2020年广东省佛山市顺德区中考数学模拟试卷
2020年广东中考数学模拟试卷(含答案和解析)

24.如图,抛物线 y=ax2+2x+c(a<0)与 x 轴交于点 A 和点 B(点 A 在原点的左侧,点 B 在原点的右侧), 与 y 轴交于点 C,OB=OC=3.
(1)求该抛物线的函数解析式; (2)如图 1,连接 BC,点 D 是直线 BC 上方抛物线上的点,连接 OD,CD,OD 交 BC 于点 F,当 S△COF: S△CDF=3:2 时,求点 D 的坐标.
2020 年广东名校中考数学学科线上一模试卷(二十)
一.选择题(共 10 小题)
1.﹣2 的倒数是( )
A. 2
B. ﹣2
【答案】D
1
C.
2
1
D. ﹣
2
【解析】 【分析】
根据倒数的定义,若两个数的乘积是 1,我们就称这两个数互为倒数.
【详解】解:∵﹣2×(﹣ 1 )=1, 2
∴﹣2 的倒数是﹣ 1 . 2
【点睛】本题主要考查了平行线的性质、平行线的传递性、等边三角形的性质等知识,当然也可延长 BA 与 l2 交于点 E,运用平行线的性质及三角形外角的性质解决问题.
6.某公司销售部有 7 个职员,他们 5 月份的工资分别是 5300 元、5800 元、5300 元、5500 元、5800 元、6500
故选:D.
【点睛】主要考查倒数的定义,要求熟练掌握.需要注意的是倒数的性质:负数的倒数是负数,正数的倒
2020年广东省佛山市顺德区中考数学四模试卷

【分析】
连接OC,OD.求出∠COD的度数,再根据圆周角定理即可解决问题.
【详解】
如图,连接OC,OD.
∵五边形ABCDE是正五边形,
∴∠COD= =72°,
∴∠CFD= ∠COD=36°,
故答案为:36.
【点睛】
本题考查了正多边形和圆、圆周角定理等知识,解题的关键是熟练掌握基本知识.
16.
【详解】
解:这个正多边形的边数:360°÷30°=12.
故答案为:12.
【点睛】
本题考查了多边形的内角与外角的关系,熟记正多边形的边数与外角的关系是解题的关键.
13.
【分析】
依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.
【详解】
解:随机闭合开关 、 、 中的两个出现的情况列表得:
(3)在(2)的条件下,当点P从左往右运动时,判断△MNP的面积如何变化?并说明理由.
23.某高校共有5个大餐厅和2个小餐厅,若同时开放1个大餐厅、2个小餐厅,可供1600名学生就餐;若同时开放2个大餐厅、1个小餐厅,可供2000名学生就餐.
(1)求1个大餐厅、1个小餐厅分别可供多少名学生就餐?
(2)按照疫情防控的就餐要求,每个大餐厅只能容纳原来就餐人数的40%,每个小餐厅只能容纳原来就餐人数的30%,若同时开放7个餐厅,能否供返校的1800名毕业生同时就餐?请说明理由.
【详解】
解:当x2﹣9≠0时,分式有意义,
由x2﹣9≠0得:x2≠9,
则x≠±3,
故选:C.
【点睛】
本题主要考查了分式有意义的条件,解题的关键是掌握分式有意义的条件是分母不等于零.
9.C
【分析】
精品解析:2020年广东省佛山市顺德区中考数学三模试题(解析版)

2020年广东省佛山市顺德区中考数学三模试卷一.选择题(共10小题)1.比﹣2大5的数是()A. ﹣7B. ﹣3C. 3D. 7【答案】C【解析】【分析】直接利用有理数的加法运算法则计算得出答案.【详解】解:比﹣2大5的数是:﹣2+5=3.故选:C.【点评】此题主要考查了有理数的加法,正确掌握相关运算法则是解题关键.2.截止到4月10日,各国累计报告新冠肺炎确诊病例超过1620000人,将1620000用科学记数法表示为()A. 162×104B. 1.62×106C. 16.2×105D. 0.162×107【答案】B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a 时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【详解】解:将1620000用科学记数法表示为:1.62×106.故选:B.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.如图是由6个大小相同的正方体搭成的几何体,这个几何体的左视图是()A. B. C. D.【答案】D【解析】【分析】左视图是从物体的左边观察得到的图形,结合选项进行判断即可.【详解】解:从左边看,有两列,从左到右第一列是两个正方形,第二列底层是一个正方形.故选:D.【点睛】本题考查了简单组合体的三视图,属于基础题,解答本题的关键是掌握左视图的定义.4.数据2,3,4,5,4,3,2的中位数是()A. 2B. 3C. 4D. 5【答案】B【解析】【分析】先将题目中的数据按照从小到大排列,奇数个取最中间的那个数,即得到这组数据的中位数.【详解】数据2,3,4,5,4,3,2按照从小到大排列是:2,2,3,3,4,4,5,故这组数据的中位数是3,故选:B.【点睛】本题考查了中位数,先把数据按照从小到大排列,奇数个取最中间的那个数,偶数个取最中间两个数的平均数.5.下面是证明勾股定理的四个图形,其中是轴对称图形的是()A. B.C. D.【答案】C【解析】【分析】根据轴对称图形的概念求解.【详解】解:A、不是轴对称图形,故此选项不符合题意;B、不是轴对称图形,故此选项不符合题意;C、是轴对称图形,故此选项符合题意;D、不是轴对称图形,故此选项不符合题意;故选:C.【点睛】此题主要考查了轴对称图形的定义,正确掌握轴对称图形的定义是解题关键.6.下列运算结果正确的是()A. 6x﹣5x=1B.C. (﹣2x)2=﹣4x2D. x6÷x2=x4【答案】D【解析】【分析】直接利用合并同类项法则以及二次根式的加减运算法则、积的乘方运算法则、同底数幂的除法运算法则分别化简得出答案.【详解】A、6x﹣5x=x,故此选项错误;B、,故此选项错误;C、(﹣2x)2=4x2,故此选项错误;D、x6÷x2=x4,正确.故选:D.【点睛】此题主要考查了合并同类项以及二次根式的加减运算、积的乘方运算、同底数幂的除法运算,正确掌握相关运算法则是解题关键.7.如图,AB是半圆O的直径,AC,BC是弦,OD⊥AC于点D,若OD=1.5,则BC等于()A. 1.5B. 2C. 3D. 4.5【答案】C【解析】【分析】先根据垂径定理得到AD=CD,则OD为△ABC的中位线,然后根据三角形中位线性质得到BC的长.【详解】解:∵OD⊥AC,∴AD=CD,而OA=OB,∴OD为△ABC的中位线,∴BC=2OD=2×1.5=3.故选:C.【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.也考查了垂径定理和三角形中位线性质.8.下列关于x的一元二次方程,一定有两个不相等的实数根的是()A. x2+kx﹣1=0B. x2+kx+1=0C. x2+x﹣k=0D. x2+x+k=0【答案】A【解析】【分析】先求出△的值,再比较出其与0的大小即可求解.【详解】解:A、△=k2﹣4×1×(﹣1)=k2+4>0,一定有两个不相等的实数根,符合题意;B、△=k2﹣4×1×1=k2﹣4,可能小于等于0,不一定有两个不相等的实数根,不符合题意;C、△=12﹣4×1×(﹣k)=1+4k,可能小于等于0,不一定有两个不相等的实数根,不符合题意;D、△=12﹣4×1×k=1﹣4k,可能小于等于0,不一定有两个不相等的实数根,不符合题意.故选:A.【点睛】本题考查的是根的判别式,熟知一元二次方程的根与△的关系是解答此题的关键.9.为了防治“新型冠状病毒”,某小区购买了某品牌消毒液用作楼梯消毒.使用这种消毒液时必须先稀释,使稀释浓度不小于0.3%且不大于0.5%.若一瓶消毒液净含量为1L,那么一瓶消毒液稀释到最小浓度需用水多少L?设一瓶消毒液稀释到最小浓度需用水xL,下列方程正确的是()A ×100%=0.3% B. ×100%=0.5%C. ×100%=0.3%D. ×100%=0.5%【答案】A【解析】【分析】根据浓度=×100%,即可得出关于x的分式方程,此题得解.【详解】解:依题意,得:×100%=0.3%.故选:A.【点睛】本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.10.“分母有理化”是根式运算的一种化简方法,如:;除此之外,还可以用先平方再开方的方法化简一些有特点的无理数,如要化简,可以先设,再两边平方得,又因为,故x>0,解得,,根据以上方法,化简的结果是()A. B. C. D. 3【答案】D【解析】【分析】直接利用有理化因式以及二次根式的性质、完全平方公式分别化简得出答案.【详解】解:原式=+﹣=++﹣(﹣)=3﹣2++﹣+=3.故选:D.【点睛】此题主要考查了分母有理数,正确化简二次根式是解题关键.二.填空题(共7小题)11.从这五个数中随机抽取一个数,恰好是无理数的概率是_____.【答案】【解析】【分析】根据无理数的定义、简单事件的概率计算公式即可得出答案.【详解】中的无理数有从这五个数中随机抽取一个数的结果共有5种,它们每一种出现的可能性都相等,其中,抽到的数恰好是无理数的结果有2种则所求的概率为故答案为:.【点睛】本题考查了无理数的定义、简单事件的概率计算公式,依据题意,正确列出事件的所有可能的结果是解题关键.12.菱形的对角线长分别为6和8,则菱形的边长是________,面积是________【答案】 (1). 5 (2). 24【解析】【详解】解:∵菱形的两条对角线长分别为6和8,∴由勾股定理得,菱形的边长==5,∵菱形的面积=对角线乘积的一半,∴菱形面积=6×8÷2=24,故答案为:5,24.13.不等式4﹣x>1的解集是_____.【答案】【解析】【分析】不等式移项,系数化为1即可求解.【详解】解:4﹣x>1,﹣x>1﹣4,﹣x>﹣3,x<3.故答案为:x<3.【点睛】本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.14.已知y是x的函数,用列表法给出部分x与y的值,表中“▲“处的数可以是.(填一个符合题意的答案)【答案】【解析】【分析】用待定系数法求出反比例函数的解析式,再将表中x=1代入,即可求出“▲”处的数.【详解】解:设解析式为y=,将(2,6)代入解析式得k=12,这个函数关系式为:y=,把x=1代入得y=12,∴表中“▲”处的数为12,故答案为:12.【点评】本题考查了函数关系式,需仔细分析表中的数据,进而解决问题;关键是写出解析式.15.如图,已知点A、B、C、D都在⊙O上,且∠BOD=110°,则∠BCD为_____.【答案】【解析】【分析】利用圆周角定理以及圆内接四边形的性质即可解决问题.详解】解:∵∠A=∠BOD,∠BOD=110°,∴∠A=55°,∵∠BCD+∠A=180°,∴∠BCD=180°﹣55°=125°,故答案为125°.【点睛】本题考查圆周角定理,圆心角,弧,弦之间的关系等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.中国清代数学著作《御制数理精蕴》中有这样一道题:“马四匹、牛六头,共价四十八两(“两”是我国古代货币单位);马三匹、牛五头,共价三十八两.则马每匹价_____两.【答案】【解析】【分析】设马每匹价x两,牛每头价y两,根据“马四匹、牛六头,共价四十八两;马三匹、牛五头,共价三十八两”,即可得出关于x,y的二元一次方程组,解之即可得出结论.【详解】解:设马每匹价x两,牛每头价y两,依题意,得:,解得:故答案为:6.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.17.如图,分别以△ABC的边AB、AC为一边向外做正方形ABDE和正方形ACFG,连结CE、BG交于点P,连结AP和EG.在不添加任何辅助线和字母的前提下,写出四个不同类型的结论_____.【答案】△AEC≌△ABG,EC=BG,EC⊥BG,AP平分∠EPG,【解析】【分析】如图,连接BE,由“SAS”可证△EAC≌△BAG,可得EC=BG,∠CEA=∠GBA,可证点P,点A,点E,点B四点共圆,可得∠EPB=∠EAB=90°,∠APE=∠ABE=45°,可得EC⊥BG,AP平分∠EPG.【详解】解:△AEC≌△ABG,EC=BG,EC⊥BG,AP平分∠EPG,(答案不唯一)理由如下:如图,连接BE,∵正方形ABDE和正方形ACFG,∴AB=AE,AC=AG,∠BAE=∠CAG=90°,∠ABE=45°∴∠EAC=∠BAG,∴△EAC≌△BAG(SAS),∴EC=BG,∠CEA=∠GBA,∵∠CEA=∠GBA,∴点P,点A,点E,点B四点共圆,∴∠EPB=∠EAB=90°,∠APE=∠ABE=45°,∴EC⊥BG,∠EPG=90°,∴∠APG=∠APE=45°,∴AP平分∠EPG.【点评】本题考查了正方形的性质,全等三角形的判定和性质,灵活运用这些性质进行推理是本题的关键.三.解答题(共8小题)18.计算:.【答案】【解析】【分析】直接利用特殊角的三角函数值以及绝对值的性质、负整数指数幂的性质分别化简得出答案.【详解】原式===﹣2.【点睛】此题主要考查了实数运算,正确化简各数是解题关键.19.先化简,再求值,其中x是方程230x-+=的根.【答案】值为.【解析】【分析】原式利用除法法则变形,约分得到最简结果,求出x的值,代入计算即可求出值.【详解】原式==x-+=,得到,由方程230解得:,则原式=.【点睛】此题考查了分式的化简求值,以及一元二次方程的解法,熟练掌握运算法则及方程的解法是解本题的关键.20.2020年3月“停课不停学”期间,某校采用简单随机抽样的方式调查本校学生参加第一天线上学习的时长,将收集到的数据制成不完整的频数分布表和扇形图,如下所示:(1)求m ,n 的值;(2)学校有学生2400人,学校决定安排老师给““线上学习时长”在x ≤60分钟范围内的学生打电话了解情况,请你根据样本估计学校学生“线上学习时长”在x ≤60分钟范围内的学生人数.【答案】(1)9,36m n ==;(2)人.【解析】【分析】(1)根据第2组的人数是6,对应的百分比是12%,即可求得调查的总人数,利用总人数减去其它组的人数求得m 的值;(2)利用总人数乘以对应的比例即可求解.【详解】解:(1)抽取的总人数是6÷12%=50(人), m =50﹣3﹣6﹣18﹣14=9(人).n %=×100%=36%,∴n =36;(2)估计学校学生“线上学习时长”在x ≤60分钟范围内的学生人数是2400×=432(人).【点睛】本题考查的是扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.用到的知识点为:总体数目=部分数目÷相应百分比.频率=所求情况数与总情况数之比.21.如图,AB=4cm,∠ACB=45°.(1)尺规作图:作△ABC的外接圆(不要求写作法,保留作图痕迹);(2)在(1)的条件下,若弦AB和其所对的劣弧所围成图形的面积为S,求S的值.【答案】(1)作图见解析;(2)【解析】【分析】(1)作线段BC的垂直平分线MN,作线段AB的垂直平分线EF,直线MN交EF于点O,以O为圆心,OA为半径作⊙O即可.(2)连接OA,OB,证明∠AOB=90°,利用弧长公式计算即可.【详解】解:(1)如图,⊙O即为所求.(2)连接OA,OB.∵∠AOB=2∠ACB=90°,AB=4cm,∴AO=OB=2cm,∴S=S扇形OAB﹣S△AOB=﹣×2×2=2π﹣4.【点睛】本题考查作图﹣复杂作图,三角形的外心,扇形的面积等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.如图,隧道的截面由抛物线和长方形构成.长方形的长为16m,宽为6m,抛物线的最高点C离路面AA1的距离为8m.(1)建立适当的坐标系,求出表示抛物线的函数表达式;(2)一大型货车装载设备后高为7m,宽为4m.如果隧道内设双向行驶车道,那么这辆货车能否安全通过?【答案】(1)以AA1所在直线为x轴,以线段AA1的中点为坐标原点建立平面直角坐标系,;(2)货运卡车能通过.【解析】【分析】(1)根据抛物线在坐标系中的特殊位置,可以设抛物线的解析式为y=ax2+8,再把B(﹣8,6)代入,求出a的值即可;(2)隧道内设双行道后,求出纵坐标与7m作比较即可.【详解】解:(1)如图,以AA1所在直线为x轴,以线段AA1中点为坐标原点建立平面直角坐标系,根据题意得A(﹣8,0),B(﹣8,6),C(0,8),设抛物线的解析式为y=ax2+8,把B(﹣8,6)代入,得:64a+8=6,解得:a=﹣.∴抛物线的解析式为y=﹣x2+8.(2)根据题意,把x=±4代入解析式y=﹣x2+8,得y=7.5m.∵7.5m>7m,∴货运卡车能通过.【点睛】本题考查了二次函数在实际问题中的应用,恰当地建立平面直角坐标系、利用待定系数法求得二次函数的解析式是解题的关键.23.如图,在正方形ABCD中,以BC为直径作半圆O,以点D为圆心、DA为半径做圆弧交半圆O于点P.连结DP并延长交AB于点E.(1)求证:DE为半圆O的切线;(2)求的值.【答案】(1)证明见解析;(2)【解析】【分析】(1)根据SSS证得△ODP≌△ODC,从而证得∠OPD=∠OCD=90°,即可证得结论;(2)根据切线长定理和相似三角形的判定与性质得到:(AB﹣EB)2=EB(2AB+EB),整理得到AB=4EB,即可证得AE=3EB,从而求得【详解】(1)证明:连接OP,OD,∵BC是⊙O的直径,∴OP=OC,∵以点D为圆心、DA为半径做圆弧,∴PD=CD,在△ODP和△ODC中,,∴△ODP ≌△ODC (SSS ),∴∠OPD =∠OCD =90°,∵P 点在⊙O 上,∴DE 为半圆O 的切线;(2)解:∵以点D 为圆心、DA 为半径做圆,延长ED 与圆的另一个交点为H ,连接AP,四边形ABCD 是正方形,∴EA 是⊙D 的切线,90,EAP ∴∠=︒90,EAP DAP ∴∠+∠=︒为圆D 的直径,90,PAH ∴∠=︒90,DAP DAH ∴∠+∠=︒,,DA DH DAH DHA =∴∠=∠,EAP DHA ∴∠=∠,AEP AEH ∠=∠,EAP EHA ∴∆∆∽∴EA 2=EP •EH ,同理,EB 是半圆O 的切线,∵DE 为半圆O 的切线,∴EB =EP ,∵AD =PD =AB ,∴(AB ﹣EB )2=EP (PH +EP )∴(AB ﹣EB )2=EB (2AB +EB )整理得AB =4EB ,∴AE =3EB ,∴.【点睛】本题考查了正方形性质,切线的判定和性质,全等三角形的判定和性质,相似三角形的判定与性质,切线长定理,掌握以上知识是解题的关键.24.如图1,矩形OABC 的顶点O 是直角坐标系的原点,点A 、C 分别在x 轴、y 轴上,点B 的坐标为(8,4),将矩形OABC 绕点A 顺时针旋转得到矩形ADEF ,D 、E 、F 分别与B 、C 、O 对应,EF 的延长线恰好经过点C ,AF 与BC 相交于点Q .(1)证明:△ACQ 是等腰三角形;(2)求点D 的坐标;(3)如图2,动点M 从点A 出发在折线AFC 上运动(不与A 、C 重合),经过的路程为x ,过点M 作AO 的垂线交AC 于点N ,记线段MN 在运动过程中扫过的面积为S ;求S 关于x 的函数关系式.【答案】(1)证明见解析;(2);(3)223(08)20248168(812)555x x S x x x ⎧≤⎪⎪=⎨⎪-+-⎪⎩<<< 【解析】【分析】(1)想办法证明∠QCA =∠QAC 即可解决问题.(2)设CQ =AQ =x ,利用勾股定理求出x ,如图1中,过点D 作DH ⊥x 轴于H .利用相似三角形的性质求出AH ,DH 即可解决问题.(3)分两种情形:①当0<x ≤8时,如图2中,延长MN 交AO 于H ,作QJ ∥AB 交AC 于J .利用相似三角形的性质求出AH ,MN 即可解决问题.②当8<x <12时,如图3中,作QJ ∥AB 交AC 于J ,作EK ∥AB 交BC 于T ,设MN 交BC 于R .利用相似三角形的性质求出MN ,AR 即可解决问题.【详解】(1)证明:∵四边形OABC ,四边形F ADE 都是矩形,∴∠AOC =90°,∠AFE =∠AFC =90°,BC ∥OA ,∵∠CF A =∠AOC =90°,AC =AC ,AO =AF ,∴Rt △ACO ≌Rt △ACF (HL ),∴∠CAO =∠CAF ,∵BC ∥OA ,∴∠BCA =∠CAO ,∴∠BCA =∠ACF ,∴QC =QA ,∴△ACQ 是等腰三角形.(2)解:设CQ =AQ =x ,∵B(8,4),∴BC=8,AB=4,在Rt△AQB中,∵AQ2=BQ2+AB2,∴x2=(8﹣x)2+42,∴x=5,∴BQ=3,如图1中,过点D作DH⊥x轴于H.∵∠QAD=∠BAH=90°,∴∠QAB=∠DAH,∵∠B=∠AHD=90°,∴△ABQ∽△AHD,∴,∴,∴AH=,DH=,∴OH=OA+AH=8+=,∴D().(3)①当0<x≤8时,如图2中,延长MN交AO于H,作QJ∥AB交AC于J.∵QJ∥AB,∴,∴,∴QJ=,∵MN∥QJ,∴△AMN∽△AQJ,∴AM MN AH AQ QJ BQ==,∴∴MN=,AH=,∴S=•MN•AH=·x·=x2.②当8<x<12时,如图3中,作QJ∥AB交AC于J,作EK∥AB交BC于T,设MN交BC于R.∵FK∥AB,JQ∥AB,∴FK∥JQ,∴△AQJ∽△AFK,∴,∴,∴FK=4,BT=,∴CT=BC﹣BT=8﹣=,∵MN∥FK,∴△CMN∽△CFK,∴,∴,∴MN=12﹣x,CR=(12﹣x),∴S=S△ACF﹣S△AFK=×4×12﹣×(12﹣x)×(12﹣x)=.综上所述,S=.【点睛】本题属于四边形综合题,考查了矩形的性质,相似三角形的判定和性质,解直角三角形等知识,解题的关键是正确寻找相似三角形解决问题,学会利用分类讨论的思想思考问题,属于中考压轴题.25.探索应用材料一:如图1,在△ABC中,AB=c,BC=a,∠B=θ,用c和θ表示BC边上的高为,用a.c和θ表示△ABC的面积为.材料二:如图2,已知∠C=∠P,求证:CF•BF=QF•PF.材料三:蝴蝶定理(ButterflyTheorem)是古代欧氏平面几何中最精彩的结果之一,最早出现在1815年,由W.G.霍纳提出证明,定理的图形象一只蝴蝶.定理:如图3,M为弦PQ的中点,过M作弦AB和CD,连结AD和BC交PQ分别于点E和F,则ME=MF.证明:设∠A=∠C=α,∠B=∠D=β,∠DMP=∠CMQ=γ,∠AMP=∠BMQ=ρ,PM=MQ=a,ME=x,MF=y由即化简得:MF2•AE•ED=ME2•CF•FB则有: ,又∵CF•FB=QF•FP,AE•ED=PE•EQ,∴22=MF QF FPME PE EQ,即即,从而x=y,ME=MF.请运用蝴蝶定理的证明方法解决下面的问题:如图4,B、C为线段PQ上的两点,且BP=CQ,A为PQ外一动点,且满足∠BAP=∠CAQ,判断△P AQ 的形状,并证明你的结论.【答案】材料一:1sin,sin2θθc ac;材料二:证明见解析;材料三:△P AQ的形状为等腰三角形,证明见解析.【解析】【分析】材料一:作AD⊥BC于D,由三角函数定义得AD=AB×sin B=c•sinθ,由三角形面积公式得△ABC的面积=BC×AD=ac sinθ即可;材料二:证明△CFQ∽△PFB,得出=,即可得出结论;材料三:证S△ABP=S△ACQ,S△APC=S△AQB,证△ABP∽△ACQ,由S△ABP=S△ACQ,证出AP=AQ,即可得出结论.【详解】材料一:解:作AD⊥BC于D,如图1所示:则sin B=,∴AD=AB×sin B=c•sinθ,∴△ABC的面积=BC×AD=ac sinθ,故答案为:c sinθ,ac sinθ;材料二:证明:∵∠C=∠P,∠CFQ=∠PFB,∴△CFQ∽△PFB,∴=,∴CF•BF=QF•PF;材料三:解:△P AQ的形状为等腰三角形,理由如下:∵B、C为线段PQ上的两点,且BP=CQ,∴CP=BQ,∴△ABP与△ACQ等底等高,△APC与△AQB等底等高,∴S△ABP=S△ACQ,S△APC=S△AQB,∵∠BAP=∠CAQ,∴∠BAP+∠BAC=∠CAQ+∠BAC,即∠P AC=∠QAB,∴sin∠QAB=P sin∠P AC,∵S△AQB=AB•AQ sin∠QAB,S△APC=AC•AP sin∠P AC,∴==1,∴=,∴△ABP∽△ACQ,∵S△ABP=S△ACQ,∴==1,∴AP=AQ,∴△P AQ的形状为等腰三角形.【点睛】本题是圆的综合题目,考查了圆周角定理、三角函数定义、相似三角形的判定与性质、等腰三角形的判定、三角形面积公式等知识;本题综合性强,证明三角形相似是解题的关键.:。
2020年广东省佛山市顺德区中考数学测试试卷

中考数学测试试卷题号一二三四总分得分一、选择题(本大题共10小题,共30.0分)1.下列等式中不是一元一次方程的是()A. 2x-5=21B. 40+5x=100C. (1+147.30%)x=8930D. x(x+25)=58502.下列说法正确的是()A. 如果ab=ac,那么b=cB. 如果2x=2a-b,那么x=a-bC. 如果a=b,那么a+2=b+3D. 如果,那么b=c3.下列等式变形不正确的是()A. 若3x=3y,则x=yB. 若x-3=y-3,则ax=ayC. 若x=y,则=D. 若ax=ay,则x=y4.已知关于x的方程(m﹣2)x|m﹣1|=0是一元一次方程,则m的值是()A. 2B. 0C. 1D. 0或25.一套仪器由一个A部件和三个B部件构成,用1m3钢材可做40个A部件或240个B部件,现要用6m3钢材制作这种仪器,设应用xm3钢材做B部件,其他钢材做A 部件,恰好配套,则可列方程为()A. 3×40x=240(6-x)B. 3×240x=40(6-x)C. 40x=3×240(6-x)D. 240x=3×40(6-x)6.若x=0是方程的解,则k值为()A. 0B. 2C. 3D. 47.解方程2x+=2-,去分母,得()A. 12x+2(x-1)=12+3(3x-1)B. 12x+2(x-1)=12-3(3x-1)C. 6x+(x-1)=4-(3x-1)D. 12x-2(x-1)=12-3(3x-1)8.下列选项错误的是()A. 若a>b,b>c,则a>cB. 若a>b,则a-3>b-3C. 若a>b,则-2a>-2bD. 若a>b,则-2a+3<-2b+39.已知关于x的不等式组的整数解共有5个,则a的取值范围是()A. -4<a<-3B. -4≤a<-3C. a<-3D. -4<a<10.下列不等式组的解集中,能用如图所示的数轴表示的是()A. B. C. D.二、填空题(本大题共7小题,共28.0分)11.已知x=3是关于x方程mx-8=10的解,则m=______.12.x等于______数时,代数式的值比的值的2倍小1.13.若方程2x+y=3,2x-my=-1,3x-y=2有公共解,则m的值为______.14.方程的解x=______.15.请你写出一个函数,使它的图象与直线y=x无公共点,这个函数的表达式为______.16.在反比例函数y=-的图象上有两点(-,y1),(-2,y2),则y1______y2.(填“>”或“<”)17.把二次函数y=x2-4x+5化为y=a(x-h)2+k的形式,那么h+k=______.三、计算题(本大题共1小题,共6.0分)18.解下列方程组:(1)(2)四、解答题(本大题共6小题,共56.0分)19.解方程(1)x-2(x-4)=3(1-x)(2)1-=20.如图,一农户要建一个矩形猪舍,猪舍的一边利用长为15m的住房墙,另外三边用27m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长,宽分别为多少米时,猪舍面积为96m2?21.已知方程.(1)求此方程的解;(2)联系生活实际,编写一道能用上述方程解决的应用题(不需解答).22.如图,已知点D在反比例函数y=的图象上,过点D作DB⊥y轴,垂足为B(0,3),直线y=kx+b经过点A(5,0),与y轴交于点C,且BD=OC,OC:OA=2:5.(1)求反比例函数y=和一次函数y=kx+b的表达式;(2)连结AD,求∠DAC的正弦值.23.如图,在数轴上,点O为原点,点A表示的数为a,点B表示的数为b,且a,b满足|a+8|+(b-6)2=0.(1)A,B两点对应的数分别为a=______b=______(2)若将数轴折叠,使得点A与点B重合.则原点O与数______表示的点重合:(3)若点A,B分别以4个单位/秒和2个单位/秒的速度相向面行,则几秒后A,B 两点相距2个单位长度?(4)若点A,B以(3)中的速度同时向右运动,同时点P从原点O以7个单位/秒的速度向右运动,设运动时间为t秒,请问:在运动过程中,AP+2OB-OP的值是否会发生变化?若变化,请用t表示这个值:若不变.请求出这个定值.24.如图,在直角坐标系中,抛物线经过点A(0,4),B(1,0),C(5,0)(1)求抛物线的解析式和顶点E坐标;(2)该抛物线有一点D,使得S△DBC=S△EBC,求点D的坐标.答案和解析1.【答案】D【解析】解:x(x+25)=5850是一元二次方程,故选:D.利用一元一次方程方程的定义判断即可.此题考查了一元一次方程的定义,熟练掌握一元一次方程的定义是解本题的关键.2.【答案】D【解析】解:∵如果ab=ac,那么b=c或b≠c(a=0),∴选项A不符合题意;∵如果2x=2a-b,那么x=a-0.5b,∴选项B不符合题意;∵如果a=b,那么a+2=b+2,∴选项C不符合题意;∵如果,那么b=c,∴选项D符合题意.故选:D.根据等式的性质,逐项判断即可.此题主要考查了等式的性质和应用,要熟练掌握,解答此题的关键是要明确:(1)等式两边加同一个数(或式子),结果仍得等式.(2)等式两边乘同一个数或除以一个不为零的数,结果仍得等式.3.【答案】D【解析】解:∵若3x=3y,则x=y,∴选项A不符合题意;∵若x-3=y-3,则x=y,∴ax=ay,∴选项B不符合题意;∵若x=y,则=,∴选项C不符合题意;∵ax=ay,a=0时,x可以不等于y,∴选项D符合题意.故选:D.根据等式的性质,逐项判断,判断出所给的等式变形不正确的是哪个即可.此题主要考查了等式的性质和应用,要熟练掌握,解答此题的关键是要明确:(1)等式两边加同一个数(或式子),结果仍得等式.(2)等式两边乘同一个数或除以一个不为零的数,结果仍得等式.4.【答案】B【解析】解:根据题意得:|m-1|=1,整理得:m-1=1或m-1=-1,解得:m=2或0,把m=2代入m-2得:2-2=0(不合题意,舍去),把m=0代入m-2得:0-2=-2(符合题意),即m的值是0,故选:B.根据一元一次方程的定义,得到关于m-1的绝对值的方程,利用绝对值的定义,解之,把m的值代入m-2,根据是否为0,即可得到答案.本题考查了一元一次方程的定义,绝对值,正确掌握一元一次方程的定义,绝对值的定义是解题的关键.5.【答案】D【解析】解:设应用xm3钢材做B部件,则应用(6-x)m3钢材做A部件,由题意得,240x=3×40(6-x)故选:D.设应用xm3钢材做B部件,则应用(6-x)m3钢材做A部件,根据一个A部件和三个B 部件刚好配成套,列方程求解.本题考查了由实际问题抽象出一元一次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.6.【答案】C【解析】解:把x=0代入方程,得1-=解得k=3.故选:C.将x=0代入方程即可求得k的值.本题考查了一元一次方程的解,解题关键是将x的值代入方程准确计算.7.【答案】B【解析】解:方程2x+=2-,去分母,得12x+2(x-1)=12-3(3x-1)故选:B.根据去分母的方法:方程两边的每一项都乘以6即可.本题考查了解一元一次方程,解决本题的关键是去分母时不要漏乘.8.【答案】C【解析】解:∵a>b,b>c,则a>c,∴选项A不符合题意;∵a>b,则a-3>b-3,∴选项B不符合题意;∵a>b,则-2a<-2b,∴选项C符合题意;∵a>b,∴-2a<-2b,∴-2a+3<-2b+3,∴选项D不符合题意.故选:C.根据不等式的基本性质,逐项判断即可.此题主要考查了不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.9.【答案】B【解析】解:解不等式x-a>0,得:x>a,解不等式3-2x>0,得:x<1.5,∵不等式组的整数解有5个,∴-4≤a<-3.故选:B.求出不等式组的解集,根据不等式组的解集和已知不等式组的整数解有5个即可得出a 的取值范围是-4≤a<-3.本题考查了解一元一次不等式,解一元一次不等式组,一元一次不等式组的整数解等知识点,关键是能根据不等式组的解集和已知得出a的取值范围.10.【答案】D【解析】解:由数轴可得:-2<x≤1,故选:D.先求出每个不等式的解集,再求出不等式组的解集,再根据数轴判断即可.本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集求出不等式组的解集是解此题的关键.11.【答案】6【解析】解:将x=3代入mx-8=10,∴3m=18,∴m=6,故答案为:6将x=3代入原方程即可求出答案.本题考查一元一次方程,解题的关键是熟练运用一元一次方程的解的定义,本题属于基础题型.12.【答案】【解析】解:根据题意得:=2×-1,即=-1,去分母得:2(3x-2)=3(4x-1)-6,去括号得:6x-4=12x-3-6,移项合并得:-6x=-5,解得:x=,故答案为:根据题意列出方程,求出方程的解即可得到x的值.此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.13.【答案】3【解析】解:∵方程2x+y=3,2x-my=-1,3x-y=2有公共解,∴,①+②得:x=1,故y=1,故方程组的解为:,故2-m=-1,解得:m=3.故答案为:3.直接利用二元一次方程组的解法得出答案.此题主要考查了二元一次方程组的解,正确解方程组是解题关键.14.【答案】-【解析】解:去分母得:x2-2x-x2+4=3x+6,解得:x=-,经检验x=-是分式方程的解,故答案为:-分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.15.【答案】(答案不唯一)【解析】解:∵直线y=x的图象经过一、三象限,并过原点,y=-的图象经过二、四象限,不过原点,∴函数y=-的图象与直线y=x无公共点.故答案为y=-(答案不唯一).根据一次函数与反比例函数的图象和性质即可得结论.本题考查了一次函数图象上的点的坐标特征、正比例函数的性质,解决本题的关键是掌握一次函数的图象和性质.16.【答案】>【解析】解:∵反比例函数y=-的图象上有两点(-,y1),(-2,y2),∴y1=-=4,y2=-=1.∵4>1,∴y1>y2.故答案为:>.直接把点(-,y1)和(-2,y2)代入反比例函数y=-,求出y1,y2的值,再比较出其大小即可.本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.17.【答案】3【解析】解:∵y=x2-4x+5=(x-2)2+1,∴h=2,k=1,∴h+k=2+1=3.故答案为:3.利用配方法把二次函数的表达式y=x2-4x+5化为y=a(x-h)2+k的形式,求出h、k的值各是多少,代入代数式计算即可.此题主要考查了二次函数的三种形式,要熟练掌握三种形式之间相互转化的方法.18.【答案】解:(1)将②代入①得:2x+3(4x-5)=-1解得:x=1③将③代入②得:y=4×1-5=-1∴方程组的解为:.(2)①×5+②×2得:15x+8x=100+38∴x=6③将③代入①得:3×6+2y=20∴y=1∴原方程组的解为:.【解析】(1)用代入消元法求解即可;(2)用加减消元法求解即可.本题考查了解二元一次方程组,熟练掌握代入消元法和加减消元法,是解题的关键.19.【答案】解:(1)去括号得:x-2x+8=3-3x,移项合并得:2x=-5,解得:x=-2.5;(2)去分母得:4-3x+1=6+2x,移项合并得:-5x=1,解得:x=-0.2.【解析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.20.【答案】解:设矩形猪舍垂直于住房墙一边长为xm可以得出平行于墙的一边的长为(27-2x+1)m,由题意得x(27-2x+1)=96,解得:x1=6,x2=8,当x=6时,27-2x+1=16>12(舍去),当x=8时,27-2x+1=12.答:所围矩形猪舍的长为12m、宽为8m.【解析】设矩形猪舍垂直于住房墙一边长为xm可以得出平行于墙的一边的长为(27-2x+1)m.根据矩形的面积公式建立方程求出其解就可以了.本题考查了列一元二次方程解实际问题的运用,矩形的面积公式的运用及一元二次方程的解法的运用,解答时寻找题目的等量关系是关键.21.【答案】解:(1)方程两边同乘以x(x-5),则80(x-5)=70x,解得:x=40,检验:当x=40时,x(x-5)≠0,故分式方程的解为x=40.(2)已知甲、乙两人分别生产80个零件和70个零件所用天数相同,且乙每天比甲少生产5个零件,求甲、乙每天各生产多少个零件?【解析】(1)直接利用分式方程的解法解方程得出答案;(2)直接利用工程问题,最好用熟悉的量来编题.此题主要考查了分式方程的应用,编题需注意2点,第一需用熟悉的量,第二分析清等量关系.22.【答案】解:(1)∵BD=OC,OC:OA=2:5,点A(5,0),点B(0,3),∴OA=5,OC=BD=2,OB=3,又∵点C在y轴负半轴,点D在第二象限,∴点C的坐标为(0,-2),点D的坐标为(-2,3).∵点D(-2,3)在反比例函数的图象上,∴a=-2×3=-6,∴反比例函数的表达式为.将A(5,0)、C(0,-2)代入y=kx+b,得,解得:,∴一次函数的表达式为.(2)∵OA=BC=5,OC=BD=2,∠DBC=∠AOC=90°,∴△BDC≌△OCA(SAS),∴∠DCB=∠OAC,DC=CA,∴∠DCA=90°,∴△DCA是等腰直角三角形,∴∠DAC=45°,∴.【解析】(1)由OC、OA、BD之间的关系结合点A、B的坐标可得出点C、D的坐标,由点D的坐标利用反比例函数图象上点的坐标特征可求出a值,进而可得出反比例函数的表达式,再由点A、C的坐标利用待定系数法,即可求出一次函数的表达式;(2)先证得△BDC≌△OCA,得出∠DCB=∠OAC,DC=CA,进一步证得△DCA是等腰直角三角形,解直角三角形即可求得.题考查了待定系数法求一次函数解析式、反比例函数图象上点的坐标特征以及解直角三角形,解题的关键是:(1)由OC、OA、BD之间的关系结合点A、B的坐标找出点C、D的坐标;(2)根据三角形全等,得到△DCA是等腰直角三角形.23.【答案】-8 6 -2【解析】解:(1)∵|a+8|+(b-6)2=0,∴|a+8|=0,(b-6)2=0,即a=-8,b=6.故答案为:-8,6;(2)∵|AB|=6-(-8)=14,=7,∴点A、点B距离折叠点都是7个单位∴原点O与数-2表示的点重合.故答案为:-2.(3)法一:分两种情况讨论:设x秒后A,B两点相距2个单位长度.①A,B两点相遇前相距2个单位长度,则4x+2x=6-(-8)-2解得:x=2②A,B两点相遇后相距2个单位长度,则4x+2x=6-(-8)+2解得:x=答:经过2秒或秒后,A,B两点相距2个单位长度.法二:设x秒后A,B两点相距2个单位长度.此时点A对应的数为-8+4x,点B对应的数为6-2x,则:|(-8+4x)-(6-2x)|=2即:(-8+4x)-(6-2x)=2或(-8+4x)-(6-2x)=-2;解得:x=或x=2答:经过2秒或秒后,A,B两点相距2个单位长度.(4)在运动过程中,AP+2OB-OP的值不会发生变化.由题意可知:t秒后,点A对应的数为-8+4t,点B对应的数为6+2t,点P对应的数7t,则:AP=7t-(-8+4t)=3t+8,OB=6+2t,OP=7t,所以AP+2OB-OP=(3t+8)+2(6+2t)-7t=3t+8+12+4t-7t=20.(1)根据绝对值和平方的非负性和为0求出a、b;(2)计算点A点B间的距离找到折叠点表示的数,确定与点O重合的点表示的数;(3)法一:分类讨论,根据相遇问题列方程解题;法二;根据数轴上两点间的距离公式解题;(4)设t秒后AP+2OB-OP为定值,计算AP+2OB-OP,确定t的值及定值.本题考查了一元一次方程的应用,非负数的性质及数轴上两点间的距离.题目综合性较强,难度较大.解决(1)需利用非负数的性质,解决(3)注意分类思想的运用,解决(4)利用数轴上两点间的距离公式.24.【答案】解:(1)由题意,设y=a(x-1)(x-5),代入A(0,4),得,∴,∴,故顶点E坐标为;(2)∵S△DBC=S△EBC,∴两个三角形在公共边BC上的高相等,又点E到BC的距离为,∴点D到BC的距离也为,则(x-3)2-=,解得x=3±2,则点D或.【解析】(1)设y=a(x-1)(x-5),将点A坐标代入求出a的值,从而得出答案,配方成顶点式可得点E坐标;(2)由S△DBC=S△EBC,且BC为公共边知点D到BC的距离也为,据此得(x-3)2-=,解之求出x的值即可得.本题主要考查待定系数法求函数解析式,解题的关键是掌握二次函数的三种常见形式及二次函数的性质.。
广东省佛山市顺德区2020年中考数学第二次模拟测试试卷(含解析)

2020年中考数学第二次测试试卷一、选择题1.下列等式中不是一元一次方程的是()A.2x﹣5=21B.40+5x=100C.(1+147.30%)x=8930D.x(x+25)=58502.下列说法正确的是()A.如果ab=ac,那么b=c B.如果2x=2a﹣b,那么x=a﹣bC.如果a=b,那么a+2=b+3D.如果,那么b=c3.下列等式变形不正确的是()A.若3x=3y,则x=y B.若x﹣3=y﹣3,则ax=ayC.若x=y,则=D.若ax=ay,则x=y4.已知关于x的方程(m﹣2)x|m﹣1|=0是一元一次方程,则m的值是()A.2B.0C.1D.0或25.一套仪器由一个A部件和三个B部件构成,用1m3钢材可做40个A部件或240个B部件,现要用6m3钢材制作这种仪器,设应用xm3钢材做B部件,其他钢材做A部件,恰好配套,则可列方程为()A.3×40x=240(6﹣x)B.3×240x=40(6﹣x)C.40x=3×240(6﹣x)D.240x=3×40(6﹣x)6.若x=0是方程的解,则k值为()A.0B.2C.3D.47.解方程2x+=2﹣,去分母,得()A.12x+2(x﹣1)=12+3(3x﹣1)B.12x+2(x﹣1)=12﹣3(3x﹣1)C.6x+(x﹣1)=4﹣(3x﹣1)D.12x﹣2(x﹣1)=12﹣3(3x﹣1)8.下列选项错误的是()A.若a>b,b>c,则a>c B.若a>b,则a﹣3>b﹣3C.若a>b,则﹣2a>﹣2b D.若a>b,则﹣2a+3<﹣2b+39.已知关于x的不等式组的整数解共有5个,则a的取值范围是()A.﹣4<a<﹣3B.﹣4≤a<﹣3C.a<﹣3D.﹣4<a<10.下列不等式组的解集中,能用如图所示的数轴表示的是()A.B.C.D.二.填空题(共7小题)11.已知x=3是关于x方程mx﹣8=10的解,则m=.12.x等于数时,代数式的值比的值的2倍小1.13.若方程2x+y=3,2x﹣my=﹣1,3x﹣y=2有公共解,则m的值为.14.方程的解x=.15.请你写出一个函数,使它的图象与直线y=x无公共点,这个函数的表达式为.16.在反比例函数y=﹣的图象上有两点(﹣,y1),(﹣2,y2),则y1y2.(填“>”或“<”)17.把二次函数y=x2﹣4x+5化为y=a(x﹣h)2+k的形式,那么h+k=.三.解答题18.解方程(1)x﹣2(x﹣4)=3(1﹣x)(2)1﹣=19.解下列方程组:(1)(2)20.如图,一农户要建一个矩形猪舍,猪舍的一边利用长为15m的住房墙,另外三边用27m 长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长,宽分别为多少米时,猪舍面积为96m2?21.已知方程.(1)求此方程的解;(2)联系生活实际,编写一道能用上述方程解决的应用题(不需解答).22.如图,已知点D在反比例函数y=的图象上,过点D作DB⊥y轴,垂足为B(0,3),直线y=kx+b经过点A(5,0),与y轴交于点C,且BD=OC,OC:OA=2:5.(1)求反比例函数y=和一次函数y=kx+b的表达式;(2)连结AD,求∠DAC的正弦值.23.如图,在数轴上,点O为原点,点A表示的数为a,点B表示的数为b,且a,b满足|a+8|+(b﹣6)2=0.(1)A,B两点对应的数分别为a=b=(2)若将数轴折叠,使得点A与点B重合.则原点O与数表示的点重合:(3)若点A,B分别以4个单位/秒和2个单位/秒的速度相向面行,则几秒后A,B两点相距2个单位长度?(4)若点A,B以(3)中的速度同时向右运动,同时点P从原点O以7个单位/秒的速度向右运动,设运动时间为t秒,请问:在运动过程中,AP+2OB﹣OP的值是否会发生变化?若变化,请用t表示这个值:若不变.请求出这个定值.24.如图,在直角坐标系中,抛物线经过点A(0,4),B(1,0),C(5,0)(1)求抛物线的解析式和顶点E坐标;(2)该抛物线有一点D,使得S△DBC=S△EBC,求点D的坐标.参考答案一.选择题(共10小题,每小题3分)1.下列等式中不是一元一次方程的是()A.2x﹣5=21B.40+5x=100C.(1+147.30%)x=8930D.x(x+25)=5850【分析】利用一元一次方程方程的定义判断即可.解:x(x+25)=5850是一元二次方程,故选:D.2.下列说法正确的是()A.如果ab=ac,那么b=cB.如果2x=2a﹣b,那么x=a﹣bC.如果a=b,那么a+2=b+3D.如果,那么b=c【分析】根据等式的性质,逐项判断即可.解:∵如果ab=ac,那么b=c或b≠c(a=0),∴选项A不符合题意;∵如果2x=2a﹣b,那么x=a﹣0.5b,∴选项B不符合题意;∵如果a=b,那么a+2=b+2,∴选项C不符合题意;∵如果,那么b=c,∴选项D符合题意.故选:D.3.下列等式变形不正确的是()A.若3x=3y,则x=yB.若x﹣3=y﹣3,则ax=ayC.若x=y,则=D.若ax=ay,则x=y【分析】根据等式的性质,逐项判断,判断出所给的等式变形不正确的是哪个即可.解:∵若3x=3y,则x=y,∴选项A不符合题意;∵若x﹣3=y﹣3,则x=y,∴ax=ay,∴选项B不符合题意;∵若x=y,则=,∴选项C不符合题意;∵ax=ay,a=0时,x可以不等于y,∴选项D符合题意.故选:D.4.已知关于x的方程(m﹣2)x|m﹣1|=0是一元一次方程,则m的值是()A.2B.0C.1D.0或2【分析】根据一元一次方程的定义,得到关于m﹣1的绝对值的方程,利用绝对值的定义,解之,把m的值代入m﹣2,根据是否为0,即可得到答案.解:根据题意得:|m﹣1|=1,整理得:m﹣1=1或m﹣1=﹣1,解得:m=2或0,把m=2代入m﹣2得:2﹣2=0(不合题意,舍去),把m=0代入m﹣2得:0﹣2=﹣2(符合题意),即m的值是0,故选:B.5.一套仪器由一个A部件和三个B部件构成,用1m3钢材可做40个A部件或240个B部件,现要用6m3钢材制作这种仪器,设应用xm3钢材做B部件,其他钢材做A部件,恰好配套,则可列方程为()A.3×40x=240(6﹣x)B.3×240x=40(6﹣x)C.40x=3×240(6﹣x)D.240x=3×40(6﹣x)【分析】设应用xm3钢材做B部件,则应用(6﹣x)m3钢材做A部件,根据一个A部件和三个B部件刚好配成套,列方程求解.解:设应用xm3钢材做B部件,则应用(6﹣x)m3钢材做A部件,由题意得,240x=3×40(6﹣x)故选:D.6.若x=0是方程的解,则k值为()A.0B.2C.3D.4【分析】将x=0代入方程即可求得k的值.解:把x=0代入方程,得1﹣=解得k=3.故选:C.7.解方程2x+=2﹣,去分母,得()A.12x+2(x﹣1)=12+3(3x﹣1)B.12x+2(x﹣1)=12﹣3(3x﹣1)C.6x+(x﹣1)=4﹣(3x﹣1)D.12x﹣2(x﹣1)=12﹣3(3x﹣1)【分析】根据去分母的方法:方程两边的每一项都乘以6即可.解:方程2x+=2﹣,去分母,得12x+2(x﹣1)=12﹣3(3x﹣1)故选:B.8.下列选项错误的是()A.若a>b,b>c,则a>c B.若a>b,则a﹣3>b﹣3C.若a>b,则﹣2a>﹣2b D.若a>b,则﹣2a+3<﹣2b+3【分析】根据不等式的基本性质,逐项判断即可.解:∵a>b,b>c,则a>c,∴选项A不符合题意;∵a>b,则a﹣3>b﹣3,∴选项B不符合题意;∵a>b,则﹣2a<﹣2b,∴选项C符合题意;∵a>b,∴﹣2a<﹣2b,∴﹣2a+3<﹣2b+3,∴选项D不符合题意.故选:C.9.已知关于x的不等式组的整数解共有5个,则a的取值范围是()A.﹣4<a<﹣3B.﹣4≤a<﹣3C.a<﹣3D.﹣4<a<【分析】求出不等式组的解集,根据不等式组的解集和已知不等式组的整数解有5个即可得出a的取值范围是﹣4≤a<﹣3.解:解不等式x﹣a>0,得:x>a,解不等式3﹣2x>0,得:x<1.5,∵不等式组的整数解有5个,∴﹣4≤a<﹣3.故选:B.10.下列不等式组的解集中,能用如图所示的数轴表示的是()A.B.C.D.【分析】先求出每个不等式的解集,再求出不等式组的解集,再根据数轴判断即可.解:由数轴可得:﹣2<x≤1,故选:D.二.填空题(共7小题)每小题4分11.已知x=3是关于x方程mx﹣8=10的解,则m=6.【分析】将x=3代入原方程即可求出答案.解:将x=3代入mx﹣8=10,∴3m=18,∴m=6,故答案为:612.x等于数时,代数式的值比的值的2倍小1.【分析】根据题意列出方程,求出方程的解即可得到x的值.解:根据题意得:=2×﹣1,即=﹣1,去分母得:2(3x﹣2)=3(4x﹣1)﹣6,去括号得:6x﹣4=12x﹣3﹣6,移项合并得:﹣6x=﹣5,解得:x=,故答案为:13.若方程2x+y=3,2x﹣my=﹣1,3x﹣y=2有公共解,则m的值为3.【分析】直接利用二元一次方程组的解法得出答案.解:∵方程2x+y=3,2x﹣my=﹣1,3x﹣y=2有公共解,∴,①+②得:x=1,故y=1,故方程组的解为:,故2﹣m=﹣1,解得:m=3.故答案为:3.14.方程的解x=﹣.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解:去分母得:x2﹣2x﹣x2+4=3x+6,解得:x=﹣,经检验x=﹣是分式方程的解,故答案为:﹣15.请你写出一个函数,使它的图象与直线y=x无公共点,这个函数的表达式为(答案不唯一).【分析】根据一次函数与反比例函数的图象和性质即可得结论.解:∵直线y=x的图象经过一、三象限,并过原点,y=﹣的图象经过二、四象限,不过原点,∴函数y=﹣的图象与直线y=x无公共点.故答案为y=﹣(答案不唯一).16.在反比例函数y=﹣的图象上有两点(﹣,y1),(﹣2,y2),则y1>y2.(填“>”或“<”)【分析】直接把点(﹣,y1)和(﹣2,y2)代入反比例函数y=﹣,求出y1,y2的值,再比较出其大小即可.解:∵反比例函数y=﹣的图象上有两点(﹣,y1),(﹣2,y2),∴y1=﹣=4,y2=﹣=1.∵4>1,∴y1>y2.故答案为:>.17.把二次函数y=x2﹣4x+5化为y=a(x﹣h)2+k的形式,那么h+k=3.【分析】利用配方法把二次函数的表达式y=x2﹣4x+5化为y=a(x﹣h)2+k的形式,求出h、k的值各是多少,代入代数式计算即可.解:∵y=x2﹣4x+5=(x﹣2)2+1,∴h=2,k=1,∴h+k=2+1=3.故答案为:3.三.解答题18.解方程(1)x﹣2(x﹣4)=3(1﹣x)(2)1﹣=【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.解:(1)去括号得:x﹣2x+8=3﹣3x,移项合并得:2x=﹣5,解得:x=﹣2.5;(2)去分母得:4﹣3x+1=6+2x,移项合并得:﹣5x=1,解得:x=﹣0.2.19.解下列方程组:(1)(2)【分析】(1)用代入消元法求解即可;(2)用加减消元法求解即可.解:(1)将②代入①得:2x+3(4x﹣5)=﹣1解得:x=1③将③代入②得:y=4×1﹣5=﹣1∴方程组的解为:.(2)①×5+②×2得:15x+8x=100+38∴x=6③将③代入①得:3×6+2y=20∴y=1∴原方程组的解为:.20.如图,一农户要建一个矩形猪舍,猪舍的一边利用长为15m的住房墙,另外三边用27m 长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长,宽分别为多少米时,猪舍面积为96m2?【分析】设矩形猪舍垂直于住房墙一边长为xm可以得出平行于墙的一边的长为(27﹣2x+1)m.根据矩形的面积公式建立方程求出其解就可以了.解:设矩形猪舍垂直于住房墙一边长为xm可以得出平行于墙的一边的长为(27﹣2x+1)m,由题意得x(27﹣2x+1)=96,解得:x1=6,x2=8,当x=6时,27﹣2x+1=16>12(舍去),当x=8时,27﹣2x+1=12.答:所围矩形猪舍的长为12m、宽为8m.21.已知方程.(1)求此方程的解;(2)联系生活实际,编写一道能用上述方程解决的应用题(不需解答).【分析】(1)直接利用分式方程的解法解方程得出答案;(2)直接利用工程问题,最好用熟悉的量来编题.解:(1)方程两边同乘以x(x﹣5),则80(x﹣5)=70x,解得:x=40,检验:当x=40时,x(x﹣5)≠0,故分式方程的解为x=40.(2)已知甲、乙两人分别生产80个零件和70个零件所用天数相同,且乙每天比甲少生产5个零件,求甲、乙每天各生产多少个零件?22.如图,已知点D在反比例函数y=的图象上,过点D作DB⊥y轴,垂足为B(0,3),直线y=kx+b经过点A(5,0),与y轴交于点C,且BD=OC,OC:OA=2:5.(1)求反比例函数y=和一次函数y=kx+b的表达式;(2)连结AD,求∠DAC的正弦值.【分析】(1)由OC、OA、BD之间的关系结合点A、B的坐标可得出点C、D的坐标,由点D的坐标利用反比例函数图象上点的坐标特征可求出a值,进而可得出反比例函数的表达式,再由点A、C的坐标利用待定系数法,即可求出一次函数的表达式;(2)先证得△BDC≌△OCA,得出∠DCB=∠OAC,DC=CA,进一步证得△DCA是等腰直角三角形,解直角三角形即可求得.解:(1)∵BD=OC,OC:OA=2:5,点A(5,0),点B(0,3),∴OA=5,OC=BD=2,OB=3,又∵点C在y轴负半轴,点D在第二象限,∴点C的坐标为(0,﹣2),点D的坐标为(﹣2,3).∵点D(﹣2,3)在反比例函数的图象上,∴a=﹣2×3=﹣6,∴反比例函数的表达式为.将A(5,0)、C(0,﹣2)代入y=kx+b,得,解得:,∴一次函数的表达式为.(2)∵OA=BC=5,OC=BD=2,∠DBC=∠AOC=90°,∴△BDC≌△OCA(SAS),∴∠DCB=∠OAC,DC=CA,∴∠DCA=90°,∴△DCA是等腰直角三角形,∴∠DAC=45°,∴.23.如图,在数轴上,点O为原点,点A表示的数为a,点B表示的数为b,且a,b满足|a+8|+(b﹣6)2=0.(1)A,B两点对应的数分别为a=﹣8b=6(2)若将数轴折叠,使得点A与点B重合.则原点O与数﹣2表示的点重合:(3)若点A,B分别以4个单位/秒和2个单位/秒的速度相向面行,则几秒后A,B两点相距2个单位长度?(4)若点A,B以(3)中的速度同时向右运动,同时点P从原点O以7个单位/秒的速度向右运动,设运动时间为t秒,请问:在运动过程中,AP+2OB﹣OP的值是否会发生变化?若变化,请用t表示这个值:若不变.请求出这个定值.【分析】(1)根据绝对值和平方的非负性和为0求出a、b;(2)计算点A点B间的距离找到折叠点表示的数,确定与点O重合的点表示的数;(3)法一:分类讨论,根据相遇问题列方程解题;法二;根据数轴上两点间的距离公式解题;(4)设t秒后AP+2OB﹣OP为定值,计算AP+2OB﹣OP,确定t的值及定值.解:(1)∵|a+8|+(b﹣6)2=0,∴|a+8|=0,(b﹣6)2=0,即a=﹣8,b=6.故答案为:﹣8,6;(2)∵|AB|=6﹣(﹣8)=14,=7,∴点A、点B距离折叠点都是7个单位∴原点O与数﹣2表示的点重合.故答案为:﹣2.(3)法一:分两种情况讨论:设x秒后A,B两点相距2个单位长度.①A,B两点相遇前相距2个单位长度,则4x+2x=6﹣(﹣8)﹣2解得:x=2②A,B两点相遇后相距2个单位长度,则4x+2x=6﹣(﹣8)+2解得:x=答:经过2秒或秒后,A,B两点相距2个单位长度.法二:设x秒后A,B两点相距2个单位长度.此时点A对应的数为﹣8+4x,点B对应的数为6﹣2x,则:|(﹣8+4x)﹣(6﹣2x)|=2即:(﹣8+4x)﹣(6﹣2x)=2或(﹣8+4x)﹣(6﹣2x)=﹣2;解得:x=或x=2答:经过2秒或秒后,A,B两点相距2个单位长度.(4)在运动过程中,AP+2OB﹣OP的值不会发生变化.由题意可知:t秒后,点A对应的数为﹣8+4t,点B对应的数为6+2t,点P对应的数7t,则:AP=7t﹣(﹣8+4t)=3t+8,OB=6+2t,OP=7t,所以AP+2OB﹣OP=(3t+8)+2(6+2t)﹣7t=3t+8+12+4t﹣7t=20.24.如图,在直角坐标系中,抛物线经过点A(0,4),B(1,0),C(5,0)(1)求抛物线的解析式和顶点E坐标;(2)该抛物线有一点D,使得S△DBC=S△EBC,求点D的坐标.【分析】(1)设y=a(x﹣1)(x﹣5),将点A坐标代入求出a的值,从而得出答案,配方成顶点式可得点E坐标;(2)由S△DBC=S△EBC,且BC为公共边知点D到BC的距离也为,据此得(x﹣3)2﹣=,解之求出x的值即可得.解:(1)由题意,设y=a(x﹣1)(x﹣5),代入A(0,4),得,∴,∴,故顶点E坐标为;(2)∵S△DBC=S△EBC,∴两个三角形在公共边BC上的高相等,又点E到BC的距离为,∴点D到BC的距离也为,则(x﹣3)2﹣=,解得x=3±2,则点D或.。
2020年广东省佛山市中考数学模拟试卷及答案

2020年广东省佛山市中考数学模拟试卷
(本卷满分120分,考试时间100分钟)
一、选择题(本大题共10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的.
1.﹣的相反数是()
A.1.5 B .C.﹣1.5 D .﹣
2.有理数a,b在数轴上对应点的位置如图,下列各式正确的是()
A.a+b<0 B.a﹣b<0 C.a•b>0 D .>0
3.下列图形既是轴对称图形,又是中心对称图形的是()
A.三角形B.菱形C.角D.平行四边形
4.今年“五一”假期,我市某主题公园共接待游客77 800人次,将77 800用科学记数法表示为()
A.0.778×105B.7.78×104C.77.8×103D.778×102
5.如图,三角板的直角顶点落在矩形纸片的一边上.若∠1=35°,则∠2的度数是()
A.35°B.45°C.55°D.65°
6.某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是()
A.9分 B.8分 C.7分 D.6分
7.在平面直角坐标系中,点(1,5)所在的象限是()
A.第一象限B.第二象限C.第三象限D.第四象限
8.如图,A,B,C是小正方形的顶点,且每个小正方形的边长为1,则tan∠BAC 的值为()
第1 页共13 页。
广东省佛山市2020届中考数学仿真模拟试卷 (含解析)

广东省佛山市2020届中考数学仿真模拟试卷一、选择题(本大题共10小题,共30.0分)1.−2011的相反数是()A. −2011B. −12011C. 2011 D. 120112.数据−1,0,0,1,2的中位数是()A. −1B. 0C. 1D. 23.点M(−1,−2)关于x轴对称的点的坐标为()A. (−1,−2)B. (1,−2)C. (−1,2)D. (1,2)4.若多边形的边数增加1,则其内角和的度数()A. 增加180°B. 其内角和为360°C. 其内角和不变D. 其外角和减少5.使式子√3x+2有意义的实数x的取值范围是()A. x≥0B. x>−23C. x≥−32D. x≥−236.若以△ABC各边中点为顶点的三角形的周长是18cm,则△ABC的周长是()A. 9cmB. 36cmC. 54cmD. 72cm7.抛物线y=(x+1)2的图象向左平移2个单位,再向上平移2个单位,所得图象的解析式为y=x2+bx+c,则b、c的值为()A. b=6,c=7B. b=−6,c=−11C. b=6,c=11D. b=−6,c=118.不等式组{3x−1≥x+1x+4<4x−2的解集是()A. x>2B. x≥1C. 1≤x<2D. x≥−19.如图,正方形ABCD中,AB=1,M,N分别是AD,BC边的中点,沿BQ将△BCQ折叠,若点C恰好落在MN上的点P处,则PQ的长为()A. 12B. √33C. 13D. √310.如图,抛物线y=ax2+bx+c与x轴交于点(−1,0),对称轴为x=1,则下列结论中正确的是()A. a>0B. 当x>1时,y随x的增大而增大C. c<0D. x=3是一元二次方程ax2+bx+c=0的一个根二、填空题(本大题共7小题,共28.0分)11.分解因式:3x2−6xy=______ .12.若单项式2a x+1b与−3a3b y+4是同类项,则x y=______.13.已知√2a+8+|b−√3|=0,则ab=______.14.若2x+3y的值为−2,则4x+6y+2的值为______ .BC长为半径画弧,两弧15.如图,分别以线段BC的两个端点为圆心,以大于12分别相交于D、E两点,直线DE交BC于点F,点A是直线DE上的一点,连接AB、AC,若AB=12cm,∠C=60°,则CF=______cm.16.如图,有一直径是√2米的圆形铁皮,现从中剪出一个圆周角是90°的最大扇形ABC,则:(1)AB的长为______ 米;(2)用该扇形铁皮围成一个圆锥,所得圆锥的底面圆的半径为______米.17.如图,在平面直角坐标系中,A(4,0)、B(0,−3),以点B为圆心、2为半径的⊙B上有一动点P.连接AP,若点C为AP的中点,连接OC,则OC的最小值为______.三、计算题(本大题共1小题,共6.0分)18.先化简,再求值:(x+2y)(x−2y)+(20xy3−8x2y2)÷4xy,其中x=2018,y=2019.四、解答题(本大题共7小题,共56.0分)19.某中学为了解该校学生一年的课外阅读量,随机抽取了n名学生进行调查,并将调查结果绘制成如下条形统计图,根据统计图提供的信息解答下列问题:(1)求n的值;(2)根据统计结果,估计该校1100名学生中一年的课外阅读量超过10本的人数.20.如图,已知AB=AC,AD=AE,BD和CE相交于点O.(1)求证:△ABD≌△ACE;(2)判断△BOC的形状,并说明理由.21. 已知方程组{5x +y =3ax +5y =4与方程组{x −2y =55x +by =1有相同的解,求a 、b 的值.22. 在⊙O 中,弦AB 与弦CD 交于点G ,OA ⊥CD 于点E ,过点B 的直线交CD 的延长线于点F ,且FG =FB .(1)如图1,求证:BF 为⊙O 的切线:(2)如图2,连接BD 、AC ,若BD =BG ,求证:AC//BF ;(3)在(2)的条件下,若,CD =1,求⊙O 的半径.23.某社区去年购买了A,B两种型号的共享单车,购买A种单车共花15000元,购买B种单车共花费14000元,购买A种单车的数量是购买B种单车数量的1.5倍,且购买一辆A种单车比购买一辆B种单车少200元.(1)求去年购买一辆A种和一辆B种单车各需要多少元?(2)为积极响应政府提出的“绿色发展·低碳出行”号召,该社区决定今年再买A,B两种型号的单车共60辆,恰逢厂家对A,B两种型号单车的售价进行调整,A种单车售价比去年购买时提高了10%,B种单车售价比去年购买时降低了10%,如果今年购买A,B两种单车的总量用不超过34000元,那么该社区今年最多购买多少辆B种单车?24.如图,已知直线y=−x+4与反比例函数y=k的图象相交于点A(−2,a),并且与x轴相交于点xB.(1)求a的值.(2)求反比例函数的表达式(3)求△AOB的面积.25.如图,抛物线y=−x2+5x+n经过点A(1,0),与y轴交于点B.(1)求抛物线的解析式;(2)求抛物线的对称轴和顶点坐标;(3)P是y轴正半轴上一点,且△PAB是以AB为腰的等腰三角形,试求点P的坐标.-------- 答案与解析 --------1.答案:C解析:本题主要考查了相反数的定义,a的相反数是−a.根据相反数的定义即可求解.解:−2011的相反数是2011.故选C.2.答案:B解析:解:从小到大排列为:−1,0,0,1,2,则处于中间位置的是第3个数,所以中位数是0,故选B.先把这组数据从小到大排列起来,再根据中位数的定义进行解答即可.本题考查了中位数的定义:掌握中位数的定义即把数据按从小到大排列,最中间那个数或最中间两个数的平均数叫这组数据的中位数是解题的关键.3.答案:C解析:解:点M(−1,−2)关于x轴对称的点的坐标为(−1,2).故选:C.根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答.本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数.4.答案:A解析:解:是多边形的边数为n,则原多边形的内角和为(n−2)⋅180°,边数增加后的多边形的内角和为(n+1−2)⋅180°,∴(n+1−2)⋅180°−(n−2)⋅180°=180°,∴其内角和的度数增加180°.故选:A.根据多边形的内角和公式(n−2)⋅180°列式求解即可.本题考查了多边形的内角和公式,熟记公式是解题的关键.5.答案:D解析:根据被开方数大于等于0列式计算即可得解.本题考查的知识点为:二次根式有意义的条件,二次根式的被开方数是非负数.解:由题可得,3x+2≥0,x≥−2,3故选D6.答案:B解析:本题考查了三角形的中位线定理,根据中点判断出中位线,再利用中位线定理是解题的关键.如图:根据D、E、F分别是AB、AC、BC的中点,可以判断DF、FE、DE为三角形中位线,利用中位线定理求出DF、FE、DE与AB、BC、CA的长度关系即可解答.解:如图:∵D、E、F分别是AB、BC、AC的中点,∴ED、FE、DF为△ABC中位线,∴BC=2DF,AB=2EF,AC=2DE;∴AB+BC+AC=2EF+2DF+2DE=2(EF+DF+DE)=2×18=36.故选B.7.答案:C解析:此题主要考查了二次函数图象与几何变换,关键是掌握“左加右减,上加下减”的平移规律.根据平移的规律求得解析式,化成一般式即可求得.解:∵抛物线y=(x+1)2的图象向左平移2个单位,再向上平移2个单位,所得图象的解析式为y= (x+1+2)2+2,即y=x2+6x+11,∴b=6,c=11.故选C.8.答案:A解析:解:解不等式3x−1≥x+1,得:x≥1,解不等式x+4<4x−2,得:x>2,则不等式组的解集为x>2,故选:A.分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9.答案:B解析:本题主要考查了折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.由折叠的性质知∠BPQ=∠C=90°,利用直角三角形中的cos∠PBN=BN:PB=1:2,可求得∠PBN=60°,∠PBQ=30°,从而求出PQ=PBtan30°=1√3.3∠PBC,BC=PB=2BN=1,∠BPQ=∠C=90°,解:∵∠CBQ=∠PBQ=12∴cos∠PBN=BN:PB=1:2,∴∠PBN=60°,∠PBQ=30°,∴PQ=PBtan30°=1√3.3故选:B.10.答案:D解析:解:A、根据图象,二次函数开口方向向下,∴a<0,故本选项错误;B、当x>1时,y随x的增大而减小,故本选项错误;C、根据图象,抛物线与y轴的交点在正半轴,∴c>0,故本选项错误;D、∵抛物线与x轴的一个交点坐标是(−1,0),对称轴是x=1,设另一交点为(x,0),−1+x=2×1,x=3,∴另一交点坐标是(3,0),∴x=3是一元二次方程ax2+bx+c=0的一个根,故本选项正确.故选D.根据二次函数图象的开口方向向下可得a是负数,与y轴的交点在正半轴可得c是正数,根据二次函数的增减性可得B选项错误,根据抛物线的对称轴结合与x轴的一个交点的坐标可以求出与x轴的另一交点坐标,也就是一元二次方程ax2+bx+c=0的根,从而得解.本题主要考查了二次函数图象与系数的关系,二次函数图象的增减性,抛物线与x轴的交点问题,熟记二次函数的性质以及函数图象与系数的关系是解题的关键.11.答案:3x(x−2y)解析:解:3x2−6xy=3x(x−2y).故答案为:3x(x−2y).直接找出公因式提取进而得出答案.此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.12.答案:18解析:解:单项式2a x+1b与−3a3b y+4是同类项,∴x+1=3,y+4=1,∴x=2,y=−3.∴x y=2−3=1.8.故答案为:18依据同类项的相同字母指数相同列方程求解即可.本题主要考查的是同类项的定义,熟练掌握同类项的定义是解题的关键.13.答案:−4√3解析:解:∵√2a+8+|b−√3|=0,∴2a+8=0,b−√3=0,解得a=−4,b=√3,ab=−4√3,故答案为−4√3.先根据非负数的性质求出a,b的值,代入求得ab的值.本题考查了非负数的性质,几个非负数的和为0,这几个数都为0.14.答案:−2解析:解:∵2x+3y=−2,∴原式=2(2x+3y)+2=2×(−2)+2=−2,故答案为:−2.将2x+3y=−2整体代入原式=2(2x+3y)+2即可得出答案.本题主要考查代数式的求值,熟练掌握整体代入的思想是解题的关键.15.答案:6解析:解:由作图可知:AE垂直平分线段BC,∴AB=AC,BF=CF,∴∠B=∠C=60°,∵AB=12cm,∠BAF=90°−60°=30°,∴BF=12AB=6(cm)故答案为:6.首先证明AB=AC,BF=CF,在Rt△ABF中求出BF即可解决问题.本题考查作图−基本作图,线段的垂直平分线的性质等知识,解题的关键是熟练掌握五种基本作图,属于中考常考题型.16.答案:(1)1;(2)14解析:解:(1)∵∠BAC=90°,∴BC为⊙O的直径,即BC=√2,∴AB=√22BC=1;故答案为:1(2)设所得圆锥的底面圆的半径为r,根据题意得2πr=90⋅π⋅1180,解得r=14.故答案为:14.(1)根据圆周角定理由∠BAC=90°得BC为⊙O的直径,即BC=√2,根据等腰直角三角形的性质得AB=1;(2)由于圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,则2πr=90⋅π⋅1,然后解180方程即可.本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了圆周角定理.17.答案:1.5解析:本题考查了图形与坐标的性质、勾股定理、直角三角形斜边上的中线等于斜边的一半的性质、圆的性质、两点之间线段最短,确定出OC最小时点C的位置是解题关键,也是本题的难点.先确定点C的运动路径是:以D为圆心,以DC1为半径的圆,当O、C、D共线时,OC的长最小,先求⊙D的半径为1,说明D是AB的中点,根据直角三角形斜边中线是斜边一半可得OD=2.5,所以OC的最小值是1.5.解:当点P运动到AB的延长线上时,即如图中点P1,C1是AP1的中点,当点P在线段AB上时,C2是中点,取C1C2的中点为D,点C的运动路径是以D为圆心,以DC1为半径的圆,当O、C、D共线时,OC的长最小,设线段AB交⊙B于Q,Rt△AOB中,OA=4,OB=3,∴AB=5,∵⊙B的半径为2,∴BP1=2,AP1=5+2=7,∵C1是AP1的中点,∴AC1=3.5,AQ=5−2=3,∵C2是AQ的中点,∴AC2=C2Q=1.5,C1C2=3.5−1.5=2,即⊙D的半径为1,∵AD=1.5+1=2.5=1AB,2AB=2.5,∴OD=12∴OC=2.5−1=1.5,故答案为:1.5.18.答案:解:原式=x2−4y2+5y2−2xy=x2−2xy+y2,=(x−y)2,当x=2018,y=2019时,原式=(2018−2019)2=(−1)2=1.解析:先根据整式的混合运算顺序和运算法则化简原式,再将x与y的值代入计算可得.本题主要考查整式的混合运算−化简求值,解题的关键是熟练掌握整式的混合运算顺序和运算法则.19.答案:解:(1)根据题意得:n=6+33+26+20+15=100,答:n的值为100;×1100=385(人),(2)根据题意得:20+15100答:估计该校1100名学生中一年的课外阅读量超过10本的人数为385人.解析:(1)可直接由条形统计图,求得n的值;(2)首先求得统计图中课外阅读量超过10本的人数所占的百分比,继而求得答案.此题考查了条形统计图的知识以及由样本估计总体的知识.注意能准确分析条形统计图是解此题的关键.20.答案:证明:(1)∵AB=AC,∠BAD=∠CAE,AD=AE,∴△ABD≌△ACE(SAS);(2)△BOC是等腰三角形,理由如下:∵△ABD≌△ACE,∴∠ABD=∠ACE,∵AB=AC,∴∠ABC=∠ACB,∴∠ABC−∠ABD=∠ACB−∠ACE,∴∠OBC=∠OCB,∴BO=CO,∴△BOC 是等腰三角形.解析:(1)由“SAS ”可证△ABD≌△ACE ;(2)由全等三角形的性质可得∠ABD =∠ACE ,由等腰三角形的性质可得∠ABC =∠ACB ,可求∠OBC =∠OCB ,可得BO =CO ,即可得结论.本题考查了全等三角形的判定和性质,等腰三角形的判定和性质,灵活运用全等三角形的性质是本题的关键.21.答案:解:由题意得出:方程组{5x +y =3x −2y =5的解与题中两方程组解相同,解得:{x =1y =−2, 将x =1,y =−2代入ax +5y =4,解得:a −10=4,∴a =14,将x =1,y =−2,代入5x +by =1,得5−2b =1,∴b =2.解析:根据题意得出方程组{5x +y =3x −2y =5的解与题中两方程组解相同,进而得出x ,y 的值代入另两个方程求出a ,b 的值即可.此题主要考查了二元一次方程的解,根据题意得出两方程的同解方程是解题关键.22.答案:证明:(1)如图,连接OB ,∵FG =FB ,∴∠FGB =∠FBG ,∵OA =OB ,∴∠OAB =∠OBA ,∵OA ⊥CD ,∴∠OAB +∠AGC =90°,又∵∠FGB =∠FBG ,∠FGB =∠AGC ,∴∠FBG+∠OBA=90°,即∠OBF=90°,∴OB⊥FB,∵AB是⊙O的弦,∴点B在⊙O上,∴BF是⊙O的切线;(2)∵BD=BG,∴∠DGB=∠GDB,∵∠CAB和∠BDC都是弧BC所对的圆周角,∴∠CAB=∠BDC,∴∠CAB=∠FGB,∵∠FGB=∠FBG,∴∠CAB=∠GBF,∴AC//FB;(3)∵OA⊥CD,CD=1,∴CE=CD=.∵AC//BF,∴∠ACE=∠F,∴tan∠ACE=tan∠F,∵tan∠F=,∴tan∠ACE=,∴,即,∴AE=.如图,连接OC,设⊙O的半径为R,在Rt△CEO中,CO2=CE2+OE2,即,解得R=,即⊙O的半径为.解析:本题考查的是圆的综合题,涉及到切线的判定,垂径定理,勾股定理,锐角三角函数定义,圆周角定理,平行线的判定,熟练掌握和各种几何图形有关的定理及性质是解本题的关键.(1)连接OC,OB,根据等边对等角可得∠OAB=∠OBA,然后根据OA⊥CD得到∠OAB+∠AGC=90°,推出∠FBG+∠OBA=90°,从而得到OB⊥FB,再根据切线的定义证明即可;(2)由已知条件易证∠DGB=∠GDB,因为∠CAB和∠BDC都是弧BC所对的圆周角,所以∠CAB=∠BDC,进而可证明∠CAB=∠GBF,则AC//BF;(3)根据垂径定理求得CE=.再根据已知条件易证∠ACE=∠F,所以tan∠F=tan∠ACE=,易求AE的长度.设⊙O的半径为R,在Rt△CEO中,CO2=CE2+OE2,,解方程求出R的值即可.23.答案:解:(1)设购买一辆B型单车的成本为x元,则购买一辆A型单车的成本为(x−200)元,可得:15000 x−200=1.5×14000x,解得:x=700,经检验x=700是原方程的解,700−200=500,答:去年购买一辆A种和一辆B种单车各需要500元,700元;(2)设购买B型单车m辆,则购买A型单车(60−m)辆,可得;700×(1−10%)m+500×(1+10%)(60−m)≤34000,解得:m≤12.5,∵m是正整数,∴m的最大值是12,答:该社区今年最多购买B种单车12辆.解析:本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)根据数量=总价÷单价列出关于x的分式方程:(2)根据总价=单价×数量结合总成本不超过3.4万元,列出关于m的一元一次不等式.(1)设购买一辆B型单车的成本为x元,则购买一辆A型单车的成本为(x−200)元,根据数量=总价÷单价,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设购买B型单车m辆,则购买A型单车(60−m)辆,根据购买A、B两种单车的总费用不超过34000元,即可得出关于m的一元一次不等式,解之即可得出结论;24.答案:(1)6;(2)y=−12x;(3)12.解析:[分析](1)点A在直线y=−x+4,故点A(−2,a)满足y=−x+4即可(2)用待定系数法,把(1)中点A的坐标代入y=kx即可(3)△AOB的面积=底×高÷2,过A点作AD⊥x轴于D,求出AD,OB即可.[详解]解:(1)将A(−2,a)代入y=−x+4中,得:a=−(−2)+4所以a=6.(2)由(1)得:A(−2,6),将A(−2,6)代入y=kx 中,得到6=k−2即k=−12,所以反比例函数的表达式为:y=−12x,(3)如图:过A点作AD⊥x轴于D;因为A(−2,6)所以 AD =6,在直线y =−x +4中,令y =0,得x =4,所以B(4,0)即OB =4 ,所以△AOB 的面积S =12OB ×AD =12×4×6=12.[点睛]熟练掌握解析式的求法,在进行与线段有关的计算时,注意点的坐标与线段长度的关系.25.答案:解:(1)由题意得,−1+5+n =0,解得,n =−4,∴抛物线的解析式为y =−x 2+5x −4;(2)y =−x 2+5x −4=−(x −52)2+94, 抛物线对称轴为:x =52,顶点坐标为 (52,94);(3)∵点A 的坐标为(1,0),点B 的坐标为(0,−4),∴OA =1,OB =4,在Rt △OAB 中,AB =√OA 2+OB 2=√17,①当PB =PA 时,PB =√17,∴OP =PB −OB =√17−4,此时点P 的坐标为(0,√17−4),②当PA =AB 时,OP =OB =4,此时点P 的坐标为(0,4).解析:本题考查的是待定系数法求函数解析式、定义三角形的性质,掌握待定系数法求出函数解析式的一般步骤、灵活运用分情况讨论思想是解题的关键.(1)把点A 的坐标代入解析式,计算即可;(2)利用配方法把一般式化为顶点式,根据二次函数的性质解答;(3)分PB =PA 、PA =AB 两种情况,根据等腰三角形的性质解答.。
广东省佛山市2020年中考数学模拟试卷解析版

还要了解这 9 名学生成绩的( )
A. 中位数
B. 方差
C. 平均数
D. 众数
7. 在平面直角坐标系中,点(-6,5)关于原点的对称点的坐标是( )
A. (6,5)
B. (6,5)
C. (6,-5)
D. (-6,-5)
8. 已知方程 mx+2y=-2,当 x=3 时 y=5,那么 m 为( )
4.【答案】B
【解析】解:数据中 5 出现的次数最多,所以众数为 5, 将数据重新排列为 2、3、4、4、5、5、5、8,
则中位数为 =4.5,
故选:B. 根据众数和中位数的定义分别进行解答即可. 此题考查了众数和中位数,众数是一组数据中出现次数最多的数;中位数是将一组数据 从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫 做这组数据的中位数.
3.【答案】C
【解析】【分析】 此题考查了平方根、立方根,熟练掌握各自的性质是解本题的关键.利用平方根,立方 根定义计算即可求出值. 【解答】 解:A、-0.064 的立方根是-0.4,不符合题意; B、-9 没有平方根,不符合题意; C、16 的立方根是 ,符合题意; D、0.01 的立方根是 ,不符合题意, 故选:C.
23. 如图,四边形 ABCD 中,AB=20,BC=15,CD=7, AD=24,∠B=90°. (1)判断∠D 是否是直角,并说明理由. (2)求四边形 ABCD 的面积.
第 3 页,共 10 页
第 4 页,共 10 页
1.【答案】D
答案和解析
【解析】解:在数 0.51515354…、0、0. 、3π、 、6.1010010001…、 、 中,无理
18.
.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学模拟试卷题号一二三总分得分一、选择题(本大题共10小题,共30.0分)1.下列计算正确的是()A. -|-3|=-3B. 30=0C. 3-1=-3D. =±32.如图,AB∥CD,∠CDE=140°,则∠A的度数为()A. 140°B. 60°C. 50°D. 40°3.估计+1的值在()A. 2 到3 之间B. 3 到4 之间C. 4 到5 之间D. 5 到6 之间4.一元二次方程x2-6x-5=0配方后可变形为()A. (x-3)2=14B. (x-3)2=4C. (x+3)2=14D. (x+3)2=45.点P(2,-3)关于原点对称的点的坐标是()A. (-2,-3)B. (2,3)C. (-2,3)D. (-3,2)6.下列运算正确的是()A. x2•x3=x6B. (-2x2)2=-4x4C. (x3)2=x6D. x5÷x=x57.将抛物线y=3x2向左平移2个单位,再向下平移1个单位,所得抛物线为()A. y=3(x-2)2-1B. y=3(x-2)2+1C. y=3(x+2)2-1D. y=3(x+2)2+18.在Rt△ABC中,∠C=90°,AB=13,AC=5,则sin A的值为().A. B. C. D.9.如图是反比例函数y=在第二象限内的图象,若图中的矩形OABC的面积为2,则k的值为()A. -2B. 2C. 4D. -410.如图,在边长为2的正方形ABCD中,M为边AD的中点,延长MD至点E,使ME=MC,以DE为边作正方形DEFG,点G在边CD上,则DG的长为( )A. -1B. 3-C. +1D. -1二、填空题(本大题共6小题,共18.0分)11.若3a=5b,则=______.12.太阳半径约为696 000千米,数字696 000用科学记数法表示为______.13.分解因式:x3y-xy3=______.14.不等式2x-1>3的解集是______.15.已知α是锐角,且tan(90°-α)=,则α=______.16.抛物线y=2(x-3)2+4的顶点坐标是______.三、解答题(本大题共9小题,共67.0分)17.方程x2-4=0的解是______.18.解方程:x2-4x+1=0.19.计算:tan60°-|-2sin30°|-2cos245°20.在△ABC中,AB=AC(1)求作一点P,使点P为△ABC的外接圆圆心.(保留作图痕迹,不写作法)(2)若∠A=50°,求∠PBC的度数.21.“六•一”前夕,质检部门从某超市经销的儿童玩具、童车和童装中共抽查了300件儿童用品.以下是根据抽查结果绘制出的不完整的统计表和扇形图:类别儿童玩具童车童装抽查件数90______ ______请根据上述统计表和扇形图提供的信息,完成下列问题:(1)补全上述统计表和扇形图;(2)已知所抽查的儿童玩具、童车、童装的合格率分别为90%、88%、80%,若从该超市的这三类儿童用品中随机购买一件,买到合格品的概率是多少?22.如图,在扇形OAB中,∠AOB=90°,半径OA=2,将扇形OAB沿过点B的直线折叠,使点O恰好落在弧AB上的点D处,折痕为BC,求图中阴影部分的面积.23.如图,在平面直角坐标系xOy中,一次函数y1=ax+b(a,b为常数,且a≠0)与反比例函数y2=(m为常数,且m≠0)的图象交于点A(-2,1)、B(1,n).(1)求反比例函数和一次函数的解析式;(2)连结OA、OB,求△AOB的面积;(3)直接写出当y1<y2<0时,自变量x的取值范围.24.如图,在▱ABCD中,AE平分∠BAD,交BC于点E,BF平分∠ABC,交AD于点F,AE与BF交于点P,连接EF,PD.(1)求证:四边形ABEF是菱形;(2)若AB=4,AD=6,∠ABC=60°,求tan∠ADP的值.25.矩形OABC在直角坐标系中的位置如图所示,A、C两点的坐标分别为A(10,0)、C(0,3),直线与BC相交于点D,抛物线y=ax2+bx经过A、D两点.(1)求抛物线的解析式;(2)连接AD,试判断△OAD的形状,并说明理由.(3)若点P是抛物线的对称轴上的一个动点,对称轴与OD、x轴分别交于点M、N,问:是否存在点P,使得以点P、O、M为顶点的三角形与△OAD相似?若存在,请求出点P的坐标;若不存在,请说明理由.答案和解析1.【答案】A【解析】解:A、-|-3|=-3,此选项正确;B、30=1,此选项错误;C、3-1=,此选项错误;D、=3,此选项错误.故选:A.A、根据绝对值的定义计算即可;B、任何不等于0的数的0次幂都等于1;C、根据负整数指数幂的法则计算;D、根据算术平方根计算,直接求9的算术平方根即可.再比较结果即可.本题考查了绝对值、零指数幂、算术平方根、负整数指数幂,解题的关键是掌握这些运算的运算法则.2.【答案】D【解析】解:∵∠CDE=140°,∴∠ADC=180°-140°=40°,∵AB∥CD,∴∠A=∠ADC=40°.故选:D.先求出∠CDE的邻补角,再根据两直线平行,内错角相等解答.本题考查了两直线平行,内错角相等的性质,熟记性质是解题的关键.3.【答案】B【解析】解:∵2<3,∴3<+1<4,故选:B.首先确定在整数2和3之间,然后可得+1的值在3 到4 之间.此题主要考查了估算无理数,关键是掌握用有理数逼近无理数,求无理数的近似值.4.【答案】A【解析】解:x2-6x-5=0,x2-6x=5,x2-6x+9=5+9,(x-3)2=14,故选:A.先把方程的常数项移到右边,然后方程两边都加上32,这样方程左边就为完全平方式.本题考查了利用配方法解一元二次方程ax2+bx+c=0(a≠0):先把二次系数变为1,即方程两边除以a,然后把常数项移到方程右边,再把方程两边加上一次项系数的一半.5.【答案】C【解析】解:已知点P(2,-3),则点P关于原点对称的点的坐标是(-2,3),故选:C.根据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y),即关于原点的对称点,横纵坐标都变成相反数.本题主要考查了关于原点的对称点的性质,正确把握横纵坐标的关系是解题关键.6.【答案】C【解析】解:A、原式=x5,故本选项错误;B、原式=4x4,故本选项错误;C、原式=x6,故本选项正确;D、原式=x4,故本选项错误.故选:C.分别根据同底数幂的除法,熟知同底数幂的除法及乘方法则、合并同类项的法则、幂的乘方与积的乘方法则对各选项进行计算即可.本题考查的是同底数幂的除法,熟知同底数幂的除法及乘方法则、合并同类项的法则、幂的乘方与积的乘方法则是解答此题的关键.7.【答案】C【解析】解:抛物线y=3x2向左平移2个单位,再向下平移1个单位后的抛物线顶点坐标为(-2,-1),所得抛物线为y=3(x+2)2-1.故选:C.先求出平移后的抛物线的顶点坐标,再利用顶点式写出抛物线解析式即可.本题考查了二次函数图象与几何变换,求出平移后的抛物线的顶点坐标是解题的关键.8.【答案】B【解析】【分析】本题考查的是锐角三角函数的定义及勾股定理,掌握锐角A的对边a与斜边c的比叫做∠A的正弦是解题的关键.根据勾股定理求出BC,根据正弦的定义计算即可.【解答】解:在Rt△ABC中,由勾股定理得,BC==12,∴sin A==,故选B.9.【答案】A【解析】解:因为反比例函数y=,且矩形OABC的面积为2,所以|k|=2,即k=±2,又反比例函数的图象y=在第二象限内,k<0,所以k=-2.故选:A.过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的矩形面积S 是个定值|k|,再由反比例的函数图象所在象限确定出k的值.本题主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得三角形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.10.【答案】D【解析】解:∵四边形ABCD是正方形,M为边DA的中点,∴DM=AD=DC=1,∴CM==,∴ME=MC=,∵ED=EM-DM=-1,∵四边形EDGF是正方形,∴DG=DE=-1.故选:D.利用勾股定理求出CM的长,即ME的长,有DE=DG,可以求出DE,进而得到DG的长.本题考查了正方形的性质和勾股定理的运用,属于基础题目.11.【答案】【解析】解:∵3a=5b,∴=.故答案为.根据=,则有ac=bd求解.本题考查了比例的性质:若=,则ac=bd.12.【答案】6.96×105【解析】解:696000=6.96×105.故答案为:6.96×105.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.本题中696 000有6位整数,n=6-1=5.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.【答案】xy(x+y)(x-y)【解析】解:x3y-xy3,=xy(x2-y2),=xy(x+y)(x-y).首先提取公因式xy,再对余下的多项式运用平方差公式继续分解.本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式,要首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.14.【答案】x>2【解析】解:2x-1>3,移项得:2x>3+1,合并同类项得:2x>4,不等式的两边都除以2得:x>2,故答案为:x>2.移项后合并同类项得出2x>4,不等式的两边都除以2即可求出答案.本题主要考查对不等式的性质,解一元一次不等式等知识点的理解和掌握,能根据不等式的性质正确解不等式是解此题的关键.15.【答案】30°【解析】解:∵tan(90°-α)=,∴90°-α=60°,∴α=30°.故答案为:30°.先求出90°-α的度数,然后求出α 的度数.本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值.16.【答案】(3,4)【解析】解:抛物线y=2(x-3)2+4的顶点坐标是(3,4),故答案为:(3,4).直接根据二次函数的顶点式进行解答即可.本题考查的是二次函数的性质,熟知二次函数的顶点式是解答此题的关键.17.【答案】±2【解析】解:x2-4=0,移项得:x2=4,两边直接开平方得:x=±2,故答案为:±2.首先移项可得x2=4,再两边直接开平方即可.此题主要考查了直接开平方法解一元二次方程,解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x2=a(a≥0)的形式,利用数的开方直接求解.18.【答案】解:x2-4x+1=0x2-4x+4=3(x-2)2=3x-2=∴x1=2+,x2=2-;【解析】根据配方法可以解答此方程.本题考查解一元二次方程-配方法,解答本题的关键是会用配方法解方程的方法.19.【答案】解:原式=×-|-2×|-2×,=3-|-1|-2×,=3-1-1,=1.【解析】首先代入特殊角的三角函数值,然后再计算绝对值和乘方,再算乘法,后算加减即可.此题主要考查了实数的运算,关键是掌握特殊角的三角函数值.20.【答案】解:(1)如图,点P即为△ABC的外接圆圆心;(2)∵AB=AC,∠BAC=50°,∴AD⊥BC,∠BAD=BAC=25°,∵PA=PB,∴∠BPD=2∠BAP=50°,∵∠BDP=90°,∴∠PBD=90°-50°=40°.即∠PBC=40°答:∠PBC的度数为40°.【解析】(1)根据三角形外心是三角形三条边的垂直平分线的交点即可求得点P;(2)根据等腰三角形的性质,∠A=50°,即可求∠BPD的度数,进而求得∠PBC的度数.本题考查了作图-复杂作图,解决本题的关键是掌握等腰三角形的性质、三角形的外接圆与外心.21.【答案】(1)75;135;(2)根据题意得出:=0.85.答:从该超市这三类儿童用品中随机购买一件买到合格品的概率是0.85.【解析】解:(1)解:(1)童车的数量是300×25%=75,童装的数量是300-75-90=135,儿童玩具占得百分比是×100%=30%,童装占得百分比1-30%-25%=45%,如图;类别儿童玩具童车童装抽查件数9075135(2)见答案.(1)根据童车的数量是300×25%,童装的数量是300-75-90,儿童玩具占得百分比是×100%,童装占得百分比1-30%-25%=45%,即可补全统计表和统计图;(2)先分别求出儿童玩具、童车、童装中合格的数量之和,再根据概率公式计算即可.本题考查的是统计表和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键,扇形统计图能够清楚地表示各部分所占的百分比.22.【答案】解:连接OD.根据折叠的性质,CD=CO,BD=BO,∠DBC=∠OBC,∴OB=OD=BD,即△OBD是等边三角形∴∠DBO=60°,∴∠CBO=∠DBO=30°,∵∠AOB=90°,∴OC=OB•tan∠CBO=2×=,∴S△BDC=S△OBC=×OB×OC=×2×=,S扇形AOB==π,∴阴影部分的面积为:S扇形AOB-S△BDC-S△OBC=π---=.【解析】首先连接OD,由折叠的性质,可得CD=CO,BD=BO,∠DBC=∠OBC,则可得△OBD是等边三角形,继而求得OC的长,即可求得△OBC与△BCD的面积,又在扇形OAB中,∠AOB=90°,半径OA=2,即可求得扇形OAB的面积,继而求得阴影部分面积.此题考查了折叠的性质、扇形面积公式以及直角三角形的性质.此题难度适中,注意数形结合思想的应用,注意辅助线的作法.23.【答案】解:(1)∵A(-2,1),∴将A坐标代入反比例函数解析式y2=中,得m=-2,∴反比例函数解析式为y=-;将B坐标代入y=-,得n=-2,∴B坐标(1,-2),将A与B坐标代入一次函数解析式中,得,解得a=-1,b=-1,∴一次函数解析式为y1=-x-1;(2)设直线AB与y轴交于点C,令x=0,得y=-1,∴点C坐标(0,-1),∴S△AOB=S△AOC+S△COB=×1×2+×1×1=;(3)由图象可得,当y1<y2<0时,自变量x的取值范围x>1.【解析】(1)将A坐标代入反比例函数解析式中求出m的值,即可确定出反比例函数解析式;将B坐标代入反比例解析式中求出n的值,确定出B坐标,将A与B坐标代入一次函数解析式中求出a与b的值,即可确定出一次函数解析式;(2)设直线AB与y轴交于点C,求得点C坐标,S△AOB=S△AOC+S△COB,计算即可;(3)由图象直接可得自变量x的取值范围.本题属于反比例函数与一次函数的交点问题,涉及的知识有:待定系数法求函数解析式,三角形面积的求法,坐标与图形性质,利用了数形结合的思想,熟练掌握待定系数法是解本题的关键.24.【答案】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC.∴∠DAE=∠AEB.∵AE是角平分线,∴∠DAE=∠BAE.∴∠BAE=∠AEB.∴AB=BE.同理AB=AF.∴AF=BE.∴四边形ABEF是平行四边形.∵AB=BE,∴四边形ABEF是菱形.(2)解:作PH⊥AD于H,∵四边形ABEF是菱形,∠ABC=60°,AB=4,∴AB=AF=4,∠ABF=∠AFB=30°,AP⊥BF,∴AP=AB=2,∴PH=,DH=5,∴tan∠ADP==.【解析】(1)根据平行四边形和角平分线的性质可得AB=BE,AB=AF,AF=BE,从而证明四边形ABEF是菱形;(2)作PH⊥AD于H,根据四边形ABEF是菱形,∠ABC=60°,AB=4,得到AB=AF=4,∠ABF=∠ADB=30°,AP⊥BF,从而得到PH=,DH=5,然后利用锐角三角函数的定义求解即可.本题考查了菱形的判定及平行四边形的性质,解题的关键是牢记菱形的几个判定定理,难度不大.25.【答案】解:(1)由题意得,点D的纵坐标为3,∵点D在直线y=x上,∴点D的坐标为(9,3),将点D(9,3)、点A(10,0)代入抛物线可得:,解得:,故抛物线的解析式为:y=-x2+x.(2)∵点D坐标为(9,3),点A坐标为(10,0),∴OA=10,OD==3,AD==,从而可得OA2=OD2+AD2,故可判断△OAD是直角三角形.(3)①由图形可得当点P和点N重合时能满足△OPM∽△ODA,此时∠POM=∠DOA,∠OPM=∠ODA,故可得△OPM∽△ODA,OP=OA=5,即可得此时点P的坐标为(5,0).②过点O作OD的垂线交对称轴于点P′,此时也可满足△P′OM∽△ODA,由题意可得,点M的横坐标为5,代入直线方程可得点M的纵坐标为,故可求得OM=,∵∠OP′M+∠OMN=∠DOA+∠OMN=90°,∴∠OP′M=∠DOA,∴△P′OM∽△ODA,故可得=,即=,解得:MP′=,又∵MN=点M的纵坐标=,∴P′N=-=15,即可得此时点P′的坐标为(5,-15).综上可得存在这样的点P,点P的坐标为(5,0)或(5,-15).【解析】(1)根据题意可得出点D的纵坐标为3,代入直线解析式可得出点D的横坐标,从而将点D和点A的坐标代入可得出抛物线的解析式.(2)分别求出OA、OD、AD的长度,继而根据勾股定理的逆定理可判断出△OAD是直角三角形.(3)①由图形可得当点P和点N重合时能满足△OPM∽△ODA,②过点O作OD的垂线交对称轴于点P′,此时也可满足△P′OM∽△ODA,利用相似的性质分别得出点P的坐标即可.此题考查了二次函数的综合题,解答本题的关键是结合直线解析式求出点D的坐标,得出抛物线的解析式,在第三问的解答中要分类讨论,不要漏解.。