线性代数练习题矩阵

合集下载

(精选)线性代数矩阵习题

(精选)线性代数矩阵习题

(精选)线性代数矩阵习题习题课一.单项选择题1. 设A 为n 阶可逆矩阵,λ为A 的一个特征根,则A 的伴随矩阵的特征根之一为( )A.n A ||1-λB. ||1A -λC. ||A λD. n A ||λ2.设λ为非奇异矩阵A 的一个特征值,则矩阵12)31(-A 有一特征值为( )A.34B.43C.21D.413.n 阶方阵A 有n 个不同的特征值是A 与对角阵相似的( )A.充分必要条件B. 充分而非必要条件C. 必要而非充分条件D. 既非充分也非必要条件 4.设B A ,为n 阶矩阵,且A 与B 相似,E 为n 阶单位矩阵,则( ) A. B E A E -=-λλB. A 与B 有相同的特征值与特征向量C. A 与B 都相似于一对角矩阵D. 对任意常数t ,有A tE -与B tE -相似二.填空题1.若四阶矩阵A 与B 相似,矩阵A 的特征值为51,41,31,21,则行列式=--||1E B 2.设n 阶方阵A 伴随矩阵为*A ,且,0||≠A 若A 有特征值λ,则E A +2*)(的特征值为3.矩阵=1111111111111111A 的非零特征值为 4.n 阶矩阵A 的元素全是1,则A 的n 个特征值为三、计算题1.设=0011100y xA 有三个线性无关的特征向量,求x 和y 应满足的条件. 2.设三阶实对称矩阵A 的特征值为1,2,3;矩阵A 的属于特征值1,2,的特征向量分别为,)1,2,1(,)1,1,1(21T T --=--=αα(1)求A 的属于特征值3的特征向量; (2)求矩阵A .3.设T)1,1,1(-=ξ为---=2135112b a A 的一特征向量. (1)求b a ,及特征值ξ; (2) A 可否对角化?4.设三阶矩阵 A 满足),3,2,1(==i i A i i αα其中,)2,1,2(,)1,2,2(,)2,2,1(321TT T --=-==ααα 试求矩阵A .5.设矩阵,3241223----=k k A 问k 为何值时,存在可逆矩阵P ,使得AP P 1-为对角矩阵?并求出P 和相应的对角矩阵.答案一.单项选择题 1、解: B.设ξλξξ(=A 为A 的属于λ的一个特征向量),则ξλξ**A A A =,即ξλξ*||A A =, 从而ξλξ|)|(1*A A -=.注:一般地,我们有:若λ为A 的一个特征根,则 (1)T A 的特征根为λ;(2)k A 的特征根为kλ; (3)aA 的特征根为λa ;(4)若A 可逆,则1-A 的特征根为λ1; (5)若0≠λ,则*A 的特征根为||1A -λ; (6)kE A +的特征根为k +λ.2、解: B.设ξλξξ(=A 为A 的属于λ的一个特征向量),则,,2222ξλξξλξa aA A ==(a 为实数), 所以, 12)31(-A 的一个特征值为12)231(-?=43. 3、解: B. 4、解: D. 二.填空题 1、解: 24.设ξλξξ(=A 为A 的属于λ的一个特征向量), A 可逆, 则ξλξ1 1--=A ,ξλξ)1()(11-=---E A ,即 E A--1的特征值为1-λ-1, 从而=--||1E A (2-1)(3-1)(4-1)(5-1)=24.另一方面, A 与B 相似,所以,存在可逆矩阵P 使得 B AP P =-1 , 即P A P B111---=,P E A P EP P P A P E B )(111111-=-=-------,所以E B--1与E A --1相似,相似矩阵有相同的行列式,因此, =--||1E B 24.2、解:.1||22+λA若A 的特征值为λ,则*A 的特征值为λ||A ,2*)(A 的特征值为22||λA ,所以, E A +2*)(的特征值为.1||22+λA3、解: 4.计算特征行列式λλλλλλλλλ01010010001)4(1111111111111111||-=----------------=-A E 0)4(3=-=λλ .所以,非零特征值为4.4、解:n,0,其中0为n-1重根.(计算方法如上)。

线性代数第二章矩阵练习题(有答案)

线性代数第二章矩阵练习题(有答案)

第二章一、选择题 1、计算13230102-⎡⎤⎡⎤+⎢⎥⎢⎥⎣⎦⎣⎦的值为(C ) A.-5 B.6 C.3003⎡⎤⎢⎥⎣⎦ D.2902-⎡⎤⎢⎥⎣⎦2、设,A B 都是n 阶可逆矩阵,且AB BA =,则下列结论中不正确的是(D ) A. 11AB B A --= B. 11A B BA --= C. 1111A B B A ----= D.11B A A B --=3、初等矩阵(A )A. 都是可逆阵B.所对应的行列式值等于1C. 相乘仍是初等阵D.相加仍是初等阵 4、已知,A B 均为n 阶矩阵,满足0AB =,若()2r A n =-,则(C ) A. ()2r B = B.()2r B < C. ()2r B ≤ D.()1r B ≥二、判断题1、若,,A B C 都是n 阶矩阵,则()k k k k ABC A B C =. (×)2、若,A B 是n 阶反对称方阵,则kA 与A B +仍是反对称方阵.(√)3、矩阵324113A ⎡⎤=⎢⎥⎣⎦与矩阵2213B ⎡⎤=⎢⎥⎣⎦可进行乘法运算. (√) 4、若n 阶方阵A 经若干次初等变换后变成B ,则A B =. (×)三、填空题1、已知[]456A =,123B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,求AB 得_________。

(32)2、已知12n a a A a ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦(0,1,2,,ia i n ≠= ),则1A -=3、设A 为n 阶方阵,2A =,求TA A的值为_________。

4、设A 为33⨯矩阵,3A =-,把A 按列分块为()123A A A A =,求出132,4,A A A 的值为__________。

四、计算题1、计算()101112300121024--⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎣⎦⎣⎦.解 原式()1292(38)4-⎡⎤⎢⎥==-⎢⎥-⎢⎥⎣⎦.2、求矩阵100120135A -⎡⎤⎢⎥=-⎢⎥-⎢⎥⎣⎦的逆矩阵. 解求出10A =-,11201035A ==,1210515A -=-=-,1311113A --==--, 2100035A =-=,2210515A -==--,2310313A -==-,12111n a a a ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦1212n +3100020A ==,3210010A -=-=-,3310212A -==--故*11001102213110105A A A -⎡⎤⎢⎥-⎢⎥⎢⎥==-⎢⎥⎢⎥-⎢⎥⎣⎦.五、证明题设n 阶方阵A 满足3()0A I +=,求证A 可逆,且求1A -.证 由3()0A I +=得32330A A A I +++=,于是2(33)A A A I I ⎡⎤-++=⎣⎦. 令233B A A I =---,则AB =I ,故A 可逆,且1233A A A I -=---.。

线性代数矩阵练习题参考答案

线性代数矩阵练习题参考答案

《线性代数》第二章练习题参考答案8、设矩阵A满足A2+A-4E=O,则(A-E)-1=(A+2E) 一、填空题1、设A=⎛ 12 ⎫⎛3-2⎫⎛⎝-13⎪⎪⎭,B= ⎝21⎪⎪⎭,则 3A+2B =⎛ 92⎫⎝111⎪⎭; AB =⎛ 70⎫⎝35⎪⎭;BT= 3⎝-2⎛19-3⎫2、设矩阵A=⎛ -15⎫⎪,8⎪⎝13⎭B=⎛ 31⎫则⎛-614⎫-1 -8⎝-20⎪,⎭3A-B= ⎝59⎪,⎭AB= 11⎪⎪。

⎝88⎪⎭3、设A为三阶矩阵,且A=2,则2A*-A-1=2724、设矩阵A为3阶方阵,且|A|=5,则|A*|=__25____,|2A|=____40_ ⎛⎛3、设A= 120⎫340⎪⎪,B=⎛ 23-1⎫T86⎫ 1810⎪⎝-121⎪⎭⎝-240⎪⎪⎭,则AB=⎪⎝310⎪⎭⎛11⎫4、设A=1 225⎪⎪,且r(A)=2,则t= 4 ⎝11t⎪⎭⎛ 1233⎫5、若A=3-12⎪06-24⎪⎪则r(A)=_2____ ⎝0000⎪⎭6、设矩阵A=⎛ 1-1 ⎫⎛⎝23⎪⎪⎭,B=A2-3A+2E,则B-1= 01⎫ 2⎪⎝-1-1⎪⎭7、设A是方阵,已知A2-2A-2E=O,则(A+E)-1=3E-A2⎫1⎪⎭ 2⎛102⎫9、设A是4⨯3矩阵且r(A)=2,B= 020⎪⎪,则r(AB)=⎝-103⎪⎭⎛10、设A= 100⎫ 220⎪⎪,则(A*)-1=1⎛100⎫A=1 220⎪⎪⎝345⎪⎭A10 ⎝345⎪⎭⎛⎛ 100⎫11、设A= 300⎫ 140⎪⎪,则(A-2E)-1=-11⎪⎝003⎪⎭220⎪⎪(用分块矩阵求逆矩阵) ⎝001⎪⎭⎛⎛ 520⎫1-20⎫0-2500⎪12、设A= 2100⎪⎪001-2⎪,则A-1=0012⎪⎪ 33⎪⎝0011⎪⎪⎭⎪⎝00-11⎪33⎪⎭13、已知A为四阶方阵,且A=12,则3281⎛⎫⎛2n⎫14、设A= 2⎫3⎪⎛22,A2= 32⎪⎪⎛2-1n⎪⎪,An= 3⎪,A-1= 3-1⎝4⎪⎭⎝42⎪⎭⎝4n⎪⎭⎝⎛ 100⎫⎪⎛00⎛15、若A= 230则A*= 18⎫ -1260⎪=1⎪,A-1 1800⎫⎪,-1260⎪⎝456⎪⎭⎝-2-53⎪⎭18⎝-2-53⎪⎪⎭二、单项选择题⎫⎪⎪4-1⎪⎭1、若A2=A,则下列一定正确的是 ( D ) (A) A=O (B) A=I (C) A=O或A=I (D)以上可能均不成立2、设A,B为n阶矩阵,下列命题正确的是( C )(A)(A+B)=A+2AB+B;(B)(A+B)(A-B)=A-B; 21(A)a;(B);(C)an-1;(D)an。

矩阵练习题及答案

矩阵练习题及答案

矩阵练习题及答案矩阵练习题及答案矩阵是线性代数中的重要概念,也是许多数学问题的基础。

通过练习矩阵题目,我们可以加深对矩阵的理解,提高解决问题的能力。

下面,我将为大家提供一些矩阵练习题及其答案,希望对大家的学习有所帮助。

一、基础练习题1. 计算以下矩阵的和:A = [2 4][1 3]B = [3 1][2 2]答案:A + B = [5 5][3 5]2. 计算以下矩阵的乘积:A = [2 3][4 1]B = [1 2][3 2]答案:A * B = [11 10][7 10]3. 计算以下矩阵的转置:A = [1 2 3][4 5 6]答案:A^T = [1 4][2 5][3 6]二、进阶练习题1. 已知矩阵 A = [2 1][3 4]求矩阵 A 的逆矩阵。

答案:A 的逆矩阵为 A^-1 = [4/5 -1/5] [-3/5 2/5]2. 已知矩阵 A = [1 2][3 4]求矩阵 A 的特征值和特征向量。

答案:A 的特征值为λ1 = 5,λ2 = -1对应的特征向量为 v1 = [1][1]v2 = [-2][1]3. 已知矩阵 A = [2 1][3 4]求矩阵 A 的奇异值分解。

答案:A 的奇异值分解为A = U * Σ * V^T其中,U = [-0.576 -0.817][-0.817 0.576]Σ = [5.464 0][0 0.365]V^T = [-0.404 -0.914][0.914 -0.404]三、实际应用题1. 一家工厂生产 A、B、C 三种产品,其销售量分别为 x1、x2、x3。

已知每天销售的总量为 100 个,且销售收入满足以下关系:2x1 + 3x2 + 4x3 = 3003x1 + 2x2 + 5x3 = 3204x1 + 3x2 + 6x3 = 380求解方程组,得到每种产品的销售量。

答案:解方程组得到 x1 = 30,x2 = 20,x3 = 50。

(完整版)线性代数试题库(矩阵)

(完整版)线性代数试题库(矩阵)
答案:A
71.设 是2阶方阵可逆,且 ,则 ( )
A. B.
C. D.
答案:B
72.设 均为3阶矩阵,若 可逆,秩 ,那么秩 ( )
A.0B.1
C.2D.3
答案:C
73.设 为 阶矩阵,若 与 阶单位矩阵等价,那么方程组 ( )
A.无解B.有唯一解
C.有无穷多解D.解的情况不能确定
答案:B
74.设矩阵 ,则 __________.
A. B. C. D.
答案:C
95.设 为3阶方阵,且行列式 ,则 【 】
A.-4 B.4 C.-1 D.1
答案:A
96.设矩阵 为 的转置,则 =。
答案:
97.设矩阵 则行列式 的值为.
答案:1
99.设 是 阶方阵,且 的元素全都是1, 是 阶单位位矩阵。证明:
证明:
因为 的元素全都是1,所以: 的元素全部为 ,即:
若 为同阶方阵,则 的充分必要条件是
答案:
143设 都是 阶矩阵,且 ,则下列一定成立的是()
或 B 都不可逆
C 中至少有一个不可逆D
答案:C
144设 均为可逆矩阵,则分块矩阵 亦可逆,
答案:
145设 为3阶可逆矩阵,且 ,则
答案:
146 均为 阶矩阵,下列各式中成立的为()
(A)
(B)
(C) 则 或
答案:×
151.两个初等矩阵的乘积仍为初等矩阵。 ( )
答案:×
152.A,B均为n阶方阵,A≠O,且AB=O,则B的秩( )
(A)等于O (B)小于n
(C)等于n (D)等于n-1
答案:B
153.已知 且A2—AB=E,求矩阵B。

矩阵习题带答案

矩阵习题带答案

矩阵习题带答案矩阵习题带答案矩阵是线性代数中的重要概念,广泛应用于各个领域。

掌握矩阵的运算和性质对于学习线性代数和解决实际问题都具有重要意义。

在这篇文章中,我们将提供一些矩阵习题,并附上详细的解答,帮助读者更好地理解和掌握矩阵的相关知识。

1. 习题一已知矩阵A = [1 2 3; 4 5 6; 7 8 9],求矩阵A的转置矩阵AT。

解答:矩阵A的转置矩阵AT即将A的行变为列,列变为行。

因此,矩阵A的转置矩阵为:AT = [1 4 7; 2 5 8; 3 6 9]2. 习题二已知矩阵B = [2 4; 1 3],求矩阵B的逆矩阵B-1。

解答:对于一个二阶矩阵B,如果其行列式不为零,即|B| ≠ 0,那么矩阵B存在逆矩阵B-1,且B-1 = (1/|B|) * [d -b; -c a],其中a、b、c、d分别为矩阵B的元素。

计算矩阵B的行列式:|B| = ad - bc = (2*3) - (4*1) = 6 - 4 = 2因此,矩阵B的逆矩阵为:B-1 = (1/2) * [3 -4; -1 2]3. 习题三已知矩阵C = [1 2 3; 4 5 6],求矩阵C的秩rank(C)。

解答:矩阵的秩是指矩阵中非零行的最大个数,也可以理解为矩阵的行向量或列向量的最大线性无关组的向量个数。

对于矩阵C,我们可以通过高斯消元法将其化为行简化阶梯形矩阵:[1 2 3; 0 -3 -6]可以看出,矩阵C中非零行的最大个数为1,因此矩阵C的秩为1。

4. 习题四已知矩阵D = [2 1; -1 3],求矩阵D的特征值和特征向量。

解答:对于一个n阶矩阵D,如果存在一个非零向量X,使得D*X = λ*X,其中λ为常数,则称λ为矩阵D的特征值,X为对应的特征向量。

首先,我们需要求解矩阵D的特征值,即求解方程|D - λI| = 0,其中I为n阶单位矩阵。

计算矩阵D - λI:[D - λI] = [2-λ 1; -1 3-λ]设置行列式等于零,得到特征值的方程式:(2-λ)(3-λ) - (1)(-1) = 0λ^2 - 5λ + 7 = 0解特征值的方程,得到两个特征值:λ1 = (5 + √(-11))/2λ2 = (5 - √(-11))/2由于特征值的计算涉及到虚数,这里不再继续计算特征向量。

线性代数练习题及答案10套

线性代数练习题及答案10套

1 0 1 14.设矩阵 A= 0 2 0 ,矩阵 B A E ,则矩阵 B 的秩 r(B)= __2__. 0 0 1 0 0 1 B A E = 0 1 0 ,r(B)=2. 0 0 0
15.向量空间 V={x=(x1,x2,0)|x1,x2 为实数}的维数为__2__. 16.设向量 (1,2,3) , (3,2,1) ,则向量 , 的内积 ( , ) =__10__. 17.设 A 是 4×3 矩阵,若齐次线性方程组 Ax=0 只有零解,则矩阵 A 的秩 r(A)= __3__. 18 . 已 知 某 个 3 元 非 齐 次 线 性 方 程 组 Ax=b 的 增 广 矩 阵 A 经 初 等 行 变 换 化 为 :
三、计算题(本大题共 6 小题,每小题 9 分,共 54 分)
Ibugua
交大打造不挂女神的领跑者
123 23 3 21.计算 3 阶行列式 249 49 9 . 367 67 7 123 23 3 100 20 3 解: 249 49 9 200 40 9 0 . 367 67 7 300 60 7
线代练习题及答案(一)
一、单项选择题(本大题共 10 小题,每小题 2 分,共 20 分)
1.设 A 为 3 阶方阵,且 | A | 2 ,则 | 2 A 1 | ( D A.-4 B.-1 C. 1 ) D.4
| 2 A 1 | 2 3 | A | 1 8
1 4. 2

1 2 3 1 2 2. 设矩阵 A= (1, 2) , B= C= 则下列矩阵运算中有意义的是 ( B 4 5 6 , 3 4 ,
行成比例值为零.
a1b2 a 2 b2 a 3 b2

线性代数第二章练习题

线性代数第二章练习题

第二章 矩 阵一、选择题 1.设矩阵4203a b a b d c +-æöæö=ç÷ç÷èøèø,则( C )(A)3,1,1,3a b c d ==-== (B)1,3,1,3a b c d =-=== (C)3,1,0,3a b c d ==-== (D)1,3,0,3a b c d =-=== 2.设矩阵()1,2A =,1234B æö=ç÷èø,123456C æö=ç÷èø,则下列矩阵运算中有意义的是(B)(A)ACB (B)ABC (C)BAC (D)CBA 3.设A 、B 均为n 阶矩阵,下列命题正确的是 C (A)0B 0A 0AB ==Þ=或 (B)0B 0A 0AB ¹¹Û¹且 (C)00==Þ=B A 0AB 或 (D)00¹¹Û¹B A 0AB 且 4.设A 、B 均为n 阶矩阵,满足22A B =,则必有( D ) (A)A B = (B)A B =- (C)A B = (D)22A B=5.设A 为n 阶矩阵,且有A A 2=,则结论正确的是________D________ (A) 0A = (B)E A =(C) 若A 不可逆,则0A = (D) 若A 可逆,则E A 2= 6.设B A ,都是n 阶对称矩阵,下列结论不正确的结论是( A ) (A)AB 为对称矩阵 (B)设B A ,可逆,则11--+B A 为对称矩阵(C)B A +为对称矩阵 (D)kA 为对称矩阵7.设A 为任意n 阶矩阵,下列矩阵中为反对称矩阵的是( B ) (A)T A A + (B)T A A - (C)T AA(D)T A A8.设A 为3阶方阵,且2A =,则12A -=( D ) (A)-4 (B)-1 (C)1 (D)49.设A 为n 阶矩阵,*A 为其伴随矩阵,则=*A k C (A) A n k (B) nk A(C)1-n nkA(D)nn kA1-10.设B A ,都是n 阶可逆矩阵,则÷÷øöççèæ--1002B A T等于( A ) (A)12)2(--B A n(B)1)2(--B A n (C)B A T2- (D)12--B A11.设n 阶方阵C B A ,,满足关系式E ABC =,其中E 为n 阶单位阵,则必有( D )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线性代数练习题——矩阵
一、 填空题
1、 设⎟⎟⎠
⎞⎜⎜⎝⎛=1032A ,则1−A = 2、
设A ,B 为n 阶方阵,且2=A ,3−=B ,则=−12AB 3、 设A 为3阶方阵,且5=A ,则=−13A
4、 设⎟⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎜⎝
⎛−−−=10030116030242201211A ,则秩)(A r = 5、 ⎟⎟⎟⎟⎟⎠
⎞⎜⎜⎜⎜⎜⎝⎛=2413100231214012A ,由第2,3行,第2,4列得到的二阶子式为=D ___。

6、 已知T A A =,T B B =,则AB 是对称矩阵的充分必要条件是______。

7、 设矩阵⎟⎟⎟⎠
⎞⎜⎜⎜⎝⎛=100120301A ,且A 的伴随矩阵为*A ,则=*AA ______。

二、 单项选择题
1. 关于矩阵下列说法正确的是( )
(A )若A 可逆,则A 与任何矩阵可交换,BA AB = (B )若A 可逆,则T A 也可逆
(C )若A 可逆,B 也可逆,则B A ±也可逆 (D )若A 可逆,B 也可逆,则AB 不一定可逆
2. 设B A ,均为n 阶方阵,则必有( )
(A )||||||||A B B A ⋅=⋅(B )||||||B A B A +=+(C )B A B A T +=+)((D )T T T B A AB =)(
3. 设矩阵⎟⎟⎟⎠
⎞⎜⎜⎜⎝⎛+221211111λ的秩为2,则=λ( )
(A )0 (B )1 (C )2 (D )3
4. 设CB AC =,且C 为n m ×矩阵,则B A ,分别是( )矩阵
(A )m n ×与n m × (B )n m ×与m n × (C )n n ×与m m ×
(D )m m ×与n n × 5. 设A 与B 均为n 阶对称矩阵,则( )也为n 阶对称矩阵
(A )1)(−AB (B )11−−B A (C )AB (D )B A −
6. 初等矩阵( )
(A )相乘仍为初等矩阵 (B )都可逆 (C )相加仍为初等矩阵 (D )以上都不对
7. 已知⎟⎟⎠
⎞⎜⎜⎝⎛−=⎟⎟⎠⎞⎜⎜⎝⎛10113121A ,则=A ( ) (A )⎟⎟⎠⎞⎜⎜⎝⎛−0113 (B )⎟⎟⎠⎞⎜⎜⎝⎛−1301 (C )⎟⎟⎠⎞⎜⎜⎝⎛−3110 (D )⎟⎟⎠
⎞⎜⎜⎝⎛−1031 8. 设A ,B 为n 阶矩阵,且0=AB ,则必有( )
(A )0=A 或0=B (B )0=+B A
(C )0=A 或0=B
(D )A +0=B 9. 若A ,B 均为n 阶非零矩阵,且22))((B A B A B A −=−+则必有( )
(A )BA AB = (B )E A = (C )E B = (D )A ,B 为对称矩阵
10. 已知B 为可逆阵,则11[()]
T B −−=( ) (A )B
(B )T B (C )1−B (D )T
B )(1− 三、 计算题 1、⎟⎟⎟⎠⎞⎜⎜⎜⎝⎛−−=520012121A ,⎟⎟⎠⎞⎜⎜⎝⎛−=413212B ,⎟⎟⎟⎠
⎞⎜⎜⎜⎝⎛−=401223C 求C AB T −; 2、设⎟⎟⎟⎠
⎞⎜⎜⎜⎝⎛−−=412711310A 求1−A ;
3、设⎟⎟⎟⎠
⎞⎜⎜⎜⎝⎛−=101020101A ,E 为三阶单位矩阵,满足B A E AB +=+2,求矩阵B ;
4、设⎟⎟⎠
⎞⎜⎜⎝⎛=1011A ,求所有与A 可交换的矩阵; 5、设A 为3阶方阵,31=
A ,求行列式1*)2(3−−A A 的值,其中*A 为A 的伴随矩阵; 6、已知矩阵⎟⎟⎟⎟⎟⎠
⎞⎜⎜⎜⎜⎜⎝
⎛=4553251101413223211a A 的秩是3,求a 的值。

四、 证明题 已知n 阶方阵A 满足矩阵方程0332=−−E A A ,证明A 可逆,并求1−A。

相关文档
最新文档