kalman滤波在不同信噪比时的误码率matlab仿真程序
卡尔曼滤波器Matlab仿真

——Matlab仿真分析
L/O/G/O
1. 案例条件设定
1.一个二座标雷达对一平面上运动的目 标进行观测。雷达扫描周期T=2s,对x 和y独立地进行观测,观测噪声的标准 差均为100m; 2.目标的起始点为(2000,10000),单位 为米(m)。目标在t=0至400s沿y轴作恒 速直线运动,运动速度为-15m/s; 3.在400至600s向轴方向做90度的慢转 弯,加速度为0.075m/s; 4.完成慢转弯后加速度降为零,从610s 开始做的快转弯,加速度为0.3m/s,在 660s结束转弯,加速度降至零。
而预测的误差协方差可由下式表出:
对于最佳滤波,迭代表达式为:
2. Kalman滤波算法 Kalman滤波算法
滤波误差的协方差为:
在应用上面的公式进行Kalman滤波时,需要指定初值。由于实际中通常 无法得到目标的初始状态,我们可以利用前几个观测值建立状态的初始 估计,比如采用前两个观测值:
估计误差为:
2. Kalman滤波算法 Kalman滤波算法
对x轴方向进行讨论(y轴同理): 轴方向进行讨论(y轴同理) (y轴同理 目标沿x轴方向的运动可以用以下方程描述:
用矩阵的形式表述为:
在上式中:
2. Kalman滤波算法 Kalman滤波算法
考虑雷达的观测,得出观测方程为:
其中C(k)=[1 0],V(k)为零均值的噪声序列,方差已知。 对目标进行预测,由相关理论可得到下面的迭代式:
理论航迹与滤波估计以看出Kalman滤波算法对于动态目标的跟踪 有着比较好的效果,能够较好地抑止环境中的噪声影响。
谢谢观赏
L/O/G/O
@Made by Jimson @现代数字信号处理
MATLAB技术卡尔曼滤波教程

MATLAB技术卡尔曼滤波教程MATLAB技术:卡尔曼滤波教程随着现代科技的发展,数据处理和信号滤波成为许多领域研究的重要环节。
其中,卡尔曼滤波作为一种常用的最优估计方法,被广泛应用于控制与导航、机器人、经济学以及信号处理等众多领域。
本文将为读者简要介绍MATLAB中的卡尔曼滤波原理与实现方法。
一、卡尔曼滤波简介卡尔曼滤波由Rudolph E. Kalman在1960年代初提出,其基本思想是通过综合当前观测数据和已知系统动态方程,估计出系统状态的最优解。
卡尔曼滤波通过联合考虑信号的测量和系统模型的不确定性,提供了一种在噪声干扰存在下的最优估计方法。
卡尔曼滤波的核心思想是建立一种递推的状态估计过程,即通过使用上一步的估计结果以及当前时刻的观测数据,预测下一步的状态。
卡尔曼滤波算法分为两个主要步骤:预测(时间更新)和更新(测量更新)。
预测步骤利用系统的动态模型和上一步的状态估计,计算出当前时刻状态的预测值以及预测误差协方差矩阵。
更新步骤则通过结合当前时刻的实际观测数据和预测值,计算出当前时刻的状态估计值和更新后的误差协方差矩阵。
二、MATLAB中的卡尔曼滤波工具箱为了解决卡尔曼滤波的数学推导与实现问题,MATLAB提供了专门的卡尔曼滤波工具箱。
该工具箱提供了丰富的函数和工具,使得用户可以方便地进行卡尔曼滤波算法的实现与仿真。
首先,用户需要定义系统的动态模型和测量模型,并设置初始状态以及误差协方差矩阵。
MATLAB中提供了`kalman`函数用于实现卡尔曼滤波的状态更新与估计。
其次,用户可以利用`kalman`函数进行滤波的仿真实验。
通过输入实际观测数据以及系统模型,用户可以获得滤波后的状态估计值和误差协方差矩阵。
此外,用户还可以根据系统模型的不同,选择不同的卡尔曼滤波算法(如扩展卡尔曼滤波、无迹卡尔曼滤波等)。
三、实例演示:基于MATLAB的卡尔曼滤波仿真为了更好地理解和掌握MATLAB中的卡尔曼滤波工具箱,我们将通过一个简单的实例演示其用法。
卡尔曼滤波原理及应用matlab仿真

卡尔曼滤波原理及应用matlab仿真卡尔曼滤波(Kalman Filter)是一种最优估计算法,由美国工程师卡尔曼发明并命名。
它是一种递归算法,适用于线性以及线性化的系统。
卡尔曼滤波可以通过已知的状态方程和观测方程来计算未知的状态量,同时考虑到测量误差和系统噪声。
卡尔曼滤波的核心思想是通过已知的状态方程和观测方程来递归地更新估计值和协方差矩阵。
估计值是对状态量的估计,协方差矩阵是表示估计值的不确定性的指标,它受到测量误差和系统噪声的影响。
通过不断迭代的过程,最终得到最优的状态估计值。
卡尔曼滤波主要应用于控制系统、导航、信号处理、图像处理等领域,它可以用于预测未来的状态量和优化估计结果,提高系统的稳定性和精度。
在自主导航系统中,卡尔曼滤波可以通过传感器捕捉环境信息,实现机器人的定位、控制和路径规划。
Matlab是一种强大的数学计算软件,它提供了丰富的工具箱和函数库,可以实现卡尔曼滤波算法的仿真。
Matlab中的Kalman滤波工具箱可以用于模拟线性系统的状态估计。
通过Matlab软件,可以输入系统的状态方程和观测方程,生成真实值和观测值序列,并使用卡尔曼滤波算法估计状态量,同时展示状态量的收敛过程和误差分析。
在实际应用中,卡尔曼滤波需要针对具体的问题进行调整和优化,例如选择不同的观测量和噪声模型,选择恰当的卡尔曼增益等。
因此,在使用卡尔曼滤波进行估计时需要注意以下几点:1.确定系统的状态方程和观测方程,建立合理的模型。
2.合理估计系统噪声和观测噪声,减小误差对估计结果的影响。
3.选择合适的卡尔曼增益,平衡观测值和实际值对估计的贡献。
4.对估计结果进行误差分析,评估卡尔曼滤波的优势和局限性。
总之,卡尔曼滤波是一种重要的最优估计算法,广泛应用于控制、导航、信号处理等领域。
通过Matlab软件,可以进行卡尔曼滤波算法的仿真,并优化估计结果。
在实际应用中,需要针对具体问题进行调整和优化,以提高估计精度和稳定性。
卡尔曼滤波器及matlab代码

信息融合大作业——维纳最速下降法滤波器,卡尔曼滤波器设计及Matlab仿真时间:2010-12-6专业:信息工程班级:09030702学号:71姓名:马志强1.滤波问题浅谈估计器或滤波器这一术语通常用来称呼一个系统,设计这样的系统是为了从含有噪声的数据中提取人们感兴趣的,接近规定质量的信息。
由于这样一个宽目标,估计理论应用于诸如通信、雷达、声纳、导航、地震学、生物医学工程、金融工程等众多不同的领域。
例如,考虑一个数字通信系统,其基本形式由发射机、信道和接收机连接组成。
发射机的作用是把数字源(例如计算机)产生的0、1符号序列组成的消息信号变换成为适合于信道上传送的波形。
而由于符号间干扰和噪声的存在,信道输出端收到的信号是含有噪声的或失真的发送信号。
接收机的作用是,操作接收信号并把原消息信号的一个可靠估值传递给系统输出端的某个用户。
随着通信系统复杂度的提高,对原消息信号的还原成为通信系统中最为重要的环节,而噪声是接收端需要排除的最主要的干扰,人们也设计出了针对各种不同条件应用的滤波器,其中最速下降算法是一种古老的最优化技术,而卡尔曼滤波器随着应用条件的精简成为了普适性的高效滤波器。
2.维纳最速下降算法滤波器最速下降算法的基本思想考虑一个代价函数,它是某个未知向量的连续可微分函数。
函数将的元素映射为实数。
这里,我们要寻找一个最优解。
使它满足如下条件这也是无约束最优化的数学表示。
特别适合于自适应滤波的一类无约束最优化算法基于局部迭代下降的算法:从某一初始猜想出发,产生一系列权向量,使得代价函数在算法的每一次迭代都是下降的,即其中是权向量的过去值,而是其更新值。
我们希望算法最终收敛到最优值。
迭代下降的一种简单形式是最速下降法,该方法是沿最速下降方向连续调整权向量。
为方便起见,我们将梯度向量表示为因此,最速下降法可以表示为其中代表进程,是正常数,称为步长参数,1/2因子的引入是为了数学上处理方便。
在从到的迭代中,权向量的调整量为为了证明最速下降算法满足式,在处进行一阶泰勒展开,得到此式对于较小时是成立的。
卡尔曼滤波器及matlab实现

卡尔曼滤波器及Matlab实现简介卡尔曼滤波器是一种常用于估计系统状态的滤波器,特别适用于具有线性动态模型和高斯噪声的系统。
它通过结合系统的测量值和模型预测的状态来估计系统的状态,并利用测量噪声和模型噪声的特性进行优化。
本文将介绍卡尔曼滤波器的基本原理,并使用Matlab实现一个简单的卡尔曼滤波器。
卡尔曼滤波器的基本原理卡尔曼滤波器的基本原理可以描述为以下步骤:1.初始化卡尔曼滤波器的状态估计值和协方差矩阵。
通常情况下,可以将初始状态设定为系统的初始状态,协方差矩阵设定为一个较大的值。
2.预测步骤:根据系统的动态模型预测下一时刻的状态和协方差矩阵。
3.更新步骤:使用测量值来更新预测的状态和协方差矩阵,得到最优的状态估计值和协方差矩阵。
具体的数学表达式如下:预测步骤:预测的状态估计值:x_k = A*x_(k-1) + B*u_k预测的协方差矩阵:P_k = A*P_(k-1)*A' + Q其中,A是状态转移矩阵,B是输入控制矩阵,u_k是输入控制向量,Q是模型噪声协方差。
更新步骤:测量残差:y_k = z_k - H*x_k残差协方差矩阵:S_k = H*P_k*H' + R卡尔曼增益:K_k = P_k*H'*inv(S_k)更新后的状态估计值:x_k = x_k + K_k*y_k更新后的协方差矩阵:P_k = (I - K_k*H)*P_k其中,H是观测矩阵,z_k是测量值,R是测量噪声协方差。
Matlab实现接下来,我们使用Matlab来实现一个简单的卡尔曼滤波器。
我们假设一个一维运动系统,系统状态为位置,系统模型如下:x_k = x_(k-1) + v_(k-1) * dtv_k = v_(k-1) + a_(k-1) * dt式中,x_k是当前时刻的位置,v_k是当前时刻的速度,a_k是当前时刻的加速度,dt是时间步长。
假设我们只能通过传感器得到位置信息,并且测量噪声服从均值为0、方差为0.1的高斯分布。
卡尔曼滤波 matlab算法

卡尔曼滤波 matlab算法卡尔曼滤波是一种用于状态估计的数学方法,它通过将系统的动态模型和测量数据进行融合,可以有效地估计出系统的状态。
在Matlab中,实现卡尔曼滤波算法可以通过以下步骤进行:1. 确定系统的动态模型,首先需要将系统的动态模型表示为状态空间方程,包括状态转移矩阵、控制输入矩阵和过程噪声的协方差矩阵。
2. 初始化卡尔曼滤波器,在Matlab中,可以使用“kf = kalmanfilter(StateTransitionModel, MeasurementModel, ProcessNoise, MeasurementNoise, InitialState, 'State', InitialCovariance)”来初始化一个卡尔曼滤波器对象。
其中StateTransitionModel和MeasurementModel分别是状态转移模型和测量模型,ProcessNoise和MeasurementNoise是过程噪声和测量噪声的协方差矩阵,InitialState是初始状态向量,InitialCovariance是初始状态协方差矩阵。
3. 进行预测和更新,在每个时间步,通过调用“predict”和“correct”方法,可以对状态进行预测和更新,得到最优的状态估计值。
4. 实时应用,将测量数据输入到卡尔曼滤波器中,实时获取系统的状态估计值。
需要注意的是,在实际应用中,还需要考虑卡尔曼滤波器的参数调节、性能评估以及对不确定性的处理等问题。
此外,Matlab提供了丰富的工具箱和函数,可以帮助用户更便捷地实现和应用卡尔曼滤波算法。
总的来说,实现卡尔曼滤波算法需要对系统建模和Matlab编程有一定的了解和技能。
希望以上内容能够对你有所帮助。
MATLAB中的Kalman滤波器设计

MATLAB中的Kalman滤波器设计引言Kalman滤波器是一种常用于估计随时间演变的系统状态的算法。
它通过观测值和系统模型之间的协方差来融合测量和预测,从而提供对系统状态的最优估计。
在MATLAB中,实现Kalman滤波器设计相对简单,本文将介绍MATLAB中Kalman滤波器的基本原理和常见的应用案例。
一、 Kalman滤波器基本原理Kalman滤波器的基本原理可以概括为两个步骤:预测和更新。
预测步骤根据系统的动力学模型和先前的状态估计,使用预测方程计算下一个时间步的状态预测和协方差预测。
更新步骤则是在测量信息的基础上,使用更新方程将预测的状态和协方差修正为更准确的估计。
预测步骤:1. 根据系统的动力学模型,使用预测方程计算状态预测值x_prior和协方差预测值P_prior:x_prior = F * x_est + B * uP_prior = F * P_est * F' + Q其中,F是状态转移矩阵,x_est和P_est是先前时间步的状态估计和协方差估计,B是控制输入矩阵,u是控制输入向量,Q是系统过程噪声的协方差矩阵。
更新步骤:1. 根据观测模型,使用更新方程计算观测预测值z_prior和观测协方差S:z_prior = H * x_priorS = H * P_prior * H' + R其中,H是观测矩阵,R是观测噪声的协方差矩阵。
2. 计算卡尔曼增益K:K = P_prior * H' * inv(S)3. 根据观测值z和观测预测值z_prior,计算状态更新值x_update和协方差更新值P_update:x_update = x_prior + K * (z - z_prior)P_update = (eye(size(x_est, 1)) - K * H) * P_prior二、案例研究:目标跟踪Kalman滤波器在目标跟踪领域有广泛的应用。
卡尔曼滤波算法及MATLAB实现

卡尔曼滤波算法及MATLAB实现这一段时间对现代滤波进行了学习,对自适应滤波器和卡尔曼滤波器有了一定认识,并对它们用MATLAB对语音信号进行了滤波,发现卡尔曼滤波器还是比较有用,能够在较大的噪声中还原原来的信号。
新的学期马上就开始了,由于TI的开发板一直在维修,所以学习TI开发板的计划搁置,但是对声音信号的处理及滤波器的认识有了进一步提高。
新的学期继续努力!卡尔曼滤波的基本思想是:以最小均方误差为最佳估计准则,采用信号与噪声的状态空间模型,利用前一时刻的估计值和当前时刻的观测值来更新对状态变量的估计,求出当前时刻的估计值,算法根据建立的系统方程和观测方程对需要处理的信号做出满足最小均方误差的估计。
语音信号在较长时间内是非平稳的,但在较短的时间内的一阶统计量和二阶统计量近似为常量,因此语音信号在相对较短的时间内可以看成白噪声激励以线性时不变系统得到的稳态输出。
假定语音信号可看成由一AR模型产生:时间更新方程:测量更新方程:K(t)为卡尔曼增益,其计算公式为:其中、分别为过程模型噪声协方差和测量模型噪声协方差,测量协方差可以通过观测得到,则较难确定,在本实验中则通过与两者比较得到。
由于语音信号短时平稳,因此在进行卡尔曼滤波之前对信号进行分帧加窗操作,在滤波之后对处理得到的信号进行合帧,这里选取帧长为256,而帧重叠个数为128;下图为原声音信号与加噪声后的信号以及声音信号与经卡尔曼滤波处理后的信号:原声音信号与加噪声后的信号原声音信号与经卡尔曼滤波处理后的信号MATLAB程序实现如下:%%%%%%%%%%%%%%%%%基于LPC全极点模型的最大后验概率估计法,采用卡尔曼滤波%%%%%%%%%%%%%% clear;clc;%%%%%%%%%%%%%%%%%%%%%%%%%%%加载声音数据%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%load voice.maty=m1(2,:);x=y+0.08*randn(1,length(y));%%%%%%%%%%%%%%%原声音信号和加噪声后的信号%%%%%%%%%%%%%%% figure(1);subplot(211);plot(m1(1,:),m1(2,:));xlabel('时间');ylabel('幅度');title('原声音信号');subplot(212);plot(m1(1,:),x);xlabel('时间');ylabel('幅度');title('加噪声后的信号'); %%%%%%%%%%%%%%%%%%%%%%%%%输入参数%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Fs=44100; %信号采样的频率bits=16; %信号采样的位数N=256; %帧长m=N/2; %每帧移动的距离lenth=length(x); %输入信号的长度count=floor(lenth/m)-1; %处理整个信号需要移动的帧数%%%先不考虑补零的问题p=11; %AR模型的阶数a=zeros(1,p);w=hamming(N); %加汉明窗函数y_temp=0;F=zeros(11,11); %转移矩阵F(1,2)=1;F(2,3)=1;F(3,4)=1;F(4,5)=1;F(5,6)=1;F(6,7)=1;F(7,8)=1;F(8,9)=1;F(9,10)=1;F(10,11)=1;H=zeros(1,p); %S0=zeros(p,1);P0=zeros(p);S=zeros(p);H(11)=1;s=zeros(N,1);G=H';P=zeros(p);%%%%%%%%%%%%%%%%测试噪声协方差%%%%%%%%%%%%%%%%%%%%%%y_temp=cov(x(1:7680));x_frame=zeros(256,1);x_frame1=zeros(256,1);T=zeros(lenth,1);for r=1:count%%%%%%%%%%%%%%%%%%%5%%%%%分帧处理%%%%%%%%%%%%%%%%%%%%% x_frame=x((r-1)*m+1:(r+1)*m);%%%%%%%%%%%%%%%%采用LPC模型求转移矩阵参数%%%%%%%%%%%%%%if r==1[a,VS]=lpc(x_frame(:),p);else[a,VS]=lpc(T((r-2)*m+1:(r-2)*m+256),p);end%%%%%%%%%%%%%%%%帧长内过程噪声协方差%%%%%%%%%%%%%%%%%%if (VS-y_temp>0)VS=VS-y_temp;elseVS=0.0005;endF(p,:)=-1*a(p+1:-1:2);for j=1:256if(j==1)S=F*S0;Pn=F*P*F'+G*VS*G';elseS=F*S; %时间更新方程Pn=F*P*F'+G*VS*G';endK=Pn*H'*(y_temp+H*P*H').^(-1); %卡尔曼增益P=(eye(p)-K*H)*Pn; %测量更新方程S=S+K*[x_frame(j)-H*S];T((r-1)*m+j)=H*S;end%%%%%%%%%%%%%%%%对得到的每帧数据进行加窗操作%%%%%%%%%%%%%%%%%%%%%%%%ss(1:256,r)=T((r-1)*m+1:(r-1)*m+256);sss(1:256,r)=ss(1:256,r).*w;end%%%%%%%%%%%%%%%%%%%%%%%%%%%%%合帧操作%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% for r=1:countif r==1s_out(1:128)=sss(1:128,r);else if r==counts_out(r*m+1:r*m+m)=sss(129:256,r);elses_out(((r-1)*m+1):((r-1)*m+m))=sss(129:256,r-1)+sss(1:128,r);endendendfigure(2)subplot(211);plot(m1(1,:),m1(2,:));xlabel('时间');ylabel('幅度');title('原声音信号');subplot(212);plot((1:1109760)/Fs,s_out);xlabel('时间');ylabel('幅度');title('经卡尔曼滤波后的声音信号');。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
-20-15-10-50510152000.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5
Kalman滤波器在matlab仿真程序下的不同信噪比时的误码率:
%multiuser_dectect.m
clc;
clear all;
hold on
BER_sum=zeros(1,13);%设定求和误码率的零矩阵;
BER_ave=zeros(1,13); %设定平均误码率的零矩阵;
for m=1:10;%m的长度为1到10 间隔为1;
snr_in_db=-20:3:16;%定义信噪比的长度为-20到16 间隔为3;snr_in_db是信噪比用db表示
for i=1:length(snr_in_db);%i的长度为1到信噪比的长度
BER(i)= Kalman_S1(snr_in_db(i));%卡尔曼的误码率函数;
end
BER_sum=BER_sum+BER;%误码率求和的算法
end;
BER_ave=0.1* BER_sum ; %误码率平均值的算法
semilogy( snr_in_db,BER_ave,'rd-');%y轴维数坐标图定义横坐标为信噪比,纵坐标为误码率;
%Kalman_S1.m
%Kalman algorithm
%synchronous CDMA同步cdma
%channel: White Gaussis Noise
function [p] = Kalman_S1(snr_in_dB)
SNR=10^(snr_in_dB/10); %信噪比由dB形式转化
sgma=1; % noise standard deviation is fixed 定义方差
Eb=sgma^2*SNR;
A=[sqrt(Eb),sqrt(Eb),sqrt(Eb),sqrt(Eb),sqrt(Eb),sqrt(Eb),sqrt(Eb),sqrt(Eb),sqrt(Eb),sqr t(Eb),sqrt(Eb),sqrt(Eb),sqrt(Eb),sqrt(Eb),sqrt(Eb)];
K=length(A);
step=1000;%阶跃响应指令迭代1000次
N=31;%扩频增益n=31
%******************************************************************* *******
S1=[1 1 1 1 1 -1 -1 -1 1 1 -1 1 1 1 -1 1 -1 1 -1 -1 -1 -1 1 -1 -1 1 -1 1 1 -1 -1];%a(n)=a(2)+a(-1)
S2=[1 -1 -1 -1 -1 1 -1 1 1 -1 1 -1 1 -1 -1 -1 1 1 1 -1 1 1 1 1 1 -1 -1 1 -1 -1 1];%a(n)=a(3)+a(2)+a(1)+a(-1)
for i=1:N
SS(i,:)=(S1~=[S2(i:N),S2(1:i-1)]);
end
SS=SS*2-1;
S=SS(1:K,:);%K*N
C(1,:)=SS(1,:);
C(2:N,:)=rand(N-1,N)*2-1;
for i=2:N
rou=C(i,:)*C(1:i-1,:).'./dot(C(1:i-1,:),C(1:i-1,:),2).';
C(i,:)=C(i,:)-rou*C(1:i-1,:);
end
for i=1:N
C(i,:)=C(i,:)/sqrt(dot(C(i,:),C(i,:)));
end
C_null=C(2:N,:);
%********************************************
b=zeros(K,step);
b=sign(rand(K,step)-0.5);
noiseN_step=randn(N,step); % Noise
noiseN_step=sqrt(10./SNR)*noiseN_step;
for i=1:K
Ab(i,:)=A(i)*b(i,:);
end
yN_step=(Ab.'*S).';
yN_step=yN_step+noiseN_step; %****************************** KK=eye(N-1);
w=zeros(N-1,1);
c=zeros(N,1);
%Kalman multiuser detection
for i=1:step
d=C_null*yN_step(:,i);
g=KK*d*(d'*KK*d+1)^(-1);
KK=KK-g*d'*KK;
yy=S(1,:)*yN_step(:,i);
w=w+g*(yy-d'*w);
c=S(1,:).'-C_null.'*w;
y(i)=sign(real(c.'*yN_step(:,i))); end
p= length(find(y - b(1,:)))/length(y);。