2019年广东省佛山市南海区狮山镇中考数学一模试卷(解析版)
广东省佛山市2019-2020学年中考数学第一次调研试卷含解析

广东省佛山市2019-2020学年中考数学第一次调研试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.点P (1,﹣2)关于y 轴对称的点的坐标是( ) A .(1,2)B .(﹣1,2)C .(﹣1,﹣2)D .(﹣2,1)2.如图,若AB ∥CD ,则α、β、γ之间的关系为( )A .α+β+γ=360°B .α﹣β+γ=180°C .α+β﹣γ=180°D .α+β+γ=180°3.如图是某个几何体的展开图,该几何体是( )A .三棱柱B .三棱锥C .圆柱D .圆锥4.数据”1,2,1,3,1”的众数是( ) A .1 B .1.5 C .1.6 D .3 5.12233499100++++++++L 的整数部分是( )A .3B .5C .9D .66.如图,甲圆柱型容器的底面积为30cm 2,高为8cm ,乙圆柱型容器底面积为xcm 2,若将甲容器装满水,然后再将甲容器里的水全部倒入乙容器中(乙容器无水溢出),则乙容器水面高度y (cm )与x (cm 2)之间的大致图象是( )A .B .C .D .7.下列各运算中,计算正确的是( )A .1234a a a ÷=B .()32639a a =C .()222a b a b +=+D .2236a a a ⋅=8.在下面四个几何体中,从左面看、从上面看分别得到的平面图形是长方形、圆,这个几何体是( )A .B .C .D .9.如图是二次函数y =ax 2+bx +c(a≠0)图象的一部分,对称轴为直线x =12,且经过点(2,0),下列说法:①abc <0;②a +b =0;③4a +2b +c <0;④若(-2,y 1),(52,y 2)是抛物线上的两点,则y 1<y 2.其中说法正确的有( )A .②③④B .①②③C .①④D .①②④10.今年我市计划扩大城区绿地面积,现有一块长方形绿地,它的短边长为60m ,若将短边增长到长边相等(长边不变),使扩大后的棣地的形状是正方形,则扩大后的绿地面积比原来增加16002m ,设扩大后的正方形绿地边长为xm ,下面所列方程正确的是( ) A .x (x-60)=1600 B .x (x+60)=1600 C .60(x+60)=1600 D .60(x-60)=160011.关于x 的不等式x-b>0恰有两个负整数解,则b 的取值范围是 A .32b -≤<-B .32b -<≤-C .32b -≤≤-D .-3<b<-212.下列等式正确的是( ) A .x 3﹣x 2=xB .a 3÷a 3=aC .231(2)(2)2-÷-=- D .(﹣7)4÷(﹣7)2=﹣72二、填空题:(本大题共6个小题,每小题4分,共24分.)13.请写出一个 开口向下,并且与y 轴交于点(0,1)的抛物线的表达式_________ 14.若关于x 的方程x 2+x ﹣a+54=0有两个不相等的实数根,则满足条件的最小整数a 的值是( ) A .﹣1B .0C .1D .215.我国自主研发的某型号手机处理器采用10 nm 工艺,已知1 nm=0.000000001 m ,则10 nm 用科学记数法可表示为_____m .16.若点(),2P m -与点()3,Q n 关于原点对称,则2018()m n +=______. 17.抛物线y=2x 2+4x ﹣2的顶点坐标是_______________.18.在平面直角坐标系xOy 中,点P 到x 轴的距离为1,到y 轴的距离为2.写出一个..符合条件的点P 的坐标________________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)如图,△ABC 三个定点坐标分别为A (﹣1,3),B (﹣1,1),C (﹣3,2).请画出△ABC 关于y 轴对称的△A 1B 1C 1;以原点O 为位似中心,将△A 1B 1C 1放大为原来的2倍,得到△A 2B 2C 2,请在第三象限内画出△A 2B 2C 2,并求出S △A1B1C1:S △A2B2C2的值.20.(6分)某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出 4台.商场要想在这种冰箱销售中每天盈利 4800 元,同时又要使百姓得到实惠,每台冰箱应降价多少元?21.(6分)如图,直线4y x =+与双曲线0ky k x=≠()相交于1A a -(,)、B 两点. (1)a = ,点B 坐标为 .(2)在x 轴上找一点P ,在y 轴上找一点Q ,使BP PQ QA ++的值最小,求出点P Q 、两点坐标22.(8分)一定数量的石子可以摆成如图所示的三角形和四边形,古希腊科学家把1,3,6,10,15,21,…,称为“三角形数”;把1,4,9,16,25,…,称为“正方形数”.将三角形、正方形、五边形都整齐的由左到右填在所示表格里: 三角形数 1 3 6 10 15 21 a … 正方形数 1 4 9 16 25 b 49 … 五边形数151222C5170…(1)按照规律,表格中a=___,b=___,c=___.(2)观察表中规律,第n 个“正方形数”是________;若第n 个“三角形数”是x ,则用含x 、n 的代数式表示第n 个“五边形数”是___________.23.(8分)如图,已知一次函数12y kx =-的图象与反比例函数()20my x x=>的图象交于A 点,与x 轴、y 轴交于,C D 两点,过A 作AB 垂直于x 轴于B 点.已知1,2AB BC ==.(1)求一次函数12y kx =-和反比例函数()20my x x=>的表达式; (2)观察图象:当0x >时,比较12,y y .24.(10分)甲、乙两家商场以同样价格出售相同的商品,在同一促销期间两家商场都让利酬宾,让利方式如下:甲商场所有商品都按原价的8.5折出售,乙商场只对一次购物中超过200元后的价格部分按原价的7.5折出售.某顾客打算在促销期间到这两家商场中的一家去购物,设该顾客在一次购物中的购物金额的原价为x (x >0)元,让利后的购物金额为y 元. (1)分别就甲、乙两家商场写出y 关于x 的函数解析式; (2)该顾客应如何选择这两家商场去购物会更省钱?并说明理由.25.(10分)如图,在△ABC 中,AB =AC ,以AB 为直径作半圆⊙O ,交BC 于点D ,连接AD ,过点D 作DE ⊥AC ,垂足为点E ,交AB 的延长线于点F . (1)求证:EF 是⊙O 的切线. (2)如果⊙O 的半径为5,sin ∠ADE =45,求BF 的长.26.(12分)如图,在电线杆CD 上的C 处引拉线CE 、CF 固定电线杆,拉线CE 和地面所成的角∠CED=60°,在离电线杆6米的B 处安置高为1.5米的测角仪AB ,在A 处测得电线杆上C 处的仰角为30°,求拉线CE 的长(结果保留小数点后一位,参考数据:2 1.41,?3 1.73≈≈).27.(12分)先化简,再求值:22124()(1)442a a a a a a a -+-÷--+-,其中a 为不等式组72230a a ->⎧⎨->⎩的整数解.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.C 【解析】关于y 轴对称的点,纵坐标相同,横坐标互为相反数,由此可得P (1,﹣2)关于y 轴对称的点的坐标是(﹣1,﹣2), 故选C .【点睛】本题考查了关于坐标轴对称的点的坐标,正确地记住关于坐标轴对称的点的坐标特征是关键. 关于x 轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数; 关于y 轴对称的点的坐标特点:纵坐标不变,横坐标互为相反数. 2.C 【解析】。
精编版-2019年广东省佛山市中考数学试卷及答案

2019年广东省佛山市中考数学试卷及答案一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1. −2的绝对值是()A.2B.−2D.±2C.12【答案】A【考点】绝对值【解析】根据负数的绝对值是它的相反数,即可解答.【解答】|−2|=2,2. 某网店2019年母亲节这天的营业额为221000元,将数221000用科学记数法表示为()A.2.21×106B.2.21×105C.221×103D.0.221×106【答案】B【考点】科学记数法–表示较大的数【解析】根据有效数字表示方法,以及科学记数法的表示形式为a×10n的形式,其中1≤|a|< 10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】将221000用科学记数法表示为:2.21×105.3. 如图,由4个相同正方体组合而成的几何体,它的左视图是()A. B.C. D.【答案】A【考点】简单组合体的三视图【解析】左视图是从左边看得出的图形,结合所给图形及选项即可得出答案.【解答】从左边看得到的是两个叠在一起的正方形,如图所示.4. 下列计算正确的是()A.b6÷b3=b2B.b3⋅b3=b9C.a2+a2=2a2D.(a3)3=a6【答案】C【考点】幂的乘方与积的乘方同底数幂的乘法合并同类项【解析】直接利用合并同类项法则以及幂的乘方运算法则、同底数幂的乘法运算法则分别化简得出答案.【解答】A、b6÷b3=b3,故此选项错误;B、b3⋅b3=b6,故此选项错误;C、a2+a2=2a2,正确;D、(a3)3=a9,故此选项错误.5. 下列四个银行标志中,既是中心对称图形,又是轴对称图形的是( )A. B.C. D.【答案】C【考点】中心对称图形轴对称图形【解析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A,是轴对称图形,不是中心对称图形,故本选项错误;B,是轴对称图形,不是中心对称图形,故本选项错误;C,既是轴对称图形,也是中心对称图形,故本选项正确;D,是轴对称图形,不是中心对称图形,故本选项错误.故选C.6. 数据3,3,5,8,11的中位数是()A.3B.4C.5D.6【答案】C【考点】中位数【解析】先把原数据按从小到大排列,然后根据中位数的定义求解即可.【解答】把这组数据按照从小到大的顺序排列为:3,3,5,8,11,故这组数据的中位数是,5.7. 实数a,b在数轴上的对应点的位置如图所示,下列式子成立的是()A.a>bB.|a|<|b|C.a+b>0<0D.ab【答案】D【考点】有理数大小比较绝对值数轴【解析】先由数轴可得−2<a<−1,0<b<1,且|a|>|b|,再判定即可.【解答】解:由图可得:−2<a<−1,0<b<1,∴a<b,故A错误;|a|>|b|,故B错误;a+b<0,故C错误;a<0,故D正确.b故选D.8. 化简√42的结果是()A.−4B.4C.±4D.2【答案】B【考点】算术平方根【解析】根据算术平方根的含义和求法,求出16的算术平方根是多少即可.【解答】√42=√16=4.9. 已知x1,x2是一元二次方程x2−2x=0的两个实数根,下列结论错误的是()A.x1≠x2B.x12−2x1=0C.x1+x2=2D.x1⋅x2=2【答案】D【考点】根与系数的关系【解析】由根的判别式△=4>0,可得出x1≠x2,选项A不符合题意;将x1代入一元二次方程x2−2x=0中可得出x12−2x1=0,选项B不符合题意;利用根与系数的关系,可得出x1+x2=2,x1⋅x2=0,进而可得出选项C不符合题意,选项D符合题意.【解答】∵△=(−2)2−4×1×0=4>0,∴x1≠x2,选项A不符合题意;∵x1是一元二次方程x2−2x=0的实数根,∴x12−2x1=0,选项B不符合题意;∵x1,x2是一元二次方程x2−2x=0的两个实数根,∴x1+x2=2,x1⋅x2=0,选项C不符合题意,选项D符合题意.10. 如图,正方形ABCD的边长为4,延长CB至E使EB=2,以EB为边在上方作正方形EFGB,延长FG交DC于M,连接AM,AF,H为AD的中点,连接FH分别与AB,AM 交于点N、K:则下列结论:①△ANH≅△GNF;②∠AFN=∠HFG;③FN=2NK;④S△AFN:S△ADM=1:4.其中正确的结论有()A.1个B.2个C.3个D.4个【答案】C【考点】全等三角形的性质与判定相似三角形的性质与判定正方形的性质【解析】由正方形的性质得到FG=BE=2,∠FGB=90∘,AD=4,AH=2,∠BAD=90∘,求得∠HAN=∠FGN,AH=FG,根据全等三角形的定理定理得到△ANH≅△GNF(AAS),故①正确;根据全等三角形的性质得到∠AHN=∠HFG,推出∠AFH≠AG=∠AHF,得到∠AFN≠∠HFG,故②错误;根据全等三角形的性质得到AN=121,根据相似三角形的性质得到∠AHN=∠AMG,根据平行线的性质得到∠HAK=∠AMG,根据直角三角形的性质得到FN=2NK;故③正确;根据矩形的性质得到DM =AG=2,根据三角形的面积公式即可得到结论.【解答】∵四边形EFGB是正方形,EB=2,∴FG=BE=2,∠FGB=90∘,∵四边形ABCD是正方形,H为AD的中点,∴AD=4,AH=2,∠BAD=90∘,∴∠HAN=∠FGN,AH=FG,∵∠ANH=∠GNF,∴△ANH≅△GNF(AAS),故①正确;∴∠AHN=∠HFG,∵AG=FG=2=AH,∴AF=√2FG=√2AH,∴∠AFH≠∠AHF,∴∠AFN≠∠HFG,故②错误;∵△ANH≅△GNF,∴AN=12AG=1,∵GM=BC=4,∴AHAN =GMAG=2,∵∠HAN=∠AGM=90∘,∴△AHN∽△GMA,∴∠AHN=∠AMG,∵AD // GM,∴∠HAK=∠AMG,∴∠AHK=∠HAK,∴AK=HK,∴AK=HK=NK,∵FN=HN,∴FN=2NK;故③正确;∵延长FG交DC于M,∴四边形ADMG是矩形,∴DM=AG=2,∵S△AFN=12AN⋅FG=12×2×1=1,S△ADM=12AD⋅DM=12×4×2=4,∴S△AFN:S△ADM=1:4故④正确,二.填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.计算:20190+(13)−1=________.【答案】4【考点】零指数幂、负整数指数幂有理数的加法零指数幂【解析】分别计算负整数指数幂、零指数幂,然后再进行实数的运算即可.【解答】原式=1+3=4.如图,已知a // b,∠1=75∘,则∠2=________.【答案】105∘【考点】平行线的性质【解析】根据平行线的性质及对顶角相等求解即可.【解答】∵直线c直线a,b相交,且a // b,∠1=75∘,∴∠3=∠1=75∘,∴∠2=180∘−∠3=180∘−75∘=105∘.已知一个多边形的内角和是1080∘,这个多边形的边数是________.【答案】8【考点】多边形的内角和【解析】根据多边形内角和定理:(n−2)⋅180 (n≥3)且n为整数)可得方程180(x−2)= 1080,再解方程即可.【解答】解:设多边形边数有x条,由题意得:180(x−2)=1080,解得:x=8,故答案为:8.已知x=2y+3,则代数式4x−8y+9的值是________.【答案】21【考点】整式的混合运算—化简求值【解析】直接将已知变形进而代入原式求出答案.【解答】∵x=2y+3,∴x−2y=3,则代数式4x−8y+9=4(x−2y)+9=4×3+9=21.如图,某校教学楼AC与实验楼BD的水平间距CD=15√3米,在实验楼顶部B点测得教学楼顶部A点的仰角是30∘,底部C点的俯角是45∘,则教学楼AC的高度是________米(结果保留根号).【答案】(15+15√3)【考点】解直角三角形的应用-仰角俯角问题【解析】首先分析图形:根据题意构造直角三角形.本题涉及到两个直角三角形△BEC、△ABE,进而可解即可求出答案.【解答】过点B作BE⊥AB于点E,在Rt△BEC中,∠CBE=45∘,BE=15√3;可得CE=BE×tan45∘=15√3米.在Rt△ABE中,∠ABE=30∘,BE=15√3,可得AE=BE×tan30∘=15米.故教学楼AC的高度是AC=15√3+15米.如图1所示的图形是一个轴对称图形,且每个角都是直角,长度如图所示,小明按图2所示方法玩拼图游戏,两两相扣,相互间不留空隙,那么小明用9个这样的图形(图1)拼出来的图形的总长度是________(结果用含a,b代数式表示).【答案】a+8b【考点】利用轴对称设计图案【解析】方法1、用9个这样的图形(图1)的总长减去拼接时的重叠部分8个(a−b),即可得到拼出来的图形的总长度.方法2、口朝上的有5个,长度之和是5a ,口朝下的有四个,长度为4[b −(a −b)]=8b −4a ,即可得出结论. 【解答】方法1、如图,由图可得,拼出来的图形的总长度=5a +4[a −2(a −b)]=a +8b 故答案为:a +8b .方法2、∵ 小明用9个这样的图形(图1)拼出来的图形 ∴ 口朝上的有5个,口朝下的有四个,而口朝上的有5个,长度之和是5a ,口朝下的有四个,长度为4[b −(a −b)]=8b −4a ,即:总长度为5a +8b −4a =a +8b , 故答案为a +8b .三.解答题(一)(本大题3小题,每小题6分,共18分)解不等式组:{x −1>22(x +1)>4 【答案】{x −1>22(x +1)>4解不等式①,得x >3 解不等式②,得x >1 则不等式组的解集为x >3 【考点】解一元一次不等式组 【解析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分就是不等式组的解集. 【解答】{x −1>22(x +1)>4解不等式①,得x >3 解不等式②,得x >1 则不等式组的解集为x >3先化简,再求值:(x x−2−1x−2)÷x 2−x x 2−4,其中x =√2.【答案】 原式=x−1x−2⋅(x+2)(x−2)x(x−1)=x +2x当x =√2时, 原式=√2+2√2=√2+1【考点】分式的化简求值【解析】先化简分式,然后将x的值代入计算即可.【解答】原式=x−1x−2⋅(x+2)(x−2)x(x−1)=x+2x当x=√2时,原式=√2+2√2=√2+1如图,在△ABC中,点D是AB边上的一点.(1)请用尺规作图法,在△ABC内,求作∠ADE,使∠ADE=∠B,DE交AC于E;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,若ADDB =2,求AEEC的值.【答案】如图,∠ADE为所作;∵∠ADE=∠B∴DE // BC,∴AEEC =ADDB=2.【考点】作图—基本作图相似三角形的性质与判定【解析】(1)利用基本作图(作一个角等于已知角)作出∠ADE=∠B;(2)先利用作法得到∠ADE=∠B,则可判断DE // BC,然后根据平行线分线段成比例定理求解.【解答】如图,∠ADE为所作;∵∠ADE=∠B ∴DE // BC,∴AEEC =ADDB=2.四、解答题(二)(本大题3小题,每小题7分,共21分)为了解某校九年级全体男生1000米跑步的成绩,随机抽取了部分男生进行测试,并将测试成绩分为A、B、C、D四个等级,绘制如下不完整的统计图表,如图表所示,根据图表信息解答下列问题:成绩等级频数分布表成绩等级频数A24B10C xD2合计y(1)x=________,y=________,扇形图中表示C的圆心角的度数为________度;(2)甲、乙、丙是A等级中的三名学生,学校决定从这三名学生中随机抽取两名介绍体育锻炼经验,用列表法或画树状图法,求同时抽到甲,乙两名学生的概率.【答案】4,40,36画树状图如下:P(同时抽到甲,乙两名学生)=26=13.【考点】列表法与树状图法频数(率)分布表 扇形统计图 【解析】(1)随机抽男生人数:10÷25%=40(名),即y =40;C 等级人数:40−24−10−2=4(名),即x =4;扇形图中表示C 的圆心角的度数360∘×440=36∘; (2)先画树状图,然后求得P (同时抽到甲,乙两名学生)=26=13. 【解答】随机抽男生人数:10÷25%=40(名),即y =40; C 等级人数:40−24−10−2=4(名),即x =4; 扇形图中表示C 的圆心角的度数360∘×440=36∘. 故答案为4,40,36; 画树状图如下:P (同时抽到甲,乙两名学生)=26=13.某校为了开展“阳光体育运动”,计划购买篮球、足球共60个,已知每个篮球的价格为70元,每个足球的价格为80元.(1)若购买这两类球的总金额为4600元,求篮球,足球各买了多少个?(2)若购买篮球的总金额不超过购买足球的总金额,求最多可购买多少个篮球? 【答案】购买篮球20个,购买足球40个; 最多可购买32个篮球 【考点】二元一次方程组的应用——行程问题 二元一次方程的应用一元一次不等式的实际应用 【解析】(1)设购买篮球x 个,购买足球y 个,根据总价=单价×购买数量结合购买篮球、足球共60个\购买这两类球的总金额为4600元,列出方程组,求解即可;(2)设购买了a 个篮球,则购买(60−a)个足球,根据购买篮球的总金额不超过购买足球的总金额,列不等式求出x 的最大整数解即可. 【解答】设购买篮球x 个,购买足球y 个, 依题意得:{x +y =60.解得{x =20y =40. 答:购买篮球20个,购买足球40个; 设购买了a 个篮球,依题意得:70a ≤80(60−a) 解得a ≤32.答:最多可购买32个篮球.在如图所示的网格中,每个小正方形的边长为1,每个小正方形的顶点叫格点,△ABC 的三个顶点均在格点上,以点A 为圆心的EF^与BC 相切于点D ,分别交AB 、AC 于点E 、F .(1)求△ABC 三边的长;(2)求图中由线段EB 、BC 、CF 及EF^所围成的阴影部分的面积. 【答案】AB =√22+62=2√10, AC =√62+22=2√10, BC =√42+82=4√5;由(1)得,AB 2+AC 2=BC 2, ∴ ∠BAC =90∘,连接AD ,AD =√22+42=2√5,∴ S 阴=S △ABC −S 扇形AEF =12AB ⋅AC −14π⋅AD 2=20−5π. 【考点】 切线的性质 勾股定理扇形面积的计算 【解析】(1)根据勾股定理即可求得;(2)根据勾股定理求得AD ,由(1)得,AB 2+AC 2=BC 2,则∠BAC =90∘,根据S 阴=S △ABC −S 扇形AEF 即可求得. 【解答】AB =√22+62=2√10, AC =√62+22=2√10, BC =√42+82=4√5;连接AD ,AD =√22+42=2√5,∴ S 阴=S △ABC −S 扇形AEF =12AB ⋅AC −14π⋅AD 2=20−5π.五、解答题(三)(本大题3小题,每小题9分,共27分)如图,一次函数y =k 1x +b 的图象与反比例函数y =k 2x的图象相交于A 、B 两点,其中点A 的坐标为(−1, 4),点B 的坐标为(4, n).(1)根据图象,直接写出满足k 1x +b >k 2x的x 的取值范围;(2)求这两个函数的表达式;(3)点P 在线段AB 上,且S △AOP :S △BOP =1:2,求点P 的坐标. 【答案】∵ 点A 的坐标为(−1, 4),点B 的坐标为(4, n). 由图象可得:k 1x +b >k 2x的x 的取值范围是x <−1或0<x <4;∵ 反比例函数y =k 2x 的图象过点A(−1, 4),B(4, n)∴ k 2=−1×4=−4,k 2=4n ∴ n =−1 ∴ B(4, −1)∵ 一次函数y =k 1x +b 的图象过点A ,点B ∴ {−k 1+b =44k 1+b =−1 , 解得:k 1=−1,b =3∴ 直线解析式y =−x +3,反比例函数的解析式为y =−4x ; 设直线AB 与y 轴的交点为C , ∴ C(0, 3),∵ S △AOC =12×3×1=32,∴ S △AOB =S △AOC +S △BOC =12×3×1+12×3×4=152,∵ S △AOP :S △BOP =1:2, ∴ S △AOP =152×13=52,∴ x P =3,∵ 点P 在线段AB 上, ∴ y =−23+3=73, ∴ P(23, 73).【考点】反比例函数与一次函数的综合 【解析】(1)根据一次函数图象在反比例图象的上方,可求x 的取值范围;(2)将点A ,点B 坐标代入两个解析式可求k 2,n ,k 1,b 的值,从而求得解析式; (3)根据三角形面积相等,可得答案. 【解答】∵ 点A 的坐标为(−1, 4),点B 的坐标为(4, n). 由图象可得:k 1x +b >k 2x的x 的取值范围是x <−1或0<x <4;∵ 反比例函数y =k 2x 的图象过点A(−1, 4),B(4, n)∴ k 2=−1×4=−4,k 2=4n ∴ n =−1 ∴ B(4, −1)∵ 一次函数y =k 1x +b 的图象过点A ,点B ∴ {−k 1+b =44k 1+b =−1 , 解得:k 1=−1,b =3∴ 直线解析式y =−x +3,反比例函数的解析式为y =−4x ; 设直线AB 与y 轴的交点为C , ∴ C(0, 3),∵ S △AOC =12×3×1=32,∴ S △AOB =S △AOC +S △BOC =12×3×1+12×3×4=152,∵ S △AOP :S △BOP =1:2, ∴ S △AOP =152×13=52,∴x P=3,∵点P在线段AB上,∴y=−23+3=73,∴P(23, 73 ).如图1,在△ABC中,AB=AC,⊙O是△ABC的外接圆,过点C作∠BCD=∠ACB交⊙O于点D,连接AD交BC于点E,延长DC至点F,使CF=AC,连接AF.(1)求证:ED=EC;(2)求证:AF是⊙O的切线;(3)如图2,若点G是△ACD的内心,BC⋅BE=25,求BG的长.【答案】∵AB=AC,∴∠ABC=∠ACB,又∵∠ACB=∠BCD,∠ABC=∠ADC,∴∠BCD=∠ADC,∴ED=EC;如图1,连接OA,∴AB^=AC^,∴OA⊥BC,∵CA=CF,∴∠CAF=∠CFA,∴∠ACD=∠CAF+∠CFA=2∠CAF,∵∠ACB=∠BCD,∴∠ACD=2∠ACB,∴∠CAF=∠ACB,∴AF // BC,∴OA⊥AF,∴AF为⊙O的切线;∵∠ABE=∠CBA,∠BAD=∠BCD=∠ACB,∴△ABE∽△CBA,∴ABBC =BEAB,∴AB2=BC⋅BE,∵BC⋅BE=25,∴AB=5,如图2,连接AG,∴∠BAG=∠BAD+∠DAG,∠BGA=∠GAC+∠ACB,∵点G为内心,∴∠DAG=∠GAC,又∵∠BAD+∠DAG=∠GAC+∠ACB,∴∠BAG=∠BGA,∴BG=AB=5.【考点】圆与函数的综合圆与相似的综合圆与圆的综合与创新【解析】(1)由AB=AC知∠ABC=∠ACB,结合∠ACB=∠BCD,∠ABC=∠ADC得∠BCD =∠ADC,从而得证;(2)连接OA,由∠CAF=∠CFA知∠ACD=∠CAF+∠CFA=2∠CAF,结合∠ACB =∠BCD得∠ACD=2∠ACB,∠CAF=∠ACB,据此可知AF // BC,从而得OA⊥AF,从而得证;(3)证△ABE∽△CBA得AB2=BC⋅BE,据此知AB=5,连接AG,得∠BAG=∠BAD+∠DAG,∠BGA=∠GAC+∠ACB,由点G为内心知∠DAG=∠GAC,结合∵AB=AC,∴∠ABC=∠ACB,又∵∠ACB=∠BCD,∠ABC=∠ADC,∴∠BCD=∠ADC,∴ED=EC;如图1,连接OA,∵AB=AC,∴AB^=AC^,∴OA⊥BC,∵CA=CF,∴∠CAF=∠CFA,∴∠ACD=∠CAF+∠CFA=2∠CAF,∵∠ACB=∠BCD,∴∠ACD=2∠ACB,∴∠CAF=∠ACB,∴AF // BC,∴OA⊥AF,∴AF为⊙O的切线;∵∠ABE=∠CBA,∠BAD=∠BCD=∠ACB,∴△ABE∽△CBA,∴ABBC =BEAB,∴AB2=BC⋅BE,∵BC⋅BE=25,∴AB=5,如图2,连接AG,∴∠BAG=∠BAD+∠DAG,∠BGA=∠GAC+∠ACB,∵点G为内心,∴∠DAG=∠GAC,∴BG=AB=5.如图1,在平面直角坐标系中,抛物线y=√38x2+3√34x−7√38与x轴交于点A、B(点A在点B右侧),点D为抛物线的顶点,点C在y轴的正半轴上,CD交x轴于点F,△CAD绕点C顺时针旋转得到△CFE,点A恰好旋转到点F,连接BE.(1)求点A、B、D的坐标;(2)求证:四边形BFCE是平行四边形;(3)如图2,过顶点D作DD1⊥x轴于点D1,点P是抛物线上一动点,过点P作PM⊥x 轴,点M为垂足,使得△PAM与△DD1A相似(不含全等).①求出一个满足以上条件的点P的横坐标;②直接回答这样的点P共有几个?【答案】令√38x2+3√34x−7√38=0,解得x1=1,x2=−7.∴A(1, 0),B(−7, 0).由y=√38x2+3√34x−7√38=√38(x+3)2−2√3得,D(−3, −2√3);证明:∵DD1⊥x轴于点D1,∴∠COF=∠DD1F=90∘,∵∠D1FD=∠CFO,∴△DD1F∽△COF,∴D1DFD1=COOF,∵D(−3, −2√3),∴D1D=2√3,OD1=3,∵AC=CF,CO⊥AF∴OF=OA=1∴D1F=D1O−OF=3−1=2,∴2√32=OC1,∴OC=√3,∴CA=CF=FA=2,∴△ACF是等边三角形,∴∠AFC=∠ACF,∴ EC // BF ,∵ EC =DC =√32+(√3+2√3)2=6, ∵ BF =6, ∴ EC =BF ,∴ 四边形BFCE 是平行四边形; ∵ 点P 是抛物线上一动点, ∴ 设P 点(x, √38x 2+3√34x −7√38),①当点P 在B 点的左侧时,∵ △PAM 与△DD 1A 相似,∴ DD1PM=D 1AMA 或DD1AM=D 1A PM,∴ 2√3√38x 2+3√34x−7√38=41−x 或2√31−x=4√38x 2+3√34x−7√38,解得:x 1=1(不合题意舍去),x 2=−11或x 1=1(不合题意舍去)x 2=−373; 当点P 在A 点的右侧时,∵ △PAM 与△DD 1A 相似, ∴ PMAM =DD 1D 1A 或PMMA =D 1ADD 1,∴√38x 2+3√34x−7√38x−1=2√34或√38x 2+3√34x−7√38x−1=42√3, 解得:x 1=1(不合题意舍去),x 2=−3(不合题意舍去)或x 1=1(不合题意舍去),x 2=−53(不合题意舍去); 当点P 在AB 之间时,∵ △PAM 与△DD 1A 相似, ∴ PMAM =DD 1D 1A 或PMMA =D 1ADD 1,∴ √38x2+3√34x−7√38x−1=2√34或√38x 2+3√34x−7√38x−1=42√3, 解得:x 1=1(不合题意舍去),x 2=−3(不合题意舍去)或x 1=1(不合题意舍去),x 2=−53;综上所述,点P 的横坐标为−11或−373或−53; ②由①得,这样的点P 共有3个.【考点】(1)利用抛物线解析式求得点A、B、D的坐标;(2)欲证明四边形BFCE是平行四边形,只需推知EC // BF且EC=BF即可;(3)①利用相似三角形的对应边成比例求得点P的横坐标,没有指明相似三角形的对应边(角),需要分类讨论;②根据①的结果即可得到结论.【解答】令√38x2+3√34x−7√38=0,解得x1=1,x2=−7.∴A(1, 0),B(−7, 0).由y=√38x2+3√34x−7√38=√38(x+3)2−2√3得,D(−3, −2√3);证明:∵DD1⊥x轴于点D1,∴∠COF=∠DD1F=90∘,∵∠D1FD=∠CFO,∴△DD1F∽△COF,∴D1DFD1=COOF,∵D(−3, −2√3),∴D1D=2√3,OD1=3,∵AC=CF,CO⊥AF∴OF=OA=1∴D1F=D1O−OF=3−1=2,∴2√32=OC1,∴OC=√3,∴CA=CF=FA=2,∴△ACF是等边三角形,∴∠AFC=∠ACF,∵△CAD绕点C顺时针旋转得到△CFE,∴∠ECF=∠AFC=60∘,∴EC // BF,∵EC=DC=√32+(√3+2√3)2=6,∵BF=6,∴EC=BF,∴四边形BFCE是平行四边形;∵点P是抛物线上一动点,∴设P点(x, √38x2+3√34x−7√38),①当点P在B点的左侧时,∵△PAM与△DD1A相似,∴DD1PM =D1AMA或DD1AM=D1APM,∴√3√38x+3√34x−7√38=41−x或2√31−x=√38x+3√34x−7√38,当点P 在A 点的右侧时,∵ △PAM 与△DD 1A 相似,∴ PM AM =DD 1D 1A 或PM MA =D 1A DD 1, ∴ √38x 2+3√34x−7√38x−1=2√34或√38x 2+3√34x−7√38x−1=42√3,解得:x 1=1(不合题意舍去),x 2=−3(不合题意舍去)或x 1=1(不合题意舍去),x 2=−53(不合题意舍去);当点P 在AB 之间时,∵ △PAM 与△DD 1A 相似,∴ PM AM =DD 1D 1A 或PM MA =D 1ADD 1, ∴ √38x 2+3√34x−7√38x−1=2√34或√38x 2+3√34x−7√38x−1=42√3, 解得:x 1=1(不合题意舍去),x 2=−3(不合题意舍去)或x 1=1(不合题意舍去),x 2=−53;综上所述,点P 的横坐标为−11或−373或−53; ②由①得,这样的点P 共有3个.。
2019学年广东省中考一模数学试卷【含答案及解析】

2019学年广东省中考一模数学试卷【含答案及解析】姓名___________ 班级____________ 分数__________一、选择题1. 如下图所示的图形是由7个完全相同的小正方体组成的立体图形,则下面四个平面图形中不是这个立体图形的三视图的是()2. 下列运算正确的是()A.2x+6x=8x2 B.a6÷a2=a3 C.(-4x3)2=16x6 D.(x+3)2=x2+93. 下列说法正确的是()A.为了了解全国中学生每天体育锻炼的时间,应采用普查的方式B.甲组数据的方差S甲2=0.03,乙组数据的方差是S乙2=0.2,则乙组数据比甲组数据稳定C.广州市明天一定会下雨D.某班学生数学成绩统计如下,则该班学生数学成绩的众数和中位数分别是80分,80分4. 成绩(分)60708090100人数4812115td5. 若不等式组有解,则实数a的取值范围是()A.a<-30 B.a≤-30 C.a>-30 D.a≥-306. 如图,△ABO缩小后变为△A′B′O,其中A、B的对应点分别为A′、B′点A、B、A′、B′均在图中在格点上.若线段AB上有一点P(m,n),则点P在A′B′上的对应点P′的坐标为()A.(,n) B.(m,n) C.(m,) D.(,)7. 将矩形纸片ABCD按如图所示的方式折叠,得到菱形AECF.若AB=3,则BC的长为()A.1 B.2 C. D.8. 如图,△ABC内接于半径为5的⊙O,圆心O到弦BC的距离等于3,则∠A的正切值等于()A. B. C. D.9. 二次函数y=mx2+x-2m(m是非0常数)的图象与x轴的交点个数为()A.0个 B.1个 C.2个 D.1个或2个10. 已知过点(2,-3)的直线y=ax+b(a≠0)不经过第一象限,设s=a+2b,则s的取值范围是()A.-5≤s≤- B.-6<s≤- C.-6≤s≤- D.-7<s≤-11. 如图,一个半径为r的圆形纸片在边长为a的等边三角形内任意运动,则在该等边三角形内,这个圆形纸片“不能接触到的部分”的面积是()A. B. C. D.πr2二、填空题12. 环境空气质量问题已经成为人们日常生活所关心的重要问题,我国新修订的《环境空气质量标准》中增加了PM2.5检测指标,“PM2.5”是指大气中危害健康的直径小于或等于2.5微米的颗粒物,2.5微米即0.0000025米.用科学记数法表示0.0000025为.13. 分解因式:a4-4a2+4= .14. 一个几何体的三视图如图,根据图示的数据计算该几何体的表面积为.(结果保留π)15. 已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表:16. x…-10123…y…105212…td17. )在直角坐标系中,一直线a向下平移3个单位后所得直线b经过点A(0,3),将直线b绕点A顺时针旋转60°后所得直线经过点B(-,0),则直线a的函数关系式为.18. 如图,反比例函数y=(x<0)的图象经过点A(-1,1),过点A作AB⊥y轴,垂足为B,在y轴的正半轴上取一点P(0,t),过点P作直线OA的垂线l,以直线l为对称轴,点B经轴对称变换得到的点B′在此反比例函数的图象上,则t的值是.三、计算题19. 解方程(组)(1).(2).四、解答题20. 先化简,再求值:,其中x满足x2-x-1=0.21. 已知:如图,在矩形ABCD中,M,N分别是边AD,BC的中点,E,F分别是线段BM,CM的中点.(1)求证:△ABM≌△DCM;(2)判断四边形MENF是什么特殊四边形,并证明你的结论;(3)当AD:AB= 时,四边形MENF是正方形(只写结论,不需证明).22. 学校举办一项小制作评比活动.作品上交时限为3月1日至30日,组委会把同学们交来的作品按时间顺序每5天组成一组,对每一组的作品件数进行统计,绘制成如图所示的统计图.已知从左到右各矩形的高度比为2:3:4:6:4:1.第三组的件数是12.请你回答:(1)本次活动共有件作品参赛;各组作品件数的众数是件;(2)经评比,第四组和第六组分别有10件和2件作品获奖,那么你认为这两组中哪个组获奖率较高?为什么?(3)小制作评比结束后,组委会决定从4件最优秀的作品A、B、C、D中选出两件进行全校展示,请用树状图或列表法求出刚好展示作品B、D的概率.23. 某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.(1)该项绿化工程原计划每天完成多少米2?(2)该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?24. 如图,一艘核潜艇在海面DF下600米A点处测得俯角为30°正前方的海底C点处有黑匣子,继续在同一深度直线航行1464米到B点处测得正前方C点处的俯角为45°.(1)尺规作图:作点C到直线AB的垂线段CE(不写作法,保留作图痕迹);(2)求海底C点处距离海面DF的深度.(结果精确到1米)25. 如图,已知AB是⊙O的直径,BC是⊙O的弦,弦ED⊥AB于点F,交BC于点G,过点C的直线与ED的延长线交于点P,PC=PG.(1)求证:PC是⊙O的切线;(2)当点C在劣弧AD上运动时,其他条件不变,若BG2=BF•BO.求证:点G是BC的中点;(3)在满足(2)的条件下,AB=10,ED=4,求BG的长.26. 如图1,已知点A(2,0),B(0,4),∠AOB的平分线交AB于C,一动点P从O点出发,以每秒2个单位长度的速度,沿y轴向点B作匀速运动,过点P且平行于AB的直线交x轴于Q,作P、Q关于直线OC的对称点M、N.设P运动的时间为t(0<t<2)秒.(1)求C点的坐标,并直接写出点M、N的坐标(用含t的代数式表示);(2)设△MNC与△OAB重叠部分的面积为S.①试求S关于t的函数关系式;②在图2的直角坐标系中,画出S关于t的函数图象,并回答:S是否有最大值?若有,写出S的最大值;若没有,请说明理由.27. 如图1,抛物线y=-x2+bx+c与x轴相交于点A,C,与y轴相交于点B,连接AB,BC,点A的坐标为(2,0),tan∠BAO=2,以线段BC为直径作⊙M交AB于点D,过点B作直线l∥AC,与抛物线和⊙M的另一个交点分别是E,F.(1)求该抛物线的函数表达式;(2)求点C的坐标和线段EF的长;(3)如图2,连接CD并延长,交直线l于点N,点P,Q为射线NB上的两个动点(点P 在点Q的右侧,且不与N重合),线段PQ与EF的长度相等,连接DP,CQ,四边形CDPQ 的周长是否有最小值?若有,请求出此时点P的坐标并直接写出四边形CDPQ周长的最小值;若没有,请说明理由.参考答案及解析第1题【答案】第2题【答案】第3题【答案】第4题【答案】第5题【答案】第6题【答案】第7题【答案】第8题【答案】第9题【答案】第10题【答案】第11题【答案】第12题【答案】第13题【答案】第14题【答案】第15题【答案】第16题【答案】第17题【答案】第18题【答案】第19题【答案】第20题【答案】第21题【答案】第22题【答案】第23题【答案】第24题【答案】第25题【答案】。
佛山市中考数学一模试卷

佛山市中考数学一模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2019九上·武昌期中) 下列图形中既是中心对称又是轴对称图形的是()A . 等边三角形B . 平行四边形C . 正五边形D . 正方形2. (2分)下列说法中,正确的是()A . 数轴上的点都表示有理数B . 的立方根是±C . 用根号表示的数不一定都是无理数D . 任何实数的平方根都有两个,它们互为相反数3. (2分) (2017七上·瑞安期中) 一个数a在数轴上表示的点是A,当点A在数轴上向左平移了4个单位长度后到点B,点A与点B表示的数恰好互为相反数,则数a是()A . -4B . -2C . 2D . 44. (2分) (2019九上·南海期末) 已知a是方程x2-2x-1=0的一个根,则代数式2a2-4a-1的值为()A . 1B .C . 或1D . 25. (2分)下列运动中:①荡秋千;②钟摆的摆动;③拉抽屉时的抽屉;④工厂里的输送带上的物品,不属于平移的有()A . 4个B . 3个C . 2个D . 1个6. (2分)(2016·长沙模拟) 反比例函数y=﹣的图象在()A . 第一、二象限B . 第二、三象限C . 第一、三象限D . 第二、四象限7. (2分) (2019九上·灌云月考) 关于抛物线,以下说法正确的是()A . 开口向下B . 对称轴是x= —3C . 顶点坐标是(0,0)D . 当x>—3时,y随x增大而减小8. (2分)在Rt△ABC中,∠C=90°,当∠A=60°,a=3时,c的值是()A . c=4B . c=5C . c=6D . c=79. (2分) (2019八下·渭滨月考) △ABC中,AB=AC,BD平分∠ABC交AC边于点D,∠BDC=75°,则∠A的度数为()A . 35°B . 40°C . 70°D . 110°10. (2分)如图,在梯形ABCD中,AD∥BC,对角线AC,BD相交于点O,若AD=1,BC=3,则的值为()A .B .C .D .二、填空题 (共6题;共7分)11. (1分) (2017七下·江阴期中) 生物具有遗传多样性,遗传信息大多储存在DNA分子上.一个DNA分子的直径约为0.0000002cm,这个数量用科学记数法可表示为2×10ncm,则n=________.12. (1分)不等式5﹣>0的解是________13. (1分)(2016·上海) 今年5月份有关部门对计划去上海迪士尼乐园的部分市民的前往方式进行调查,图1和图2是收集数据后绘制的两幅不完整统计图.根据图中提供的信息,那么本次调查的对象中选择公交前往的人数是________.14. (1分)如图,在△ABC中,∠C=90°,AD是角平分线,AC=5,DC=3,则点D到AB的距离是________.15. (1分) (2018八上·海曙期末) 如图,△ABC中,∠A=15°,AB是定长.点D,E分别在AB,AC上运动,连结BE,ED.若BE+ED的最小值是2,则AB的长是________16. (2分)(2018·潮南模拟) 当x=________时,二次函数y=x2﹣2x+6有最小值________.三、解答题、 (共9题;共86分)17. (5分)(2017·河西模拟) 解不等式组:.18. (15分)(2017·嘉兴) 如图,是的中线,是线段上一点(不与点重合).交于点,,连结.(1)如图1,当点与重合时,求证:四边形是平行四边形;(2)如图2,当点不与重合时,(1)中的结论还成立吗?请说明理由.(3)如图3,延长交于点,若,且.①求的度数;②当,时,求的长.19. (10分)已知2x-y与y+1成正比例,当x=3时,y=7.求:(1) y关于x的函数解析式;(2)求y=-3时,x的值.20. (10分) (2016九上·余杭期中) 甲、乙两人同在如图所示的地下车库等电梯,两人到1至4层的任意一层出电梯,(1)请你用画树状图或列表法求出甲、乙二人在同一层楼出电梯的概率;(2)小亮和小芳打赌说:“若甲、乙在同一层或相邻楼层出电梯,则小亮胜,否则小芳胜”.该游戏是否公平?说明理由.21. (5分) (2016九上·灵石期中) 一学校为了绿化校园环境,向某园林公司购买了一批树苗,园林公司规定:如果购买树苗不超过60棵,每棵售价120元;如果购买树苗超过60棵,每增加1棵,所出售的这批树苗每棵售价均降低0.5元,但每棵树苗最低售价不得少于100元,该校最终向园林公司支付树苗款8800元,请问该校共购买了多少棵树苗?22. (10分) (2019九上·尚志期末) 如图,在矩形ABCD中,点E为边AB上一点,且AE= AB,EF⊥EC,连接BF.(1)求证:△AEF∽△BCE;(2)若AB=3 ,BC=3,求线段FB的长.23. (10分)(2018·南京模拟) 如图,在半径为3的⊙O中,AB是直径,AC是弦,且AC=4 .过点O 作直径DE⊥AC,垂足为点P,过点B的直线交AC的延长线和DE的延长线于点F、G.(1)求线段AP、CB的长;(2)若OG=9,求证:FG是⊙O的切线.24. (11分)(2017·蜀山模拟) 如图①,在△ABC中,∠ACB=90°,AC=BC,∠EAC=90°,点M为射线AE上任意一点(不与点A重合),连接CM,将线段CM绕点C按顺时针方向旋转90°得到线段CN,直线NB分别交直线CM,射线AE于点F、D.(1)问题发现:直接写出∠NDE=________度;(2)拓展探究:试判断,如图②当∠EAC为钝角时,其他条件不变,∠NDE的大小有无变化?请给出证明.(3)如图③,若∠EAC=15°,BD= ,直线CM与AB交于点G,其他条件不变,请直接写出AC的长.25. (10分) (2016八上·开江期末) 阅读材料,善于思考的小军在解方程组时,采用了一种“整体代换”的解法:解:将方程②变形:4x+10y+y=5即2(2x+5y)+y=5③把方程①代入③得:2×3+y=5∴y=﹣1把y=﹣1代入①得x=4∴方程组的解为请你解决以下问题:(1)模仿小军的“整体代换”法解方程组(2)已知x、y满足方程组①求x2+4y2的值;②求的值.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共7分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题、 (共9题;共86分)17-1、18-1、18-2、18-3、19-1、19-2、20-1、20-2、21-1、22-1、22-2、23-1、23-2、24-1、24-2、24-3、25-1、25-2、。
广东省佛山市南海区狮山镇2019届九年级中考第三次模拟考试数学试题(含答案)

广东省佛山市南海区狮山镇2019届九年级中考第三次模拟考试数学试题一.选择题(满分40分,每小题4分)1.﹣2的相反数是()A.2B.﹣2C.D.﹣2.下列运算正确的是()A.2x+3y=5xy B.5x2•x3=5x5C.4x8÷2x2=2x4D.(﹣x3)2=x53.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是()A.B.C.D.4.已知地球上海洋面积约为316 000 000km2,数据316 000 000用科学记数法可表示为()A.3.16×109B.3.16×107C.3.16×108D.3.16×1065.汉代数学家赵爽在注解(周髀算经》时给出的“赵爽弦图”是我国古代数学的瑰宝,如图所示的弦图中,四个直角三角形都是全等的,它们的两直角边分别是2和3.现随机向该图形内掷一枚飞镖,则飞镖落在小正方形内(非阴影区域)的概率为()A.1B.C.D.6.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x名同学,那么依题意,可列出的方程是()A.x(x+1)=210B.x(x﹣1)=210C.2x(x﹣1)=210D.x(x﹣1)=2107.如图,一次函数y1=ax+b和反比例函数y2=的图象相交于A,B两点,则使y1>y2成立的x取值范围是()A.﹣2<x<0或0<x<4B.x<﹣2或0<x<4C.x<﹣2或x>4D.﹣2<x<0或x>48.如图,⊙O的直径为10cm,弦AB为8cm,P是弦AB上一点且不与点A、B重合.若OP的长为整数,则符合条件的点P有()A.2个B.3个C.4个D.5个9.对于二次函数y=2(x﹣2)2+1,下列说法中正确的是()A.图象的开口向下B.函数的最大值为1C.图象的对称轴为直线x=﹣2D.当x<2时y随x的增大而减小10.如图,在矩形ABCD中,点E是边BC的中点,AE⊥BD,垂足为F,则cos∠BDE的值是()A.B.C.D.二.填空题(满分20分,每小题5分)11.因式分解:9a3b﹣ab=.12.如图,已知AE∥BD,∠1=130°,∠2=28°,则∠C的度数为.13.若不等式组无解,则a的取值范围是.14.如图,把三角形纸片ABC折叠,使C的对应点E在AB上,点B的对应点D在BC上,折痕分别为AD,FG,若∠CAB=30°,∠C=135°,DF=4,则AC的长为.三.解答题15.(8分)计算:(﹣2)0+()﹣1+4cos30°﹣|4﹣|16.(8分)先化简,再求值:(x﹣2+)÷,其中x=﹣.四.解答题17.(8分)如图,△ABC三个顶点坐标分别为A(1,2)、B(3,6)、C(4,3),x轴上两点坐标分别为E(﹣4,0)、F(4,0),正方形网格中,每个小正方形的边长是1个单位长度.(1)求△ABC的面积;(2)平移△ABC至△A1B1C1,使得A1E+C1F值最小,画出△A1B1C1位置;(3)以点O为位似中心,在网格中画出△A2B2C2,使△A2B2C2与△ABC位似.且△A2B2C2与△ABC的位似比为2:1,并直接写出点B2的坐标.18.(8分)化简求值:+++…+五.解答题19.(10分)如图,为了测量某建筑物CD的高度,先在地面上用测角仪自A处测得建筑物顶部的仰角是30°,然后在水平地面上向建筑物前进了40m,此时自B处测得建筑物顶部的仰角是45°.已知测角仪的高度是1.5m,请你计算出该建筑物的高度.(结果精确到1m)(参考数据:≈1.732,≈1.414)20.(10分)如图,⊙O是四边形ABCD的外接圆.AC、BD是四边形ABCD的对角线,BD 经过圆心O,点E在BD的延长线上,BA与CD的延长线交于点F,DF平分∠ADE.(1)求证:AC=BC;(2)若AB=AF,求∠F的度数;(3)若,⊙O半径为5,求DF的长.六.解答题21.(12分)为了庆祝中华人民共和国成立70周年,某市决定开展“我和祖国共成长”主题演讲比赛,某中学将参加本校选拔赛的40名选手的成绩(满分为100分,得分为正整数且无满分,最低为75分)分成五组,并绘制了下列不完整的统计图表.(1)表中m=,n=;(2)请在图中补全频数直方图;(3)甲同学的比赛成绩是40位参赛选手成绩的中位数,据此推测他的成绩落在分数段内;(4)选拔赛中,成绩在94.5分以上的选手,男生和女生各占一半,学校从中随机确定2名选手参加全市决赛,请用列举法或树状图法求恰好是一名男生和一名女生的概率.22.(12分)我国为了实现到2020年达到全面小康社会的目标,近几年加大了扶贫工作的力度,合肥市某知名企业为了帮助某小型企业脱贫,投产一种书包,每个书包制造成本为18元,试销过程中发现,每月销售量y(万个)与销售单价x(元)之间的关系可以近似看作一次函数y=kx+b,据统计当售价定为30元/个时,每月销售40万个,当售价定为35元/个时,每月销售30万个.(1)请求出k、b的值.(2)写出每月的利润w(万元)与销售单价x(元)之间的函数解析式.(3)该小型企业在经营中,每月销售单价始终保持在25≤x≤36元之间,求该小型企业每月获得利润w(万元)的范围.七.解答题23.(14分)在矩形ABCD中,AB=6,AD=8,点E是边AD上一点,EM⊥EC交AB于点M,点N在射线MB上,且AE是AM和AN的比例中项.(1)如图1,求证:∠ANE=∠DCE;(2)如图2,当点N在线段MB之间,联结AC,且AC与NE互相垂直,求MN的长;(3)连接AC,如果△AEC与以点E、M、N为顶点所组成的三角形相似,求DE的长.参考答案一.选择题1.解:根据相反数的定义,﹣2的相反数是2.故选:A.2.解:A、不是同类项,不能合并,选项错误;B、正确;C、4x8÷2x2=2x6,选项错误;D、(﹣x3)2=x6,选项错误.故选:B.3.解:从左面看易得第一层有2个正方形,第二层最左边有一个正方形.故选:B.4.解:316 000 000用科学记数法可表示为3.16×108,故选:C.5.解:∵两直角边分别是2和3,∴斜边即大正方形的边长为,小正方形边长为1,∴S大正方形=13,S小正方形=1,∴飞镖落在小正方形内(非阴影区域)的概率为;故选:D.6.解:由题意得,x(x﹣1)=210,故选:B.7.解:观察函数图象可发现:当x<﹣2或0<x<4时,一次函数图象在反比例函数图象上方,∴使y1>y2成立的x取值范围是x<﹣2或0<x<4.故选:B.8.解:连接OA,作OC⊥AB于C,则AC=AB=4,由勾股定理得,OC==3,则3≤OP<5,OP=3有一种情况,OP=4有两种情况,则符合条件的点P有3个,故选:B.9.解:二次函数y=2(x﹣2)2+1,a=2>0,∴该函数的图象开口向上,故选项A错误,函数的最小值是y=1,故选项B错误,图象的对称轴是直线x=2,故选项C错误,当x<2时y随x的增大而减小,故选项D正确,故选:D.10.解:∵四边形ABCD是矩形∴AB=CD,AD=BC,AD∥BC∵点E是边BC的中点,∴BE=CE=BC=AD,∵AB=CD,BE=CE,∠ABC=∠DCB=90°∴△ABE≌△DCE(SAS)∴AE=DE∵AD∥BC∴△ADF∽△EBF∴∴AF=2EF,∴AE=3EF=DE∴DF==2EF∴cos∠BDE=故选:A.二.填空题(共4小题,满分20分,每小题5分)11.解:原式=ab(9a2﹣1)=ab(3a+1)(3a﹣1).故答案为:ab(3a+1)(3a﹣1)12.解:∵AE∥BD,∠1=130°,∠2=28°,∴∠CBD=∠1=130°,∠CDB=∠2=28°,∴∠C=180°﹣∠CBD﹣∠CDB=180°﹣130°﹣28°=22°.故答案为:22°13.解:,由①得,x<a,由②得,x>﹣1,∵不等式组无解,∴a≤﹣1.故答案为:a≤﹣1.14.解:如图,作DH⊥AB于H,在AH上取一点M,使得AM=DM,连接DM.∵∠CAB=30°,∠C=135°,∴∠B=180°﹣30°﹣135°=15°,∵FB=FD,∴∠FDB=∠B=15°,∴∠DFH=15°+15°=30°,∵∠DHF=90°,DF=4,∴DH=DF=2,∵∠ACD=∠AED=135°,∴∠DEH=45°,∴DH=EH=2,∵∠DAM=∠DAC=15°,MA=MD,∴∠MAD=∠MDA=15°,∴∠DMH=30°,∴DM=AM=2DH=4,MH=DH=6,∴AH=4+6,∴AC=AE=AH﹣EH=4+6﹣2=2+6,故答案为2+6.三.解答题(共2小题,满分16分,每小题8分)15.解:(﹣2)0+()﹣1+4cos30°﹣|4﹣|=1+3+4×﹣(4﹣2)=4+2﹣4+2=4.16.解:原式=(+)•=•=2(x+2)=2x+4,当x=﹣时,原式=2×(﹣)+4=﹣1+4=3.四.解答题(共2小题,满分16分,每小题8分)17.解:(1)△ABC的面积=3×4﹣×3×1﹣×3×1﹣×2×4=7;(2)设左右平移m个单位,上下平移n个单位,则A1(1+m,2+n),C1(4+m,3+n),∴A1E=,C1F=,∴A1E+C1F=+,可以看成点(m,n)到(﹣5,0)的距离与(m,n)到(0,﹣3)距离和最小,由三角形两边之和大于第三边,当(m,n)在(﹣5,0),(0,﹣3)两点为端点的线段上时最小,又∵m,n都是整式,∴以线段(﹣5,0),(0,﹣3)为端点的线段上的整数点有(﹣5,﹣2),(0,﹣3),∴m=﹣5,n=﹣2;m=0,n=﹣3;即有两种平移方式,①向左平移5个单位,向下平移1个单位,此时A1与E重合;②向下平移3个单位,此时C1与F重合;这两种情况A1E+C1F都有最小值,(3)图中△A2B2C2即为所求三角形.B2(﹣6,﹣12).B2(6,12).18.解:原式=++++……++=1﹣+﹣+﹣+﹣+……+﹣+﹣=1+﹣五.解答题(共2小题,满分20分,每小题10分)19.解:设CE的长为xm,在Rt△CBE中,∵∠CBE=45°,∴∠BCD=45°,∴CE=BE=xm,∴AE=AB+BE=40+x(m)在Rt△ACE中,∵∠CAE=30°,∴tan30°=即=,解得,x=20+20≈20×1.732+20=54.64(m)所以CD=CE+ED=54.65+1.5=56.15≈56(m)答:该建筑物的高度约为56m.20.(1)证明:∵DF平分∠ADE,∴∠EDF=∠ADF,∵∠EDF=∠ABC,∠BAC∠BDC,∠EDF=∠BDC,∴∠BAC=∠ABC,∴AC=BC;(2)解:∵BD是⊙O的直径,∴AD⊥BF,∵AF=AB,∴DF=DB,∴∠FDA=∠BDA,∴∠ADB=∠CAB=∠ACB,∴△ACB是等边三角形,∴∠ADB=∠ACB=60°,∴∠ABD=90°﹣60°=30°,∴∠F=∠ABD=30°;(3)解:∵,∴=, 设CD =k ,BC =2k ,∴BD ==k =10,∴k =2,∴CD =2,BC =AC =4, ∵∠ADF =∠BAC ,∴∠F AC =∠ADC ,∵∠ACF =∠DCA ,∴△ACF ∽△DCA ,∴=,∴CF =8,∴D F =CF ﹣CD =6.六.解答题(共2小题,满分24分,每小题12分)21.解:(1)m =40×0.2=8,n =14÷40=0.35,故答案为:8,0.35;(2)补全图形如下:(3)由于40个数据的中位数是第20、21个数据的平均数,而第20、21个数据均落在84.5~89.5,∴测他的成绩落在分数段84.5~89.5内,故答案为:84.5~89.5.(4)选手有4人,2名是男生,2名是女生.,恰好是一名男生和一名女生的概率为=.22.解:(1)由题意得:,解得.答:k的值为﹣2,b的值为100.(2)由题意得w=(x﹣18)(﹣2x+100)=﹣2x2+136x﹣1800,答:函数解析式为:w=﹣2x2+136x﹣1800.(3)∵w=﹣2x2+136x﹣1800=﹣2(x﹣34)2+512,∴当x=34时,w取最大值,最大值为512;当x<34时,w随着x的增大而增大;当x>34时,w随着x的增大而减小.∵当x=25时,w=﹣2×252+136×25﹣1800=350;当x=36时,w=﹣2×362+136×36﹣1800=504.综上,w的范围为350≤w≤512.答:该小型企业每月获得利润w(万元)的范围是350≤w≤512.七.解答题(共1小题,满分14分,每小题14分)23.解:(1)∵AE是AM和AN的比例中项∴=,∵∠A=∠A,∴△AME∽△AEN,∴∠AEM=∠ANE,∵∠D=90°,∴∠DCE+∠DEC=90°,∵EM⊥BC,∴∠AEM+∠DEC=90°,∴∠AEM=∠DCE,∴∠ANE=∠DCE;(2)∵AC与NE互相垂直,∴∠EAC+∠AEN=90°,∵∠BAC=90°,∴∠ANE+∠AEN=90°,∴∠ANE=∠EAC,由(1)得∠ANE=∠DCE,∴∠DCE=∠EAC,∴tan∠DCE=tan∠DAC,∴=,∵DC=AB=6,AD=8,∴DE=,∴AE=8﹣=,由(1)得∠AEM=∠DCE,∴tan∠AEM=tan∠DCE,∴=,∴AM=,∵=,∴AN=,∴MN=;(3)∵∠NME=∠MAE+∠AEM,∠AEC=∠D+∠DCE,又∠MAE=∠D=90°,由(1)得∠AEM=∠DCE,∴∠AEC=∠NME,当△AEC与以点E、M、N为顶点所组成的三角形相似时①∠ENM=∠EAC,如图2,∴∠ANE=∠EAC,由(2)得:DE=;②∠ENM=∠ECA,如图3,过点E作EH⊥AC,垂足为点H,由(1)得∠ANE=∠DCE,∴∠ECA=∠DCE,∴HE=DE,又tan∠HAE===,设DE=3x,则HE=3x,AH=4x,AE=5x,又AE+DE=AD,∴5x+3x=8,解得x=1,∴DE=3x=3,综上所述,DE的长分别为或3.。
【3套试卷】佛山市中考第一次模拟考试数学试题含答案

中考模拟考试数学试卷含答案姓名:得分:日期:一、选择题(本大题共12 小题,共36 分)1、(3分) -3的绝对值是()A.B.-3 C.3D.-2、(3分) 2018年03月05日上午9时,李克强总理代表国务院向大会作政府工作报告,报告中说:五年来,经济实力跃上新台阶,国内生产总值从54万亿元增加到82.7万亿元.82.7万亿元用科学记数法表示正确的是()A.8.27×1012元B.8.27×1013元C.8.27×1014元D.827×1011元3、(3分) 如图,BC∥DE,∠A=94°,∠B=31°,则∠1的度数为()A.94°B.31°C.63°D.55°4、(3分) 下列计算正确的是()A.(a4)3=a7B.3(a-2b)=3a-2bC.a4+a4=a8D.a5÷a3=a25、(3分) 小明要给刚结识的朋友小林打电话,他只记住了电话号码的前5位的顺序,后3位是3,6,8三个数字的某一种排列顺序,但具体顺序忘记了,那么小明第一次就拨通电话的概率是()A. B. C. D.6、(3分) 若不等式组有解,则实数m的取值范围是()A.m≤B.m<C.m>D.m≥7、(3分) 如图,在△ABC中,∠C=90°,∠B=60°,D是AC上一点,DE⊥A B于E,且CD=2,DE=1,则BC的长为()A.2B. C.2 D.48、(3分) 如图,有一圆心角为120°,半径长为6cm的扇形,若将OA、OB重合后围成一圆锥侧面,那么圆锥的高是()A.4cmB.cmC.2cmD.2cm9、(3分) 随着市场竞争日益激烈,某商品一个月内连续两次降价,第一次降价10%,第二次再降价10%后,售价为810元,则原售价为()A.900元B.1000元C.960元D.920元10、(3分) 如图所示,已知A(,y1),B(2,y2)为反比例函数y=图象上的两点,动点P(x,0)在x轴正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是()A.(,0)B.(1,0)C.(,0)D.(,0)11、(3分) 如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则sin∠ECB为()A. B. C. D.12、(3分) 已知:二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论中:①abc>0;②2a+b<0;③a+b>m(am+b)(m≠1的实数);④(a+c)2<b2;⑤a>1,其中正确的是()A.2个B.3个C.4个D.1个二、填空题(本大题共 4 小题,共12 分)13、(3分) 因式分解:6ab2-9a2b-b3=______.14、(3分) 如图,在Rt△ABC中,∠BAC=90°,∠B=60°,△AB′C′可以由△ABC 绕点A顺时针旋转90°得到(点B′与点B是对应点,点C′与点C是对应点),连接CC′,则∠CC′B′的度数是______.15、(3分) 如图,AC⊥BC,AC=BC=2,以AC为直径作半圆,圆心为点O;以点C为圆心,BC为半径作⊙C,过点O作BC的平行线交两弧于点D、E,则阴影部分的面积是______.16、(3分) 如图所示,已知:点A(0,0),B(,0),C(0,1)在△ABC内依次作等边三角形,使一边在x轴上,另一个顶点在BC边上,作出的等边三角形分别是第1个△AA1B1,第2个△B1A2B2,第3个△B2A3B3,…,则第n个等边三角形的边长等于______.三、计算题(本大题共 2 小题,共18 分)17、(8分) 先化简,再求值:•-(),其中x=.18、(10分) 如图,在Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于点D,DE⊥BD交AB于点E,设⊙O是△BDE的外接圆.(1)求证:AC是⊙O的切线;(2)探究线段BC,BD,BO之间的数量关系,并证明;(3)若DC=2,BC=4,求AD的长.四、解答题(本大题共 6 小题,共54 分)19、(8分) 如图,菱形ABCD的对角线AC,BD相交于点O,分别延长OA,OC 到点E,F,使AE=CF,依次连接B,F,D,E各点.(1)求证:△BAE≌△BCF;(2)若∠ABC=50°,则当∠EBA=______°时,四边形BFDE是正方形.20、(8分) 学校实施新课程改革以来,学生的学习能力有了很大提高.王老师为进一步了解本班学生自主学习、合作交流的现状,对该班部分学生进行调查,把调查结果分成四类(A:特别好,B:好,C:一般,D:较差)后,再将调查结果绘制成两幅不完整的统计图(如图).请根据统计图解答下列问题:(1)本次调查中,王老师一共调查了______名学生;(2)将条形统计图补充完整;(3)为了共同进步,王老师从被调查的A类和D类学生中分别选取一名学生进行“兵教兵”互助学习,请用列表或画树状图的方法求出恰好选中一名男生和一名女生的概率.21、(8分) 数学兴趣小组想利用所学的知识了解某广告牌的高度,已知CD=2m,经测量,得到其它数据如图所示.其中∠CAH=30°,∠DBH=60°,AB=10m.请你根据以上数据计算GH的长.(≈1.73,要求结果精确到0.1m)22、(8分) 如图,矩形OABC的顶点A、C分别在x轴和y轴上,点B的坐标为(2,3).双曲线y=(x>0)的图象经过BC的中点D,且与AB交于点E,连接DE.(1)求k的值及点E的坐标;(2)若点F是OC边上一点,且△FBC∽△DEB,求直线FB的解析式.23、(10分) 某学校为了改善办学条件,计划购置一批电子白板和一批笔记本电脑,经投标,购买1块电子白板比买3台笔记本电脑多3000元,购买4块电子白板和5台笔记本电脑共需80000元.(1)求购买1块电子白板和一台笔记本电脑各需多少元?(2)根据该校实际情况,需购买电子白板和笔记本电脑的总数为396,要求购买的总费用不超过2700000元,并购买笔记本电脑的台数不超过购买电子白板数量的3倍,该校有哪几种购买方案?(3)上面的哪种购买方案最省钱?按最省钱方案购买需要多少钱?24、(12分) 如图1所示,已知抛物线y=-x2+4x+5的顶点为D,与x轴交于A、B两点,与y轴交于C点,E为对称轴上的一点,连接CE,将线段CE绕点E按逆时针方向旋转90°后,点C的对应点C′恰好落在y轴上.(1)直接写出D点和E点的坐标;(2)点F为直线C′E与已知抛物线的一个交点,点H是抛物线上C与F之间的一个动点,若过点H作直线HG与y轴平行,且与直线C′E交于点G,设点H的横坐标为m(0<m<4),那么当m为何值时,S△HGF:S△BGF=5:6?(3)图2所示的抛物线是由y=-x2+4x+5向右平移1个单位后得到的,点T(5,y)在抛物线上,点P是抛物线上O与T之间的任意一点,在线段OT上是否存在一点Q,使△PQT是等腰直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由.2019年湖北省恩施州鹤峰县中考数学一模试卷【第 1 题】【答案】C【解析】解:|-3|=3,故选:C.根据绝对值的定义:数轴上某个数与原点的距离叫做这个数的绝对值.则-3的绝对值就是表示-3的点与原点的距离.此题主要考查了绝对值,关键是掌握:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.【第 2 题】【答案】B【解析】解:82.7万亿元=8.27×1013元.故选:B.用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.此题主要考查了用科学记数法表示较大的数,一般形式为a×10-n,其中1≤|a|<10,确定a与n的值是解题的关键.【第 3 题】【答案】【解析】解:∵∠A=94°,∠B=31°,∴∠ACB=180°-94°-31°=55°,∵BC∥DE,∴∠1=∠ACB=55°,故选:D.依据∠A=94°,∠B=31°,即可得出∠ACB=180°-94°-31°=55°,再根据BC∥DE,即可得到∠1=∠ACB=55°.本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.【第 4 题】【答案】D【解析】解:A、(a4)3=a12,故本选项错误;B、3(a-2b)=3a-6b,故本选项错误;C、a4+a4=2a4,故本选项错误;D、a5÷a3=a2,故本选项正确.故选:D.利用幂的乘方、去括号、合并同类项与同底数幂的除法法则,即可求得答案,注意排除法在解选择题中的应用.此题考查了幂的乘方、去括号、合并同类项与同底数幂的除法.此题比较简单,注意掌握指数的变化.【第 5 题】【答案】B【解析】解:因为后3位是3,6,8三个数字共6种排列情况,而正确的只有1种,故第一次就拨通电话的概率是.故选:B.让1除以总情况数即为所求的概率.此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.【第 6 题】【答案】A【解析】解:解不等式5-3x≥0,得:x≤,解不等式x-m≥0,得:x≥m,∵不等式组有解∴m≤,故选:A.分别解两个关于x的不等式,根据不等式组有解即可得m的范围.本题主要考查不等式组的解集,熟练掌握不等式组解集的确定是关键,注意解集确定时临界值的取舍.【第7 题】【答案】B【解析】解:∵在△ABC中,∠C=90°,∠B=60°∴∠A=30°∵CD=2,DE=1,∴AD=2,AC=AD+DC=4,由∠A=∠A,∠DEA=∠C=90°,得△ABC∽△ADE,∴=∴=∴BC=.故选:B.由已知可求∠A=30°,AC=4,即求BC=AC•tanA=4×=.此题主要考查综合解直角三角形的能力,也可根据相似三角形的性质求解.【第8 题】【答案】A【解析】解:由圆心角为120°、半径长为6cm,可知扇形的弧长为=4πcm,即圆锥的底面圆周长为4πcm,则底面圆半径为2cm,已知OA=6cm,由勾股定理得圆锥的高是4cm.故选:A.本题已知扇形的圆心角及半径就是已知圆锥的底面周长,能求出底面半径,底面半径,圆锥的高,母线长即扇形半径,构成直角三角形,课以利用勾股定理解决.本题主要考查了圆锥的侧面与扇形的关系,圆锥弧长等于圆锥底面周长,圆锥母线长等于扇形半径长.【第9 题】【答案】B【解析】解:设原价为x元.x(1-10%)2=810,解得x=1000.故选:B.设该商品原来的价格是x元,根据等量关系式:原价×(1-降低率)2=81,列出方程即可求解.此题主要考查了一元一次方程的应用,关键是读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程.【第10 题】【答案】D【解析】解:∵把A(,y1),B(2,y2)代入反比例函数y=得:y1=2,y2=,∴A(,2),B(2,),∵在△ABP中,由三角形的三边关系定理得:|AP-BP|<AB,∴延长AB交x轴于P′,当P在P′点时,PA-PB=AB,即此时线段AP与线段BP之差达到最大,设直线AB的解析式是y=kx+b,把A、B的坐标代入得:,解得:k=-1,b=,∴直线AB的解析式是y=-x+,当y=0时,x=,即P(,0),故选:D.求出AB的坐标,设直线AB的解析式是y=kx+b,把A、B的坐标代入求出直线AB的解析式,根据三角形的三边关系定理得出在△ABP中,|AP-BP|<AB,延长AB交x轴于P′,当P在P′点时,PA-PB=AB,此时线段AP与线段BP之差达到最大,求出直线AB于x轴的交点坐标即可.本题考查了三角形的三边关系定理和用待定系数法求一次函数的解析式的应用,解此题的关键是确定P点的位置,题目比较好,但有一定的难度.【第11 题】【答案】B【解析】解:连结BE,如图,∵OD⊥AB,∴AC=BC=AB=×8=4,设AO=x,则OC=OD-CD=x-2,在Rt△ACO中,∵AO2=AC2+OC2,∴x2=42+(x-2)2,解得:x=5,∴AE=10,OC=3,∵AE是直径,∴∠ABE=90°,∵OC是△ABE的中位线,∴BE=2OC=6,在Rt△CBE中,CE===2,∴sin∠ECB===.故选:B.根据垂径定理得到AC=BC=AB=4,设AO=x,则OC=OD-CD=x-2,在Rt△ACO中根据勾股定理得到x2=42+(x-2)2,解得x=5,则AE=10,OC=3,再由AE 是直径,根据圆周角定理得到∠ABE=90°,利用OC是△ABE的中位线得到BE=2OC=6,然后在Rt△CBE中利用勾股定理可计算出CE,由三角函数的定义求出sin∠ECB即可.本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理、圆周角定理、三角函数;由勾股定理求出半径是解决问题的突破口.【第12 题】【答案】A【解析】解:①由图象可知:a>0,c<0,∵>0,∴b<0,∴abc>0,故本选项正确;②由对称轴可知:<1,∴-b<2a,∴2a+b>0,故本选项错误;③当x=1时,y1=a+b+c;当x=m时,y2=m(am+b)+c,当m>1,y2>y1;当m<1,y2<y1,所以不能确定;故本选项错误;④当x=1时,a+b+c=0;当x=-1时,a-b+c>0;∴(a+b+c)(a-b+c)=0,即(a+c)2-b2=0,∴(a+c)2=b2故本选项错误;⑤当x=-1时,a-b+c=2;当x=1时,a+b+c=0,∴a+c=1,∴a=1+(-c)>1,即a>1;故本选项正确;综上所述,正确的是①⑤.故选:A.由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.【第13 题】【答案】-b(3a-b)2【解析】解:原式=-b(9a2-6ab+b2)=-b(3a-b)2,故答案为:-b(3a-b)2.先提取公因式-b,再套用完全平方公式分解,注意符号的变化.本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.【第14 题】【答案】15°【解析】解:∵∠BAC=90°,∠B=60°,∴∠ACB=90°-60°=30°,∵△AB′C由△ABC绕点A顺时针旋转90°得到,∴AC′=AC,∠C′AB′=∠CAB=90°,∠AC′B′=30°,∴△ACC′为等腰直角三角形,∴∠AC′C=45°,∴∠CC′B′=∠AC′C-∠AC′B′=45°-30°=15°.故答案为15°.先根据三角形内角和计算出∠ACB=90°-60°=30°,由于△AB′C由△ABC绕点A顺时针旋转90°得到,根据旋转的性质得到AC′=AC,∠C′AB′=∠CAB=90°,∠AC′B′=30°,则△ACC′为等腰直角三角形,得到∠AC′C=45°,然后利用∠CC′B′=∠AC′C-∠AC′B′计算即可.本题考查了旋转的性质:旋转前后两图形全等,即对应角相等,对应线段相等.也考查了等腰直角三角形的性质.【第15 题】【答案】π-【解析】解:如图,连接CE.∵AC⊥BC,AC=BC=2,以AC为直径作半圆,圆心为点O;以点C为圆心,BC 为半径作,∴∠ACB=90°,OA=OC=OD=1,BC=CE=2.又∵OE∥BC,∴∠AOE=∠COE=90°.∴在直角△OEC中,OC=CE,∴∠OEC=30°,OE=.∴∠ECB=∠OEC=30°,∴S阴影=S扇形ACB-S扇形AOD-S扇形ECB-S△OCE=---×1×=π-.故答案为π-.如图,图中S阴影=S扇形ACB-S扇形AOD-S扇形ECB-S△OCE.根据已知条件易求得OA=OC=OD=2,BC=CE=4.∠ECB=∠OEC=30°,所以由扇形面积公式、三角形面积公式进行解答即可.本题考查了扇形面积的计算.不规则图形的面积一定要注意分割成规则图形的面积进行计算.【第16 题】【答案】【解析】解:∵OB=,OC=1,∴BC=2,∴∠OBC=30°,∠OCB=60°.而△AA1B1为等边三角形,∠A1AB1=60°,∴∠COA1=30°,则∠CA1O=90°.在Rt△CAA1中,AA1=OC=,同理得:B1A2=A1B1=,依此类推,第n个等边三角形的边长等于.根据题目已知条件可推出,AA1=OC=,B1A2=A1B1=,依此类推,第n个等边三角形的边长等于.本题主要考查等边三角形的性质及解直角三角形,从而归纳出边长的规律.【第17 题】【答案】解:原式=•-=-=,当x=+1时,原式=.【解析】原式第一项变形后约分化简,括号中两项通分并利用同分母分式的加法法则计算,得到最简结果,把x的值代入计算即可求出值.此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.【第18 题】【答案】(1)证明:连接OD,∵DE⊥BD,∴∠ODE+∠ODB=90°,∵OE=OD,∴∠OED=∠ODE,∴∠OED+∠ODB=90°,∵BD为角平分线,∴∠ABD=∠CBD,∵∠EDB=∠DCB=90°,∴△EBD∽△DBC,∴∠OED=∠BDC,∴∠BDC+∠ODB=90°,即∠ODC=90°,则AC为圆O的切线;(2)BD2=2BO•BC,理由为:∵∠C=∠BED,∠ABD=∠DBC∴△EBD∽△DBC,∴=,即DB2=EB•BC,∵EB=2BO,∴BD2=2BO•BC;(3)在Rt△BDC中,BC=4,DC=2,根据勾股定理得:BD==2,∴由BD2=2BO•BC,得BO=OD==,∵∠ADO=∠ACB=90°,∴OD∥BC,∴=,即=,解得:AD=.【解析】(1)连接OD,由DE与DB垂直,得到一对角互余,再由BD为角平分线,以及一对直角相等,得到三角形EDB与三角形DBC相似,由相似三角形的对应角相等得到一对角相等,再由OE=OD,利用等边对等角得到一对角相等,等量代换得到OD垂直于AC,即可得证;(2)BD2=2BO•BC,理由为:由三角形EBD与三角形DBC相似,得比例式,将BE换为2BO即可得证;(3)在直角三角形DBC中,利用勾股定理求出BD的长,根据(2)的关系式求出BO的长,即为OD的长,由OD与BC都与AC垂直,得到OD与BC平行,由平行得比例,即可求出AD的长.此题考查了切线的判定,以及相似三角形的判定与性质,熟练掌握切线的判定方法是解本题的关键.【第19 题】【答案】(1)证明:∵菱形ABCD的对角线AC,BD相交于点O,∴AB=BC,∠BAC=∠BCA,∴∠BAE=∠BCF,在△BAE与△BCF中,∴△BAE≌△BCF(SAS);(2)∵四边形BFDE对角线互相垂直平分,∴只要∠EBF=90°即得四边形BFDE是正方形,∵△BAE≌△BCF,∴∠EBA=∠FBC,又∵∠ABC=50°,∴∠EBA+∠FBC=40°,∴∠EBA=×40°=20°.故答案为:20.【解析】(1)由题意易证∠BAE=∠BCF,又因为BA=BC,AE=CF,于是可证△BAE≌△BCF;(2)由已知可得四边形BFDE对角线互相垂直平分,只要∠EBF=90°即得四边形BFDE是正方形,由△BAE≌△BCF可知∠EBA=∠FBC,又由∠ABC=50°,可得∠EBA+∠FBC=40°,于是∠EBA=×40°=20°.本题考查了菱形的性质,全等三角形的判定与性质以及正方形的判定.本题关键是根据SAS证明△BAE≌△BCF.【第20 题】【答案】解:(1)根据题意得:王老师一共调查学生:(2+1)÷15%=20(名);故答案为:20;(2)∵C类女生:20×25%-2=3(名);D类男生:20×(1-15%-50%-25%)-1=1(名);如图:(3)列表如下:A类中的两名男生分别记为A1和A2,男A1 男A2 …(7分)女A男D 男A1男D 男A2男D 女A男D女D 男A1女D 男A2女D 女A女D共有6种等可能的结果,其中,一男一女的有3种,所以所选两位同学恰好是一位男生和一位女生的概率为:=.【解析】(1)由题意可得:王老师一共调查学生:(2+1)÷15%=20(名);(2)由题意可得:C类女生:20×25%-2=3(名);D类男生:20×(1-15%-50%-25%)-1=1(名);继而可补全条形统计图;(3)首先根据题意列出表格,再利用表格求得所有等可能的结果与恰好选中一名男生和一名女生的情况,继而求得答案.此题考查了列表法或树状图法求概率以及条形统计图与扇形统计图.用到的知识点为:概率=所求情况数与总情况数之比.【第21 题】【答案】解:根据已知画图,过点D作DE⊥AH于点E,设DE=x,则CE=x+2,在Rt△AEC和Rt△BED中,有tan30°=,tan60°=,∴AE=(x+2),BE=x,∴(x+2)-x=10,∴x=5-3,∴GH=CD+DE=2+5-3=5-1≈7.7(m)答:GH的长为7.7m.【解析】首先构造直角三角形,得出AE=(x+2),BE=x,进而求出x的长,进而得出GH的长.此题主要考查了解直角三角形的应用,根据已知构造直角三角形得出DE的长是解题关键.【第22 题】【答案】解:(1)∵BC∥x轴,点B的坐标为(2,3),∴BC=2,∵点D为BC的中点,∴CD=1,∴点D的坐标为(1,3),代入双曲线y=(x>0)得k=1×3=3;∵BA∥y轴,∴点E的横坐标与点B的横坐标相等,为2,∵点E在双曲线上,∴y=∴点E的坐标为(2,);(2)∵点E的坐标为(2,),B的坐标为(2,3),点D的坐标为(1,3),∴BD=1,BE=,BC=2∵△FBC∽△DEB,∴即:∴FC=∴点F的坐标为(0,)设直线FB的解析式y=kx+b(k≠0)则解得:k=,b=∴直线FB的解析式y=【解析】(1)首先根据点B的坐标和点D为BC的中点表示出点D的坐标,代入反比例函数的解析式求得k值,然后将点E的横坐标代入求得E点的纵坐标即可;(2)根据△FBC∽△DEB,利用相似三角形对应边的比相等确定点F的坐标后即可求得直线FB的解析式.本题主要考查了待定系数法求函数解析式,以及矩形的性质,解题时注意点的坐标与线段长的相互转化.【第23 题】【答案】解:(1)设购买1块电子白板需要x元,一台笔记本电脑需要y元,由题意得:,解得:.答:购买1块电子白板需要15000元,一台笔记本电脑需要4000元.(2)设购买电子白板a块,则购买笔记本电脑(396-a)台,由题意得:,解得:99≤a≤101,∵a为正整数,∴a=99,100,101,则电脑依次买:297台,296台,295台.因此该校有三种购买方案:方案一:购买笔记本电脑295台,则购买电子白板101块;方案二:购买笔记本电脑296台,则购买电子白板100块;方案三:购买笔记本电脑297台,则购买电子白板99块;(3)解法一:购买笔记本电脑和电子白板的总费用为:方案一:295×4000+101×15000=2695000(元)方案二:296×4000+100×15000=2684000(元)方案三:297×4000+99×15000=2673000(元)因此,方案三最省钱,按这种方案共需费用2673000元.解法二:设购买笔记本电脑数为z台,购买笔记本电脑和电子白板的总费用为W元,则W=4000z+15000(396-z)=-11000z+5940000,∵k=-11000<0,∴W随z的增大而减小,∴当z=297时,W有最小值=2673000(元)因此,当购买笔记本电脑297台、购买电子白板99块时,最省钱,这时共需费用2673000元.【解析】(1)设购买1块电子白板需要x元,一台笔记本电脑需要y元,由题意得等量关系:①买1块电子白板的钱=买3台笔记本电脑的钱+3000元,②购买4块电子白板的费用+5台笔记本电脑的费用=80000元,由等量关系可得方程组,解方程组可得答案;(2)设购买电子白板a块,则购买笔记本电脑(396-a)台,由题意得不等关系:①购买笔记本电脑的台数≤购买电子白板数量的3倍;②电子白板和笔记本电脑总费用≤2700000元,根据不等关系可得不等式组,解不等式组,求出整数解即可;(3)由于电子白板贵,故少买电子白板,多买电脑,根据(2)中的方案确定买的电脑数与电子白板数,再算出总费用.此题主要考查了二元一次方程组的应用,不等式组的应用,关键是弄清题意,找出题目中的等量关系与不等关系,列出方程组与不等式组.【第24 题】【答案】方法一:解:(1)∵抛物线y=-x2+4x+5=-(x-2)2+9∴D点的坐标是(2,9);∵E为对称轴上的一点,∴点E的横坐标是:-=2,设点E的坐标是(2,m),点C′的坐标是(0,n),∵将线段CE绕点E按逆时针方向旋转90°后,点C的对应点C′恰好落在y轴上,∴△CEC′是等腰直角三角形,∴解得或(舍去),∴点E的坐标是(2,3),点C′的坐标是(0,1).综上,可得D点的坐标是(2,9),点E的坐标是(2,3).(2)如图1所示:令抛物线y=-x2+4x+5的y=0得:x2-4x-5=0,解得:x1=-1,x2=5,所以点A(-1,0),B(5,0).设直线C′E的解析式是y=kx+b,将E(2,3),C′(0,1),代入得,解得:,∴直线C′E的解析式为y=x+1,将y=x+1与y=-x2+4x+5,联立得:,解得:,∴点F得坐标为(4,5),点A(-1,0)在直线C′E上.∵直线C′E的解析式为y=x+1,∴∠FAB=45°.过点B、H分别作BN⊥AF、HM⊥AF,垂足分别为N、M.∴∠HMN=90°,∠ADN=90°.又∵∠NAD=∠HNM=45°.∴△HGM∽△ABN∴,∵S△HGF:S△BGF=5:6,∴.∴,即,∴HG=5.设点H的横坐标为m,则点H的纵坐标为-m2+4m+5,则点G的坐标为(m,m+1),∴-m2+4m+5-(m+1)=5.解得:m1=,m2=.(3)由平移的规律可知:平移后抛物线的解析式为y=-(x-1)2+4(x-1)+5=-x2+6x.将x=5代入y=-x2+6x得:y=5,∴点T的坐标为(5,5).设直线OT的解析式为y=kx,将x=5,y=5代入得;k=1,∴直线OT的解析式为y=x,①如图2所示:当PT∥x轴时,△PTQ为等腰直角三角形,将y=5代入抛物线y=-x2+6x得:x2-6x+5=0,解得:x1=1,x2=5.∴点P的坐标为(1,5).将x=1代入y=x得:y=1,∴点Q的坐标为(1,1).②如图3所示:由①可知:点P的坐标为(1,5).∵△PTQ为等腰直角三角形,∴点Q的横坐标为3,将x=3代入y=x得;y=3,∴点Q得坐标为(3,3).③如图4所示:设直线PT解析式为y=kx+b,∵直线PT⊥QT,∴k=-1.将k=-1,x=5,y=5代入y=kx+b得:b=10,∴直线PT的解析式为y=-x+10.将y=-x+10与y=-x2+6x联立得:x1=2,x2=5∴点P的横坐标为2.将x=2代入y=x得,y=2,∴点Q的坐标为(2,2).综上所述:点Q的坐标为(1,1)或(3,3)或(2,2).方法二:(1)∵y=-x2+4x+5,∴顶点D(2,9),C(0,5),设E(2,a),∴点C′可视为点C绕点E逆时针旋转90°而成,将E点平移至原点,E1(0,0),则C1(-2,5-a),将C1点绕原点逆时针旋转90°,则C2(a-5,-2),将E1点平移至E点,则C2平移后即为C′(a-3,a-2),∵C′在y轴上,∴设C′X=0,∴a-3=0,∴a=3,∴C′Y=1,∴E(2,3),C′(0,1).(2)作BM⊥x轴,交直线C′E于点M,∴A(-1,0),B(5,0),∵E(2,3),C′(0,1),∴l C′E:y=x+1,∴M(5,6),∵H X=m,∴H(m,-m2+4m+5),G(m,m+1),S△HGF=(F X-G X)(H Y-G Y),S△BGF=(F X-G X)(M Y-B Y),∴,∴,∴m2-3m+1=0,∴m1=,m2=.(3)∵抛物线右移1单位,∴y=-x2+6x,∵T(5,y),∴T(5,5),∵O(0,0),∴l OT:y=x,设Q(n,n)(0<n<5),①若P为直角顶点时,P X=Q X,P Y=Q Y,∴P(n,5),∴-n2+6n=5,∴n1=1,n2=5(舍),∴Q(1,1),②若Q为直角顶点时,点P可视为点T绕点Q逆时针旋转90°而成,将Q点平移至原点,Q′(0,0),则T′(5-n,5-n),将T′点绕原点逆时针旋转90°,则P′(n-5,n-5),将Q′点平移至Q点,则P′平移后即为P(2n-5,5),∴-(2n-5)2+6(2n-5)=5,∴n1=3,n2=5(舍),∴Q(3,3),③若T为直角顶点时,点P可视为点Q绕点T逆时针旋转90°而成,同理可得:Q(2,2),∴综上所述:点Q的坐标为(1,1)或(3,3)或(2,2).【解析】(1)首先根据抛物线y=-x2+4x+5的顶点为D,求出点D的坐标是多少即可;然后设点E的坐标是(2,m),点C′的坐标是(0,n),根据△CEC′是等腰直角三角形,求出E点的坐标是多少即可.(2)令抛物线y=-x2+4x+5的y=0得:x2-4x-5=0可求得A、B的坐标,然后再根据S△HGF:S△BGF=5:6,得到:,然后再证明△HGM∽△ABN,,从而可证得,所以HG=5,设点H(m,-m2+4m+5),G(m,m+1),最后根据HG=5,列出关于m的方程求解即可;(3)分别根据∠P、∠Q、∠T为直角画出图形,然后利用等腰直角三角形的性质和一次函数的图象的性质求得点Q的坐标即可.本题主要考查的是二次函数的综合应用,明确△HGF和△BGF的面积比等于HG 和AB的边长比是解题的关键,同时解答本题主要应用了分类讨论的思想需要同学们分别根据∠P、∠Q、∠T为直角进行分类计算.中考模拟考试数学试卷一.选择题(共10小题)1.8的倒数是()A.﹣8B.8C.﹣D.2.若在实数范围内有意义,则x的取值范围在数轴上表示正确的是()A.B.C.D.3.下列成语描述的事件为随机事件的是()A.水涨船高B.守株待兔C.水中捞月D.缘木求鱼4.下列四个图形中,是轴对称图形的是()A.B.C.D.5.下列几何体的左视图为长方形的是()A.B.C.D.6.某次知识竞赛共有20道题,规定:每答对一道题得+5分,每答错一道题得﹣2分,不答的题得0分,已知圆圆这次竞赛得了60分,设圆圆答对了x道题,答错了y道题,则()A.x﹣y=20B.x+y=20C.5x﹣2y=60D.5x+2y=60 7.将分别标有“青”“春”“仪”“式”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀,随机摸出一球后放回;再随机摸出一球,两次摸出的球上的汉字组成“青春”的概率是()A.B.C.D.8.课题研究小组对附着在物体表面的三个微生物(课题小组成员把他们分别标号为1,2,3)的生长情况进行观察记录.这三个微生物第一天各自一分为二,产生新的微生物(分别被标号为4,5,6,7,8,9),接下去每天都按照这样的规律变化,即每个微生物一分为二,形成新的微生物(课题组成员用如图所示的图形进行形象的记录).那么标号为100的微生物会出现在()A.第3天B.第4天C.第5天D.第6天9.如图,直线y=n交y轴于点A,交双曲线于点B,将直线y=n向下平移4个单位长度后与y轴交于点C,交双曲线于点D,若,则n的值()A.4B.6C.2D.510.如图,在△ABC中,AB=AC,BC=6,E为AC边上的点且AE=2EC,点D在BC边上且满足BD=DE,设BD=y,S△ABC=x,则y与x的函数关系式为()A.y=x2+B.y=x2+C.y=x2+2D.y=x2+2二.填空题(共6小题)11.16的平方根是.12.对于一组统计数据3,3,6,5,3.这组数据的中位数是.13.计算:(1﹣)•=14.在△ABC中,AC=BC,AD⊥BC交直线BC于点D,若,则△ABC的顶角的度数为.15.已知函数y=|x2﹣2x﹣3|的大致图象如图所示,如果方程|x2﹣2x﹣3|=m(m为实数)有2个不相等的实数根,则m的取值范围是.16.如图△ABC中,AB=AC,∠BAC=120°,D是AB上一点,且=,E为CB延长线上一点,且∠BAE=∠BCD,若BE=,则BC的长是.三.解答题(共8小题)17.计算:﹣a4•a3•a+(a2)4﹣(﹣2a4)2.18.如图,BE平分∠ABD,DE平分∠BDC,且∠1+∠2=90°.求证:AB∥CD.19.为提升学生的艺术素养,学校计划开设四门艺术选修课:A.书法;B.绘画;C.乐器;D.舞蹈.为了解学生对四门功课的喜欢情况,在全校范围内随机抽取若干名学生进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).将数据进行整理,并绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:(1)本次调查的学生共有多少人?扇形统计图中∠α的度数是多少?(2)请把条形统计图补充完整;(3)学校为举办2018年度校园文化艺术节,决定从A.书法;B.绘画;C.乐器;D.舞蹈四项艺术形式中选择其中两项组成一个新的节目形式,请用列表法或树状图求出选中书法与乐器组合在一起的概率.20.已知:如图,在每个小正方形的边长为1的网格中,△ABC的顶点A、B、C均在格点上,点D为AC边上的一点.(1)线段AC的长为.(2)在如图所示的网格中,AM是△ABC的角平分线,在AM上求一点P,使CP+DP 的值最小,请用无刻度的直尺,画出AM和点P,并简要说明AM和点P的位置.21.如图,在△ABC中,AB=AC,⊙O分别切AB于M,BC于N,连接BO、CO,BO=CO.(1)求证:AC是⊙O的切线;(2)连接MC,若tan∠MCB=,求sin∠B的值.22.某年五月,我国南方某省A、B两市遭受严重洪涝灾害,邻近县市C、D决定调运物资支援A、B两市灾区.已知C市有救灾物资240吨,D市有救灾物资260吨,现将这些救灾物资全部调往A、B两市,A市需要的物资比B市需要的物资少100吨.已知从C 市运往A、B两市的费用分别为每吨20元和25元,从D市运往往A、B两市的费用分别为每吨15元和30元,设从D市运往B市的救灾物资为x吨.(1)A、B两市各需救灾物资多少吨?(2)设C、D两市的总运费为w元,求w与x之间的函数关系式,并写出自变量x的取值范围;(3)经过抢修,从D市到B市的路况得到了改善,缩短了运输时间,运费每吨减少m 元(m>0),其余路线运费不变.若C、D两市的总运费的最小值不小于10320元,求m 的取值范围.23.已知:△ABC中,点D在边AC上,且AB2=AD•AC.(1)如图1.求证:∠ABD=∠C.(2)如图2.在边BC上截取BE=BD,ED、BA的延长线交于点F,求证:=.(3)在(2)的条件下,若AD=4,CD=5,cos∠BAC=,试直接写出△FBE的面积.24.已知:抛物线y=a(x2﹣2mx﹣3m2)(m˃0)交x轴于A、B两点(其中A点在B点左侧),交y轴于点C.(1)若A点坐标为(﹣1,0),则B点坐标为.(2)如图1,在(1)的条件下,且am=1,设点M在y轴上且满足∠OCA+∠AMO =∠ABC,试求点M坐标.(3)如图2,在y轴上有一点P(0,n)(点P在点C的下方),直线P A、PB分别交抛物线于点E、F,若=,求的值.。
2019年广东省佛山市南海区狮山镇中考数学一模试卷 含精品解析

2019年广东省佛山市南海区狮山镇中考数学一模试卷一.选择题(共10题,每题3分,共30分)1.(3分)﹣3的绝对值是()A.﹣3B.3C.D.2.(3分)港珠澳大桥于2018年10月24日正式开通运营,据报道,该工程项目总投资额约127 000 000 000元,将127 000 000 000用科学记数法表示为()A.0.127×1011B.0.127×1012C.1.27×1011D.1.27×10123.(3分)下列图形是中心对称图形的是()A.B.C.D.4.(3分)如图,由5个相同正方体组成的几何体,它的俯视图是()A.B.C.D.5.(3分)在“美丽乡村”评选活动中,某乡镇7个村的得分如下:98,90,88,96,92,96,86,这组数据的中位数和众数分别是()A.90,96B.91,92C.92,98D.92,966.(3分)在平面直角坐标系中,点A(﹣1,2)关于y轴的对称点在()A.第一象限B.第二象限C.第三象限D.第四象限7.(3分)下列一元二次方程中,有两个相等的实数根的是()A.x2﹣4x﹣4=0B.x2﹣36x+36=0C.4x2+4x+1=0D.x2﹣2x﹣1=08.(3分)下列运算中,计算结果正确的是()A.a2•a3=a6B.(a2)3=a5C.a3+a3=2a3D.(a2b)2=a2b29.(3分)如图,AB是⊙O的直径,CD是弦,连接BD,OC,若∠AOC=120°,∠D的度数是()A.60°B.45°C.30°D.20°10.(3分)点A,B的坐标分别为(﹣2,3)和(1,3),抛物线y=ax2+bx+c(a<0)的顶点在线段AB 上运动时,形状保持不变,且与x轴交于C,D两点(C在D的左侧),给出下列结论:①c<3;②当x<﹣3时,y随x的增大而增大;③若点D的横坐标最大值为5,则点C的横坐标最小值为﹣5;④当四边形ACDB为平行四边形时,.其中正确的是()A.②④B.②③C.①③④D.①②④二.填空题(共6题,每题4分,共24分)11.(4分)分解因式:2x2﹣4xy+2y2=.12.(4分)一个n边形的内角和是它外角和的3倍,则边数n=.13.(4分)不等式组的解集是.14.(4分)如图所示,在△ABC中,D、E分别为AB、AC的中点,延长DE到F,使EF=DE,若AB=10,BC=8,则四边形BCFD的周长=.15.(4分)观察下列一组数:,…,根据该组数的排列规律,可推出第10个数是.16.(4分)如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,边B1C1与CD交于点O,则图中阴影部分的面积为.三.解答题(共3题,每题6分,共18分)17.(6分)计算:18.(6分)先化简,再求值:(x﹣2+)÷,其中x=﹣.19.(6分)如图,△ABC中,点D在BC边上,且BD=AD=AC,(1)请用尺规作图法,作出线段DC的垂直平分线AE,交DC于E点(保留作图痕迹,不要求写出作法)(2)若∠CAE=16°,求∠B的度数.四.解答题(共3题,每题7分,共21分)20.(7分)为了完成“舌尖上的中国”的录制,节目组随机抽查了某省“A.奶制品类,B.肉制品类,C.面制品类,D.豆制品类”四类特色美食若干种,将收集的数据整理并绘制成下面两幅尚不完整的统计图,请根据图中信息完成下列问题:(1)这次抽查了四类特色美食共种,扇形统计图中a=,扇形统计图中A部分圆心角的度数为;(2)补全条形统计图;(3)如果节目组想从A类的甲、乙、丙、丁四种特色美食中随机选择两种进行节目录制,请用列表或画树状图的方法求出恰好选中甲和乙两种美食的概率.21.(7分)如图,平行四边形ABCD,F是对角线AC上的一点,过点D作DE∥AC,且DE=CF,连接AE、DE、EF.(1)求证:△ADE≌△BCF;(2)若∠BAF+∠AED=180°,求证:四边形ABFE为菱形.22.(7分)某市政府为美化城市环境,计划对面积为1500平方米的区域进行绿化,安排甲、乙两个工程队完成,已知乙队每天能完成绿化的面积是甲队每天能完成绿化面积的1.5倍,并且在独立完成面积为450平方米区域的绿化时,甲队比乙队多用5天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少平方米?(2)若市政府每天需付给甲队的绿化费用为0.3万元,乙队为0.9万元,要使这次的绿化总费用不超过24万元,至少应安排甲队工作多少天?23.(9分)如图,点A(m,4),B(﹣4,n)在反比例函数y=(k>0)的图象上,经过点A、B的直线与x轴相交于点C,与y轴相交于点D.(1)若m=2,求n的值;(2)求m+n的值;(3)连接OA、OB,若tan∠AOD+tan∠BOC=1,求直线AB的函数关系式.24.(9分)如图,点P是⊙O外一点,PA切⊙O于点A,AB是⊙O的直径,连接OP,过点B作BC∥OP交⊙O于点C,连接AC交OP于点D.(1)求证:PC是⊙O的切线;(2)若PD=,AC=8,求图中阴影部分的面积;(3)在(2)的条件下,若点E是的中点,连接CE,求CE的长.25.(9分)如图,四边形ABCD为矩形,AB=4,AD=3,动点M、N分别从D、B同时出发,以1个单位/秒的速度运动,点M沿DA向终点A运动,点N沿BC向终点C运动.过点N作NP⊥BC,交AC于点P,连接MP.已知动点运动了x秒.(1)请直接写出PN的长;(用含x的代数式表示)(2)若0秒≤x≤1秒,试求△MPA的面积S与时间x秒的函数关系式,利用函数图象,求S的最大值.(3)若0秒≤x≤3秒,△MPA能否为一个等腰三角形?若能,试求出所有x的对应值;若不能,试说明理由.2019年广东省佛山市南海区狮山镇中考数学一模试卷参考答案与试题解析一.选择题(共10题,每题3分,共30分)1.(3分)﹣3的绝对值是()A.﹣3B.3C.D.【分析】直接利用绝对值的定义分析得出答案.【解答】解:﹣3的绝对值是:3.故选:B.【点评】此题主要考查了绝对值,正确把握绝对值的定义是解题关键.2.(3分)港珠澳大桥于2018年10月24日正式开通运营,据报道,该工程项目总投资额约127 000 000 000元,将127 000 000 000用科学记数法表示为()A.0.127×1011B.0.127×1012C.1.27×1011D.1.27×1012【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n是负数.【解答】解:将127 000 000 000用科学记数法表示为1.27×1011.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.3.(3分)下列图形是中心对称图形的是()A.B.C.D.【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析即可.【解答】解:A、不是中心对称图形,故此选项错误;B、是中心对称图形,故此选项正确;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误;故选:B.【点评】此题主要考查了中心对称图形,关键是掌握中心对称图形的定义.4.(3分)如图,由5个相同正方体组成的几何体,它的俯视图是()A.B.C.D.【分析】俯视图是从上面看到的图形,共分三行,从上到下小正方形的个数是:1(在上面),2,1(在下面).【解答】解:这个几何体的俯视图为:故选:B.【点评】此题主要考查了简单几何体的三视图,关键是掌握俯视图所看的方向:从上面看所得到的图形.5.(3分)在“美丽乡村”评选活动中,某乡镇7个村的得分如下:98,90,88,96,92,96,86,这组数据的中位数和众数分别是()A.90,96B.91,92C.92,98D.92,96【分析】中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:将数据从小到大排列:86,88,90,92,96,96,98,最中间的数是92,则中位数是92;∵96出现了2次,出现的次数最多,∴众数是96;故选:D.【点评】本题考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.6.(3分)在平面直角坐标系中,点A(﹣1,2)关于y轴的对称点在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.【解答】解:点A(﹣1,2)关于y轴的对称点是(1,2),在第一象限,故选:A.【点评】此题主要考查了关于y轴对称点的坐标,关键是掌握点的坐标的变化规律.7.(3分)下列一元二次方程中,有两个相等的实数根的是()A.x2﹣4x﹣4=0B.x2﹣36x+36=0C.4x2+4x+1=0D.x2﹣2x﹣1=0【分析】根据方程的系数结合根的判别式,分别求出四个选项中方程的根的判别式,利用“当△=0时,方程有两个相等的实数根”即可找出结论.【解答】解:A、∵△=(﹣4)2﹣4×1×(﹣4)=32>0,∴该方程有两个不相等的实数根,A不符合题意;B、∵△=(﹣36)2﹣4×1×36=1152>0,∴该方程有两个不相等的实数根,B不符合题意;C、∵△=42﹣4×4×1=0,∴该方程有两个相等的实数根,C符合题意;D、∵△=(﹣2)2﹣4×1×(﹣1)=8>0,∴该方程有两个不相等的实数根,D不符合题意.故选:C.【点评】本题考查了根的判别式,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.8.(3分)下列运算中,计算结果正确的是()A.a2•a3=a6B.(a2)3=a5C.a3+a3=2a3D.(a2b)2=a2b2【分析】直接利用同底数幂的乘法运算法则以及幂的乘方运算法则分别计算得出答案.【解答】解:A、a2•a3=a5,故此选项错误;B、(a2)3=a6,故此选项错误;C、a3+a3=2a3,正确;D、(a2b)2=a4b2,故此选项错误;故选:C.【点评】此题主要考查了同底数幂的乘法运算以及幂的乘方运算,正确掌握相关运算法则是解题关键.9.(3分)如图,AB是⊙O的直径,CD是弦,连接BD,OC,若∠AOC=120°,∠D的度数是()A.60°B.45°C.30°D.20°【分析】根据邻补角的性质求得∠BOC的度数,再根据同弧所对的圆周角是圆心角的一半即可求得∠BDC 的度数,【解答】解:∵∠AOC=120°∴∠BOC=180°﹣∠AOC=60°∴∠BDC=∠BOC=30°.故选:C.【点评】此题考查了圆周角定理.注意在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.10.(3分)点A,B的坐标分别为(﹣2,3)和(1,3),抛物线y=ax2+bx+c(a<0)的顶点在线段AB 上运动时,形状保持不变,且与x轴交于C,D两点(C在D的左侧),给出下列结论:①c<3;②当x<﹣3时,y随x的增大而增大;③若点D的横坐标最大值为5,则点C的横坐标最小值为﹣5;④当四边形ACDB为平行四边形时,.其中正确的是()A.②④B.②③C.①③④D.①②④【分析】根据顶点在线段AB上抛物线与y轴的交点坐标为(0,c)可以判断出c的取值范围,得到①错误;根据二次函数的增减性判断出②正确;先确定x=1时,点D的横坐标取得最大值,然后根据二次函数的对称性求出此时点C的横坐标,即可判断③错误;令y=0,利用根与系数的关系与顶点的纵坐标求出CD的长度的表达式,然后根据平行四边形的对边平行且相等可得AB=CD,然后列出方程求出a的值,判断出④正确.【解答】解:∵点A,B的坐标分别为(﹣2,3)和(1,3),∴线段AB与y轴的交点坐标为(0,3),又∵抛物线的顶点在线段AB上运动,抛物线与y轴的交点坐标为(0,c),∴c≤3,(顶点在y轴上时取“=”),故①错误;∵抛物线的顶点在线段AB上运动,∴当x<﹣2时,y随x的增大而增大,因此,当x<﹣3时,y随x的增大而增大,故②正确;若点D的横坐标最大值为5,则此时对称轴为直线x=1,根据二次函数的对称性,点C的横坐标最小值为﹣2﹣4=﹣6,故③错误;根据顶点坐标公式,=3,令y=0,则ax2+bx+c=0,CD2=(﹣)2﹣4×=,根据顶点坐标公式,=3,∴=﹣12,∴CD2=×(﹣12)=,∵四边形ACDB为平行四边形,∴CD=AB=1﹣(﹣2)=3,∴=32=9,解得a=﹣,故④正确;综上所述,正确的结论有②④.故选:A.【点评】本题考查了二次函数的综合题型,主要利用了二次函数的顶点坐标,二次函数的对称性,根与系数的关系,平行四边形的对边平行且相等的性质,①要注意顶点在y轴上的情况.二.填空题(共6题,每题4分,共24分)11.(4分)分解因式:2x2﹣4xy+2y2=2(x﹣y)2.【分析】先提取公因式(常数2),再对余下的多项式利用完全平方公式继续分解.【解答】解:2x2﹣4xy+2y2,=2(x2﹣2xy+y2),=2(x﹣y)2.故答案为:2(x﹣y)2.【点评】本题考查了提公因式法,公式法分解因式,提取公因式后再利用完全平方公式进行二次因式分解,分解因式要彻底.12.(4分)一个n边形的内角和是它外角和的3倍,则边数n=8.【分析】利用多边形的外角和是360度,一个n边形的内角和等于它外角和的5倍,则内角和是5×360°,而n边形的内角和是(n﹣2)180°,则可得到方程,解之即可.【解答】解:根据题意列方程,得:(n﹣2)180°=3×360°,解得:n=8,即边数n等于8.故答案为8.【点评】本题主要考查了多边形的内角和的计算公式以及多边形的外角和定理,比较简单.13.(4分)不等式组的解集是﹣2<x≤4.【分析】分别求出每个不等式的解集,再根据口诀即可确定不等式组的解集.【解答】解:解不等式x﹣4≤0,得:x≤4,解不等式1<(x+4),得:x>﹣2,则不等式组的解集为﹣2<x≤4,故答案为:﹣2<x≤4.【点评】本题主要考查解一元一次不等式组,解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分.14.(4分)如图所示,在△ABC中,D、E分别为AB、AC的中点,延长DE到F,使EF=DE,若AB=10,BC=8,则四边形BCFD的周长=26.【分析】根据D、E分别为AB、AC中点,可证明DE为三角形ABC的中位线,通过证明△ADE和△CFE 全等则可得到AD=CF,由已知数据即可求出四边形BCFD的周长.【解答】解:∵D、E分别为AB、AC中点,∴DE=BC,∵BC=8,∴DE=4,∵在△ADE和△CFE中,,∴△ADE≌△CFE,∴CF=BD=AB=5,∵DE=FE=4,∴DF=8,∴四边形BCFD的周长为:BD+BC+CF+DF=5+8+8+5=26,故答案为:26.【点评】本题考查了三角形的中位线性质和全等三角形的判定以及全等三角形的性质,解题的关键是熟记各种性质定理和判定定理.15.(4分)观察下列一组数:,…,根据该组数的排列规律,可推出第10个数是﹣.【分析】分子为3,5,7,9,11,…即可得出第10个数的分子为:1+2×10=21,分母为2,5,10,17,26,…第10个数的分子为102+1=101奇数位置为正,偶数位置为负,由此规律,得出结论.【解答】解:由分析知:第10个数为﹣,故答案为:﹣.【点评】此题考查数字的变化规律,找出数字之间的运算规律,得出规律,利用规律,解决问题是解答此题的关键.16.(4分)如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,边B1C1与CD交于点O,则图中阴影部分的面积为﹣2+.=(﹣1)2,【分析】先根据正方形的边长,求得CB1=OB1=AC﹣AB1=﹣1,进而得到S△OB1C=,以及扇形的面积公式即可得出图中阴影部分的面积.再根据S△AB1C1【解答】解:连结DC1,∵∠CAC1=∠DCA=∠COB1=∠DOC1=45°,∴∠AC1B1=45°,∵∠ADC=90°,∴A,D,C1在一条直线上,∵四边形ABCD是正方形,∴AC=,∠OCB1=45°,∴CB1=OB1∵AB1=1,∴CB1=OB1=AC﹣AB1=﹣1,=•OB1•CB1=(﹣1)2,∴S△OB1C∵S=AB1•B1C1=×1×1=,△AB1C1∴图中阴影部分的面积=﹣(﹣1)2﹣=﹣2+.故答案为﹣2+.【点评】本题考查了旋转的性质,正方形性质、勾股定理以及扇形面积的计算等知识点的综合应用,主要考查学生运用性质进行计算的能力.解题时注意:旋转前、后的图形全等.三.解答题(共3题,每题6分,共18分)17.(6分)计算:【分析】本题涉及负整数指数幂、零指数幂、二次根式、特殊角的三角函数4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=1+6×﹣2+2=+3.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、特殊角的三角函数等考点的运算.18.(6分)先化简,再求值:(x﹣2+)÷,其中x=﹣.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【解答】解:原式=(+)•=•=2(x+2)=2x+4,当x=﹣时,原式=2×(﹣)+4=﹣1+4=3.【点评】本题主要考查分式的化简求值,在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.19.(6分)如图,△ABC中,点D在BC边上,且BD=AD=AC,(1)请用尺规作图法,作出线段DC的垂直平分线AE,交DC于E点(保留作图痕迹,不要求写出作法)(2)若∠CAE=16°,求∠B的度数.【分析】(1)作等腰三角形ADC的底边上的高AE即可;(2)先利用互余计算出∠C=74°,再根据等腰三角形的性质得到∠ADC=∠C=74°,∠B=∠DAB,然后利用三角形外角性质计算∠B的度数.【解答】解:(1)如图,AE为所作;(2)∵AE⊥CD,∴∠C=90°﹣∠CAE=90°﹣16°=74°,∵AD=AC,∴∠ADC=∠C=74°,∵BD=AD,∴∠B=∠DAB,而∠ADC=∠B+∠DAB,∴∠B=∠ADC=×74°=37°.【点评】本题考查了作图﹣基本作图:熟练掌握5种基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).四.解答题(共3题,每题7分,共21分)20.(7分)为了完成“舌尖上的中国”的录制,节目组随机抽查了某省“A.奶制品类,B.肉制品类,C.面制品类,D.豆制品类”四类特色美食若干种,将收集的数据整理并绘制成下面两幅尚不完整的统计图,请根据图中信息完成下列问题:(1)这次抽查了四类特色美食共20种,扇形统计图中a=40,扇形统计图中A部分圆心角的度数为72°;(2)补全条形统计图;(3)如果节目组想从A类的甲、乙、丙、丁四种特色美食中随机选择两种进行节目录制,请用列表或画树状图的方法求出恰好选中甲和乙两种美食的概率.【分析】(1)用A类的数目除以它所占的百分比得到这次抽查了四类特色美食总数;通过计算C类的百分比得到a的值;用360度乘以A类所占的百分比得到扇形统计图中A部分圆心角的度数;(2)先计算出B类的种数,然后补全条形统计图;(3)画树状图展示所有12种等可能的结果数,再找出所抽取的两名同学恰好是一男一女的结果数,然后根据概率公式求解.【解答】解:(1)4÷20%=20,所以这次抽查了四类特色美食共20种,扇形统计图中C类所占的百分比=×100%=40%,即a=40;扇形统计图中A部分圆心角的度数为360°×20%=72°;故答案为20,40,72°;(2)B类的种数为20﹣4﹣8﹣6=2,条形统计图为:(3)画树状图为:共有12种等可能的结果数,其中恰好选中甲和乙两种美食的结果数为2,所以恰好选中甲和乙两种美食的概率==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.也考查了统计图.21.(7分)如图,平行四边形ABCD,F是对角线AC上的一点,过点D作DE∥AC,且DE=CF,连接AE、DE、EF.(1)求证:△ADE≌△BCF;(2)若∠BAF+∠AED=180°,求证:四边形ABFE为菱形.【分析】(1)根据平行四边形的性质和全等三角形的判定证明即可;(2)根据平行四边形的判定和菱形的判定解答即可.【解答】证明:(1)∵平行四边形ABCD,∴AD=BC,AD∥BC,∴∠DAC=∠BCF,∵DE∥AC,∴∠DAC=∠EDA,∴∠FCB=∠EDA,在△ADE与△BCF中,∴△ADE≌△BCF(SAS);(2)∵DE∥AC,且DE=AC,∴四边形EFCD是平行四边形,∴DC=EF,且DC∥EF,又∵AB=CD,AB∥CD,∴AB=EF,AB∥EF,∴四边形ABFE是平行四边形,∵△ADE≌△BCF,∴∠AED=∠BFC,∵∠BAF+∠AED=180°,∴∠BAF+∠BFC=180°,又∠BFA+∠BFC=180°,∴∠BAF=∠BFA,∴BA=BF,∴四边形ABFE为菱形.【点评】此题考查菱形的判定,关键是根据平行四边形的判定、菱形的判定和全等三角形的判定解答.22.(7分)某市政府为美化城市环境,计划对面积为1500平方米的区域进行绿化,安排甲、乙两个工程队完成,已知乙队每天能完成绿化的面积是甲队每天能完成绿化面积的1.5倍,并且在独立完成面积为450平方米区域的绿化时,甲队比乙队多用5天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少平方米?(2)若市政府每天需付给甲队的绿化费用为0.3万元,乙队为0.9万元,要使这次的绿化总费用不超过24万元,至少应安排甲队工作多少天?【分析】(1)设甲工程队每天能完成绿化的面积是x平方米,则乙工程队每天能完成绿化的面积是1.5x 平方米,根据工作时间=工作总量÷工作效率结合在独立完成面积为450平方米区域的绿化时甲队比乙队多用5天,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设安排甲队工作m天,则需安排乙队工作天,根据总费用=0.3×甲队工作时间+0.9×乙队工作时间结合这次的绿化总费用不超过24万元,即可得出关于m的一元一次不等式,解之取其最小值即可得出结论.【解答】解:(1)设甲工程队每天能完成绿化的面积是x平方米,则乙工程队每天能完成绿化的面积是1.5x平方米,依题意,得:﹣=5,解得:x=30,经检验,x=30是原方程的解,且符合题意,∴1.5x=45.答:甲工程队每天能完成绿化的面积是30平方米,乙工程队每天能完成绿化的面积是45平方米.(2)设安排甲队工作m天,则需安排乙队工作天,依题意,得:0.3m+0.9×≤24,解得:m≥10.答:至少应安排甲队工作10天.【点评】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.23.(9分)如图,点A(m,4),B(﹣4,n)在反比例函数y=(k>0)的图象上,经过点A、B的直线与x轴相交于点C,与y轴相交于点D.(1)若m=2,求n的值;(2)求m+n的值;(3)连接OA、OB,若tan∠AOD+tan∠BOC=1,求直线AB的函数关系式.【分析】(1)先把A点坐标代入y=求出k的值得到反比例函数解析式为y=,然后把B(﹣4,n)代入y=可求出n的值;(2)利用反比例函数图象上点的坐标特征得到4m=k,﹣4n=k,然后把两式相减消去k即可得到m+n的值;(3)作AE⊥y轴于E,BF⊥x轴于F,如图,利用正切的定义得到tan∠AOE==,tan∠BOF==,则+=1,加上m+n=0,于是可解得m=2,n=﹣2,从而得到A(2,4),B(﹣4,﹣2),然后利用待定系数法求直线AB的解析式.【解答】解:(1)当m=2,则A(2,4),把A(2,4)代入y=得k=2×4=8,所以反比例函数解析式为y=,把B(﹣4,n)代入y=得﹣4n=8,解得n=﹣2;(2)因为点A(m,4),B(﹣4,n)在反比例函数y=(k>0)的图象上,所以4m=k,﹣4n=k,所以4m+4n=0,即m+n=0;(3)作AE⊥y轴于E,BF⊥x轴于F,如图,在Rt△AOE中,tan∠AOE==,在Rt△BOF中,tan∠BOF==,而tan∠AOD+tan∠BOC=1,所以+=1,而m+n=0,解得m=2,n=﹣2,则A(2,4),B(﹣4,﹣2),设直线AB的解析式为y=px+q,把A(2,4),B(﹣4,﹣2)代入得,解得,所以直线AB的解析式为y=x+2.【点评】本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数的交点问题(1)求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.24.(9分)如图,点P是⊙O外一点,PA切⊙O于点A,AB是⊙O的直径,连接OP,过点B作BC∥OP交⊙O于点C,连接AC交OP于点D.(1)求证:PC是⊙O的切线;(2)若PD=,AC=8,求图中阴影部分的面积;(3)在(2)的条件下,若点E是的中点,连接CE,求CE的长.【分析】(1)连接OC,证明△PAO≌△PCO,得到∠PCO=∠PAO=90°,证明结论;(2)证明△ADP∽△ODA,得到成比例线段求出BC的长,根据S阴=S⊙O﹣S△ABC求出答案;(3)连接AE、BE,作BM⊥CE于M,分别求出CM和EM的长,求和得到答案.【解答】(1)证明:如图1,连接OC,∵PA切⊙O于点A,∴∠PAO=90°,∵BC∥OP,∴∠AOP=∠OBC,∠COP=∠OCB,∵OC=OB,∴∠OBC=∠OCB,∴∠AOP=∠COP,在△PAO和△PCO中,,∴△PAO≌△PCO,∴∠PCO=∠PAO=90°,∴PC是⊙O的切线;(2)解:由(1)得PA,PC都为圆的切线,∴PA=PC,OP平分∠APC,∠ADO=∠PAO=90°,∴∠PAD+∠DAO=∠DAO+∠AOD,∴∠PAD=∠AOD,∴△ADP∽△ODA,∴,∴AD2=PD•DO,∵AC=8,PD=,∴AD=AC=4,OD=3,AO=5,由题意知OD为△的中位线,∴BC=6,OD=3,AB=10.=﹣24;∴S阴=S⊙O﹣S△ABC(3)解:如图2,连接AE、BE,作BM⊥CE于M,∴∠CMB=∠EMB=∠AEB=90°,∵点E是的中点,∴∠ECB=∠CBM=∠ABE=45°,CM=MB=3,BE=AB•cos45°=5,∴EM==4,则CE=CM+EM=7.【点评】本题考查的是切线的判定和性质、扇形面积的计算和相似三角形的判定和性质,灵活运用切线的性质:圆的切线垂直于过切点的半径和切线的判定是解题的关键.25.(9分)如图,四边形ABCD为矩形,AB=4,AD=3,动点M、N分别从D、B同时出发,以1个单位/秒的速度运动,点M沿DA向终点A运动,点N沿BC向终点C运动.过点N作NP⊥BC,交AC于点P,连接MP.已知动点运动了x秒.(1)请直接写出PN的长;(用含x的代数式表示)(2)若0秒≤x≤1秒,试求△MPA的面积S与时间x秒的函数关系式,利用函数图象,求S的最大值.(3)若0秒≤x≤3秒,△MPA能否为一个等腰三角形?若能,试求出所有x的对应值;若不能,试说明理由.【分析】(1)可在直角三角形CPN中,根据CN的长和∠CPN的正切值求出.(2)三角形MPA中,底边AM的长为3﹣x,关键是求出MA边上的高,可延长NP交AD于Q,那么PQ就是三角形AMP的高,可现在直角三角形CNP中求出PN的长,进而根据AB的长,表示出PQ的长,根据三角形的面积公式即可得出S与x的函数关系式.根据函数的性质可得出S的最大值.(3)本题要分三种情况:①MP=PA,那么AQ=BN=AM,可用x分别表示出BN和AM的长,然后根据上述等量关系可求得x 的值.②MA=MP,在直角三角形MQP中,MQ=MA﹣BN,PQ=AB﹣PN根据勾股定理即可求出x的值.③MA=PA,不难得出AP=BN,然后用x表示出AM的长,即可求出x的值.【解答】解:(1);(2)延长NP交AD于点Q,则PQ⊥AD,由(1)得:PN=,则PQ=QN﹣PN=4﹣=x依题意,可得:AM=3﹣x,S=AM•PQ=(3﹣x)•=2x﹣x2=﹣(x﹣)2+∵0≤x≤1即函数图象在对称轴的左侧,函数值S随着x的增大而增大.∴当x=1时,S有最大值,S=最大值(3)△MPA能成为等腰三角形,共有三种情况,以下分类说明:①若PM=PA,∵PQ⊥MA,∴四边形ABNQ是矩形,∴QA=NB=x,∴MQ=QA=x,又∵DM+MQ+QA=AD∴3x=3,即x=1②若MP=MA,则MQ=3﹣2x,PQ=,MP=MA=3﹣x在Rt△PMQ中,由勾股定理得:MP2=MQ2+PQ2∴(3﹣x)2=(3﹣2x)2+(x)2,解得:x=(x=0不合题意,舍去)③若AP=AM,由题意可得:AP=x,AM=3﹣x∴x=3﹣x,解得:x=综上所述,当x=1,或x=,或x=时,△MPA是等腰三角形.【点评】本题是点的运动性问题,考查了图形面积的求法、等腰三角形的判定等知识.(3)题要按等腰三角形腰和底的不同分类讨论.。
2019-2020佛山市数学中考一模试卷附答案

元,当销售单价 x=
元时,日销售利润 w 最大,最大值是
元;
(3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销 售单价仍存在(1)中的关系.若想实现销售单价为 90 元时,日销售利润不低于 3750 元的 销售目标,该产品的成本单价应不超过多少元? 24.距离中考体育考试时间越来越近,某校想了解初三年级 1500 名学生跳绳情况,从中随 机抽查了 20 名男生和 20 名女生的跳绳成绩,收集到了以下数据: 男生:192、166,189,186,184,182,178,177,174,170,188,168,205,165, 158,150,188,172,180,188 女生:186,198,162,192,188,186,185,184,180,180,186,193,178,175, 172,166,155,183,187,184. 根据统计数据制作了如下统计表:
内).在 E 处测得建筑物顶端 A 的仰角为 24°,则建筑物 AB 的高度约为(参考数据:
sin24°≈0.41,cos24°≈0.91,tan24°=0.45)( )
A.21.7 米
B.22.4 米
C.27.4 米
8.如图,下列关于物体的主视图画法正确的是( )
D.28.8 米
A.
B.
C.
D.
9.在某篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛 36 场,设有 x 个队参 赛,根据题意,可列方程为()
25.如图, ABC 是边长为 4cm 的等边三角形,边 AB 在射线 OM 上,且 OA 6cm ,点 D 从点 O 出发,沿 OM 的方向以 1cm/s 的速度运动,当 D 不与点 A 重合时,将 ACD 绕 点 C 逆时针方向旋转 60°得到 BCE ,连接 DE. (1)如图 1,求证: CDE 是等边三角形;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年广东省佛山市南海区狮山镇中考数学一模试卷一、选择题(本大题共10小题,共30.0分)1.-3的绝对值是()A. −3B. 3C. 13D. −132.港珠澳大桥于2018年10月24日正式开通运营,据报道,该工程项目总投资额约127 000 000 000元,将127 000 000 000用科学记数法表示为()A. 0.127×1011B. 0.127×1012C. 1.27×1011D. 1.27×10123.下列图形是中心对称图形的是()A. B. C. D.4.如图,由5个相同正方体组成的几何体,它的俯视图是()A. B. C. D.5.在“美丽乡村”评选活动中,某乡镇7个村的得分如下:98,90,88,96,92,96,86,这组数据的中位数和众数分别是()A. 90,96B. 91,92C. 92,98D. 92,966.在平面直角坐标系中,点A(-1,2)关于y轴的对称点在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限7.下列一元二次方程中,有两个相等的实数根的是()A. x2−4x−4=0B. x2−36x+36=0C. 4x2+4x+1=0D. x2−2x−1=08.下列运算中,计算结果正确的是()A. a2⋅a3=a6B. (a2)3=a5C. a3+a3=2a3D. (a2b)2=a2b29.如图,AB是⊙O的直径,CD是弦,连接BD,OC,若∠AOC=120°,∠D的度数是()A. 60∘B. 45∘C. 30∘D. 20∘10.点A,B的坐标分别为(-2,3)和(1,3),抛物线y=ax2+bx+c(a<0)的顶点在线段AB上运动时,形状保持不变,且与x轴交于C,D两点(C在D的左侧),给出下列结论:①c<3;②当x<-3时,y随x的增大而增大;③若点D的横坐标最大值为5,则点C的横坐标最小值为-5;④当四边形ACDB为平行四边形时,a=−43.其中正确的是()A. ②④B. ②③C. ①③④D. ①②④二、填空题(本大题共6小题,共24.0分)11.分解因式:2x2-4xy+2y2=______.12.一个n边形的内角和是它外角和的3倍,则边数n=______.13.不等式组{x−4≤01<12(x+4)的解集是______.14.如图所示,在△ABC中,D、E分别为AB、AC的中点,延长DE到F,使EF=DE,若AB=10,BC=8,则四边形BCFD的周长=______.15.观察下列一组数:32,−1,710,−917,1126,…,根据该组数的排列规律,可推出第10个数是______.16.如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,边B1C1与CD交于点O,则图中阴影部分的面积为______.三、计算题(本大题共3小题,共21.0分)17.计算:(π−3)0+6cos30°−√12−(−12)−118.先化简,再求值:(x-2+8xx−2)÷x+22x−4,其中x=-12.19.如图,点A(m,4),B(-4,n)在反比例函数y=kx(k>0)的图象上,经过点A、B的直线与x轴相交于点C,与y轴相交于点D.(1)若m=2,求n的值;(2)求m+n的值;(3)连接OA、OB,若tan∠AOD+tan∠BOC=1,求直线AB的函数关系式.四、解答题(本大题共6小题,共45.0分)20.如图,△ABC中,点D在BC边上,且BD=AD=AC,(1)请用尺规作图法,作出线段DC的垂直平分线AE,交DC于E点(保留作图痕迹,不要求写出作法)(2)若∠CAE=16°,求∠B的度数.21.为了完成“舌尖上的中国”的录制,节目组随机抽查了某省“A.奶制品类,B.肉制品类,C.面制品类,D.豆制品类”四类特色美食若干种,将收集的数据整理并绘制成下面两幅尚不完整的统计图,请根据图中信息完成下列问题:(1)这次抽查了四类特色美食共______种,扇形统计图中a=______,扇形统计图中A部分圆心角的度数为______;(2)补全条形统计图;(3)如果节目组想从A类的甲、乙、丙、丁四种特色美食中随机选择两种进行节目录制,请用列表或画树状图的方法求出恰好选中甲和乙两种美食的概率.22.如图,平行四边形ABCD,F是对角线AC上的一点,过点D作DE∥AC,且DE=CF,连接AE、DE、EF.(1)求证:△ADE≌△BCF;(2)若∠BAF+∠AED=180°,求证:四边形ABFE为菱形.23.某市政府为美化城市环境,计划对面积为1500平方米的区域进行绿化,安排甲、乙两个工程队完成,已知乙队每天能完成绿化的面积是甲队每天能完成绿化面积的1.5倍,并且在独立完成面积为450平方米区域的绿化时,甲队比乙队多用5天.(1)求甲、乙两工程队每天能完成绿化的面积分别是多少平方米?(2)若市政府每天需付给甲队的绿化费用为0.3万元,乙队为0.9万元,要使这次的绿化总费用不超过24万元,至少应安排甲队工作多少天?24.如图,点P是⊙O外一点,PA切⊙O于点A,AB是⊙O的直径,连接OP,过点B作BC∥OP交⊙O于点C,连接AC交OP于点D.(1)求证:PC是⊙O的切线;(2)若PD=163,AC=8,求图中阴影部分的面积;(3)在(2)的条件下,若点E是AB⏜的中点,连接CE,求CE的长.25.如图,四边形ABCD为矩形,AB=4,AD=3,动点M、N分别从D、B同时出发,以1个单位/秒的速度运动,点M沿DA向终点A运动,点N沿BC向终点C运动.过点N作NP⊥BC,交AC于点P,连接MP.已知动点运动了x秒.(1)请直接写出PN的长;(用含x的代数式表示)(2)若0秒≤x≤1秒,试求△MPA的面积S与时间x秒的函数关系式,利用函数图象,求S的最大值.(3)若0秒≤x≤3秒,△MPA能否为一个等腰三角形?若能,试求出所有x的对应值;若不能,试说明理由.答案和解析1.【答案】B【解析】解:-3的绝对值是:3.故选:B.直接利用绝对值的定义分析得出答案.此题主要考查了绝对值,正确把握绝对值的定义是解题关键.2.【答案】C【解析】解:将127 000 000 000用科学记数法表示为1.27×1011.故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】B【解析】解:A、不是中心对称图形,故此选项错误;B、是中心对称图形,故此选项正确;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误;故选:B.根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析即可.此题主要考查了中心对称图形,关键是掌握中心对称图形的定义.4.【答案】B【解析】解:这个几何体的俯视图为:故选:B.俯视图是从上面看到的图形,共分三行,从上到下小正方形的个数是:1(在上面),2,1(在下面).此题主要考查了简单几何体的三视图,关键是掌握俯视图所看的方向:从上面看所得到的图形.5.【答案】D【解析】解:将数据从小到大排列:86,88,90,92,96,96,98,最中间的数是92,则中位数是92;∵96出现了2次,出现的次数最多,∴众数是96;故选:D.中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.本题考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.6.【答案】A【解析】解:点A(-1,2)关于y轴的对称点是(1,2),在第一象限,故选:A.根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.此题主要考查了关于y轴对称点的坐标,关键是掌握点的坐标的变化规律.7.【答案】C【解析】解:A、∵△=(-4)2-4×1×(-4)=32>0,∴该方程有两个不相等的实数根,A不符合题意;B、∵△=(-36)2-4×1×36=1152>0,∴该方程有两个不相等的实数根,B不符合题意;C、∵△=42-4×4×1=0,∴该方程有两个相等的实数根,C符合题意;D、∵△=(-2)2-4×1×(-1)=8>0,∴该方程有两个不相等的实数根,D不符合题意.故选:C.根据方程的系数结合根的判别式,分别求出四个选项中方程的根的判别式,利用“当△=0时,方程有两个相等的实数根”即可找出结论.本题考查了根的判别式,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.8.【答案】C【解析】解:A、a2•a3=a5,故此选项错误;B、(a2)3=a6,故此选项错误;C、a3+a3=2a3,正确;D、(a2b)2=a4b2,故此选项错误;故选:C.直接利用同底数幂的乘法运算法则以及幂的乘方运算法则分别计算得出答案.此题主要考查了同底数幂的乘法运算以及幂的乘方运算,正确掌握相关运算法则是解题关键.9.【答案】C【解析】解:∵∠AOC=120°∴∠BOC=180°-∠AOC=60°∴∠BDC=∠BOC=30°.故选:C.根据邻补角的性质求得∠BOC的度数,再根据同弧所对的圆周角是圆心角的一半即可求得∠BDC的度数,此题考查了圆周角定理.注意在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.10.【答案】A【解析】解:∵点A,B的坐标分别为(-2,3)和(1,3),∴线段AB与y轴的交点坐标为(0,3),又∵抛物线的顶点在线段AB上运动,抛物线与y轴的交点坐标为(0,c),∴c≤3,(顶点在y轴上时取“=”),故①错误;∵抛物线的顶点在线段AB上运动,∴当x<-2时,y随x的增大而增大,因此,当x<-3时,y随x的增大而增大,故②正确;若点D的横坐标最大值为5,则此时对称轴为直线x=1,根据二次函数的对称性,点C的横坐标最小值为-2-4=-6,故③错误;根据顶点坐标公式,=3,令y=0,则ax2+bx+c=0,CD2=(-)2-4×=,根据顶点坐标公式,=3,∴=-12,∴CD2=×(-12)=,∵四边形ACDB为平行四边形,∴CD=AB=1-(-2)=3,∴=32=9,解得a=-,故④正确;综上所述,正确的结论有②④.故选:A.根据顶点在线段AB上抛物线与y轴的交点坐标为(0,c)可以判断出c的取值范围,得到①错误;根据二次函数的增减性判断出②正确;先确定x=1时,点D的横坐标取得最大值,然后根据二次函数的对称性求出此时点C的横坐标,即可判断③错误;令y=0,利用根与系数的关系与顶点的纵坐标求出CD的长度的表达式,然后根据平行四边形的对边平行且相等可得AB=CD,然后列出方程求出a的值,判断出④正确.本题考查了二次函数的综合题型,主要利用了二次函数的顶点坐标,二次函数的对称性,根与系数的关系,平行四边形的对边平行且相等的性质,①要注意顶点在y轴上的情况.11.【答案】2(x-y)2【解析】解:2x2-4xy+2y2,=2(x2-2xy+y2),=2(x-y)2.故答案为:2(x-y)2.先提取公因式(常数2),再对余下的多项式利用完全平方公式继续分解.本题考查了提公因式法,公式法分解因式,提取公因式后再利用完全平方公式进行二次因式分解,分解因式要彻底.12.【答案】8【解析】解:根据题意列方程,得:(n-2)180°=3×360°,解得:n=8,即边数n等于8.故答案为8.利用多边形的外角和是360度,一个n边形的内角和等于它外角和的5倍,则内角和是5×360°,而n边形的内角和是(n-2)180°,则可得到方程,解之即可.本题主要考查了多边形的内角和的计算公式以及多边形的外角和定理,比较简单.13.【答案】-2<x≤4【解析】解:解不等式x-4≤0,得:x≤4,解不等式1<(x+4),得:x>-2,则不等式组的解集为-2<x≤4,故答案为:-2<x≤4.分别求出每个不等式的解集,再根据口诀即可确定不等式组的解集.本题主要考查解一元一次不等式组,解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分.14.【答案】26【解析】解:∵D、E分别为AB、AC中点,∴DE=BC,∵BC=8,∴DE=4,∵在△ADE和△CFE中,,∴△ADE≌△CFE,∴CF=BD=AB=5,∵DE=FE=4,∴DF=8,∴四边形BCFD的周长为:BD+BC+CF+DF=5+8+8+5=26,故答案为:26.根据D、E分别为AB、AC中点,可证明DE为三角形ABC的中位线,通过证明△ADE和△CFE 全等则可得到AD=CF,由已知数据即可求出四边形BCFD的周长.本题考查了三角形的中位线性质和全等三角形的判定以及全等三角形的性质,解题的关键是熟记各种性质定理和判定定理.15.【答案】-21101【解析】解:由分析知:第10个数为-,故答案为:-.分子为3,5,7,9,11,…即可得出第10个数的分子为:1+2×10=21,分母为2,5,10,17,26,…第10个数的分子为102+1=101奇数位置为正,偶数位置为负,由此规律,得出结论.此题考查数字的变化规律,找出数字之间的运算规律,得出规律,利用规律,解决问题是解答此题的关键.16.【答案】π4-2+√2【解析】解:连结DC1,∵∠CAC1=∠DCA=∠COB1=∠DOC1=45°,∴∠AC1B1=45°,∵∠ADC=90°,∴A,D,C1在一条直线上,∵四边形ABCD是正方形,∴AC=,∠OCB1=45°,∴CB1=OB1∵AB1=1,∴CB1=OB1=AC-AB1=-1,∴S△OB1C=•OB1•CB1=(-1)2,∵S△AB1C1=AB1•B1C1=×1×1=,∴图中阴影部分的面积=-(-1)2-=-2+.故答案为-2+.先根据正方形的边长,求得CB1=OB1=AC-AB1=-1,进而得到S△OB1C=(-1)2,再根据S△AB1C1=,以及扇形的面积公式即可得出图中阴影部分的面积.本题考查了旋转的性质,正方形性质、勾股定理以及扇形面积的计算等知识点的综合应用,主要考查学生运用性质进行计算的能力.解题时注意:旋转前、后的图形全等.17.【答案】解:原式=1+6×√32-2√3+2=√3+3.【解析】本题涉及负整数指数幂、零指数幂、二次根式、特殊角的三角函数4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、特殊角的三角函数等考点的运算.18.【答案】解:原式=(x2−4x+4x−2+8xx−2)•2(x−2)x+2=(x+2)2x−2•2(x−2)x+2=2(x+2)=2x+4,当x=-12时,原式=2×(-12)+4=-1+4=3.【解析】先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.本题主要考查分式的化简求值,在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.19.【答案】解:(1)当m=2,则A(2,4),把A(2,4)代入y=kx得k=2×4=8,所以反比例函数解析式为y=8x,把B (-4,n )代入y =8x 得-4n =8,解得n =-2;(2)因为点A (m ,4),B (-4,n )在反比例函数y =kx (k >0)的图象上, 所以4m =k ,-4n =k ,所以4m +4n =0,即m +n =0;(3)作AE ⊥y 轴于E ,BF ⊥x 轴于F ,如图, 在Rt △AOE 中,tan ∠AOE =AE OE =m4, 在Rt △BOF 中,tan ∠BOF =BF OF =−n 4, 而tan ∠AOD +tan ∠BOC =1, 所以m 4+−n4=1,而m +n =0,解得m =2,n =-2, 则A (2,4),B (-4,-2), 设直线AB 的解析式为y =px +q ,把A (2,4),B (-4,-2)代入得{−4p +q =−22p+q=4,解得{q =2p=1, 所以直线AB 的解析式为y =x +2. 【解析】(1)先把A 点坐标代入y=求出k 的值得到反比例函数解析式为y=,然后把B (-4,n )代入y=可求出n 的值;(2)利用反比例函数图象上点的坐标特征得到4m=k ,-4n=k ,然后把两式相减消去k 即可得到m+n 的值;(3)作AE ⊥y 轴于E ,BF ⊥x 轴于F ,如图,利用正切的定义得到tan ∠AOE==,tan ∠BOF==,则+=1,加上m+n=0,于是可解得m=2,n=-2,从而得到A (2,4),B (-4,-2),然后利用待定系数法求直线AB 的解析式.本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数的交点问题(1)求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.20.【答案】解:(1)如图,AE 为所作;(2)∵AE ⊥CD ,∴∠C =90°-∠CAE =90°-16°=74°,∵AD =AC ,∴∠ADC =∠C =74°, ∵BD =AD , ∴∠B =∠DAB ,而∠ADC =∠B +∠DAB , ∴∠B =12∠ADC =12×74°=37°. 【解析】(1)作等腰三角形ADC 的底边上的高AE 即可;(2)先利用互余计算出∠C=74°,再根据等腰三角形的性质得到∠ADC=∠C=74°,∠B=∠DAB ,然后利用三角形外角性质计算∠B 的度数.本题考查了作图-基本作图:熟练掌握5种基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).21.【答案】20 40 72° 【解析】解:(1)4÷20%=20,所以这次抽查了四类特色美食共20种, 扇形统计图中C 类所占的百分比=×100%=40%,即a=40;扇形统计图中A 部分圆心角的度数为360°×20%=72°; 故答案为20,40,72°; (2)B 类的种数为20-4-8-6=2, 条形统计图为:(3)画树状图为:共有12种等可能的结果数,其中恰好选中甲和乙两种美食的结果数为2,所以恰好选中甲和乙两种美食的概率==.(1)用A类的数目除以它所占的百分比得到这次抽查了四类特色美食总数;通过计算C类的百分比得到a的值;用360度乘以A类所占的百分比得到扇形统计图中A部分圆心角的度数;(2)先计算出B类的种数,然后补全条形统计图;(3)画树状图展示所有12种等可能的结果数,再找出所抽取的两名同学恰好是一男一女的结果数,然后根据概率公式求解.本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.也考查了统计图.22.【答案】证明:(1)∵平行四边形ABCD,∴AD=BC,AD∥BC,∴∠DAC=∠BCF,∵DE∥AC,∴∠DAC=∠EDA,∴∠FCB=∠EDA,在△ADE与△BCF中{AD=BC∠FCB=∠EDA DE=CF,∴△ADE≌△BCF(SAS);(2)∵DE∥AC,且DE=AC,∴四边形EFCD是平行四边形,∴DC=EF,且DC∥EF,又∵AB=CD,AB∥CD,∴AB=EF,AB∥EF,∴四边形ABFE是平行四边形,∵△ADE≌△BCF,∴∠AED=∠BFC,∵∠BAF+∠AED=180°,∴∠BAF+∠BFC=180°,又∠BFA+∠BFC=180°,∴∠BAF=∠BFA,∴BA=BF,∴四边形ABFE为菱形.【解析】(1)根据平行四边形的性质和全等三角形的判定证明即可;(2)根据平行四边形的判定和菱形的判定解答即可.此题考查菱形的判定,关键是根据平行四边形的判定、菱形的判定和全等三角形的判定解答.23.【答案】解:(1)设甲工程队每天能完成绿化的面积是x平方米,则乙工程队每天能完成绿化的面积是1.5x平方米,依题意,得:450x-4501.5x=5,解得:x=30,经检验,x=30是原方程的解,且符合题意,∴1.5x=45.答:甲工程队每天能完成绿化的面积是30平方米,乙工程队每天能完成绿化的面积是45平方米.(2)设安排甲队工作m天,则需安排乙队工作100−2m3天,依题意,得:0.3m+0.9×100−2m3≤24,解得:m≥10.答:至少应安排甲队工作10天.【解析】(1)设甲工程队每天能完成绿化的面积是x平方米,则乙工程队每天能完成绿化的面积是1.5x 平方米,根据工作时间=工作总量÷工作效率结合在独立完成面积为450平方米区域的绿化时甲队比乙队多用5天,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设安排甲队工作m天,则需安排乙队工作天,根据总费用=0.3×甲队工作时间+0.9×乙队工作时间结合这次的绿化总费用不超过24万元,即可得出关于m的一元一次不等式,解之取其最小值即可得出结论.本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.24.【答案】(1)证明:如图1,连接OC ,∵PA 切⊙O 于点A ,∴∠PAO =90°, ∵BC ∥OP ,∴∠AOP =∠OBC ,∠COP =∠OCB , ∵OC =OB ,∴∠OBC =∠OCB , ∴∠AOP =∠COP ,在△PAO 和△PCO 中, {OA =OC∠AOP =∠COP OP =OP, ∴△PAO ≌△PCO , ∴∠PCO =∠PAO =90°, ∴PC 是⊙O 的切线;(2)解:由(1)得PA ,PC 都为圆的切线, ∴PA =PC ,OP 平分∠APC ,∠ADO =∠PAO =90°, ∴∠PAD +∠DAO =∠DAO +∠AOD , ∴∠PAD =∠AOD , ∴△ADP ∽△ODA , ∴ADPD =DOAD , ∴AD 2=PD •DO , ∵AC =8,PD =163,∴AD =12AC =4,OD =3,AO =5, 由题意知OD 为△的中位线, ∴BC =6,OD =3,AB =10. ∴S 阴=12S ⊙O -S △ABC =25π2-24;(3)解:如图2,连接AE 、BE ,作BM ⊥CE 于M , ∴∠CMB =∠EMB =∠AEB =90°,∵点E 是AB⏜的中点, ∴∠ECB =∠CBM =∠ABE =45°, CM =MB =3√2, BE =AB •cos45°=5√2, ∴EM =√BE 2−BM 2=4√2, 则CE =CM +EM =7√2. 【解析】(1)连接OC ,证明△PAO ≌△PCO ,得到∠PCO=∠PAO=90°,证明结论;(2)证明△ADP ∽△ODA ,得到成比例线段求出BC 的长,根据S 阴=S ⊙O -S △ABC 求出答案; (3)连接AE 、BE ,作BM ⊥CE 于M ,分别求出CM 和EM 的长,求和得到答案.本题考查的是切线的判定和性质、扇形面积的计算和相似三角形的判定和性质,灵活运用切线的性质:圆的切线垂直于过切点的半径和切线的判定是解题的关键. 25.【答案】解:(1)12−4x 3;(2)延长NP 交AD 于点Q ,则PQ ⊥AD ,由(1)得:PN =12−4x 3,则PQ =QN -PN =4-12−4x 3=43x 依题意,可得:AM =3-x ,S =12AM •PQ =12(3-x )•4x3=2x -23x 2=-23(x -32)2+32 ∵0≤x ≤1即函数图象在对称轴的左侧,函数值S 随着x 的增大而增大.∴当x =1时,S 有最大值,S 最大值=43(3)△MPA 能成为等腰三角形,共有三种情况,以下分类说明: ①若PM =PA , ∵PQ ⊥MA ,∴四边形ABNQ 是矩形, ∴QA =NB =x , ∴MQ =QA =x ,又∵DM +MQ +QA =AD ∴3x =3,即x =1②若MP =MA ,则MQ =3-2x ,PQ =43x ,MP =MA =3-x 在Rt △PMQ 中,由勾股定理得:MP 2=MQ 2+PQ 2 ∴(3-x )2=(3-2x )2+(43x )2,第11页,共11页 解得:x =5443(x =0不合题意,舍去)③若AP =AM ,由题意可得:AP =53x ,AM =3-x∴53x =3-x ,解得:x =98综上所述,当x =1,或x =5443,或x =98时,△MPA 是等腰三角形.【解析】(1)可在直角三角形CPN 中,根据CN 的长和∠CPN 的正切值求出.(2)三角形MPA 中,底边AM 的长为3-x ,关键是求出MA 边上的高,可延长NP 交AD 于Q ,那么PQ 就是三角形AMP 的高,可现在直角三角形CNP 中求出PN 的长,进而根据AB 的长,表示出PQ 的长,根据三角形的面积公式即可得出S 与x 的函数关系式.根据函数的性质可得出S 的最大值.(3)本题要分三种情况:①MP=PA ,那么AQ=BN=AM ,可用x 分别表示出BN 和AM 的长,然后根据上述等量关系可求得x 的值.②MA=MP ,在直角三角形MQP 中,MQ=MA-BN ,PQ=AB-PN 根据勾股定理即可求出x 的值. ③MA=PA ,不难得出AP=BN ,然后用x 表示出AM 的长,即可求出x 的值.本题是点的运动性问题,考查了图形面积的求法、等腰三角形的判定等知识.(3)题要按等腰三角形腰和底的不同分类讨论.。