八年级上册数学培优及答案

合集下载

人教版 八年级数学上册 14.2 乘法公式 培优训练(含答案)

人教版 八年级数学上册  14.2 乘法公式 培优训练(含答案)

人教版八年级数学14.2乘法公式培优训练一、选择题(本大题共10道小题)1. 下列各式中,运算结果是9m2-16n2的是()A.(3m+2n)(3m-8n)B.(-4n+3m)(-4n-3m)C.(-3m+4n)(-3m-4n)D.(4n+3m)(4n-3m)2. 下列各式中,能用完全平方公式计算的是()A.(x-y)(x+y) B.(x-y)(x-y)C.(x-y)(-x-y) D.-(x+y)(x-y)3. 若M·(2x-y2)=y4-4x2,则M应为()A.-(2x+y2)B.-y2+2xC.2x+y2D.-2x +y24. 化简(-2x-3)(3-2x)的结果是()A.4x2-9 B.9-4x2C.-4x2-9 D.4x2-6x+95. 为了运用平方差公式计算(x+2y-1)(x-2y+1),下列变形正确的是()A.[x-(2y+1)]2B.[x+(2y-1)][x-(2y-1)]C.[(x-2y)+1][(x-2y)-1]D.[x+(2y-1)]26. 计算(x+1)(x2+1)·(x-1)的结果是()A.x4+1 B.(x+1)4C.x4-1 D.(x-1)47. 如图①,边长为a的大正方形中有四个边长均为b的小正方形,小华将阴影部分拼成了一个长方形(如图②),则这个长方形的面积为()A.a2-4b2B.(a+b)(a-b)C .(a +2b )(a -b )D .(a +b )(a -2b )8. 若n 为正整数,则(2n +1)2-(2n -1)2的值( )A .一定能被6整除B .一定能被8整除C .一定能被10整除D .一定能被12整除9. 若(x +a )2=x 2+bx +25,则()A .a =3,b =6B .a =5,b =5或a =-5,b =-10C .a =5,b =10D .a =-5,b =-10或a =5,b =1010. 如果a ,b ,c 是ABC △三边的长,且22()a b ab c a b c +-=+-,那么ABC △是( )A. 等边三角形.B. 直角三角形.C. 钝角三角形.D. 形状不确定.二、填空题(本大题共6道小题)11. 多项式x 2+1添加一个单项式后可变为完全平方式,则添加的单项式可以是________(任写一个符合条件的即可).12. 填空:()()22552516a a a b +-=-13. 如果(x +my )(x -my )=x 2-9y 2,那么m =________.14. 如图,在边长为a 的正方形中剪去一个边长为b 的小正方形(a b >),把剩下的部分拼成一个梯形,分别计算这两个图形的面积,验证了公式_________________.15. 如图,四张全等的矩形纸片拼成的图形,请利用图中空白部分面积的不同表示方法,写出一个关于a 、b 的恒等式___________.a bb a16.根据图①到图②的变化过程可以写出一个整式的乘法公式,这个公式是____________________.三、解答题(本大题共4道小题)17. 运用完全平方公式计算:(1)(2a +3b )2; (2)(12m +4)2;(3)(-x -14)2; (4)(-13+3b )2.18. 王红同学计算(2+1)(22+1)(24+1)的过程如下:解:原式=(2-1)(2+1)(22+1)(24+1) =(22-1)(22+1)(24+1) =(24-1)(24+1) =28-1.请根据王红的方法求(2+1)(22+1)(24+1)(28+1)…(232+1)+1的个位数字.19. 认真阅读材料,然后回答问题:我们初中学习了多项式的运算法则,相应地,我们可以计算出多项式的展开式,如:(a +b )1=a +b ,(a +b )2=a 2+2ab +b 2,(a +b )3=a 3+3a 2b +3ab 2+b 3,…. 下面我们依次对(a +b )n 展开式的各项系数进一步研究发现,当n 取正整数时可以单独列成如图所示的形式:上面的多项式展开系数表称为“杨辉三角形”.仔细观察“杨辉三角形”,用你发现的规律回答下列问题:(1)(a +b )n 展开式中共有多少项? (2)请写出多项式(a +b )5的展开式.20. 计算:2111111111124162562n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++++ ⎪⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭答案一、选择题(本大题共10道小题)1. 【答案】C [解析] 因为结果是9m 2-16n 2,9m 2应是相同的项的平方,所以相同项应为3m 或-3m ,16n 2应是相反项的平方,相反项应为-4n 和4n.2. 【答案】B3. 【答案】A[解析] M 与2x -y 2的相同项应为-y 2,相反项应为-2x 与2x ,所以M 为-2x -y 2,即-(2x +y 2).4. 【答案】A[解析] 原式=(-2x -3)(-2x +3)=(-2x)2-32=4x 2-9.5. 【答案】B6. 【答案】C[解析] (x +1)(x 2+1)(x -1)=(x +1)(x -1)(x 2+1) =(x 2-1)(x 2+1) =x 4-1.7. 【答案】A[解析] 根据题意得(a +2b )(a -2b )=a 2-4b 2.8. 【答案】B[解析] 原式=(4n 2+4n +1)-(4n 2-4n +1)=8n ,则原式的值一定能被8整除.9. 【答案】D[解析] 因为(x +a)2=x 2+bx +25,所以x 2+2ax +a 2=x 2+bx +25.所以⎩⎨⎧2a =b ,a 2=25,解得⎩⎨⎧a =5,b =10或⎩⎨⎧a =-5,b =-10.10. 【答案】A【解析】已知关系式可化为2220a b c ab bc ac ++---=,即2221(222222)02a b c ab bc ac ++---=, 所以2221[()()()]02a b b c a c -+-+-=,故a b =,b c =,c a =.即a b c ==.选A .二、填空题(本大题共6道小题)11. 【答案】2x (或-2x 或14x 4) 【解析】x 2+2x +1=(x +1)2;x 2-2x +1=(x -1)2;14x 4+x 2+1=(12x 2+1)2.12. 【答案】()()2254542516a b a b a b +-=- 【解析】()()2254542516a b a b a b +-=-13. 【答案】±3[解析] (x +my)(x -my)=x 2-m 2y 2=x 2-9y 2,所以m 2=9.所以m=±3.14. 【答案】22()()a b a b a b +-=-【解析】左图中阴影部分的面积为22a b -,右图中阴影部分的面积为1(22)()()()2b a a b a b a b +-=+-,故验证了公式22()()a b a b a b +-=-(反过来写也可)15. 【答案】224()()ab a b a b =+--【解析】22()()4a b a b ab -=+-或224()()ab a b a b =+--16. 【答案】(a +b)(a -b)=a 2-b 2三、解答题(本大题共4道小题)17. 【答案】解:(1)原式=4a 2+12ab +9b 2. (2)原式=14m 2+4m +16. (3)原式=x 2+12x +116. (4)原式=19-2b +9b 2.18. 【答案】解:原式=(2-1)(2+1)(22+1)(24+1)(28+1)…(232+1)+1 =(22-1)(22+1)(24+1)(28+1)…(232+1)+1 =(24-1)(24+1)(28+1)…(232+1)+1 =… =264-1+1 =264.因为264的个位数字是6,所以(2+1)(22+1)(24+1)(28+1)…(232+1)+1的个位数字是6.19. 【答案】解:(1)由已知可得:(a +b)1展开式中共有2项, (a +b)2展开式中共有3项, (a +b)3展开式中共有4项, ……则(a +b)n 展开式中共有(n +1)项. (2)(a +b)1=a +b , (a +b)2=a 2+2ab +b 2,(a +b)3=a 3+3a 2b +3ab 2+b 3,…则(a +b)5=a 5+5a 4b +10a 3b 2+10a 2b 3+5ab 4+b 5.20. 【答案】41122n --【解析】原式211111************n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-++++ ⎪⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭4411121222n n -⎛⎫=-=- ⎪⎝⎭.。

苏科版初中数学八年级上册 立方根 同步专题培优训练【含答案】

苏科版初中数学八年级上册 立方根 同步专题培优训练【含答案】

苏科版初中数学八年级上册 立方根 同步专题培优训练一、单选题1.√64 的立方根是( )A. 2B. 2C. 8D. -82.如果 √x 3=−√y 3 ,则x ,y 的关系是( )A. x =yB. x =±yC. x =−yD. 无法确定3.下列结论正确的是( ).A. 64的立方根是 ±4B. −19 没有立方根 C. 若 √a =√a 3 ,则 a =1 D. √−273=−√273 4.一个正方体的体积扩大为原来的27倍,则它的棱长变为原来的( )倍.A. 2B. 3C. 4D. 55.若 √a 3<−2 ,则a 的值可以是( )A. -9B. -4C. 4D. 96.如果 √2.373 ≈1.333, √23.73 ≈2.872,那么 √23703约等于( )A. 287.2B. 28.72C. 13.33D. 133.37.下列计算或命题中正确的有( )①±4都是64的立方根; ② √x 33 =x ; ③ √64 的立方根是2; ④ √(±8)23 =±4 A. 1个 B. 2个 C. 3个 D. 4个8.一个自然数的立方根为a , 则下一个自然数的立方根是( )A. a +1B. √a +13C. √a 3+13D. a 3+19.下式①±3都是9的立方根;② √a 33=a ;③8的立方根是2;④ √(±8)23=±4 ,其中正确的个数有( )A. 1个B. 2个C. 3个D. 4个二、填空题10.−0.001 的立方根是________.11.若 √23.73≈2.872 , √x 3≈28.72 ,那么 x = ________.12.方程 x 3+1=0 根是 ________.13.一个正方体木块的体积为 1000cm²,现要把它锯成64块同样大小的正方体小木块,则小木块的棱长________cm .14.方程 x 3+64=0 的实数根是________.15.若一个数的立方根为 −13 ,则这个数为________.三、计算题16.1000(x -1)3=-2717.解方程:(5x−2)3+125=018.已知(x﹣1)3+27=0,求x的值.四、解答题19.将一个体积为125cm3的立方体体积增加V,而保持立方体的形状不变,则棱长应该增加多少?(用含有V的代数式表示);若V=875cm3,则棱长应增加多少厘米?20.李师傅打算把一个长、宽、高分别为50cm,8cm,20cm的长方体铁块锻造成一个立方体铁块,问锻造成的立方体铁块的棱长是多少cm?21.一种长方体的书,长与宽相等,四本同样的书叠在一起成一个正方体,体积为216立方厘米,求这本书的高度.22.已知一个正方体的体积是1 000 cm3,现在要在它的8个角上分别截去8个大小相同的小正方体,使得截去后余下的体积是488 cm3,问截得的每个小正方体的棱长是多少?23.如果一个球的体积扩大为原来的8倍,那么它的半径扩大为原来的多少倍?如果一个球的体积扩大为原来的27倍,那么它的半径扩大为原来的多少倍?如果球的体积扩大为原来的1000倍,那么它的半径扩πr3)大为原来的多少倍?(球的体积公式:V=43答案解析部分一、单选题1.【答案】 A解:先根据算术平方根的意义,求得 √64 =8,然后根据立方根的意义,求得其立方根为2. 故答案为:A.0.【答案】 C解:∵ √x 3=−√y 3=√−y 3 , ∴ x =−y ,故答案为:C .3.【答案】 D解:A. 64的立方根是 4 ,不符合题意;B. −19 有立方根,不符合题意;C. 若 √a =√a 3 ,则 a =1 或0,不符合题意;D. √−273=−√273 ,符合题意; 故答案为:D .4.【答案】 B解:设原来正方体的棱长为a ,则原来正方体的体积为 a 3 ,由题意可得现在正方体的体积为 27a 3 ,∵ √27a 33=3a ,∴现在正方体的棱长为3a ,故答案为:B .5.【答案】 A【解析】【解答】A ∵√a 3<−2∴√a 3<√−83∴a <−8故答案为:A .6.【答案】 C解: √23703=√2.37×10003=√2.373×√10003≈1.333×10=13.33 . 故答案为:C.7.【答案】 B解:①4是64的立方根,原式不符合题意;② √x 33 =x , 符合题意;③ √64 =8,8的立方根是2,原式符合题意;④ √(±8)23=√643 =4,原式不符合题意.则正确的个数为2个.故答案为:B .8.【答案】 C解:根据题意得:这个自然数为a 3 ,∴它下一个自然数的立方根是 √a 3+13 .故答案为:C .9.【答案】 B解: √93 是9的立方根,所以①错误;由于 √a 33=a ,所以②正确;8的立方根是2,所以③正确;√(±8)23=√643=4 ,所以④错误. 故答案为:B.二、填空题10.【答案】 -0.1解:因为 (−0.1)3=−0.001 ,所以 −0.001 立方根是 −0.1 .故答案为: −0.1 .11.【答案】 23700解:∵ √23.73≈2.872∴ √237003≈28.72∴ x =23700故答案为:2370012.【答案】 x=-1解:x 3=-1x=-113.【答案】 52解:根据题意得: √1000643=104=52, 则小木块的棱长是 52 cm ,故答案为: 5214.【答案】 x =−4解:方程整理得:x 3=−64,解得:x =−4.故答案为:x =−4.15.【答案】 −127解:∵立方根为-13∴这个数为(-13)3=-127三、计算题16.【答案】 解:两边都除以1000,得(x-1)3= −271000 ,开立方,得x-1= −310 ,移项,得x= 71017.【答案】 解: (5x −2)3+125=0(5x −2)3=−1255x −2=−55x =−3x =−3518.【答案】 解:(x ﹣1)3+27=0(x ﹣1)3=﹣27,则x ﹣1=﹣3,解得:x =﹣2.四、解答题19.【答案】 解:依题意得:棱长应该增加:√125+V 3−√1253=√125+V 3−5 (厘米), 当 V =875 时,√125+V 3−5=√125+8753−5=10−5=5 (厘米).20.【答案】 解:立方体的棱长=√50×8×20=√8000=20cm .答:立方体铁块的棱长为20cm.21.【答案】 解:设书的高为xcm ,由题意得:(4x )3=216,解得:x=1.5.答:这本书的高度为1.5cm .22.【答案】 解:设截去的每个小正方体的棱长是xcm ,则由题意得 1000−8x 3=488 ,解得x =4.答:截去的每个小正方体的棱长是4厘米.23.【答案】 解:∵ V =43πr 3∴当 V 1=8V 时即 8V =43πr 13 ∴ r 1=2r∴当一个球的体积扩大为原来的8倍时,它的半径扩大为原来的2倍,同理,当一个球的体积扩大为原来的27倍时,它的半径扩大为原来的3倍;当球的体积扩大为原来的1000倍时,它的半径扩大为原来的10倍.故答案为:当一个球的体积扩大为原来的8倍时,它的半径扩大为原来的2倍,当一个球的体积扩大为原来的27倍时,它的半径扩大为原来的3倍;当球的体积扩大为原来的1000倍时,它的半径扩大为原来的10倍.。

2024-2025学年人教版八年级数学上册期中达标培优卷

2024-2025学年人教版八年级数学上册期中达标培优卷

2024-2025学年人教版八年级数学上册期中达标培优卷1.下列轴对称图形中,只有两条对称轴的图形是()A .B .C .D .2.下列长度的各组线段中,能组成三角形的是()A .B .C .D .3.如图,一扇窗户打开后,用窗钩可将其固定,这里所运用的数学原理是()A .三角形具有稳定性B .两点确定一条直线C .两点之间线段最短D .三角形的两边之和大于第三边4.如图,直线MN 是四边形AMBN 的对称轴,与对角线交于点Q,点P 是直线MN 上任意一点,下列判断错误的是()A .AQ=BQB .AP=BPC .∠MAP=∠MBPD .∠ANM=∠NMB5.在三角形内,到三角形三个顶点的距离都相等的点是这个三角形的()A .三条中线的交点B .三条高的交点C .三条角平分线的交点D .三条边的垂直平分线的交点6.工人师傅常用角尺平分一个任意角.做法如下:如图,是一个任意角,在边、上分别取,移动角尺,使角尺两边相同的刻度分别与点、重合.过角尺顶点的射线便是的平分线.在这个过程中先可以得到,其依据的基本事实是()A.两边及其夹角分别相等的两个三角形全等B.两角及其夹边分别相等的两个三角形全等C.三边分别相等的两个三角形全等D.斜边和一条直角边分别相等的两个直角三角形全等7.一个正多边形的每一个内角都等于135°,那么从这个多边形的一个顶点可以引对角线的条数是()A.4条B.5条C.6条D.8条8.两边分别长4cm和10cm的等腰三角形的周长是()A.18cm或24cm B.20cm或24cm C.24cm D.26cm9.若一个多边形的边数增加1,则这个多边形的内角和()A.不变B.增加360°C.减少180°D.增加180°10.如图,已知,垂足分别为交于点O,且平分,那么图中全等三角形共有()A.3对B.4对C.5对D.6对11.如图,中,是的垂直平分线,,的周长为16,则的周长为()A.18B.21C.24D.2612.如图,将△ABD沿△ABC的角平分线AD所在直线翻折,点B在AC边上的落点记为点E.已知∠C=20°、AB+BD=AC,那么∠B等于()A.80°B.60°C.40°D.30°13.如图,将一张三角形纸片的一角折叠,使点落在处的处,折痕为.如果,,,那么下列式子中正确的是()A.B.C.D.14.如图,等边的边长为8,是边上的中线,是边上的动点,是边上一点,若,则当取得最小值时,的度数为()A.B.C.D.15.如图,在中,,,平分,交于,点是上的一点,且,连交于,连,下列结论:,,,,其中正确的有()A.B.C.D.16.已知点和和关于轴对称,则的值为_________.17.如图,在中,平分交于点,过点作交于点.动点从点出发,沿着运动,当时,则的度数为___________.18.如图,在四边形中,已知,.则_____.19.如图在第二个△A1BC中,∠B=40°,A1B=BC,在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第二个△A1A2D,再在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E…如此类推,可得到第n个等腰三角形.则第n个等腰三角形中,以A n为顶点的内角的度数为______.20.如图,,,,,点P和点Q同时从点A出发,分别在线段和射线上运动,且,当______时,以点A,P,Q为顶点的三角形与全等.21.已知,在10×10网格中建立如图所示的平面直角坐标系,△ABC是格点三角形(三角形的顶点是网格线的交点).(1)画出△ABC关于y轴对称的△A1B1C1;(2)画出△A1B1C1向下平移5个单位长度得到的△A2B2C2;(3)若点B的坐标为(4,2),请写出点B经过两次图形变换的对应点B2的坐标.22.如图,在中,为边上的高,点D为边上的一点,连接.(1)当为边上的中线时,若,的面积为30,求的长;(2)当为的角平分线时,若,求的度数.23.如图点在线段上,∥,,,是的中点,试探索与的位置关系,并说明理由.24.三角形中,顶角等于的等腰三角形称为黄金三角形,如图,中,,且.(1)在图中用尺规作边的垂直平分线交于D,连接(保留作图痕迹,不写作法).(2)请问是不是黄金三角形,如果是,请给出证明,如果不是,请说明理由.25.如图,在中,G为的中点,,交的平分线于点D,,垂足为E,,垂足为F.(1)求证:;(2)若,,则的长为______.26.如图所示,已知△ABC中,∠B=∠C,AB=4厘米,BC=3厘米,点D为AB的中点.如果点P在线段BC上以每秒1厘米的速度由点B向点C运动,同时,点Q在线段CA上以每秒a厘米的速度由点C向点A运动,设运动时间为t(秒)(0≤t≤3).(1)用含t的式子表示PC的长度是;(2)若点P,Q的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;(3)若点P,Q的运动速度不相等,当点Q的运动速度a为多少时,能够使△BPD与△CQP全等?。

人教版数学八年级上册第11章《三角形》培优测试题(含答案)

人教版数学八年级上册第11章《三角形》培优测试题(含答案)

第11章《三角形》培优测试题一.选择题(共10小题)1.下面分别是三根小木棒的长度,能摆成三角形的是()A.5cm,8cm,2cm B.5cm,8cm,13cmC.5cm,8cm,5cm D.2cm,7cm,5cm2.如图,在△ABC中,∠ACB=100°,∠A=20°,D是AB上一点,将△ABC沿CD 折叠,使B点落在AC边上的B′处,则∠ADB′等于()A.40°B.20°C.55°D.30°3.如图,在△ABC中,AD⊥BC,AE平分∠BAC,若∠1=30,∠2=20°,则∠B=()A.20°B.30°C.40°D.50°4.三角形的三个内角的度数之比为2:3:7,则这个三角形最大内角一定是()A.75°B.90°C.105°D.120°5.在△ABC中,若AB=9,BC=6,则第三边CA的长度可以是()A.3B.9C.15D.166.如图,AD,CE为△ABC的角平分线且交于O点,∠DAC=30°,∠ECA=35°,则∠ABO等于()A.25°B.30°C.35°D.40°7.若正多边形的一个外角是60°,则该正多边形的内角和为()A.360°B.540°C.720°D.900°8.如图,图中直角三角形共有()A.1个B.2个C.3个D.4个9.有公共顶点A,B的正五边形和正六边形按如图所示位置摆放,连接AC交正六边形于点D,则∠ADE的度数为()A.144°B.84°C.74°D.54°10.如图,AE平分△ABC外角∠CAD,且AE∥BC,给出下列结论:①∠DAE=∠CAE;②∠DAE=∠B;③∠CAE=∠C;④∠B=∠C;⑤∠C+∠BAE=180°,其中正确的个数有()A.5个B.4个C.3个D.2个二.填空题(共8小题)11.三角形三边长分别为3,2a﹣1,4.则a的取值范围是.12.如图,在△ABC中,D、E分别是AB、AC上的点,点F在B C的延长线上,DE∥BC,∠A=44°,∠1=57°,则∠2= .13.在△ABC中,BO平分∠ABC,CO平分∠ACB,当∠A=50°时,∠BOC= .14.一个n边形的每个内角都为144°,则边数n为.15.在△ABC中,∠C=∠A=∠B,则∠A= 度.16.如图,AE是△ABC的角平分线,AD⊥BC于点D,若∠BAC=128°,∠C=36°,∠DAE 度.17.如图,在△ABC中,AD⊥BC,AE平分∠BAC,若∠1=40°,∠2=20°,则∠B= .18.如图,在△ABC中,点M、N是∠ABC与∠ACB三等分线的交点,若∠A=60°,则∠BMN的度数是.三.解答题(共7小题)19.(1)已知三角形三个内角的度数比为1:2:3,求这个三角形三个外角的度数.(2)一个正多边形的内角和为1800°,求这个多边形的边数.20.如图,在△ABC中,AD是BC边上的高,BE平分∠ABC交AC边于E,∠BAC=60°,∠ABE=25°.求∠DAC的度数.21.如图①所示,为五角星图案,图②、图③叫做蜕变的五角星.试回答以下问(1)在图①中,试证明∠A+∠B+∠C+∠D+∠E=180°;(2)对于图②或图③,还能得到同样的结论吗?若能,请在图②或图③中任选其一证明你的发现;若不能,试说明理由.22.如图,已知△ABC中,高为AD,角平分线为AE,若∠B=28°,∠ACD=52°,求∠EAD的度数.23.如图,在△ABC中,AD平分∠BAC交BC于点D,AE⊥BC,垂足为E,且CF∥AD.(1)如图1,若△ABC是锐角三角形,∠B=30°,∠ACB=70°,则∠CFE= 度;(2)若图1中的∠B=x,∠ACB=y,则∠CFE= ;(用含x、y的代数式表示)(3)如图2,若△ABC是钝角三角形,其他条件不变,则(2)中的结论还成立吗?请说明理由.24.如图,BG∥EF,△ABC的顶点C在EF上,AD=BD,∠A=23°,∠BCE=44°,求∠ACB的度数.25.【探究】如图①,在△ABC中,∠ABC的平分线与∠ACB的平分线相交于点P.(1)若∠ABC=50°,∠ACB=80°,则∠A= 度,∠P= 度(2)∠A与∠P的数量关系为,并说明理由.【应用】如图②,在△ABC中,∠ABC的平分线与∠ACB的平分线相交于点P.∠ABC的外角平分线与∠ACB的外角平分线相交于点Q.直接写出∠A与∠Q的数量关系为.参考答案一.选择题1. C.2. A.3. D.4. C.5. B.6. A.7. C.8. C.9. B.10. A.二.填空题11. 1<a<4.12.101°.13.115°.14. 10.15.60.16. 10.17.30°.18.50°.三.解答题19.解:(1)设此三角形三个内角的比为x,2x,3x,则x+2x+3x=180,6x=180,x=30,则三个内角分别为30°、60°、90°,相应的三个外角分别为150°、120°、90°.(2)设这个多边形的边数是n,则(n﹣2)•180°=1800°,解得n=12.故这个多边形的边数为12.20.解:∵BE平分∠ABC,∴∠ABC=2∠ABE=2×25°=50°,∵AD是BC边上的高,∴∠BAD=90°﹣∠ABC=90°﹣50°=40°,∴∠DAC=∠BAC﹣∠BAD=60°﹣40°=20°.21.解:(1)证明:如图①,设BD、AD与CE的交点为M、N;△MBE和△NAC中,由三角形的外角性质知:∠DMN=∠B+∠E,∠DNM=∠A+∠C;△DMN中,∠DMN+∠DNM+∠D=180°,故∠A+∠B+∠C+∠D+∠E=180°.(2)结论仍然成立,以图③为例;延长CE交AD于F,设CE与BD的交点为M;同(1)可知:∠DMF=∠B+∠E,∠DFM=∠A+∠C;在△DMF中,∠D+∠DMF+∠DFM=180°,∴∠A+∠B+∠C+∠D+∠E=180°.22.解:∵AD为高,∠B=28°,∴∠BAD=62°,∵∠ACD=52°,∴∠BAC=∠ACD﹣∠B=24°,∵AE是角平分线,∴∠BAE=BAC=12°,∴∠EAD=∠BAD﹣∠BAE=50°.23.解:(1)∵∠B=30°,∠ACB=70°,∴∠BAC=180°﹣∠B﹣∠ACB=80°,∵AD平分∠BAC,∴∠BAD=40°,∵AE⊥BC,∴∠AEB=90°∴∠BAE=60°∴∠DAE=∠BAE﹣∠BAD=60°﹣40°=20°,∵CF∥AD,∴∠CFE=∠DAE=20°;故答案为:20;(2)∵∠BAE=90°﹣∠B,∠BAD=∠BAC=(180°﹣∠B﹣∠BCA),∴∠CFE=∠DAE=∠BAE﹣∠BAD=90°﹣∠B﹣(180°﹣∠B﹣∠BCA)=(∠BCA ﹣∠B)=y﹣x.故答案为: y﹣x;(3)(2)中的结论成立.∵∠B=x,∠ACB=y,∴∠BAC=180°﹣x﹣y,∵AD平分∠BAC,∴∠DAC=∠BAC=90°﹣x﹣y,∵CF∥AD,∴∠ACF=∠DAC=90°﹣x﹣y,∴∠BCF=y+90°﹣x﹣y=90°﹣x+y,∴∠ECF=180°﹣∠BCF=90°+x﹣y,∵AE⊥BC,∴∠FEC=90°,∴∠CFE=90°﹣∠ECF=y﹣x.24.解:∵AD=BD,∠A=23°,∴∠ABD=∠A=23°,∵BG∥EF,∠BC E=44°,∴∠DBC=∠BCE=44°,∴∠ABC=44°+23°=67°,∴∠ACB=180°﹣67°﹣23°=90°.25.解:(1)∵∠ABC=50°,∠ACB=80°,∴∠A=50°,∵∠ABC的平分线与∠ACB的平分线相交于点P,∴∠CBP=∠ABC,∠BCP=∠ACB,∴∠BCP+∠CBP=(∠ABC+∠ACB)=×130°=65°,∴∠P=180°﹣65°=115°,故答案为:50,115;(2).证明:∵BP、CP分别平分∠ABC、∠ACB,∴,,∵∠A+∠ABC+∠ACB=180°∠P+∠PBC+∠PCB=180°,∴,∴,∴;(3).理由:∵∠ABC的外角平分线与∠ACB的外角平分线相交于点Q,∴∠CBQ=(180°﹣∠ABC)=90°﹣∠ABC,∠BCQ=(180°﹣∠ACB)=90°﹣∠ACB,∴△BCQ中,∠Q=180°﹣(∠CBQ+∠BCQ)=180°﹣(90°﹣∠ABC+90°﹣∠ACB)=(∠ABC+∠ACB),又∵∠ABC+∠ACB=180°﹣∠A,∴∠Q=(180°﹣∠A)=90°﹣∠A.。

人教版八年级数学上册14.3因式分解 (培优) 专练(含答案解析)

 人教版八年级数学上册14.3因式分解 (培优) 专练(含答案解析)

人教版八年级数学上册:14.3因式分解(培优)专练习题一.选择题(共12小题)1.已知a,b,c是正整数,a>b,且a2﹣ab﹣ac+bc=11,则a﹣c等于( )A.﹣1B.﹣1或﹣11C.1D.1或112.已知d=x4﹣2x3+x2﹣12x﹣5,则当x2﹣2x﹣5=0时,d的值为( )A.25B.20C.15D.103.将a3b﹣ab进行因式分解,正确的是( )A.a(a2b﹣b)B.ab(a﹣1)2C.ab(a+1)(a﹣1)D.ab(a2﹣1)4.已知:a=﹣226x+2017,b=﹣226x+2018,c=﹣226x+2019,请你巧妙的求出代数式a2+b2+c2﹣ab﹣bc﹣ca的值( )A.3B.2C.1D.05.已知a+b=3,ab=1,则多项式a2b+ab2﹣a﹣b的值为( )A.﹣1B.0C.3D.66.已知496﹣1可以被60到70之间的某两个整数整除,则这两个数是( )A.61,63B.63,65C.65,67D.63,647.对于算式20183﹣2018,下列说法错误的是( )A.能被2016整除B.能被2017整除C.能被2018整除D.能被2019整除8.已知a=2018x+2018,b=2018x+2019,c=2018x+2020,则a2+b2+c2﹣ab﹣ac﹣bc的值是( )A.0B.1C.2D.39.分解因式b2(x﹣3)+b(x﹣3)的正确结果是( )A.(x﹣3)(b2+b)B.b(x﹣3)(b+1)C.(x﹣3)(b2﹣b)D.b(x﹣3)(b﹣1)10.多项式x2+7x﹣18因式分解的结果是( )A.(x﹣1)(x+18)B.(x+2)(x+9)C.(x﹣3)(x+6)D.(x﹣2)(x+9)11.若k为任意整数,且993﹣99能被k整除,则k不可能是( )A.50B.100C.98D.9712.任何一个正整数n都可以写成两个正整数相乘的形式,我们把两个乘数的差的绝对值最小的一种分解n=p×q(p≤q)称为正整数n的最佳分解,并定义一个新运算.例如:12=1×12=2×6=3×4,则.那么以下结论中:①;②;③若n是一个完全平方数,则F(n)=1;④若n是一个完全立方数(即n=a3,a是正整数),则.正确的个数为( )A.1个B.2个C.3个D.4个二.填空题(共6小题)13.已知a=,b=,c=,则代数式2(a2+b2+c2﹣ab﹣bc﹣ac)的值是 .14.已知a=2005x+2006,b=2005x+2007,c=2005x+2008,则a2+b2+c2﹣ab﹣ac﹣bc= .15.已知a,b,c满足a+b+c=1,a2+b2+c2=3,a3+b3+c3=5.则a4+b4+c4的值是 .16.已知ab=3,a+b=5,则a3b+2a2b2+ab3的值 .17.已知x,y,z是△ABC的三边,且满足2xy+x2=2yz+z2,则△ABC的形状是 .18.已知a2+a﹣1=0,则a3+2a2+2019= .三.解答题(共5小题)19.因式分解:a2﹣2ab+b2﹣1.20.因式分解.(1)a2(x+y)﹣4b2(x+y)(2)p2(a﹣1)+p(1﹣a)(3).21.已知a,b,c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,试判定△ABC的形状.22.观察下列各式.①4×1×2+1=(1+2)2;②4×2×3+1=(2+3)2;③4×3×4+1=(3+4)2…(1)根据你观察、归纳,发现的规律,写出4×2016×2017+1可以是哪个数的平方?(2)试猜想第n个等式,并通过计算验证它是否成立.(3)利用前面的规律,将4(x2+x)(x2+x+1)+1因式分解.23.定义:若数p可以表示成P=x2+y2﹣xy(x,y为自然数)的形式,则称P为“希尔伯特”数.例如:3=22+11﹣2×1,39=72+52﹣7×5,147=132+112﹣13×11…所以3,39,147是“希尔伯特”数.(1)请写出两个10以内的“希尔伯特”数.(2)像39,147这样的“希尔伯特”数都是可以用连续两个奇数按定义给出的运算表达出来,试说明所有用连续两个奇数表达出的“希尔伯特”数一定被4除余3.(3)已知两个“希尔伯特”数,它们都可以用连续两个奇数按定义给出的运算表达出来,且它们的差是224,求这两个“希尔伯特”数.人教版八年级数学上册14.3因式分解培优专练习题参考答案与试题解析一.选择题(共12小题)1.已知a,b,c是正整数,a>b,且a2﹣ab﹣ac+bc=11,则a﹣c等于( )A.﹣1B.﹣1或﹣11C.1D.1或11【解答】解:a2﹣ab﹣ac+bc=11(a2﹣ab)﹣(ac﹣bc)=11a(a﹣b)﹣c(a﹣b)=11(a﹣b)(a﹣c)=11∵a>b,∴a﹣b>0,a,b,c是正整数,∴a﹣b=1或11,a﹣c=11或1.故选:D.2.已知d=x4﹣2x3+x2﹣12x﹣5,则当x2﹣2x﹣5=0时,d的值为( )A.25B.20C.15D.10【解答】解法一:∵x2﹣2x﹣5=0,∴x2=2x+5,∴d=x4﹣2x3+x2﹣12x﹣5,=(2x+5)2﹣2x(2x+5)+x2﹣12x﹣5=4x2+20x+25﹣4x2﹣10x+x2﹣12x﹣5=x2﹣2x﹣5+25=25.解法二:∵x2﹣2x﹣5=0,∴x2﹣2x=5,∴d=x4﹣2x3+x2﹣12x﹣5=x2(x2﹣2x+1)﹣12x﹣5=6x2﹣12x﹣5=6(x2﹣2x)﹣5=6×5﹣5=25.故选:A.3.将a3b﹣ab进行因式分解,正确的是( )A.a(a2b﹣b)B.ab(a﹣1)2C.ab(a+1)(a﹣1)D.ab(a2﹣1)【解答】解:a3b﹣ab=ab(a2﹣1)=ab(a+1)(a﹣1),故选:C.4.已知:a=﹣226x+2017,b=﹣226x+2018,c=﹣226x+2019,请你巧妙的求出代数式a2+b2+c2﹣ab﹣bc﹣ca的值( )A.3B.2C.1D.0【解答】解:∵a=﹣226x+2017,b=﹣226x+2018,c=﹣226x+2019,∴a﹣b=﹣1,b﹣c=﹣1,a﹣c=﹣2,∴a2+b2+c2﹣ab﹣bc﹣ca======3,故选:A.5.已知a+b=3,ab=1,则多项式a2b+ab2﹣a﹣b的值为( )A.﹣1B.0C.3D.6【解答】解:a2b+ab2﹣a﹣b=(a2b﹣a)+(ab2﹣b)=a(ab﹣1)+b(ab﹣1)=(ab﹣1)(a+b)将a+b=3,ab=1代入,得原式=0.故选:B.6.已知496﹣1可以被60到70之间的某两个整数整除,则这两个数是( )A.61,63B.63,65C.65,67D.63,64【解答】解:利用平方式公式进行分解该数字:496﹣1=(448+1)(448﹣1)=(448+1)(424+1)(424﹣1)=(448+1)(424+1)(412+1)(46+1)(43+1)(43﹣1)=(448+1)(424+1)(412+1)(46+1)×65×63故选:B.7.对于算式20183﹣2018,下列说法错误的是( )A.能被2016整除B.能被2017整除C.能被2018整除D.能被2019整除【解答】解:20183﹣2018=2018(20182﹣1)=2018×(2018+1)(2018﹣1)=2018×2019×20172018×2019×2017能被2017、2018、2019整除,不能被2016整除.故选:A.8.已知a=2018x+2018,b=2018x+2019,c=2018x+2020,则a2+b2+c2﹣ab﹣ac﹣bc的值是( )A.0B.1C.2D.3【解答】解:∵a=2018x+2018,b=2018x+2019,c=2018x+2020,∴a﹣b=﹣1,a﹣c=﹣2,b﹣c=﹣1,∴a2+b2+c2﹣ab﹣ac﹣bc=====3,故选:D.9.分解因式b2(x﹣3)+b(x﹣3)的正确结果是( )A.(x﹣3)(b2+b)B.b(x﹣3)(b+1)C.(x﹣3)(b2﹣b)D.b(x﹣3)(b﹣1)【解答】解:b2(x﹣3)+b(x﹣3),=b(x﹣3)(b+1).故选:B.10.多项式x2+7x﹣18因式分解的结果是( )A.(x﹣1)(x+18)B.(x+2)(x+9)C.(x﹣3)(x+6)D.(x﹣2)(x+9)【解答】解:原式=(x﹣2)(x+9).故选:D.11.若k为任意整数,且993﹣99能被k整除,则k不可能是( )A.50B.100C.98D.97【解答】解:∵993﹣99=99×(992﹣1)=99×(99+1)×(99﹣1)=99×100×98,∴k可能是99、100、98或50,故选:D.12.任何一个正整数n都可以写成两个正整数相乘的形式,我们把两个乘数的差的绝对值最小的一种分解n=p×q(p≤q)称为正整数n的最佳分解,并定义一个新运算.例如:12=1×12=2×6=3×4,则.那么以下结论中:①;②;③若n是一个完全平方数,则F(n)=1;④若n是一个完全立方数(即n=a3,a是正整数),则.正确的个数为( )A.1个B.2个C.3个D.4个【解答】解:依据新运算可得①2=1×2,则,正确;②24=1×24=2×12=3×8=4×6,则,正确;③若n是一个完全平方数,则F(n)=1,正确;④若n是一个完全立方数(即n=a3,a是正整数),如64=43=8×8,则F(n)不一定等于,故错误.故选:C.二.填空题(共6小题)13.已知a=,b=,c=,则代数式2(a2+b2+c2﹣ab﹣bc﹣ac)的值是 6 .【解答】解:a﹣b=﹣1,a﹣c=﹣2,b﹣c=﹣1,2(a2+b2+c2﹣ab﹣bc﹣ac)=2a2+2b2+2c2﹣2ab﹣2bc﹣2ac=(a﹣b)2+(a﹣c)2+(b﹣c)2=(﹣1)2+(﹣4)2+(﹣1)2=1+4+1=6故答案为6.14.已知a=2005x+2006,b=2005x+2007,c=2005x+2008,则a2+b2+c2﹣ab﹣ac﹣bc= 3 .【解答】解:∵a=2005x+2006,b=2005x+2007,c=2005x+2008,∴a﹣b=﹣1,a﹣c=﹣2,b﹣c=﹣1,则原式=(2a2+2b2+2c2﹣2ab﹣2ac﹣2bc)=[(a﹣b)2+(a﹣c)2+(b﹣c)2]=3.故答案为:3.15.已知a,b,c满足a+b+c=1,a2+b2+c2=3,a3+b3+c3=5.则a4+b4+c4的值是 .【解答】解:∵(a+b+c)2=a2+b2+c2+2(ab+bc+ac),a+b+c=1,a2+b2+c2=3,∴1=3+2(ab+bc+ac),∴ab+bc+ac=﹣1,∵a3+b3+c3﹣3abc=(a+b+c)(a2+b2+c2﹣ab﹣bc﹣ac),a3+b3+c3=5∴5﹣3abc=3+1∴abc=,∵(ab+bc+ac)2=a2b2+b2c2+a2c2+2abc(a+b+c)∴1=a2b2+b2c2+a2c2+∴a2b2+b2c2+a2c2=∵(a2+b2+c2)2=a4+b4+c4+2(a2b2+b2c2+a2c2)∴9=a4+b4+c4+∴a4+b4+c4=.故答案为:.16.已知ab=3,a+b=5,则a3b+2a2b2+ab3的值 75 .【解答】解:∵a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2又已知ab=3,a+b=5,∴原式=3×52=75故答案为:75.17.已知x,y,z是△ABC的三边,且满足2xy+x2=2yz+z2,则△ABC的形状是 等腰三角形 .【解答】解:∵2xy+x2=2yz+z2,∴2xy+x2﹣2yz﹣z2=0,因式分解得:(x﹣z)(x+z+2y)=0,∵x,y,z是△ABC的三边,∴x+z+2y≠0,∴x﹣z=0,∴x=z,∴△ABC是等腰三角形;故答案为:等腰三角形.18.已知a2+a﹣1=0,则a3+2a2+2019= 2020 .【解答】解:∵a2+a﹣1=0∴a2+a=1∴a3+a2=a又∵a3+2a2+2019=a3+a2+a2+2019=a+a2+2019=1+2019=2020∴a3+2a2+2019=2020三.解答题(共5小题)19.因式分解:a2﹣2ab+b2﹣1.【解答】解:a2﹣2ab+b2﹣1,=(a﹣b)2﹣1,=(a﹣b+1)(a﹣b﹣1).20.因式分解.(1)a2(x+y)﹣4b2(x+y)(2)p2(a﹣1)+p(1﹣a)(3).【解答】解:(1)原式=(x+y)(a2﹣4b2)=(x+y)(a+2b)(a﹣2b);(2)原式=(a﹣1)(p2﹣p)=p(a﹣1)(p﹣1);(3)原式===.21.已知a,b,c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,试判定△ABC的形状.【解答】解:∵a2c2﹣b2c2=a4﹣b4,∴a4﹣b4﹣a2c2+b2c2=0,∴(a4﹣b4)﹣(a2c2﹣b2c2)=0,∴(a2+b2)(a2﹣b2)﹣c2(a2﹣b2)=0,∴(a2+b2﹣c2)(a2﹣b2)=0得:a2+b2=c2或a=b,或者a2+b2=c2且a=b,即△ABC为直角三角形或等腰三角形或等腰直角三角形.22.观察下列各式.①4×1×2+1=(1+2)2;②4×2×3+1=(2+3)2;③4×3×4+1=(3+4)2…(1)根据你观察、归纳,发现的规律,写出4×2016×2017+1可以是哪个数的平方?(2)试猜想第n个等式,并通过计算验证它是否成立.(3)利用前面的规律,将4(x2+x)(x2+x+1)+1因式分解.【解答】解:(1)根据观察、归纳、发现的规律,得到4×2016×2017+1=(2016+2017)2=40332;(2)猜想第n个等式为4n(n+1)+1=(2n+1)2,理由如下:∵左边=4n(n+1)+1=4n2+4n+1,右边=(2n+1)2=4n2+4n+1,∴左边=右边,∴4n(n+1)+1=(2n+1)2;(3)利用前面的规律,可知4(x2+x)(x2+x+1)+1=(x2+x+x2+x+1)2=(x2+2x+1)2=(x+1)4.23.定义:若数p可以表示成P=x2+y2﹣xy(x,y为自然数)的形式,则称P为“希尔伯特”数.例如:3=22+11﹣2×1,39=72+52﹣7×5,147=132+112﹣13×11…所以3,39,147是“希尔伯特”数.(1)请写出两个10以内的“希尔伯特”数.(2)像39,147这样的“希尔伯特”数都是可以用连续两个奇数按定义给出的运算表达出来,试说明所有用连续两个奇数表达出的“希尔伯特”数一定被4除余3.(3)已知两个“希尔伯特”数,它们都可以用连续两个奇数按定义给出的运算表达出来,且它们的差是224,求这两个“希尔伯特”数.【解答】解:(1)∵0=02+02×0,1=12+02﹣1×0,3=22+11﹣2×1,4=22+02﹣2×0,7=22+32﹣2×3,9=32+02﹣3×0,∴10以内的“希尔伯特”数有0,1,3,4,7,9;(2)设“希尔伯特”数为(2n+1)2+(2n﹣1)2﹣(2n+1)(2n﹣1).(n为自然数)∵(2n+1)2+(2n﹣1)2﹣(2n+1)(2n﹣1)=4n2+3,∵4n2能被4整除,∴所有用连续两个奇数表达出的“希尔伯特”数一定被4除余3.(3)设两个“希尔伯特”数分别为:(2m+1)2+(2m﹣1)2﹣(2m+1)(2m﹣1)和(2n+1)2+(2n﹣1)2﹣(2n+1)(2n﹣1).(m,n为自然数).由题意:(2m+1)2+(2m﹣1)2﹣(2m+1)(2m﹣1)﹣[(2n+1)2+(2n﹣1)2﹣(2n+1)(2n﹣1)]=224,∴m2﹣n2=56,∴(m+n)(m﹣n)=56,可得整数解:或,∴这两个“希尔伯特”数分别为:327和103或903和679.。

北师版八年级数学上册第三章培优测试卷含答案

北师版八年级数学上册第三章培优测试卷含答案

北师版八年级数学上册第三章培优测试卷一、选择题(每题3分,共30分)1.云南是一个神奇美丽的地方,这里有美丽的边疆、美丽的城市、美丽的村庄、美丽的风情,云南的省会城市昆明更有着四季如春的美誉,下列表示昆明市地理位置最合理的是()A.在中国西南地区B.在云贵高原的中部C.距离北京2 600千米D.东经102°、北纬24°2.如图,科考队探测到目标位于图中阴影区域内,则目标的坐标可能是() A.(20,30)B.(15,-28)C.(-40,-10)D.(-35,19)3.【母题:教材P54例题】某镇初级中学在镇政府的南偏西60°方向上,且距离镇政府1 500 m,则如图所示的表示法正确的是()4.【2023·济宁任城区校级月考】已知点A(m-1,3)与点B(2,n-1)关于x轴对称,则m+n的值为()A.0 B.1 C.-1 D.3 5.【2023·天津中学月考】已知点A(-1,-4),B(-1,3),则() A.点A,B关于x轴对称B.点A,B关于y轴对称C.直线AB平行于y轴D.直线AB垂直于y轴6.已知点A(m+1,-2)和点B(3,m-1),若直线AB∥x轴,则m的值为() A.2 B.-4 C.-1 D.37.若点P(1,a)与点Q(b,2)关于x轴对称,则代数式(a+b)2 023的值为() A.-1 B.1 C.-2 D.28.【2023·常州实验中学月考】如图,正五边形ABCDE放入某平面直角坐标系后,若顶点A,B,C,D的坐标分别是(0,a),(-3,2),(b,m),(c,m),则点E 的坐标是()A.(2,-3)B.(2,3)C.(3,2)D.(3,-2)9.已知点P的坐标为(2-a,3a+6),且点P到两坐标轴的距离相等,则点P的坐标是()A.(3,3) B.(3,-3)C.(6,-6) D.(3,3)或(6,-6)10.在平面直角坐标系中,一个智能机器人接到的指令是:从原点O出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点A1,第二次移动到点A2,…,第n次移动到点A n,则点A2 024的坐标是()A.(1 011,0) B.(1 011,1) C.(1 012,0) D.(1 012,1) 二、填空题(每题3分,共24分)11.点(0,-2)在________轴上.12.点(4,5)关于x轴对称的点的坐标为__________.13.一个英文单词的字母顺序分别对应如图中的有序数对:(5,3),(6,3),(7,3),(4,1),(4,4),则这个英文单词翻译成中文为__________.14.已知点A,B,C的坐标分别为(2,4),(6,0),(8,0),则△ABC的面积是________.15.【母题:教材P71复习题T1(3)】若点P到x轴的距离为4,到y轴的距离为5,且点P在y轴的左侧,则点P的坐标为________________.16.已知点N的坐标为(a,a-1),则点N一定不在第________象限.17.【2023·苏州一中月考】如图,一束光线从点A(3,3)出发,经过y轴上的点C 反射后经过点B(1,0),则光线从点A到点B经过的路径长为________.18.【规律探索题】【2022·毕节】如图,在平面直角坐标系中,把一个点从原点开始向上平移1个单位长度,再向右平移1个单位长度,得到点A1(1,1);把点A1向上平移2个单位长度,再向左平移2个单位长度,得到点A2(-1,3);把点A2向下平移3个单位长度,再向左平移3个单位长度,得到点A3(-4,0);把点A3向下平移4个单位长度,再向右平移4个单位长度,得到点A4(0,-4),…;按此做法进行下去,则点A10的坐标为________.三、解答题(19,23,24题每题12分,其余每题10分,共66分)19.【母题:教材P60随堂练习】2023年亚运会将在杭州举行,如图是杭州李华同学家附近的一些地方.(1)根据图中所建立的平面直角坐标系,写出学校、邮局的坐标.(2)某星期日早晨,李华同学从家里出发,沿着(-2,-1)→(-1,-2)→(1,-2)→(2,-1)→(1,-1)→(1,3)→(-1,0)→(0,-1)→(-2,-1)的路线转了一圈,依次写出他路上经过的地方.(3)连接(2)中各点,所形成的路线构成了什么图形?20.已知点P (2m -6,m +2).(1)若点P 在y 轴上,则点P 的坐标为__________; (2)若点P 的纵坐标比横坐标大6,则点P 在第几象限?21.若点P ,Q 的坐标分别是(x 1,y 1),(x 2,y 2),则线段PQ 的中点坐标为⎝ ⎛⎭⎪⎫x 1+x 22,y 1+y 22.如图,已知点A ,B ,C 的坐标分别为(-5,0),(3,0),(1,4),利用上述结论分别求出线段AC ,BC 的中点D ,E 的坐标,并判断DE 与AB 的位置关系.22.【2023·吉林一中月考】已知点P (2x ,3x -1)是平面直角坐标系内的点. (1)若点P 在第三象限,且到两坐标轴的距离和为11,求x 的值;(2)已知点A (3,-1),点B (-5,-1),点P 在直线AB 的上方,且到直线AB 的距离为5,求x 的值.23.如图,在平面直角坐标系中,AB∥CD∥x轴,BC∥DE∥y轴,且AB=CD=4,OA=5,DE=2,动点P从点A出发,沿A→B→C的路线运动到点C停止;动点Q从点O出发,沿O→E→D的路线运动到点D停止.若P,Q两点同时出发,且P,Q运动的速度均为每秒一个单位长度.(1)直接写出B,C,D三个点的坐标;(2)当P,Q两点出发6 s时,试求三角形POQ的面积.24.【存在性问题】已知A(-3,0),C(0,4),点B在x轴上,且AB=4.(1)求点B的坐标.(2)在y轴上是否存在点P,使得以A,C,P为顶点的三角形的面积为9?若存在,求出点P的坐标;若不存在,请说明理由.(3)在y轴上是否存在点Q,使得△ACQ是等腰三角形?若存在,请画出点Q的位置,并直接写出点Q的坐标;若不存在,请说明理由.答案一、1.D【点拨】表示昆明市地理位置最合理的是东经102°、北纬24°.2.D【点拨】图中阴影区域在第二象限,故选D.3.A【点拨】A.镇初级中学在镇政府的南偏西60°方向上,且距离镇政府1 500 m,故本选项符合题意;B.镇初级中学在镇政府的南偏西30°方向上,且距离镇政府1 500 m,故本选项不符合题意;C.镇政府在镇初级中学的南偏西60°方向上,且距离镇初级中学1 500 m,故本选项不符合题意;D.镇政府在镇初级中学的南偏西30°方向上,且距离镇初级中学1 500 m,故本选项不符合题意.故选A.4.B【点拨】因为点A(m-1,3)与点B(2,n-1)关于x轴对称,所以m-1=2,n-1=-3,解得m=3,n=-2,所以m+n=1.5.C【点拨】把A(-1,-4),B(-1,3)在平面直角坐标系中画出,并连接AB,可知AB平行于y轴.6.C【点拨】因为直线AB∥x轴,所以A、B两点的纵坐标相等,所以-2=m-1,解得m=-1.7.A【点拨】因为P(1,a)与Q(b,2)关于x轴对称,所以b=1,a=-2,所以(a+b)2 023=(-2+1)2 023=-1.8.C【点拨】因为点A的坐标为(0,a),所以点A在该平面直角坐标系的y轴上.因为点C,D的坐标分别为(b,m),(c,m),所以点C,D关于y轴对称.因为正五边形ABCDE是轴对称图形,所以该平面直角坐标系经过点A的y轴是正五边形ABCDE的一条对称轴,所以点B,E也关于y轴对称.因为点B的坐标为(-3,2),所以点E的坐标为(3,2).9.D【点拨】因为点P到两坐标轴的距离相等,所以|2-a|=|3a+6|,所以2-a=3a+6或2-a=-(3a+6),解得a=-1或a=-4,所以点P的坐标为(3,3)或(6,-6).10.C【点拨】A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,1),A6(3,1),A7(3,0),A8(4,0),…,2 024÷4=506,所以A2 024的坐标为(506×2,0),则A2 024的坐标是(1 012,0).二、11.y【点拨】横坐标为0,所以点(0,-2)在y轴上.12.(4,-5)【点拨】因为关于x轴对称的点横坐标变,纵坐标互为相反数,所以点(4,5)关于x轴对称的点的坐标为(4,-5).13.学习【点拨】根据有序数对对应的字母即可求解.14.4【点拨】把点A,B,C在平面直角坐标系中标出来,可知BC=2,△ABC的边BC上的高为4,所以△ABC的面积为12×4×2=4.15.(-5,4)或(-5,-4)【点拨】由点P到两坐标轴的距离可知,点P有4个.因为点P在y轴的左侧,所以点P的坐标为(-5,4)或(-5,-4).16.二【点拨】当a>1时,a-1是正数,所以点P在第一象限,当a<1时,a -1为负数,所以点P在第三象限或第四象限.故点N一定不在第二象限.17.5【点拨】作点A关于y轴的对称点A′(-3,3),过A′作垂直于x轴于点D,连接A′,D,B构成△A′DB,所以A′D=3,DB=4,所以A′B=A′D2+BD2=5,即光线从点A到点B经过的路径长为5.18.(-1,11)【点拨】由题图可知A5(5,1);将点A5向上平移6个单位长度,再向左平移6个单位长度,可得A6(-1,7);将点A6向下平移7个单位长度,再向左平移7个单位长度,可得A7(-8,0);将点A7向下平移8个单位长度,再向右平移8个单位长度,可得A8(0,-8);将点A8向上平移9个单位长度,再向右平移9个单位长度,可得A9(9,1);将点A9向上平移10个单位长度,再向左平移10个单位长度,可得A10(-1,11).三、19.【解】(1)学校的坐标为(1,3),邮局的坐标为(0,-1).(2)商店、公园、汽车站、水果店、学校、娱乐城、邮局.(3)图略,所形成的路线构成了一条帆船图形.20.【解】(1)(0,5)(2)根据题意,得2m -6+6=m +2,解得m =2. 所以点P 的坐标为(-2,4). 所以点P 在第二象限.21.【解】由题中所给结论及点A ,B ,C 的坐标分别为(-5,0),(3,0),(1,4),得点D (-2,2),E (2,2).因为点D ,E 的纵坐标相等,且不为0, 所以DE ∥x 轴. 又因为AB 在x 轴上, 所以DE ∥AB .22.【解】(1)因为点P 在第三象限,所以点P 到x 轴的距离为1-3x ,到y 轴的距离为-2x .因为点P 到两坐标轴的距离和为11, 所以1-3x -2x =11,解得x =-2. (2)易知直线AB ∥x 轴.由点P 在直线AB 的上方且到直线AB 的距离为5,得3x -1-(-1)=5,解得x =53. 23.【解】(1)B (4,5),C (4,2),D (8,2).(2)当P ,Q 两点出发6 s 时,P 点的坐标为(4,3), Q 点的坐标为(6,0), 所以S 三角形POQ =12×6×3=9.24.【解】(1)因为点B 在x 轴上,所以设点B 的坐标为(x ,0).因为A (-3,0),AB =4, 所以|x -(-3)|=4, 解得x =-7或x =1.所以点B 的坐标为(-7,0)或(1,0).(2)在y 轴上存在点P ,使得以A ,C ,P 为顶点的三角形的面积为9. 设点P 的坐标为(0,y ),当点P 在点C 的上方时,S △ACP =(y -4)×|-3|2=9,解得y =10;当点P 在点C 的下方时,S △ACP =(4-y )×|-3|2=9,解得y =-2.综上所述,点P 的坐标为(0,10)或(0,-2). (3)在y 轴上存在点Q ,使得△ACQ 是等腰三角形. 如图,点Q 的坐标为(0,9)或(0,-4)或⎝ ⎛⎭⎪⎫0,78或(0,-1).。

全等图形 苏科版数学八年级上册培优练习(含答案)

1.1全等图形培优练习一、选择题1、下列说法正确的是()A. 两个长方形是全等图形B. 形状相同的两个三角形全等C. 两个全等图形面积一定相等D. 所有的等边三角形都是全等三角形2、下列四个图形中,与图1中的图形全等的是()A.B.C.D.3、在如图所示的图形中,全等图形有()A.1对B.2对C.3对D.4对4、下列图形是全等图形的是()A.B.C.D.5、在如图所示的四个图形中,属于全等形的是( )A.①和③B.①和④C.②和③D.②和④6、在下列各组图形中,是全等的图形是()A.B.C.D.7、下列四个图形中,有两个全等的图形,它们是()A.①和②B.①和③C.②和④D.③和④8、下图所示的图形分割成两个全等的图形,正确的是()A. B. C. D.9、下列各组图形中不是全等图形的是()A.B.C.D.10、如图,在下列4个正方形图案中,与左边正方形图案全等的图案是()A.B.C.D.11、百变魔尺,魅力无穷,如图是用24段魔尺(24个等腰直角三角形,把等腰直角三角形最长边看做1)围成的长为4宽为3的长方形.用该魔尺能围出不全等的长方形个数为()A.3 B.4 C.5 D.612、下列说法:(1)全等图形的形状相同,大小相等;(2)全等三角形的对应边相等;(3)全等图形的周长相等,面积相等;(4)面积相等的两个三角形全等.其中正确的是()A.(1 )(3)(4 )B.(2)(3 )(4 )C.(1 )(2 )(3 )D.(1 )(2)(3 )(4 )二、填空题13、如图,图中由实线围成的图形与①是全等形的有.(填序号)14、下列几种说法:①全等三角形的对应边相等;②面积相等的两个三角形全等;③周长相等的两个三角形全等;④全等的两个三角形的面积相等.其中正确的是. 的正方形网格,则∠1+∠2+∠3+∠4=________.15、如图,是一个3316、下图是由全等的图形组成的,其中AB=5cm,CD=2AB,则AF= .三、解答题17、图中所示的是两个全等的五边形,AB=8,AE=5,DE=11,HI=12,IJ=10,∠C=90°,∠G=115°,点B与点H、点D与点J分别是对应顶点,指出它们之间其他的对应顶点、对应边与对应角,并说出图中标的a、b、c、d、e、α、β各字母所表示的值.18、如图所示是由一个正方形和一个等腰直角三角形拼成的图形(称作直角梯形),现要把它分割成4个全等的图形,并且形状与原来图形相同,如何进行划分?(画图或涂不同色加以说明)19、如图,把大小为4⨯4的正方形方格图形分割成两个全等图形,如图1,请在下图中沿着虚线画出四中不同的分法,把4⨯4的正方形方格图形分割成两个全等图形.20、如图,一块土地上共有20棵果树,要把它们平均分给四个小组去种植,并且要求每个小组分得的果树组成的图形、形状大小要相同,应该怎样分?21、在ABC △中,90ACB ∠=︒,30A ∠=︒,请将其分成三个三角形,使之符合:(1)三个三角形是全等的直角三角形. (2)三个三角形均为等腰三角形.分别在图1、图2中画出分割线,并标出三角形的角度.参考答案一、选择题1、下列说法正确的是()A. 两个长方形是全等图形B. 形状相同的两个三角形全等C. 两个全等图形面积一定相等D. 所有的等边三角形都是全等三角形【解析】解:A、两个长方形的长或宽不一定相等,故不是全等图形;B、由于大小不一定相同,故形状相同的两个三角形不一定全等;C、两个全等图形面积一定相等,故正确;D、所有的等边三角形大小不一定相同,故不一定是全等三角形.故答案为:C.2、下列四个图形中,与图1中的图形全等的是()A.B.C.D.【答案】C【分析】直接利用全等形的定义解答即可.【详解】解:只有C选项与图1形状、大小都相同.故答案为C.3、在如图所示的图形中,全等图形有()A.1对B.2对C.3对D.4对【答案】C【分析】能够完全重合的两个图形叫做全等形.【详解】图中全等图形是:笑脸,箭头,五角星.故选C4、下列图形是全等图形的是()A.B.C.D.【答案】B【详解】试题解析:A、两个图形相似,错误;B、两个图形全等,正确;C、两个图形相似,错误;D、两个图形不全等,错误;故选B.5、在如图所示的四个图形中,属于全等形的是( )A.①和③B.①和④C.②和③D.②和④【答案】D【分析】全等形要求两图形大小及形状完全相同,观察发现其中两个图形恰巧是可以通过旋转得到的,结合旋转前后的两个图形是全等的,即可确定最终答案.【详解】观察图形,经过旋转,②和④可以完全重合,因此全等的图形是②和④.故选D.6、在下列各组图形中,是全等的图形是()A.B.C.D.【答案】C【分析】根据全等形的概念:能够完全重合的两个图形叫做全等形,对各个选项进行判断即可得答案.【详解】解:由全等形的概念可以判断:C中图形的形状和大小完全相同,符合全等形的要求;A、B、D中图形很明显不相同,A中图形的大小不一致,B、D中图形的形状不同.故选:C.7、下列四个图形中,有两个全等的图形,它们是()A.①和②B.①和③C.②和④D.③和④【答案】B【分析】根据全等形的概念:能够完全重合的两个图形叫做全等形可得答案.【详解】解:①和③可以完全重合,因此全等的图形是①和③.故选:B.8、下图所示的图形分割成两个全等的图形,正确的是()A. B. C. D.【解析】解:如图所示:图形分割成两个全等的图形,.故选B.9、下列各组图形中不是全等图形的是()A.B.C.D.【答案】B【分析】根据能够完全重合的两个图形是全等图形对各选项分析即可得解.【详解】解:观察发现,A、C、D选项的两个图形都可以完全重合,∴是全等图形,B选项中两个图形不可能完全重合,∴不是全等形.10、如图,在下列4个正方形图案中,与左边正方形图案全等的图案是()A.B.C.D.【答案】C【解析】【分析】根据全等形是能够完全重合的两个图形进行分析判断,对选择项逐个与原图对比验证.【详解】解:能够完全重合的两个图形叫做全等形.A、B、D图案均与题干中的图形不重合,所以不属于全等的图案,C中的图案旋转180°后与题干中的图形重合.故选:C.11、百变魔尺,魅力无穷,如图是用24段魔尺(24个等腰直角三角形,把等腰直角三角形最长边看做1)围成的长为4宽为3的长方形.用该魔尺能围出不全等的长方形个数为()A.3 B.4 C.5 D.6【答案】A【分析】根据14=(1+6)×2=(2+5)×2=(3+4)×2,可知能围出不全等的长方形有3个.解:∵长为4、宽为3的长方形,∴周长为2×(3+4)=1414=(1+6)×2=(2+5)×2=(3+4)×2,∴能围出不全等的长方形有3个,故选:A.12、下列说法:(1)全等图形的形状相同,大小相等;(2)全等三角形的对应边相等;(3)全等图形的周长相等,面积相等;(4)面积相等的两个三角形全等.其中正确的是()A.(1 )(3)(4 )B.(2)(3 )(4 )C.(1 )(2 )(3 )D.(1 )(2)(3 )(4 )【分析】能够完全重合的两个三角形叫做全等三角形,依据全等三角形的性质,即可得到正确结论.【解析】(1)全等图形的形状相同,大小相等,正确;(2)全等三角形的对应边相等,正确;(3)全等图形的周长相等,面积相等,正确;(4)面积相等的两个三角形不一定全等,错误;故选:C.二、填空题13、如图,图中由实线围成的图形与①是全等形的有.(填序号)【分析】根据全等形是可以完全重合的图形进行判定即可.【解答】解:由图可知,图上由实线围成的图形与①是全等形的有②,③,故答案为:②③.14、下列几种说法:①全等三角形的对应边相等;②面积相等的两个三角形全等;③周长相等的两个三角形全等;④全等的两个三角形的面积相等.其中正确的是.【分析】根据全等三角形:能够完全重合的两个三角形叫做全等三角形可得①④正确,但是面积相等或周长相等的两个三角形却不一定全等.【解答】解:①全等三角形的对应边相等,说法正确;②面积相等的两个三角形全等,说法错误;③周长相等的两个三角形全等,说法错误;④全等的两个三角形的面积相等,说法正确;故答案为:①④.的正方形网格,则∠1+∠2+∠3+∠4=________.15、如图,是一个33【答案】180°.【分析】仔细分析图中角度,可得出,∠1+∠4=90°,∠2+∠3=90°,进而得出答案.【详解】解:∵∠1和∠4所在的三角形全等,∴∠1+∠4=90°,∵∠2和∠3所在的三角形全等,∴∠2+∠3=90°,∴∠1+∠2+∠3十∠4=180°.故答案为:180.16、下图是由全等的图形组成的,其中AB=5cm,CD=2AB,则AF= .【解析】解:,.由全等图形的性质得.故答案为60cm.三、解答题17、图中所示的是两个全等的五边形,AB=8,AE=5,DE=11,HI=12,IJ=10,∠C=90°,∠G=115°,点B与点H、点D与点J分别是对应顶点,指出它们之间其他的对应顶点、对应边与对应角,并说出图中标的a、b、c、d、e、α、β各字母所表示的值.【分析】根据能够完全重合的两个图形叫做全等形,重合的顶点叫做对应顶点;重合的边叫做对应边;重合的角叫做对应角,可得对应顶点,对应边与对应角,进而可得a,b,c,d,e,α,β各字母所表示的值.【解答】解:对应顶点:A和G,E和F,C和I,对应边:AB和GH,AE和GF,ED和FJ,CD和JI,BC和HI;对应角:∠A和∠G,∠B和∠H,∠C和∠I,∠D和∠J,∠E和∠F;∵两个五边形全等,∴a=12,c=8,b=10,d=5,e=11,α=90°,β=115°.18、如图所示是由一个正方形和一个等腰直角三角形拼成的图形(称作直角梯形),现要把它分割成4个全等的图形,并且形状与原来图形相同,如何进行划分?(画图或涂不同色加以说明)【解析】解:如图所示:19、如图,把大小为4 4的正方形方格图形分割成两个全等图形,如图1,请在下图中沿着虚线画出四中不同的分法,把4 4的正方形方格图形分割成两个全等图形.【解析】解:四种不同的分法:20、如图,一块土地上共有20棵果树,要把它们平均分给四个小组去种植,并且要求每个小组分得的果树组成的图形、形状大小要相同,应该怎样分?【解答】解:如图所示:.21、在ABC △中,90ACB ∠=︒,30A ∠=︒,请将其分成三个三角形,使之符合:(1)三个三角形是全等的直角三角形.(2)三个三角形均为等腰三角形.分别在图1、图2中画出分割线,并标出三角形的角度.【答案】(1)见解析;(2)见解析.【解析】【分析】先将点C 对折到点E ,将对折后的纸片再沿DE 对折.此题要理解折叠的实质是重合,根据重合可以得到BC =BE ,AD =BD ,∠DBE =∠DAE =30°,∠BDE =∠ADE =60°,∠AED=∠BED =90°. 【详解】(1) 如下图1(2) 如下图2 .。

八年级数学上册试题 第6章 数据的分析 单元培优卷 (含详解)

第6章《 数据的分析》(单元培优卷)一、单选题(本大题共10小题,每小题3分,共30分)1.某单位定期对员工的专业知识、工作业绩、出勤情况三个方面进行考核(考核的满分均为100分),三个方面的重要性之比依次为3:5:2.小王经过考核后所得的分数依次为90、88、83分,那么小王的最后得分是( )A .87B .87.5C .87.6D .882.在某次演讲比赛中,五位评委给选手圆圆打分,得到互不相等的五个分数.若去掉一个最高分,平均分为x ;去掉一个最低分,平均分为y ;同时去掉一个最高分和一个最低分,平均分为z ,则( )A .y >z >xB .x >z >yC .y >x >zD .z >y >x3.某市6月份日平均气温统计如图所示,则在日平均气温这组数据中,众数和中位数分别是( )A .21,21B .21,21.5C .21,22D .22,224.下列数据:,则这组数据的众数和极差是( )A .B .C .D .5.小明、小聪参加了100m 跑的5期集训,每期集训结束时进行测试,根据他们的集训时间、测试成绩绘制成如图两个统计图.75,80,85,85,8585,1085,580,8580,10根据图中信息,有下面四个推断:①这5期的集训共有56天;②小明5次测试的平均成绩是11.68秒;③从集训时间看,集训时间不是越多越好,集训时间过长,可能造成劳累,导致成绩下滑;④从测试成绩看,两人的最好成绩都是在第4期出现,建议集训时间定为14天.所有合理推断的序号是( )A .①③B .②④C .②③D .①④6.一组数据的方差可以用式子表示,则式子中的数字50所表示的意义是( )A .这组数据的个数B .这组数据的平均数C .这组数据的众数D .这组数据的中位数7.一组数据的方差为,将这组数据中每个数据都除以3,所得新数据的方差是( )A .B .3C .D .98.已知a 、b 均为正整数,则数据a 、b 、10、11、11、12的众数和中位数可能分别是( )A .10、10B .11、11C .10、11.5D .12、10.59.小明统计了某校八年级(3)班五位同学每周课外阅读的平均时间,其中四位同学每周课外阅读时间分别是小时、小时、小时、小时,第五位同学每周的课外阅读时间既是这五位同学每周课外阅读时间的中位数,又是众数,则第五位同学每周课外阅读时间是( )A .小时B .小时C .或小时D .或或小时10.有5个正整数,,,,.某数学兴趣小组的同学对5个正整数作规律探索,找出同时满足以下3个条件的数.①,,是三个连续偶数,②,是两个连续奇数,③.该小组成员分别得到一个结论:甲:取,5个正整数不满足上述3个条件()()()()22221231025050505010x x x x s-+-+-++-=2s 213s2s 219s2s 58104585858101a 2a 3a 4a 5a 1a 2a 3a ()123a a a <<4a 5a ()45a a <12345aa a a a ++=+26a =乙:取,5个正整数满足上述3个条件丙:当满足“是4的倍数”时,5个正整数满足上述3个条件丁:5个正整数,,,,满足上述3个条件,则(为正整数)戊:5个正整数满足上述3个条件,则,,的平均数与,的平均数之和是(为正整数)以上结论正确的个数有( )个.A .2B .3C .4D .5二、填空题(本大题共8小题,每小题4分,共32分)11.下表是某学习小组一次数学测验的成绩统计表:分数708090100人数13x1已知该小组本次数学测验的平均分是85分,则x =_____.12.春节期间,重庆某著名旅游景点成为热门景点,大量游客慕名前往,市旅游局统计了春节期间5天的游客数量,绘制了如图所示的折线统计图,则这五天游客数量的中位数为__.13.某人学习小组在寒假期间进行线上测试,其成绩(分)分别为:,方差为.后来老师发现每人都少加了分,每人补加分后,这人新成绩的方差__________.14.数据,,,的平均数是4,方差是3,则数据,,,的平均数和方差分别是_____________.15.我们把三个数的中位数记作,直线与函数的图象有且只有2个交点,则的取值为212a =2a 2a 1a 2a 3a 4a 5a 5a =k k 1a 2a 3a 4a 5a 10p p 586,88,90,92,9428.0s =2252s =新1x 2x 3x 4x 011x +21x +31x +41x +,,a b c ,,Z a b c 1(0)2y kx k =+>21,1,1y Z x x x =-+-+k___________________16.已知一组数据a1,a2,a3,……,an的方差为3,则另一组数a1+1,a2+1,a3+1,……,an+1的方差为 _____.17.已知 5 个数据:8,8,x,10,10.如果这组数据的某个众数与平均数相等,那么这组数据的中位数是__________.18.某单位设有6个部门,共153人,如下表:部门部门1部门2部门3部门4部门5部门6人数261622324314参与了“学党史,名师德、促提升”建党100周年,“党史百题周周答活动”,一共10道题,每小题10分,满分100分;在某一周的前三天,由于特殊原因,有一个部门还没有参与答题,其余五个部门全部完成了答题,完成情况如下表:分数1009080706050及以下比例521110综上所述,未能及时参与答题的部门可能是_______.三、解答题(本大题共6小题,共58分)19.(8分)某一食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如下表:这批样品的平均质量比标准质量多还是少?多或少几克,若每袋的标准质量为450克,则抽样检测的总质量是多少?20.(8分)个体户王某经营一家饭馆,下面是饭馆所有工作人员在某个月份的工资;王某3000元,厨师甲450元,厨师乙400元,杂工320元,招待甲350元,招待乙320元,会计410元.计算工作人员的平均工资;计算出的平均工资能否反映帮工人员这个月收入的一般水平?去掉王某的工资后,再计算平均工资;后一个平均工资能代表一般帮工人员的收入吗?根据以上计算,从统计的观点看,你对的结果有什么看法?21.(10分)某餐厅共有10名员工,所有员工工资的情况如下表:请解答下列问题:(1)、餐厅所有员工的平均工资是多少? (2)、所有员工工资的中位数是多少?(3)、用平均数还是中位数描述该餐厅员工工资的一般水平比较恰当? (4)、去掉经理和厨师甲的工资后,其他员工的平均工资是多少?它是否能反映餐厅员工工资的一般水平?()1()2()3()4()5()()3422.(10分)某市民用水拟实行阶梯水价,每人每月用水量中不超过w 吨的部分按4元/吨收费,超出w 吨的部分按10元/吨收费,该市随机调查居民,获得了他们3月份的每人用水量数据,绘制出如图不完整的两张统计图表:请根据以下图表提供的信息,解答下列问题:表1组别月用水量x 吨/人频数频率第一组1000.1第二组n第三组2000.2第四组m 0.25第五组1500.15第六组500.050.51x <≤1 1.5x <≤1.52x <≤2 2.5x <≤2.53x <≤3 3.5x <≤第七组500.05第八组500.05合计1(1) 观察表1可知这次抽样调查的中位数落在第_______组,表1中m 的值为_________,n 的值为_______;表2扇形统计图中“用水量”部分的的圆心角为___________.(2) 如果w 为整数,那么根据此次调查,为使80%以上居民在3月份的每人用水价格为4元/吨,w 至少定为多少吨?(3) 利用(2)的结论和表1中的数据,假设表1中同组中的每个数据用该组区间的右端点值代替,估计该市居民3月份的人均水费.23.(10分)某商店3,4月份销售同一品牌各种规格空调的情况如表所示:3.54x <≤4 4.5x <≤ 2.5 3.5x <≤1匹 1.2匹 1.5匹2匹3月1220844月1630148根据表中数据,解答下列问题:(1)该商店3,4月份平均每月销售空调______台.(2)该商店售出的各种规格的空调中,中位数与众数的大小关系如何?(3)在研究6月份进货时,你认为哪种空调应多进,哪种空调应少进?24.(12分)甲、乙两名队员参加射击训练,每次射击的环数均为整数.其成绩分别被制成如下统计图表(乙队员射击训练成绩统计图部分被污染):平均成绩/环中位数/环众数/环方差/环2甲7712乙78根据以上信息,解决下列问题:(1)求出的值;(2)直接写出乙队员第7次的射击环数及的值,并求出的值;(3)若要选派其中一名参赛,你认为应选哪名队员?请说明你的理由.参考答案一、单选题abca b c1.C【分析】将三个方面考核后所得的分数分别乘上它们的权重,再相加,即可得到最后得分.解:小王的最后得分为:90×+88×+83×=27+44+16.6=87.6(分),故选C .2.A【分析】根据题意,可以判断x 、y 、z 的大小关系,从而可以解答本题.解:由题意可得,去掉一个最低分,平均分为y 最大,去掉一个最高分,平均分为x 最小,其次就是同时去掉一个最高分和一个最低分,平均分为z即y >z >x ,故选:A .3.C解:这组数据中,21出现了10次,出现次数最多,所以众数为21,第15个数和第16个数都是22,所以中位数是22.故选C.4.A解:【分析】根据众数和极差的定义分别进行求解即可得.解:数据85出现了3次,出现次数最多,所以众数是85,最大值是85,最小值是75,所以极差=85-75=10,故选A.5.A【分析】根据条形统计图将每期的天数相加即可得到这5期的集训共有多少天;根据折线统计图可以求得小明5次测试的平均成绩;根据图中的信息和题意可知,平均成绩最好是在第1期.解:对于①:这5期的集训共有5+7+10+14+20=56(天),故正确;对于②:小明5次测试的平均成绩是:(11.83+11.72+11.52+11.58+11.65)÷5=11.66(秒),故错误;对于③:从集训时间看,集训时间不是越多越好,集训时间过长,可能造成3352++5352++2352++劳累,导致成绩下滑,故正确;对于④:从测试成绩看,两人的最好的平均成绩是在第1期出现,建议集训时间定为5天.故错误;故选:A .6.B【分析】根据方差公式的特点进行解答即可.解:方差的定义:一般地设n 个数据,x 1,x 2,…xn 的平均数为,则方差S 2[(x 1)2+(x 2)2+…+(xn )2],所以50是这组数据的平均数.故答案选:B 7.C【分析】本题主要考查的是方差的求法.解答此类问题,通常用x 1,x 2,…,x n 表示出已知数据的平均数与方差,再根据题意用x 1,x 2,…,x n 表示出新数据的平均数与方差,寻找新数据的平均数与原来数据平均数之间的关系.解:设原数据为x 1,x 2,…,x n ,其平均数为,方差为s 2.根据题意,得新数据为,,…,,其平均数为.根据方差的定义可知,新数据的方差为.故选C.8.B【分析】根据众数和中位数的定义即可解答.解:分情况讨论:①当a=b=10时,这组数据的众数是10,则其中位数是10.5②当a=b=12时,这组数据的众数是12,其中位数是11.5③当a=b=11时,这组数据的众数是11,其中位数是11④当a ≠b ≠11时,这组数据的众数是11,其中位数要分类讨论,无法确定故选B9.Cx 1n =x -x -x -x 113x 213x 13n x 13x ()()(222222212121111111111])33333399n n x x x x x x x x x x x x s n n ⎡⎛⎫⎛⎫⎛⎫⎡⎤-+-++-=⨯-+-++-=⎢ ⎪ ⎪ ⎪⎦⎣⎝⎭⎝⎭⎝⎭⎢⎣【分析】利用众数及中位数的定义解答即可.解:当第五位同学的课外阅读时间为4小时时,此时五个数据为4,4,5,8,10,众数为4,中位数为5,不合题意;当第五位同学的课外阅读时间为5小时时,此时五个数据为4,5,5,8,10,众数为5,中位数为5,符合题意;当第五位同学的课外阅读时间为8小时时,此时五个数据为4,5,8,8,10,众数为8,中位数为8,符合题意;当第五位同学的课外阅读时间为10小时时,此时五个数据为4,5,8,10,10,众数为10,中位数为8,不合题意;故第五位同学的每周课外阅读时间为5或8小时.故答案为C .10.B【分析】甲:根据条件求出,从而求出即可判断甲;乙:同甲判断方法即可;丙:设(n 是正整数),则,,同理求得,即可判断丙;丁:设(m 是正整数),则,,同理求得,即可判断丁;戊:设(k 是正整数),则,,由条件③得,由此求出、、的平均数与与的平均数之和为,即可判断戊.解:甲:若,则,,由条件②得,由条件③得,解得,∵是奇数,∴甲结论正确;乙:若,则,,由条件②得,由条件③得,解得,∵是奇数,∴乙结论正确;丙:若是4的倍数,设(n 是正整数),则,,由条件②得,由条件③得,14a =38a =48a =24a n =142a n =-342a n =+461a n =-12a m =222a m =+324a m =+534a m =+12a k =222a k =+324a k =+4566a a k +=+1a 2a 3a 4a 5a ()5551k k +=+26a =14a =38a =542a a =+4518a a +=48a =4a 212a =110a =314a =542a a =+4536a a +=417a =4a 2a 24a n =142a n =-342a n =+542a a =+4512a a n +=解得,∵是奇数,∴丙结论正确;丁:设(m 是正整数),则,,由条件②得,由条件③得,解得,∵当m 为偶数时,也为偶数不符合题意,∴丁结论错误;戊: 设(k 是正整数),则,,由条件③得,∴、、的平均数为,与的平均数为,∴、、的平均数与与的平均数之和为,∵是正整数,∴一定是5的倍数,但不一定是10的倍数,∴戊错误,故选B .二、填空题11.3【分析】利用加权平均数的计算公式列出方程求解即可.解:由题意,得70+80×3+90x+100=85×(1+3+x+1),解得x =3.故答案为3.12.23.4解:【分析】将折线统计图中的数据按从小到大进行排序,然后根据中位数的定义即可确定.解:从图中看出,五天的游客数量从小到大依次为21.9,22.4,23.4,24.9,25.4,则中位数应为23.4,故答案为23.4.461a n =-4a 12a m =222a m =+324a m =+542a a =+4566a a m +=+534a m =+534a m =+12a k =222a k =+324a k =+4566a a k +=+1a 2a 3a 22224223k k k k ++++=+4a 5a 33k +1a 2a 3a 4a 5a ()5551k k +=+k ()51k +13.8.0【分析】根据一组数据中的每一个数据都加上同一个非零常数,那么这组数据的波动情况不变,即方差不变,即可得出答案.解:∵一组数据中的每一个数据都加上(或都减去)同一个常数后,它的平均数都加上(或都减去)这一个常数,方差不变,∴所得到的一组新数据的方差为S 新2=8.0;故答案为:8.0.14.41,3解:试题分析:根据题意可知原数组的平均数为,方差为=3,然后由题意可得新数据的平均数为,可求得方程为.故答案为:41,3.15.<k ≤1或k =【分析】根据题意画出函数的图象,要使直线与函数的图象有且只有2个交点,只需直线经过(2,3)和经过(-1,0)之间,以此进行分析即可.解:函数的图象如图所示,∵直线与函数的图象有且只有2个交点,当直线经过点(2,3)时,则3=2k+,解得:k=,1234414x x x x x +++==()()()()22222123414s x x x x x x x x ⎡⎤=-+-+-+-⎣⎦1234+1+1+1+1414x x x x x +++==2=3s 125421,1,1y Z x x x =-+-+1(0)2y kx k =+>21,1,1y Z x x x =-+-+21,1,1y Z x x x =-+-+1(0)2y kx k =+>21,1,1y Z x x x =-+-+1(0)2y kx k =+>1254当直线经过点(-1,0)时,解得:k=,当k=1时,平行于y=x+1,与函数的图象也有且仅有两个交点;∴直线与函数的图象有且只有2个交点,则k 的取值为:<k ≤1或k =.故答案为:<k ≤1或k =.16.3【分析】设数据a 1,a 2,a 3,……,an 的平均数为,则可求得a 1+1,a 2+1,a 3+1,……,an+1的平均数,根据数据a 1,a 2,a 3,……,an 的方差为3,即可求得另一组数据a 1+1,a 2+1,a 3+1,……,an+1的方程.解:设数据a 1,a 2,a 3,……,an 的平均数为,即,则此组数据的方差为; ∵a 1+1,a 2+1,a 3+1,……,an+1的平均数为:,所以此数据的方差为:故答案为:3.17.8 或 10【分析】根据这组数据的某个众数与平均数相等,得出平均数等于8或10,求出x 从而得出中位数,即是所求答案.解:设众数是8,则由 ,解得:x=4,故中位数是8;1(0)2y kx k =+>1221,1,1y Z x x x =-+-+1(0)2y kx k =+>21,1,1y Z x x x =-+-+12541254x x 1231()n a a a a x n++++= 22221231()()+()++(3n a x a x a x a x n ⎡⎤-+---=⎣⎦…12312311(1111)()11n n a a a a a a a a x n n++++++++=+++++=+ 22221231(11)(11)+(11)++(11)n a x a x a x a x n ⎡⎤+--++--+--+--⎣⎦…22221231()()+()++()n a x a x a x a x n ⎡⎤=-+---⎣⎦ (3)=3685x +=设众数是10,则由,解得:x=14,故中位数是10.故答案为8或10.18.5【分析】各分数人数比为5:2:1:1:1,可以求出100分占总人数,90分占总人数,80、70、60分占总人数的,即各分数人数为整数,总参与人数应该为10的倍数,6个部门总共有153人,即未参加部分人数个位数有3,即可求得结果.解:各分数人数比为5:2:1:1:1,即100分占总参与人数的,90分占总参与人数的,80、70、60分占总参与人数的,各分数人数为整数,即×总参与人数=整数,∴总参与人数是10的倍数,6个部门有153人,即26+16+22+32+43+14=153人,则未参与部门人数个位一定为3,∴未参与答题的部门可能是5.故答案为:5.三、解答题19.解:与标准质量的差值的和为-5×1+(-2)×4+0×3+1×4+3×5+6×3=24,其平均数为24÷20=1.2,即这批样品的平均质量比标准质量多,多1.2克.则抽样检测的总质量是(450+1.2)×20=9024(克).36105x +=121511051521112=++++21521115=++++115211110=++++11020.解:根据题意得:元,答:工作人员的平均工资是750元;因为工作人员的工资都低于平均水平,所以不能反映工作人员这个月的月收入的一般水平.根据题意得:元,答:去掉王某的工资后,他们的平均工资是375元;由于该平均数接近于工作人员的月工资收入,故能代表一般工作人员的收入;从本题的计算中可以看出,个别特殊值对平均数具有很大的影响.21.(1)平均工资为(20000+7000+4000+2500+2200+1800×3+1200×2)=4350元;(2)工资的中位数为=2000元;(3)由(1)可知,用中位数描述该餐厅员工工资的一般水平比较恰当;(4)去掉店长和厨师甲的工资后,其他员工的平均工资是2062.5元,和(2)的结果相比较,能反映餐厅员工工资的一般水平.22.解:(1)n=1-(0.1+0.2+0.25+0.15+0.05+0.05+0.05)=0.15,(人),(人),(人),∵100+150+200=450<500,100+150+200+250=700>501,∴第500与第501个数在第四组,中位数落在第四组;故答案为,四;0.15;250;72°;()1()30004504003203503204107750(++++++÷=)()2()3()4504003203503204106375(+++++÷=)()4()5110220018002+1000.11000÷=10000.25250m =⨯=150+50360=721000︒︒⨯10000.15=150⨯(2)∵0.1+0.15+0.2+0.25+0.15=0.85=85%>80%,∴为使80%以上居民在3月份的每人用水价格为4元/吨,w 至少定为3吨;(3)(元).答:估计该市居民3月份的人均水费为8.8元.23.解:(1)56(台),所以该商店3,4月份平均每月销售空调56台.(2)从总体上看,由于1.2匹售出50台,售出台数大于其他三种规格的售出台数,故其众数是1.2匹.将这112个数据由小到大排列,得中位数是1.2匹,所以中位数与众数相等.(3)由(2)可知l.2匹空调的销售量最多,所以l.2匹空调应多进;由题表可知2匹空调的销售量最少,所以2匹空调应少进.24.解:(1)甲的平均成绩a =(环);(2)∵已知的环数分别是: 3、4、6、7、8、8、9、10,平均数是7,可知剩余两次的成绩和为:70-55=15(环),根据统计图可知不可能是9和6,只能是7和8,所以乙队员第7次的射击环数是7环或8环;把乙的成绩从小到大排列:3、4、6、7、7、8、8、8、9、10,∴乙射击成绩的中位数b ==7.5(环),其方差c =×[(3﹣7)2+(4﹣7)2+(6﹣7)2+2×(7﹣7)2+3×(8﹣7)2+(9﹣7)2+(10﹣7)2]=×(16+9+1+3+4+9)=4.2;()()11002200 2.52503300 1.515040.51 1.5501010008.8⎡⎤⨯+⨯+⨯+⨯+⨯⨯+++⨯⨯÷=⎣⎦1220841630148562x +++++++==5162748291712421⨯+⨯+⨯+⨯+⨯=++++782+110110(3)从平均成绩看甲、乙二人的成绩相等均为7环,从中位数看甲射中7环以上的次数小于乙,从众数看甲射中7环的次数最多而乙射中8环的次数最多,从方差看乙的成绩比甲的成绩稳定;综合以上各因素,若选派一名队员参加比赛的话,可选择乙参赛,因为乙获得高分的可能更大.。

第3章 一元一次不等式 浙教版数学八年级上册培优试卷(含答案)

浙教版八年级上册第三章一元一次不等式培优一、选择题1.若a>b,则下列各式一定成立的是( )A.a+1<b+1B.―a>―b C.a―2<b―2D.a3>b32.如图,天平右盘中每个砝码的质量都是1g,物体A的质量为m(g),则m的取值范围在数轴上可表示为( )A.B.C.D.3.不等式组x+1>02x≤2的解集在数轴上用阴影表示正确的是( )A.B.C.D.4.实数a,b,c在数轴上的对应点的位置如图所示,下列结论正确的是( )A.a>c>b B.c―a>b―a C.a c2<b c2D.a+b>05.在数学活动课中,小俞同学将某商场促销活动的信息列出不等式为0.7×(2x―100)<1000(其中x为某一商品的定价,单位:元),那么该商场促销活动的信息是( )A.买两件该商品可减100元,再打3折,最后不到1000元B.买两件该商品可打3折,再减100元,最后不到1000元C.买两件该商品可减100元,再打7折,最后不到1000元D.买两件该商品可打7折,再减100元,最后不到1000元6.如图所示,运行程序规定:从“输入一个值x”到“结果是否>79”为一次程序操作,如果程序操作进行了三次才停止,那么x的取值范围是( )A.x>9B.x≤19C.9<x≤19D.9≤x≤197.若关于x 的不等式组4―(x ―2)≥33x ―a >2x有且只有4个整数解,则a 的取值范围是( )A .―1≤a <0B .―1<a ≤0C .0<a ≤1D .0≤a <18.若x 为实数,则[x ]表示不大于x 的最大整数,例如[1,6]=1,[π]=3,[―2,82]=―3等.[x ]+1是大于x 的最小整数,则方程6x ―3[x ]+9=0的解是( )A .x =―83B .x =―196C .x =―72或x =―3D .x =―83或x =―1969.已知三个实数a ,b ,c 满足a ―2b ―c =0,a +2b ―c <0,则( )A .b <0,b 2+ac ≤0B .b <0,b 2+ac ≥0C .b >0,b 2+ac ≤0D .b >0,b 2+ac ≥010. 已知关于x 的分式方程mx(x ―2)(x ―6)+2x ―2=3x ―6无解,且关于y 的不等式组m ―y >4y ―4≤3(y +4)有且只有三个偶数解,则所有符合条件的整数m 的乘积为( )A .1B .2C .4D .8二、填空题11.若(m ―1)x >(m ―1)的解集是x <1,则m 的取值范围是  ;12.一罐饮料净重300g ,罐上标注有“蛋白质含量≥0.5%”,其中蛋白质的含量至少为 g .13.若关于x 的不等式组x <1x ≤a 的解集是x <1,则a 的值可以是  (写出一个即可).14.关于x 的方程k ―2x =3(k ―2)的解为非负数,且关于x 的不等式x ―2(x ―1)≤32k +x 3≥x 有解,求符合条件的所有整数k 的值的积为 .15.若关于x 的不等式组―6<x <2x ―m <m无解,那么m 的取值范围是 16.对非负实数x“四舍五入”到个位的值记为<x >,即:当n 为非负整数时,如n ﹣12≤x <n+12,则<x >=n .如:<0.48>=0,<3.5>=4.如果<x >=97x ,则x =  .三、解答题17.课堂上,老师设计了“接力游戏”,规则:一列同学每人只完成解不等式的一步变形,即前一个同学完成一步,后一个同学接着前一个同学的步骤进行下一步变形,直至解出不等式的解集.请根据下面的“接力游戏”回答问题.接力游戏老师:3x +12―1>5x ―43甲同学:3(3x +1)―6>2(5x ―4)乙同学:9x+3―6>10x―8丙同学:9x―10x>―8―3+6丁同学:―x>―5戊同学:x>5任务一:①在“接力游戏”中,乙同学是根据______进行变形的.A.等式的基本性质B.不等式的基本性质C.乘法对加法的分配律②在“接力游戏”中,出现错误的是______同学,这一步错误的原因是______.任务二:在“接力游戏”中该不等式的正确解集是______.任务三:除纠正上述错误外,请你根据平时的学习经验,针对解不等式时还需要注意的事项给同学们提一条建议.18.解不等式1―x3―x<3―x+24.并把解集表示在数轴上.19.解不等式组:5x―6≤2(x+2) x4―1<x―3320.如图,点A,B均在数轴上,点B在点A的右侧,点A对应的数字是―4,点B对应的数字是m.(1)若AB=2,求m的值;(2)将AB线段三等分,这两个等分点所对应数字从左到右依次是a1,a2,若a2>0,求m的取值范围.21.如图所示的是某大院窗格的一部分,其中“O”代表窗格上所贴的剪纸,设第x个窗格上所贴“O”的个数为y.(1)填写下表.x12345xy581117(用含x的式子表示)(2)若第x个窗格上所贴的“O”的个数大于50,求x的取值范围.22.如图,在平面直角坐标系xOy中,已知A(1,a),B(b,3),E(3―a,0),其中a,b满足|a―5|+b―4=0.平移线AB段得到线段CD,使得C,D两点分别落在y轴和x轴上.(1)①点A的坐标是____________;点B的坐标是____________;②求三角形OCD的面积.(2)将点E向下移动1个单位长度得到点F,连接FC,FD,Q(m,0)是x轴负半轴上一点.若三角形QCD 的面积不小于三角形FCD的面积,求m的取值范围.23.如图,在平面直角坐标系中,三角形ABC的三个顶点的坐标分别为A(a,0),B(0,b),C(2,4),且2a+b+10+|3a―2b+8|=0.(1)求a,b的值;,求t的取值范围;(2)点D(t,0)为x轴上一点,且S三角形ABD≤13S三角形ABC(3)平移三角形ABC到三角形EFG(其中点A,B,C的对应点分别为点E,F,G),设E(m,n),F (p,q),且满足5m―n=43p―q=4,请直接写出点G的坐标.答案解析部分1.【答案】D 2.【答案】A 3.【答案】C 4.【答案】C 5.【答案】C 6.【答案】C 7.【答案】A 8.【答案】C 9.【答案】B 10.【答案】B 11.【答案】m <112.【答案】1.513.【答案】2(答案不唯一)14.【答案】015.【答案】m ≤―316.【答案】0或79或149.17.【答案】任务一:①C ;②戊;不等式的两边同时乘以―1,不等号的方向没有改变任务二:x <5任务三:去括号时,括号前面是“―”,去括号后,括号的每一项都要变号,或移项要变号18.【答案】x >―219.【答案】0<x ≤10320.【答案】(1)―2(2)m >221.【答案】(1)14,3x +2(2)x >16.22.【答案】(1)①A (1,5),B (4,3),②3(2)m ≤―7223.【答案】(1)a 的值为―4,b 的值为―2(2)―10≤t ≤2(3)G(8,10)。

人教版八年级上册数学 全册全套试卷(培优篇)(Word版 含解析)

人教版八年级上册数学全册全套试卷(培优篇)(Word版含解析)一、八年级数学全等三角形解答题压轴题(难)1.如图,△ABC 中,AB=AC=BC,∠BDC=120°且BD=DC,现以D为顶点作一个60°角,使角两边分别交AB,AC边所在直线于M,N两点,连接MN,探究线段BM、MN、NC之间的关系,并加以证明.(1)如图1,若∠MDN的两边分别交AB,AC边于M,N两点.猜想:BM+NC=MN.延长AC到点E,使CE=BM,连接DE,再证明两次三角形全等可证.请你按照该思路写出完整的证明过程;(2)如图2,若点M、N分别是AB、CA的延长线上的一点,其它条件不变,再探究线段BM,MN,NC之间的关系,请直接写出你的猜想(不用证明).【答案】(1)过程见解析;(2)MN= NC﹣BM.【解析】【分析】(1)延长AC至E,使得CE=BM并连接DE,根据△BDC为等腰三角形,△ABC为等边三角形,可以证得△MBD≌△ECD,可得MD=DE,∠BDM=∠CDE,再根据∠MDN=60°,∠BDC=120°,可证∠MDN =∠NDE=60°,得出△DMN≌△DEN,进而得到MN=BM+NC.(2)在CA上截取CE=BM,利用(1)中的证明方法,先证△BMD≌△CED(SAS),再证△MDN≌△EDN(SAS),即可得出结论.【详解】解:(1)如图示,延长AC至E,使得CE=BM,并连接DE.∵△BDC为等腰三角形,△ABC为等边三角形,∴BD=CD,∠DBC=∠DCB,∠MBC=∠ACB=60°,又BD=DC,且∠BDC=120°,∴∠DBC=∠DCB=30°∴∠ABC+∠DBC=∠ACB+∠DCB=60°+30°=90°,∴∠MBD=∠ECD=90°,在△MBD与△ECD中,∵BD CDMBD ECD BM CE,∴△MBD≌△ECD(SAS),∴MD=DE,∠BDM=∠CDE∵∠MDN =60°,∠BDC=120°,∴∠CDE+∠NDC =∠BDM+∠NDC=120°-60°=60°,即:∠MDN =∠NDE=60°,在△DMN与△DEN中,∵MD DEMDN EDN DN DN,∴△DMN≌△DEN(SAS),∴MN=NE=CE+NC=BM+NC.(2)如图②中,结论:MN=NC﹣BM.理由:在CA上截取CE=BM.∵△ABC是正三角形,∴∠ACB=∠ABC=60°,又∵BD=CD,∠BDC=120°,∴∠BCD=∠CBD=30°,∴∠MBD=∠DCE=90°,在△BMD和△CED中∵BM CEMBD ECD BD CD,∴△BMD≌△CED(SAS),∴DM= DE,∠BDM=∠CDE∵∠MDN =60°,∠BDC=120°,∴∠NDE=∠BDC-(∠BDN+∠CDE)=∠BDC-(∠BDN+∠BDM)=∠BDC-∠MDN=120°-60°=60°,即:∠MDN =∠NDE=60°,在△MDN和△EDN中∵ND NDEDN MDN ND ND,∴△MDN≌△EDN(SAS),∴MN =NE=NC﹣CE=NC﹣BM.【点睛】此题考查了全等三角形的判定与性质、等边三角形的性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.2.如图1,在△ACB和△AED中,AC=BC,AE=DE,∠ACB=∠AED=90°,点E在AB上,F是线段BD的中点,连接CE、FE.(1)请你探究线段CE与FE之间的数量关系(直接写出结果,不需说明理由);(2)将图1中的△AED绕点A顺时针旋转,使△AED的一边AE恰好与△ACB的边AC在同一条直线上(如图2),连接BD,取BD的中点F,问(1)中的结论是否仍然成立,并说明理由;(3)将图1中的△AED绕点A顺时针旋转任意的角度(如图3),连接BD,取BD的中点F,问(1)中的结论是否仍然成立,并说明理由.【答案】(1)线段CE与FE之间的数量关系是CE2FE;(2)(1)中的结论仍然成立.理由见解析;(3)(1)中的结论仍然成立.理由见解析【解析】【分析】(1)连接CF,直角△DEB中,EF是斜边BD上的中线,因此EF=DF=BF,∠FEB=∠FBE,同理可得出CF=DF=BF,∠FCB=∠FBC,因此CF=EF,由于∠DFE=∠FEB+∠FBE=2∠FBE,同理∠DFC=2∠FBC,因此∠EFC=∠EFD+∠DFC=2(∠EBF+∠CBF)=90°,因此△EFC是等腰直角三角形,2EF;(2)思路同(1)也要通过证明△EFC是等腰直角三角形来求解.连接CF,延长EF交CB 于点G,先证△EFC是等腰三角形,可通过证明CF是斜边上的中线来得出此结论,那么就要证明EF=FG,就需要证明△DEF和△FGB全等.这两个三角形中,已知的条件有一组对顶角,DF=FB,只要再得出一组对应角相等即可,我们发现DE∥BC,因此∠EDB=∠CBD,由此构成了两三角形全等的条件.EF=FG,那么也就能得出△CFE是个等腰三角形了,下面证明△CFE是个直角三角形.由上面的全等三角形可得出ED=BG=AD,又由AC=BC,因此CE=CG,∠CEF=45°,在等腰△CFE中,∠CEF=45°,那么这个三角形就是个等腰直角三角形,因此就能得出(1)中的结论了;(3)思路同(2)通过证明△CFE来得出结论,通过全等三角形来证得CF=FE,取AD的中点M,连接EM,MF,取AB的中点N,连接FN、CN、CF.那么关键就是证明△MEF和△CFN全等,利用三角形的中位线和直角三角形斜边上的中线,我们不难得出EM=PN=12AD,EC=MF=12AB,我们只要再证得两对应边的夹角相等即可得出全等的结论.我们知道PN是△ABD的中位线,那么我们不难得出四边形AMPN为平行四边形,那么对角就相等,于是90°+∠CNF=90°+∠MEF,因此∠CNF=∠MEF,那么两三角形就全等了.证明∠CFE是直角的过程与(1)完全相同.那么就能得出△CEF是个等腰直角三角形,于是得出的结论与(1)也相同.【详解】(1)如图1,连接CF,线段CE与FE之间的数量关系是CE=2FE;解法1:∵∠AED=∠ACB=90°∴B、C、D、E四点共圆且BD是该圆的直径,∵点F是BD的中点,∴点F是圆心,∴EF=CF=FD=FB,∴∠FCB=∠FBC,∠ECF=∠CEF,由圆周角定理得:∠DCE=∠DBE,∴∠FCB+∠DCE=∠FBC+∠DBE=45°∴∠ECF=45°=∠CEF,∴△CEF是等腰直角三角形,∴CE=2EF.解法2:易证∠BED=∠ACB=90°,∵点F是BD的中点,∴CF=EF=FB=FD,∵∠DFE=∠ABD+∠BEF,∠ABD=∠BEF,∴∠DFE=2∠ABD,同理∠CFD=2∠CBD,∴∠DFE+∠CFD=2(∠ABD+∠CBD)=90°,即∠CFE=90°,∴CE=2EF.(2)(1)中的结论仍然成立.解法1:如图2﹣1,连接CF,延长EF交CB于点G,∵∠ACB=∠AED=90°,∴DE∥BC,∴∠EDF=∠GBF,又∵∠EFD=∠GFB,DF=BF,∴△EDF≌△GBF,∴EF=GF,BG=DE=AE,∵AC=BC,∴CE=CG,∴∠EFC=90°,CF=EF,∴△CEF为等腰直角三角形,∴∠CEF=45°,∴CE=2FE;解法2:如图2﹣2,连结CF、AF,∵∠BAD=∠BAC+∠DAE=45°+45°=90°,又点F是BD的中点,∴FA=FB=FD,而AC=BC,CF=CF,∴△ACF≌△BCF,∴∠ACF=∠BCF=12∠ACB=45°,∵FA=FB,CA=CB,∴CF所在的直线垂直平分线段AB,同理,EF所在的直线垂直平分线段AD,又DA⊥BA,∴EF⊥CF,∴△CEF为等腰直角三角形,∴CE=2EF.(3)(1)中的结论仍然成立.解法1:如图3﹣1,取AD的中点M,连接EM,MF,取AB的中点N,连接FN、CN、CF,∵DF=BF,∴FM∥AB,且FM=12 AB,∵AE=DE,∠AED=90°,∴AM =EM ,∠AME =90°,∵CA =CB ,∠ACB =90°∴CN=AN=12AB ,∠ANC =90°, ∴MF ∥AN ,FM =AN =CN ,∴四边形MFNA 为平行四边形, ∴FN =AM =EM ,∠AMF =∠FNA ,∴∠EMF =∠FNC ,∴△EMF ≌△FNC ,∴FE =CF ,∠EFM =∠FCN ,由MF ∥AN ,∠ANC =90°,可得∠CPF =90°,∴∠FCN+∠PFC =90°,∴∠EFM+∠PFC =90°,∴∠EFC =90°,∴△CEF 为等腰直角三角形,∴∠CEF =45°,∴CE =2FE .【点睛】本题解题的关键是通过全等三角形来得出线段的相等,如果没有全等三角形的要根据已知条件通过辅助线来构建.3.在ABC ∆中,90,BAC AB AC ∠=︒=,点D 为直线BC 上一动点(点D 不与点,B C 重合),以AD 为腰作等腰直角DAF ∆,使90DAF ∠=︒,连接CF .(1)观察猜想如图1,当点D 在线段BC 上时,①BC 与CF 的位置关系为__________;②CF DC BC 、、之间的数量关系为___________(提示:可证DAB FAC ∆≅∆)(2)数学思考如图2,当点D 在线段CB 的延长线上时,(1)中的①、②结论是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明;(3)拓展延伸如图3,当点D 在线段BC 的延长线时,将DAF ∆沿线段DF 翻折,使点A 与点E 重合,连接CE CF 、,若4,CD BC AC ==CE 的长.(提示:做AH BC ⊥于H ,做EM BD ⊥于M )【答案】(1)①BC ⊥CF ;②BC =CF +DC ;(2)C ⊥CF 成立;BC =CF +DC 不成立,正确结论:DC =CF +BC ,证明详见解析;(3)【解析】【分析】(1)①根据正方形的性质得,∠BAC =∠DAF =90°,推出△DAB ≌△FAC (SAS );②由正方形ADEF 的性质可推出△DAB ≌△FAC ,根据全等三角形的性质可得到=CF BD ,ACF ABD ∠=∠ ,根据余角的性质即可得到结论;(2)根据正方形的性质得到∠BAC =∠DAF =90°,推出△DAB ≌△FAC ,根据全等三角形的性质以及等腰三角形的角的性质可得到结论;(3)过A 作AH BC ⊥ 于H ,过E 作EM BD ⊥ 于M ,证明ADH DEM △≌△ ,推出3EM DH == ,2DM AH == ,推出3CM EM == ,即可解决问题.【详解】(1)①正方形ADEF 中,AD AF =∵90BAC DAF ==︒∠∠∴BAD CAF ∠=∠在△DAB 与△FAC 中AD AF BAD CAF AB AC =⎧⎪∠=∠⎨⎪=⎩∴()DAB FAC SAS △≌△∴B ACF ∠=∠∴90ACB ACF +=︒∠∠ ,即BC CF ⊥ ;②∵DAB FAC △≌△∴=CF BD∵BC BD CD =+∴BC CF CD =+(2)BC ⊥CF 成立;BC =CF +DC 不成立,正确结论:DC =CF +BC证明:∵△ABC 和△ADF 都是等腰直角三角形∴AB =AC ,AD =AF ,∠BAC =∠DAF =90°,∴∠BAD =∠CAF在△DAB 和△FAC 中AD AF BAD CAF AB AC =⎧⎪∠=∠⎨⎪=⎩∴△DAB ≌△FAC (SAS )∴∠ABD =∠ACF ,DB =CF∵∠BAC =90°,AB =AC ,∴∠ACB =∠ABC =45°∴∠ABD =180°-45°=135°∴∠ACF =∠ABD =135°∴∠BCF =∠ACF -∠ACB =135°-45°=90°,∴CF ⊥BC∵CD =DB +BC ,DB =CF∴DC =CF +BC(3)过A 作AH BC ⊥ 于H ,过E 作EM BD ⊥ 于M ,∵90BAC ∠=︒,AB AV ==∴1422BC AH BH CH BC ======, ∴114CD BC == ∴3DH CH CD =+=∵四边形ADEF 是正方形∴90AD DE ADE ==︒,∠∵BC CF EM BD EN CF ⊥⊥⊥,,∴四边形CMEN 是矩形∴NE CM EM CN ==,∵90AHD ADC EMD ===︒∠∠∠∴90ADH EDM EDM DEM +=+=︒∠∠∠∠∴ADH DEM =∠∠在△ADH 和△DEM 中ADH DEM AHD DME AD DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ADH DEM △≌△∴32EM DH DM AH ====,∴3CM EM ==∴CE ==【点睛】本题考查了三角形的综合问题,掌握正方形的性质、全等三角形的性质以及判定、余角的性质、等腰三角形的角的性质是解题的关键.4.如图,在边长为 4 的等边△ABC 中,点 D 从点A 开始在射线 AB 上运动,速度为 1 个单位/秒,点F 同时从 C 出发,以相同的速度沿射线 BC 方向运动,过点D 作 DE⊥AC,连结DF 交射线 AC 于点 G(1)当 DF⊥AB 时,求 t 的值;(2)当点 D 在线段 AB 上运动时,是否始终有 DG=GF?若成立,请说明理由。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、填空题1、设ABC的三边长分别为a,b,c,其中a,b 满足a b 4(a b 2) 2 0 ,则第三边的长 c 的取值范围是.2、函数y 4 x 3 的图象上存在点P,点P 到x 轴的距离等于4,则点P 的坐标是。

3、在△ABC中,∠B 和∠C 的平分线相交于O,若∠BOC= ,则∠A= 。

4、直角三角形两锐角的平分线交角的度数是。

5、已知直线y a 2 x x a 4 不经过第四象限,则 a 的取值范围是。

6、等腰三角形一腰上的高与另一腰的夹角为30°,则顶角度数为。

7、如图,折线ABCDE描述了一辆汽车在某一直线上行驶过程中,汽车离出发地的距离s(km) 和行驶时间t(h) 之间的函数关系,根据图中提供的信息,给出下列说法:①汽车共行驶了120km;②汽车在行驶途中停留了0.5h ;80③汽车在整个行驶过程中的平均速度为km;④汽车自出发后3h-4.5h 之间行驶的速度在逐渐减少。

其中正3确的说法有.8、放假了,小明和小丽去蔬菜加工厂社会实践,?两人同时工作了一段时间后,休息时小明对小丽说:“我已加工了28 千克,你呢?”小丽思考了一会儿说:“我来考考,左图、右图分别表示你和我的工作量与工作时间关系,你能算出我加工了多少千克吗?”小明思考后回答:“你难不倒我,你现在加工了 D 千克.”二、选择题1、等腰三角形腰上的高与底边的夹角为Cm°则顶角度数为( )A.m°B.2m°C.(90-m) °D.(90-2m) °2、药品研究所开发一种抗菌素新药,经过多年的动物实验之后,首次用于临床人体试验,测得成人服药后血液中药物浓度y( 微克/ 毫升) 与服药后时间x( 时) 之间的函数关系如图所示,则当1≤x≤6 时,y 的取值范围是()8A.3 ≤y≤8 6411B .6411≤y≤8 y( 微克/毫升)8C.3 ≤y≤8 D .8≤y≤164O 3 14 x( 时)3、水池有 2 个进水口, 1 个出水口,每个进水口进水量与时间的关系如图甲所示,出水口出水量与时间的关系如图乙所示.某天0 点到 6 点,该水池的蓄水量与时间的关系如图丙所示.下列论断:①0 点到1 点,打开两个进水口,关闭出水口;② 1 点到 3 点,同时关闭两个进水口和—个出水口;③ 3 点到 4 点,关闭两个进水口,打开出水口;④ 5 点到 6 点.同时打开两个进水口和一个出水口.其中,可能正确的论断是( ) A.①③ B. ①④ C. ②③ D. ②④4、将长为15cm的木棒截成长度为整数的三段,使它们构成一个三角形的三边,则不同的截法有( )A.5 种B. 6 种C. 7 种D.8 种5、在△ ABC中,适合条件 A1B31C ,则4 △ABC中是()A.锐角三角形 B .直角三角形 C .钝角三角形 D .不能确定6、直线l 1:y=k1x+b 与直线l 2:y=k2x+c 在同一平面直角坐标系中的图象如图所示,则关于x 的不等式k1x+b<k2x+c 的解集为().A. x>1B. x<1C. x>-2D. x<-2yO 1y=k1x+bx-2y=k2x+c7、如图,把直线y 2 x向上平移后得到直线AB,直线AB经过点(a,b) ,且2a b 6 ,则直线AB的解析式是()yA. y 2 x 3Ay 2 xB. y 2 x 6C. y 2 x 3D. y 2 x 68、已知一次函数y kx b ,当x 增加 3 时,y 减少2,则k 的值是()A. 2B.33C.2D.32 3 29、如图,平面直角坐标系中,在边长为 1 的正方形ABCD 的边上有一动点P 沿A B C D A 运动一周,则P 的纵坐标y 与点P 走过的路程s 之间的函数关系用图象表示大致是()y y y y21O 1 2 3 4 s 21O 1 2 3 421s O 1 2 3 421s O 1 2 3 4 sA .B . C. D .10、一件工作,甲、乙两人合做5小时后,甲被调走,剩余的部分由乙继续完成,设这件工作的全部工作量为1,工作量间的函数关系如图所示,那么甲、乙两人单独完成列说法正确的是()A. 甲的效率高B. 乙的效率高C. 两人的效率相等D. 两人的效率不能确定工作量112与工作时间之这件工作,下0 5 16 时间(小时)11、直线y=x-1 与坐标轴交于A、B 两点,点C在坐标轴上,△ABC为等腰三角形,则满足条件的点C最多有()A.5 个B.6 个C.7 个D.8 个12、已知一次函数y k x 1 ,若y 随x 的增大而减小,则该函数的图像经过()A. 第一、二、三象限B. 第一、二、四象限C. 第二、三、四象限D. 第一、三、四象限三、解答题1、李明从蚌埠乘汽车沿高速公路前往 A 地,已知该汽车的平均速度是100 千米/ 小时,它行驶t 小时后距.蚌.埠.的.路.程.为s 1千米.⑴请用含t 的代数式表示s1;⑵设另有王红同时从 A 地乘汽车沿同一条高速公路回蚌埠,已知这辆汽车距.蚌埠的.路.程.s 2(千米)与行驶时间t(时)之间的函数关系式为s2=kt +b( k、t 为常数,k≠0) ,若李红从 A 地回到蚌埠用了9 小时,且当t= 2 时,s2=560.①求k 与b 的值;②试问在两辆汽车相遇之前,当行驶时间t 的取值在什么范围内,两车的距离小于288 千米?2、在一次远足活动中,某班学生分成两组,第一组由甲地匀速步行到乙地后原路返回,第二组由甲地匀速步行经乙地继续前行到丙地后原路返回,两组同时出发,设步行的时间为t (h),两组离乙地的距离分别为S1(km)和S2(km) ,图中的折线分别表示S1、S2与t 之间的函数关系.(1)甲、乙两地之间的距离为km ,乙、丙两地之间的距离为km ;(2)求第二组由甲地出发首次到达乙地及由乙地到达丙地所用的时间分别是多少?(3)求图中线段AB所表示的S2与t 间的函数关系式,并写出自变量t 的取值范围.S(km)8·6·4·B2·0 A 2 t(h)3、某洗衣机在洗涤衣服时,经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗衣机中的水量y( 升) 与时间x( 分钟) 之间的关系如折线图所示:根据图象解答下列问题:(1)洗衣机的进水时间是多少分钟?清洗时洗衣机中的水量是多少升?(2)已知洗衣机的排水速度为每分钟19 升,①求排水时y 与x 之间的关系式。

②如果排水时间为 2 分钟,求排水结束时洗衣机中剩下的水量。

y/升404 15 x/分4、如图,已知直线L 过点点M .A(0,1) 和B (1,0) ,P 是x 轴正半轴上的动点,OP 的垂直平分线交L 于点Q ,交x 轴于(1)直接写出直线L 的解析式;(2)设OP t ,△OPQ 的面积为S,求S关于t 的函数关系式.yLL1A QO M P Bx5、探索:在如图①至图③中,三角形ABC的面积为a,(1)如图①,延长△ABC的边BC到点D,使CD=BC,连接DA.若△ACD的面积为S,则S1=______(用含a 的代数式表示);(2)如图②,延长△ABC的边BC到点D,延长边CA到点E,使CD=BC,AE=CA,连接DE,若△DEC的面积为S,则S2= (用含 a 的代数式表示)并写出理由;(3)在图②的基础上延长AB到点F,使BF=AB,连接FD,FE,得到△DEF(如图③),若阴影部分的面积为S3,则S3=______(用含 a 的代数式表示)AB ①CEAD B ②CMEABC D③D FEA HB CDF④22发现:象上面那样,将△ ABC 各边均顺次延长一倍,连接所得端点,得到△ DEF (如图③) ,此时,我们称△ ABC向外扩展了一次,可以发现,扩展后得到的△DEF 的面积是原来△ ABC 面积的____倍。

应用: 去年在面积为 10m 的△ ABC 空地上栽种了某种花, 今年准备扩大种植规模, 把△ ABC 向外进行两次扩展, 第一次由△ ABC 扩展成△ DEF ,第二次由△ DEF 扩展成△ MGH (如图④)。

求这两次扩展的区域(即阴影部分) 面积共为多少 m ?6、如图:已知△ ABC 中, AD ⊥ BC 于 D ,AE 为∠ A 的平分线,且∠ B=35°,∠ C=65° , 求∠ DAE 的度数。

ABE DC7、如图:△ ABC 中, O 是内角平分线 A D 、BE 、 CF 的交点。

1 ⑴ 求证:∠ BOC=90° +2∠ A ;⑵ 过 O 作 OG ⊥ BC 于 G ,求证:∠ DOB=∠ GOC 。

AFEBD GC答案见下页1、2〈c 〈 42、1 ,4 或 4 7 , 4 、43、 21804、 45 0或 1355、 a4 注意:一次函数图象是直线,但直线不一定是一次函数。

如直线y 2 0 , x 3 06、 60 或 1207、②8、20BADCB BDCDA CB1、解:( 1) S 1=100t(3 分)(2)① ∵ S 2=kt+b ,依题意得 t=9 时, S 2=0,( 4 分)∵ t=2,S 2=560 ∴ 9k b 2k b 0 :k 560b 80 720 (7 分)② (解法一)由①得, S 2=-80t+720令 S 1=S 2,得 100t=-80t+720 ,解得 t=4( 9 分)当 t < 4 时, S 2> S 1 , ∴S 2-S 1< 288 ( 11 分)即( -80t+720 ) -100t < 288 , -180t < -432∴ 180t >432,解得 t > 2.4(12 分)∴ 在两车相遇之前,当 2.4 < t < 4 时,两车的距离小于 288 千米。

( 13 分 )(解法二) 由①得, S 2=-80t+720,令 t=0 ,∴ S 2=720,即王红所乘汽车的平均速度为720 =80(千米 / 时)(8 分)9设两辆汽车 t 1 小时后相遇,∴ 100t 1+80t 1=720,解得 t 1=4 ( 9 分)又设两车在相遇之前行驶t 2 小时后,两车之距小于288 千米,则有 720- ( 100t 2+80t 2)< 288 ( 11 分)解得: t 2>2.4 ( 12 分)∴在两车相遇之前,当2.4 < t < 4 时,两车的距离小于 288 千米。

( 13 分)2、解:( 2)第二组由甲地出发首次到达乙地所用的时间为:82 (8 2) 2 8 10 0.8 (小时)第二组由乙地到达丙地所用的时间为:22 (8 2) 2 2 10 0.2 (小时)(3) 根据题意得 A 、B 的坐标分别为( 0.8, 0)和( 1, 2),设线段 AB 的函数关系式为:S 2kt b ,根据题意得:0 0.8k b 2 k bk 10 解得:b -8∴图中线段AB 所表示的S2与t 间的函数关系式为:S210t-8 ,自变量t 的取值范围是:0.8 t 1 .3、解:(1)4 分钟,40 升(各一分)(2)y=40-19 (x-15 )=-19x+325 , (3 分) 2 升(1 分)4、(1)y 1 x ·············································2分(2)∵OP t ,∴Q 点的横坐标为1t ,2①当01t 1 ,即0 t22时,QM11t ,2∴S△OPQ 1t 11t .········································3分②当1t2 21 ,即t ≥2 时,QM 11t1t 1 ,2 2 2∴S 1t1t 1 .△OPQ2 21 1t 1 t ,0 t 2,2 2∴ S 4 分1 t 1t 1 ,t ≥2.2 25、a 2a 6a 7 7 (7a)×10 m6注意:⑴书写数学符号语言一定要规范!⑵在不会引起误会情况下,角尽量用∠1、∠2、∠3、∠4、形式表达,或用表示角顶点的一个字母表示,如∠A、∠B、∠C、∠D、。

相关文档
最新文档