(2)当点P在x轴负半轴上,③以OA为腰时,∵A的坐标是(2,2),∴OA=2,∴OA=OP=2,∴P的坐标是(﹣2,0).综上所述:P 的坐标是(2,0)或(4,0)或(22,0)或(﹣22,0). 故答案为:4.【点睛】此题主要考查等腰三角形的判定及坐标与图形性质的综合运用,注意分类讨论思想的运用是解题关键.26.如图,点P 是AOB 内任意一点,5OP cm =,点P 与点C 关于射线OA 对称,点P 与点D 关于射线OB 对称,连接CD 交OA 于点E ,交OB 于点F ,当PEF 的周长是5cm 时,AOB ∠的度数是______度.【答案】30【解析】【分析】根据轴对称得出OA 为PC 的垂直平分线,OB 是PD 的垂直平分线,根据线段垂直平分线性质得出12COA AOP COP ,12POB DOB POD ,PE=CE ,OP=OC=5cm ,PF=FD ,OP=OD=5cm ,求出△COD 是等边三角形,即可得出答案.【详解】解:如图示:连接OC ,OD ,∵点P 与点C 关于射线OA 对称,点P 与点D 关于射线OB 对称,∴OA 为PC 的垂直平分线,OB 是PD 的垂直平分线,∵OP=5cm ,∴12COA AOP COP ,12POB DOB POD ,PE=CE ,OP=OC=5cm ,PF=FD ,OP=OD=5cm ,∵△PEF 的周长是5cm ,∴PE+EF+PF=CE+EF+FD=CD=5cm ,∴CD=OD=OD=5cm ,∴△OCD 是等边三角形,∴∠COD=60°,∴11122230AOB AOP BOP COP DOP COD ,故答案为:30.【点睛】本题考查了线段垂直平分线性质,轴对称性质和等边三角形的性质和判定,能求出△COD 是等边三角形是解此题的关键.27.如图,在△ABC 中,P ,Q 分别是BC ,AC 上的点,PR ⊥AB ,PS ⊥AC ,垂足分别是R ,S ,若AQ PQ =,PR PS =,那么下面四个结论:①AS AR =;②QP //AR ;③△BRP ≌△QSP ;④BRQS ,其中一定正确的是(填写编号)_____________.【答案】①,②【解析】【分析】连接AP ,根据角平分线性质即可推出①,根据勾股定理即可推出AR=AS ,根据等腰三角形性质推出∠QAP=∠QPA ,推出∠QPA=∠BAP ,根据平行线判定推出QP ∥AB 即可;在Rt △BRP 和Rt △QSP 中,只有PR=PS .无法判断△BRP ≌△QSP 也无法证明BRQS .【详解】解:连接AP①∵PR⊥AB,PS⊥AC,PR=PS,∴点P在∠BAC的平分线上,∠ARP=∠ASP=90°,∴∠SAP=∠RAP,在Rt△ARP和Rt△ASP中,由勾股定理得:AR2=AP2-PR2,AS2=AP2-PS2,∵AP=AP,PR=PS,∴AR=AS,∴①正确;②∵AQ=QP,∴∠QAP=∠QPA,∵∠QAP=∠BAP,∴∠QPA=∠BAP,∴QP∥AR,∴②正确;③在Rt△BRP和Rt△QSP中,只有PR=PS,不满足三角形全等的条件,故③④错误;故答案为:①②.【点睛】本题主要考查了角平分线的性质与勾股定理的应用,熟练掌握根据垂直与相等得出点在角平分线上是解题的关键.28.在△ABC 中,∠ACB=90º,D、E 分别在 AC、AB 边上,把△ADE 沿 DE 翻折得到△FDE,点 F 恰好落在 BC 边上,若△CFD 与△BFE 都是等腰三角形,则∠BAC 的度数为_________.【答案】45°或60°【解析】【分析】根据题意画出图形,设∠BAC的度数为x,则∠B=90°-x,∠EFB =135°-x,∠BEF=2x-45°,当△BFE 都是等腰三角形,分三种情况讨论,即可求解.【详解】∵∠ACB=90º,△CFD是等腰三角形,∴∠CDF=∠CFD=45°,设∠BAC的度数为x,∴∠B=90°-x,∵△ADE 沿 DE 翻折得到△FDE,点 F 恰好落在 BC 边上,∴∠DFE=∠BAC=x,∴∠EFB=180°-45°-x=135°-x,∵∠ADE=∠FDE,∴∠ADE=(180°-45°)÷2=67.5°,∴∠AED=180°-∠ADE-∠BAC=180°-67.5° -x=112.5°-x,∴∠DEF=∠AED=112.5°-x,∴∠BEF=180°-∠AED-∠DEF=180°-(112.5°-x)-(112.5°-x)=2x-45°,∵△BFE 都是等腰三角形,分三种情况讨论:①当FE=FB时,如图1,则∠BEF=∠B,∴90-x=2x-45,解得:x=45;②当BF=BE时,则∠EFB=∠BEF,∴135-x=2x-45,解得:x=60,③当EB=EF时,如图2,则∠B=∠EFB,∴135-x=90-x,无解,∴这种情况不存在.综上所述:∠BAC 的度数为:45°或60°.故答案是:45°或60°.图1 图2【点睛】本题主要考查等腰三角形的性质定理,用代数式表示角度,并进行分类讨论,是解题的关键.29.如图,在边长为6的菱形ABCD中,∠DAB=60°,E是AB的中点,F是AC上一个动点,则EF+BF的最小值是________ .【答案】33【解析】试题解析:∵在菱形ABCD中,AC与BD互相垂直平分,∴点B、D关于AC对称,连接ED,则ED就是所求的EF+BF的最小值的线段,∵E为AB的中点,∠DAB=60°,∴DE⊥AB,∴ED=22AD AE-=22-=33,63∴EF+BF的最小值为33.30.如图,在△ABC中,AB=AC,AB边的垂直平分线DE交AC于点D.已知△BDC的周长为14,BC=6,则AB=___.【答案】8【解析】试题分析:根据线段垂直平分线的性质,可知AD=BD,然后根据△BDC的周长为BC+CD+BD=14,可得AC+BC=14,再由BC=6可得AC=8,即AB=8.故答案为8.点睛:此题主要考查了线段的垂直平分线的性质,解题时,先利用线段的垂直平分线求出BD=AD,然后根据三角形的周长互相代换,即可其解.六、八年级数学轴对称三角形选择题(难)31.已知等边三角形的边长为3,点P为等边三角形内任意一点,则点P到三边的距离之和为( )A.32B.332C.32D.不能确定【答案】B【解析】已知,如图,P为等边三角形内任意一点,PD、PE、PF分别是点P到边AB、BC、AC的距离,连接AP、BP、CP,过点A作AH⊥BC于点H,已知等边三角形的边长为3,可求得高线AH=332,因S△ABC=12BC•AH=12AB•PD+12BC•PE+12AC•PF,所以1 2×3×AH=12×3×PD+12×3×PE+12×3×PF,即可得PD+PE+PF=AH=332,即点P到三角形三边距离之和为332.故选B.点睛:本题考查了等边三角形的性质,根据三角形的面积求点P到三边的距离之和等于等边三角形的高是解题的关键,作出图形更形象直观.32.如图,在△ABC中,分别以点A和点B为圆心,大于12AB的长为半径画弧,两弧相交于点M、N,作直线MN,交BC于点D,连接AD,若△ADC的周长为14,BC=8,则AC 的长为A.5 B.6 C.7 D.8【答案】A【解析】【分析】根据题意可得MN 是直线AB 的中点,所以可得AD=BD ,BC=BD+CD ,而△ADC 为AC+CD+AD=14,即AC+CD+BD=14,因此可得AC+BC=14,已知BC 即可求出AC .【详解】根据题意可得MN 是直线AB 的中点AD BD ∴=ADC 的周长为14AC CD AD ++=14AC CD BD ++=∴BC BD CD =+14AC BC =∴+已知8BD =6AC ∴= ,故选B【点睛】本题主要考查几何中的等量替换,关键在于MN 是直线AB 的中点,这样所有的问题就解决了.33.等边△ABC ,在平面内找一点P ,使△PBC 、△PAB 、△PAC 均为等腰三角形,具备这样条件的P 点有多少个?( )A .1个B .4个C .7个D .10个【答案】D【解析】试题分析:根据点P 在等边△ABC 内,而且△PBC 、△PAB 、△PAC 均为等腰三角形,可知P 点为等边△ABC 的垂心;由此可得分别以三角形各顶点为圆心,边长为半径,交垂直平分线的交点就是满足要求的.解:由点P 在等边△ABC 内,而且△PBC 、△PAB 、△PAC 均为等腰三角形,可知P 点为等边△ABC 的垂心;因为△ABC 是等边三角形,所以分别以三角形各顶点为圆心,边长为半径画弧,交垂直平分线的交点就是满足要求的,每条垂直平分线上得3个交点,再加三角形的垂心,一共10个.故选D .点评:此题主要考查等腰三角形的性质和等边三角形的性质,有一定的拔高难度,属于中档题.34.如图,△ABC 是等边三角形,AQ =PQ ,PR ⊥AB 于点R ,PS ⊥AC 于点S ,PR =PS ,则下列结论:①AP ⊥BC ;②AS =AR ;③QP ∥AR ;④△BRP ≌△QSP .正确的有( )A.1个B.2个C.3个D.4个【答案】D【解析】【分析】根据到角的两边的距离相等的点在角的平分线上可得AP平分∠BAC,根据等腰三角形“三线合一”的性质判断出①正确;根据HL证明Rt△APR≌Rt△APS,即可判断②正确;根据等边对等角的性质可得∠APQ=∠PAQ,根据三角形外角的性质得到然后得到∠PQC=2∠PAC=60°=∠BAC,然后根据同位角相等两直线平行可得QP∥AB,从而判断出③正确,④由③易证△QPC是等边三角形,得到PQ=PC,等量代换得到BP=PQ,用HL证明Rt△BRP≌Rt△QSP,即可得到④正确.【详解】∵△ABC是等边三角形,PR⊥AB,PS⊥AC,且PR=PS,∴P在∠A的平分线上.∵AB=AC,∴AP⊥BC,故①正确;∵PA=PA,PR=PS,∴Rt△APR≌Rt△APS,∴AS=AR,故②正确;∵AQ=PQ,∴∠APQ=∠PAQ,∴∠PQC=2∠PAC=60°=∠BAC,∴PQ∥AR,故③正确;由③得:△PQC是等边三角形,∴△PQS≌△PCS,∴PQ=PC.又∵AB=AC,AP⊥BC,∴BP=PC,∴BP=PQ.∵PR=PS,∴Rt△BRP≌Rt△QSP,故④也正确.∵①②③④都正确.故选D.【点睛】本题考查了等腰三角形的性质、全等三角形的判定与性质以及等边三角形的判定与性质,准确识图并熟练掌握全等三角形的判定方法与性质是解题的关键.35.如图,∠AOB=30º,∠AOB 内有一定点P,且OP=12,在OA 上有一动点Q,OB 上有一动点R。